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Abstract
Globally, about 17% individuals are suffering from the maladaptive procrastination until now, which impacts individual’s
financial status, mental health, and even public policy. However, the comprehensive understanding of neuroanatomical
understructure of procrastination still remains gap. 688 participants including 3 independent samples were recruited for
this study. Brain morphological dynamics referred to the idiosyncrasies of both brain size and brain shape. Multilinear
regression analysis was utilized to delineate brain morphological dynamics of procrastination in Sample 1. In the Sample
2, cross-validation was yielded. Finally, prediction models of machine learning were conducted in Sample 3.
Procrastination had a significantly positive correlation with the gray matter volume (GMV) in the left insula, anterior
cingulate gyrus (ACC), and parahippocampal gyrus (PHC) but was negatively correlated with GMV of dorsolateral prefrontal
cortex (dlPFC) and gray matter density of ACC. Furthermore, procrastination was positively correlated to the cortical
thickness and cortical complexity of bilateral orbital frontal cortex (OFC). In Sample 2, all the results were cross-validated
highly. Predication analysis demonstrated that these brain morphological dynamic can predict procrastination with high
accuracy. This study ascertained the brain morphological dynamics involving in self-control, emotion, and episodic
prospection brain network for procrastination, which advanced promising aspects of the biomarkers for it.

Key words: brain morphology, large-scale networks, procrastination, surface-based morphometry, voxel-based
morphometry

Introduction
Procrastination was considered to parallel the evolution of the
human civilization throughout whole historical span (Knaus
2000; Gustavson et al. 2015). The advents of the industrial revolu-
tion and the information era promoted the societies technically.
The accompanied commitments and deadlines could result
in procrastination straightforward. As refined by Steel (2007),

procrastination refers to the predisposition for voluntarily
putting off the scheduled courses of action even though this
would lead to a worse outcome in the daily life around the
world (Steel 2007). Behavioral procrastination is predominantly
ubiquitous to us: the chronic procrastination is afflicting about
15–20% adults (Harriott et al. 1996); 70–80% of undergraduates
report the premonitory symptoms of procrastination, and 20%
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of population do fall victim to procrastination in the academic
achievements and social communication (Esteban and Ramírez
2014). In this vein, the procrastination admits to substantial
maladies linking to awful consequences, such as the poor
subjective well-beings (Steel 2007; Steel and Klingsieck 2016),
deficient fitness (Sirois 2004; Steel and Ferrari 2013), volatile
financial status (Ferrari et al. 1995; O’Donoghue and Rabin 1999),
and even devastating public policies (Lynch and Zauberman
2006).

Procrastination, as a complicated behavior, has been consid-
ered to be implicated in multiple processes, particularly in self-
control, emotional repair, and future thoughts. Specifically, self-
control was broadly argued as the mainstream for the account
of the procrastination and further sparked intense interests
in this domain (Van Eerde 2000; Ariely and Wertenbroch 2002;
Steel 2010). Self-control is defined as a capacity that overrid-
ing dominant response tendencies for goals-unrelated stimuli
and taking goal-congruent actions to support the pursuit of
important goals (Bauer and Baumeister 2004; Bin et al. 2007).
A substantial amount of studies provided evidence compelling
that the individuals of higher self-control can outperform in
pursuit of long-term utility, thus giving rise to lower procrasti-
nation remarkably (Ziesat et al. 1978; Ariely and Wertenbroch
2002; Digdon and Howell 2008). Emerged quantitative meta-
analyses provided the more robust evidences: the procrasti-
nation can be attributed to the failure of the self-regulation
to a large extent (Steel 2007; De Ridder and Lensvelt-Mulders
2018). Notably, this term was predefined as “how individuals
exert self-control over their own responses in order to pursue
long-term beneficial goals” (Baumeister and Vohs 2004). In other
words, self-regulation served to a more general and superor-
dinate concept than self-control, which might largely depend
on the mechanism involving in self-control (McCullough and
Willoughby 2009). Recently, emerging theoretical account has
putted forward this idea compelling that the procrastination is
due to the failure of self-regulation (Steel 2007, 2010). Further,
an insightful scheme for the failure of the emotion regulation
has been highlighted as well, which consistently accounts the
procrastination as the sacrifice of long-term profits for the repair
of the injured mood in tasks (Tice and Bratslavsky 2000; Tice et al.
2001; Sirois and Pychyl 2013; Sirois 2014a, 2014b). In other words,
to mend the emotional harms from the engagement of task,
the procrastinating behaviors would emerge when individuals
experience the negative emotions toward task engagement (task
aversiveness) more prior than the incentive delivery of task
(outcome utility) (Zhang et al. 2019a, 2019b). Additionally, pro-
crastination referred to decisions toward the future, and thus,
the crucial role of episodic future thinking on the procrastina-
tion should be underscored. Generally, episodic future thinking
referred to an ability to project oneself into the future for pre-
experiencing an event (Atance and O’Neill 2005). The function of
such faculty can be implicated in the far-sighted decisions, plan-
ning, and action (Boyer 2008; D’Argembeau et al. 2011; Schacter
et al. 2012). Individuals who were triggered with episodic future
thinking are more likely to prefer for long-term future outcome,
thus promoting more far-sighted decisions (Peters and Büchel
2010; Benoit et al. 2011; Liu et al. 2013; Rebetez et al. 2016). In
this vein, several lines of straightforward evidence implied that
the high performance of episodic future thinking might bias
evaluation on task for more long-term utility so that mitigating
procrastination (Sirois and Pychyl 2013; Rebetez et al. 2016).
On balance, emerging evidence was indicative of the poten-
tials for neural substrates of procrastination in these interactive

entities—namely self-control process, emotional regulation pro-
cess, and episodic prospection process.

Thus far, the concerns for the neurobiological substrate of
procrastination have been explored from a few tentative studies.
Liu (2017) revealed that the local gray matter volume (GMV)
losses in the left dorsolateral prefrontal cortex (dlPFC) for pro-
crastinators for the first time (Liu and Feng 2017). Afterwards,
Hu (2018) undertook the whole-brain analysis to ascertain brain
structural pattern of procrastination with special regards to GMV
in a large sample, demonstrating the intimate link between
the GMV of parahippocampal gyrus (PHC), orbital frontal cortex
(OFC), ventromedial prefrontal cortex (vmPFC), dlPFC, and pro-
crastination (Hu et al. 2018). Meanwhile, outcomes which per-
tain to these brain structural characteristics of procrastination
were undergirt by the emerging evidence (Liu and Feng 2018).
Likewise, several resting-state functional magnetic resonance
imaging (fMRI) studies further advanced some useful attempts
to construe the in-depth neuronal pattern of procrastination
as well. In terms of brain functional scheme, researches have
unraveled the enhanced amplitude of low-frequency fluctuation
of resting-state activation in the cluster of PHC and vmPFC for
steep procrastination but observed the inhibiting local activity
in anterior prefrontal cortex (Zhang et al. 2016). Recently, a task-
related fMRI study indicated that procrastinator was more prone
to delay tasks due to the disrupted PHC-striatal circuit (Zhang
et al. 2019a). Aside from the identification for the local brain
pattern, emerging studies also illuminated the predictive role
of the dysfunctional connectivity within default mode network
on the procrastinator (Wu et al. 2016; Zhang et al. 2016). From
what has been reviewed briefly, it could be observed that despite
the proliferation in the explorations for the neurobiological sub-
strate of procrastination, the understanding for the brain struc-
tural pattern of procrastination is still constrained into the local
GMV. An increasing need for expanding the understanding for
the comprehensive brain morphological dynamics is emerging.

Owing to the technological revolutions, in addition to the
canonical voxel-based morphometry (VBM) analysis for the
sensitive quantification, the deformation-based morphometry
(DBM) provided a striking tool for the sake of the robust detection
on the brain morphometric dynamics as well (Ashburner and
Friston 2000; Gaser et al. 2001). As an alternative method for
the volumetric measure, DBM strove to capture the subtle
differences between the spatially normalized brain space and
the original one leveraging the nonlinear spatial registration
(Gaser et al. 1999). Such differences for the local volume
changes could be mathematically described as the Jacobian
determinant, which was well known as a robust tensor for the
estimation of alternations of each voxel (Chung et al. 2001;
Gaser et al. 2001). DBM analysis has been widely adopted
in the field of the classification for the patient cohorts and
abnormal development of human brain, which shows acceptable
validity and consistency in a considerable amount of researches
(Cardenas et al. 2007; Yang et al. 2014; Kundu et al. 2018).

Notwithstanding this, it was evident that the measure for
the volume of brain could just observe a little portion of mul-
tiple aspects of fruitful brain anatomical markers. There were
increasing appeals for the objective characterization on neu-
roanatomical morphology with the shape of brain, such as cor-
tical thickness (CT), gyrification, and surface complexity (Gerig
et al. 2001; Escorial et al. 2015; Román et al. 2015; Maingault et al.
2016). CT is reported as an independent quantitative feature for
the description of brain local changes between the pial surface
and white surface, and it seems to be advantageous over volume
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measures for exploration on the brain anatomy and even gene
(Han et al. 2006; Sowell et al. 2007; Panizzon et al. 2009; Anderson
et al. 2010). Besides, the gyrification of cortical surface is also
considered as a novel approach to make use of the absolute
mean curvature for the razor-sharp delineation into the cortical
folding of brain (Luders et al. 2006). Aside from above measures,
the common strategies used to investigate the brain morpho-
logical features are to gauge the cortical 3D complexity. Based
on the spherical harmonic (SPH), local cortical complexity of
brain surface is reconstructed with the von Koch fractal surfaces
and further quantified as the fractal dimension (FD), with higher
FD values for more complex local surface (Yotter et al. 2011b).
Owing to the superior mathematical properties for the quantify
of chaotic entities (i.e., human brain), it is of valuable to integrate
cortical gyrification and 3D complexity for examining cortical
folding of brain shape (Mangin et al. 2004; Fischl et al. 2007).
In brief, the advent of novel approaches to characterize the
brain structure provided more comprehensive evidence for the
understandings of procrastination.

To fill this gap, this study takes advantage of above measures
to propose a comprehensive understanding of the neural
substrate of the procrastination from brain morphological
dynamics. To achieve this purpose, the investigations for
the brain morphological dynamics would be examined from
the behavioral brain scheme and test-retested in the brain-
behavioral reconfiguration. In detail, multiple linear model is
designed to fit the procrastination to GMV, grey matter density
(GMD), CT, gyrification, and surface 3D complexity of whole-
brain voxels in the sample 1 (n = 242) respectively. To further
substantiate the role of these brain structural alternations on
procrastination, values were extracted from these brain regional
masks derived from these findings in Sample 1 to cross-validate
the reliability and reproducibility of the current study in the
independent Sample 2. Afterwards, the step-wise multiple
regression model leveraging the estimation of ordinary least
square (OLS) method was conducted for the regression of these
brain structural features against procrastination. Furthermore,
L1 norm Least absolute shrinkage and selection operator (L1-
LASSO) regression was undertaken as the reliability analysis to
further verify above findings due to the intrinsic shortcomings
of conventional OLS model. To overcome the growing concerns
on the null hypothesis significant test (NHST), the Bayesian
estimation model was implemented to acknowledge these
findings. Ultimately, it is of also interest to know whether these
brain structural dynamics can practically predict procrastina-
tion. In this vein, the support vector regression (SVR) algorithm
embodied in machine leaning model was adopted for the further
prediction of the procrastination.

As the increasing calls from the American Psychological
Association and previous studies for pre-registration, the aims
and hypotheses of the current study have been submitted at
the Open Science Framework (OSF, website: https://osf.io/kdtp2/
registrations) for the pre-registration (Kai and Cesario 2015; van’t
Veer and Giner-Sorolla 2016):

Aims

(1) The major aim is to utilize novel and advanced brain imag-
ing techniques—namely DBM, CT, and cortical folding (i.e.,
gyrification and 3D complexity)—for obtaining the compre-
hensive understanding of brain morphological dynamics of
procrastination.

(2) This study also strives to build a theoretical model based on
brain network to account procrastination.

Hypotheses

(1) The neuroanatomical substrates of procrastination were not
only observed for the dynamics of GMV in dlPFC, parahip-
pocampus (PHC), insula, etc. but also extended for the vari-
ation of CT in these brain regions and the features of brain
folding in these clusters;

(2) These brain morphological dynamics can be encapsulated
into triple brain networks (systems): top-down self-control
network (e.g., dlPFC, anterior cingulate gyrus [ACC], posterior
cingulate cortex (PCC)), emotional regulation network (e.g.,
Insular, OFC), and even episodic future thinking network (e.g.,
PHC, Amygdala).

Materials and Methods
Participants

A total of 688 participants were recruited for the study compos-
ing of three independent samples (Sample 1: mean age 21.03, SD,
2.05, range 17–26, 112 males; Sample 2: mean age 20.87, SD, 2.03,
range 17–26, 103 males; Sample 3: mean age 20.96, SD, 2.04, range
16–27, 103 males). Given the potential distortions of neuroimage
the undue head motions (the degree of absolutely translation
and rotation exceeds 2 mm) resulted in, six participants were
removed from this study. Afterwards, three participants were
also ruled out because these images were ranked as the E (crit-
ical) or F (unacceptable) from the automatic quality estimation
(see below for details). Then, we drew on an evaluation for the
sample size to guarantee the enough statistical power by using
G∗Power package (http://www.softpedia.com/get/Science-CAD/
G-Power; (Faul et al. 2009). The result showed the satisfactory
effect size (minimum sample size was required for 153 partici-
pants) for this study (Multilinear regression model, H1 ρ2 = 0.15,
type I error α = 0.05, Power 1 − β = 0.95; see Supplemental infor-
mation [SI] Method).

Encouragingly, the sample size in this study can preserve the
robustness of prediction performance in the machine learning
as well, irrespective of which regression algorithm was con-
ducted (e.g., OLS, LASSO, or Ridge Regression; (Lee et al. 2010;
Trawiński et al. 2012). All participants were confirmed with-
out the history of psychiatric or neurological illness by the
canonical psychiatric clinical assessment; they were healthy
adults with right-handed and normal or corrected-to-normal
vision. No significant differences of each demographic infor-
mation between genders/samples were identified (see Table 1).
The protocol of this study has been formally approved from
the Institutional Review Board (IRB) of the Southwest University
(China).

Behavioral Measures

We adopted the 12-item pure procrastination scale (PPS) recently
revised by Svartdal et al. (2017) to characterize the prevalence
of behavioral procrastination (Svartdal and Steel 2017). A robust
body of studies has widely leveraged this scale for the measure
of one’s procrastination in their studies, indicating the satis-
factory psychometric properties and robustness (Svartdal 2017;
Zhang et al. 2017; Rebetez et al. 2018). Typically, items of PPS
described a routine scenario to evaluate the resemblance on a 5-
point Likert-type scale from 1 (very uncharacteristic) to 5 (very
characteristic); individuals with high total scores in this scale
were generally prone to procrastination.

Comparatively speaking, PPS was the superior measure for
the core properties of procrastination than alternative relevant
scales (Svartdal and Steel 2017). What’s more, the high internal
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Table 1 Detailed demographic information for these participants

Sample 1 (n = 243) P1 Sample 2 (n = 215) P2 Sample 3 (n = 221) P3 PF-test

Male Female Male Female Male Female

Numbers 112 131 – 103 112 – 65 156 – –
Age 21.20 (2.1) 20.89 (2.0) 0.27 20.96 (2.1) 20.78 (1.9) 0.53 21.32 (2.1) 20.81 (1.9) 0.08 0.68
Education 13.20 (2.0) 12.89 (2.3) 0.23 12.96 (2.1) 12.78 (2.0) 0.52 13.32 (2.1) 12.81 (2.0) 0.07 0.69
Body Mass Index (BMI) 20.80 (2.7) 20.41 (2.4) 0.25 21.04 (2.9) 20.35 (2.5) 0.06 20.85 (2.4) 20.58 (2.8) 0.49 0.92
PPS score 34.83 (7.4) 33.52 (8.1) 0.19 34.93 (7.2) 33.61 (9.2) 0.24 34.26 (6.8) 34.31 (8.7) 0.96 0.96
Personality

Conscientiousness 38.69 (4.1) 39.22 (3.9) 0.31 38.62 (4.0) 38.70 (4.1) 0.88 38.75 (4.1) 38.85 (4.1) 0.86 0.63
Extraversion 39.02 (4.2) 39.13 (4.2) 0.83 38.40 (4.5) 38.56 (4.4) 0.80 38.12 (4.5) 39.01 (4.2) 0.16 0.95
Neuroticism 36.79 (4.4) 36.13 (4.0) 0.58 37.03 (4.5) 36.94 (4.2) 0.87 36.35 (4.0) 36.92 (4.5) 0.37 0.75
Agreeableness 36.50 (4.1) 36.90 (3.6) 0.41 36.96 (4.4) 37.42 (3.9) 0.41 36.78 (3.8) 36.98 (3.9) 0.73 0.43
Openness 37.23 (4.2) 37.71 (4.1) 0.37 37.05 (4.6) 37.65 (4.6) 0.33 37.01 (4.4) 37.69 (4.5) 0.30 0.36

consistency reliability (Cronbach’s α = 0.92) and discriminant/-
convergent validity (average variance extracted (AVE) > squared
correlations (SC) > 0.05) were predominantly found in this scale,
highlighting the robustness in the cross-cultural context as
well (Rozental et al. 2014; Svartdal 2017; Svartdal and Steel
2017; Rozental et al. 2018). In addition, Neuroticism Extraver-
sion Openness Personality Inventory (NEO-PI) was adopted as
the robust tool to characterize the personality traits as the
covariable of no interest in the model. This scale was widely
considered reliable and practical in the cross-cultural contexts
(Costa et al. 1991; Costa and McCrae 1992). Likewise, the subscale
of the State-Trait Anxiety Inventory developed by Spielberger
was applied to test the prevalence of trait anxiety, which was
proven to be reliable for its statistical properties (Spielberger and
Gorsuch 1983).

Structural MRI Protocol

All the acquisitions pertaining to the high-resolution anatomical
images from three independent samples were undertaken from
the same center (i.e., Key Laboratory of Cognition and Personal-
ity, Ministry of Education, China). These images were collected
with the Siemens Trio MRI scanner of 3 Tesla (Siemens Medical
Department, Erlangen, Germany). The 16-channal head coil of
circular polarization was applied to the record of high-resolution
T1-weighted images (1 × 1 × 1.33 mm3), which is in conjunction
with foam padding for the constraint of head motion. During
scanning, the magnetization-prepared rapid gradient echo pulse
sequence was utilized (128 slices of contiguous sagittal maps;
time repetition = 2530 ms; time echo = 3.39 ms; flip angle = 7◦;
field of view; (FoV) = 256 × 256 mm2).

Preprocessing and Analysis

Voxel-Based Morphometry
These anatomical images underwent the remarkable productive
preprocessing via Computational Anatomy Toolbox (CAT12
r1318, http://dbm.neuro.uni-jena.de/cat/) toolbox implemented
in the Statistical Parametric Mapping (SPM) 12 package (http://
www.fil.ion.ucl.ac.uk/spm/software/spm12/). Even though
CAT12 functions to segmentation of anatomical images in the
SPM12, it deviates significantly from the native segmentation
strategy and has been broadly proven a more potent and
practice approach for brain morphological analysis relative to
alternatives (Farokhian et al. 2017; Cigdem et al. 2018). Emerging

evidence have indicated that the CAT12 can provide more
robust and accurate results for volumetric estimations than
the conventional VBM8 toolbox (Farokhian et al. 2017).

Specifically, CAT12 implemented in the SPM12 would call
the returns from the self-definition diffeomorphic anatomical
registration through exponential lie algebra (DARTEL) template
and more fruitful built-in algorithms or protocol pertaining
to brain segmentation (Gaser and Dahnke 2016). There were
several powerful strengths for the CAT12: (1) it could provide
more accurate brain images using internal interpolation in
poor resolution images and anisotropic spatial resolutions, (2)
CAT12 can perform well for the denoising of brain images since
both spatial-adaptive non-local means (SANLM) and Markov
random field were undertaken simultaneously (Rajapakse
et al. 1997; Manjón et al. 2010), (3) CAT12 initiates the
partial volume estimation (PVE) with a simplified mixed
model of a maximum of two tissue types for segmentation,
which can reap huge fruitful for the in-depth segmentation
in mixed classes of gray matter (GM)-cerebrospinal fluid
(CSF) (Gaser and Dahnke 2016). Thus, the main analyses of
brain images were carried out using CAT12 in the current
study.

All anatomical images were first spatially corrected by
manually reoriented the alignment of anterior commissure-
posterior commissure at the native space of Montreal Neurologi-
cal Institute (MNI) in favor of better image registration (Talairach
et al. 1988). Subsequently, the internal interpolation method
was concatenated to reduce the routine strip artifacts when
co-registering the native images to the MNI space with
affine transformation of bias-field correction. In this stage,
12 parameters of affine registration leveraging mean square
variants were estimated to generate the vectors of the basic
function for the sake of the minimization of the residual error
between the original images and predetermined template.
Afterwards, the SANLM denoising filter for images of intensity
normalization was applied to further dislodge noises stemming
from the heterogeneity of cranial morphology (intensity
inhomogeneities) within the head coil, whose default threshold
depended on the automatic estimation for the residual noise in
these images (Manjón et al. 2010). Furthermore, the adaptive
maximum a posterior (AMAP) segmentation protocol was
undertaken to subserve the segmentation from whole-brain
tissue into GM, white matter (WM), and CSF without the
requirement for the priori information derived from tissue
probability maps (Gaser and Dahnke 2016).
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Aside from AMAP process, a mixed model of a maximum
of two tissue types was also constructed to conduct the
partial volume evaluation (PVE) for more potent segmentation
(Tohka et al. 2004). Prior to formal segmentation with AMAP
protocol, the local adaptive transformation of intensities of
all the brain tissues was implemented to preserve from the
risk of underestimating the GM or overrating the CSF due to
the anisotropic intracranial backgrounds (e.g., iron content
of distinct cortices) (Cardoso et al. 2013). Subsequently, we
combined the nonlinear spatial DARTEL strategy and Geodesic
Shooting algorithm to jointly normalize these preprocessed
images into MNI space (Ashburner 2007; Ashburner and Friston
2011). Here, the group template was produced from Information
eXtraction from Images (IXI)-database (http://www.brain-
development.org) consisting of 555 healthy control subjects
and was available in the normalization of MNI space for the
six different iteration steps. Ultimately, the CAT12 provided
an automatic tool to drive the revised skull stripling based
on the graph and the new “clean up” for the remnant brain
tissues of no interests such as meninges and other volumes.
The default parameter (ε = 0.5) of these processes was adopted
for the moderate constraint, which has been broadly accepted in
previous studies (Besteher et al. 2017; Ide et al. 2017). Taking the
compensate of inexact information of spatial normalization and
the need for the noise-signal ratio of neuroimages into account,
all the modulated-normalized images were smoothed with a
Gaussian kernel of 8 mm full width at half maxima (FWHM).

Deformation-Based Morphometry
For detecting the subtle local alterations between two spatially
normalized brain images in the anatomical displacement fields,
DBM was undertaken as well. Compared with the conventional
volumetric approach based on the manual segmentation, DBM
could reap more huge fruits from the superior local sensitiv-
ity and higher resolution of the deformation field-based maps
using the nonlinear and nonrigid registration procedures for the
adaptive brain template and adjusted deformation field (Cornell
1990; Davatzikos et al. 1996; Machado and Gee 1998; Gaser et
al. 1999; Gaser et al. 2001; Borghammer et al. 2010). Of note, the
DBM could not only provide the robust and reliable results con-
cerning the association between the anatomical dynamics and
neurobiological configurations but this method was also ideally
suitable for the cross-sectional studies with specific regard of
brain morphologies (Leow et al. 2006; Cardenas et al. 2007; Hua
et al. 2008; Leow et al. 2009).

In this study, the high-resolution anatomical images were
co-registered to the presupposed template by the B-Spline Free
Form deformation algorithm driven by the entropy and were
further normalized with same nonlinear transformation for cap-
turing local deformations of regional changes (Studholme et
al. 2001a, 2001b, 2003). To quantify the mathematical natures
of local adaptation of deformations, the Jacobian determinant,
which was used in gauge of the changes of flowing liquids or
gases, was estimated for each voxel (Gaser et al. 2001). More
details can be found in the SI method.

Surface-Based Morphometry
For in-depth comprehension on the morphological features
of procrastination, we further leveraged the projection-based
analysis (PBA) to characterize its brain neuroanatomical
underpinning with the natures of surface-based morphometry,
including CT and cortical folding (i.e., gyrification, local surface

complexity and sulcus depth) (Dahnke et al. 2013). Here, the
canonical preprocessing pipeline of surface mesh implemented
in the CAT12 was executed: First, to overcome the drawback
resulting from the misestimation of brain tissues due to
asymmetrical iron concentration, the partial volume approach
embedded in AMAP protocol was utilized for the segmentation
(Dahnke et al. 2013); then, the CT was estimated as the absolute
distance from the WM to its local maxima of the neighboring
projective gray matter voxel (Dahnke et al. 2013); afterwards, the
correction of SPHs was conducted to facilitate the compensation
of topological obscure for the better estimation of the CT (Yotter
et al. 2011a); furthermore, we reconstructed the spherical map of
a cortical surface and handled the information concerning the
partial volumes, sulcal blurring as well as sulcal asymmetries
with the fast algorithm for the modified reparameterization of
the local surface mesh (Yotter et al. 2011a); finally, the adaptive
DARTEL algorithm was used in the spherical registration to
calculate the sulcal depth and other surface-based shapes (e.g.,
gyrification and cortical surface complexity in 3D) (Ashburner
2007; Yotter et al. 2011b).

During the PBA, the absolute average curvature of cortical
surface was extracted for the measure of gyrification (Luders
et al. 2006). In addition, the FD was estimated for quantifying
the cortical complexity (Yotter et al. 2011b) (see SI Method for
details on these measures). In line with the suggestions derived
from previous studies, the smooth process with Gaussian kernel
of FWHM 15 mm was applied for the CT data, while the 20 mm
for cortical folding data (Dahnke et al. 2013).

Quality Control

Given that the robustness and reproducibility of analysis could
be heavily hampered by the critical quality of MRI images, we
retrospectively scrutinized all the images after preprocessing
with several cardinal parameters, including BWP noise, BWP
bias, and RES resolution. For convenience of straightforward
evaluation, these parameters were summed up to a weighted
mean ranging from 0 to 100 points and were then ranked with
16 grades ranging from A+ to F (see SI for some examples).
According to the empirical quantification of quality control
(Gaser and Dahnke 2016), these images should be discarded from
analysis in case the score was <60 or the rank was inferior than
E+. As a result, three images were removed from date sets in the
subsequent statistical analysis.

In addition, we visually checked the corresponding corre-
lation matrix between all the volumes for remaining images.
In principal, the high intracorrelation between them could be
predominantly observed. Meanwhile, we found the acceptable
data quality in our data sets according to the pattern of
correlation matrix (see SI for examples). Likewise, we also
illustrated the boxplot to intuitively determine the quality of
these images, of which result showed the high homogeneity
of our data. Finally, we combined the correlation matrix and
estimated parameters of images to measure the Mahalanobis
distance for quality checking, and the result indicated the high
quality of our data as well.

Statistics

Behavioral Brain Configuration
In Sample 1 (n = 242), we drew on the VBM (i.e., GMV and GMD),
DBM (Jacobian determinant [\|J\|]), and SBM (CT, gyrification
index [ACC], and surface complexity [FD]) analysis to detect
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the brain morphological dynamics of procrastination and
further undertook the multilinear regression models to fit
these patterns for procrastination. Taking the potential biases
resulting from gender or other neurobiological factors on the
measures of brain morphology and procrastination into account
(Kulynych et al. 1994; Özer et al. 2009), gender, age, education,
BMI, big-five personality traits, and total intracranial volume
(TIV) were putted into the model as the covariates of no
interests. To ensure the performance of this regression model,
we undertook the intercorrelation analysis to correlate these
covariates to targeting variable for the simple diagnosis of the
co-linearity of this model, with r > 0.30 and P < 0.05 for the
critical co-linearity (Liu et al. 2013). Results indicated that no
co-linearity between PPS and these covariates was observed
(gender, r = 0.051, P = 0.451; ages, r = −0.033, P = 0.629; education,
r = −0.011, P = 0.869; BMI, r = 0.126, P = 0.061; conscientiousness,
r = 0.090, P = 0.182; extraversion, r = −0.057, P = 0.403; neuroti-
cism, r = −0.043, P = 0.529; agreeableness, r = −0.038, P = 0.574;
openness, r = 0.065, P = 0.333; TIV, r = −0.027, P = 0.693). To ensure
the balance between false-positive and false-negative results,
an explicit mask with absolute threshold of 0.2 was applied
to restrict the searching volumes (http://www.cs.ucl.ac.uk/
staff/g.ridgway/masking/; (Ridgway et al. 2009). Likewise, the
nonparametric Threshold-Free Cluster Enhancement (TFCE)
correction with cluster-level P < 0.05 was adopted to alleviate
the potential bias due to the multiple comparisons in the
whole brain. This algorithm has been proven as a rigorous
correction for the efficaciously limited false-positive rates in
the nonstationary neuroimaging data (Smith and Nichols 2009;
Nenadic et al. 2015). The threshold of statistical significance was
set at P < 0.001 without correction to capture voxels or surfaces
that were correlated with the procrastination, and then, we
identified these surviving local dynamics of brain morphology
after TFCE correction (TFCEC).

Brain-Behavioral Configuration
In order to acknowledge the reliability of these findings concern-
ing the association between brain morphological characteristics
of these brain areas and procrastination, we extracted the GMV,
GMD, and J values of these significant clusters derived in last
analysis from processed anatomical images using the MATLAB
script “get_totals” (http://www.cs.ucl.ac.uk/staff/g.ridgway/
vbm/get_totals.m) to correlate with behavioral procrastination
scores in independent Sample 2 (n = 215). Likewise, the surface-
based atlases generated from the FreeSurfer protocol was
utilized to extract these values concerning the CT and cortical
folding (i.e., gyrification and surface complexity) for the
correlation analysis (Desikan et al. 2006; Destrieux et al. 2010).
Here, the nonparametric Spearman partial correlation model
was performed owing to its robustness even though the outliers
presented in the dataset, while the gender, age, education, BMI,
big-five personality trait, and TIV were recognized as covariates
of no interests. Aside from estimation of the correlation
coefficient per se, the 95% confidence interval (CI) was eval-
uated with the bootstrapping procedure (with 5000 bootstrap
samples).

Prediction for Procrastination with Linear Regression Model
For the investigation regarding the predictive role of brain
morphological dynamics on procrastination, the linear multiple
step-wise regression model was built up leveraging the estima-
tion of OLS method for the sake of the regression of PPS scores

(dependent factor) against GMV, GMD, CT, gyrification, and
cortical complexity (independent factors) in the independent
Sample 3 (n = 221). Obviously, we hardly denoted all the possible
mixed regression models here but provided the most ideal
model that we expected as below:

y = ∼ β0 + β1 × GMV + β2 × GMD + β3 × J

+ β4 × Cortical thickness + β, ×ACC + β6 × FD + ε

where each β indicated the partial regression coefficient and
ε served as the residual. To obtain the optimal model for
elucidating the predictive role of brain morphological dynamics
on procrastination, the correlation matrix (R) of all factors in
the regression model was generated, and the first independent
variables were selected to enter the model according to its
partial regression sum of squares (u, see SI Method). In this
study, the final model would be determined with the Bayesian
information criterion (BIC) and the Akaike information criterion
(AIC). Above analyses were all implemented by the functions of
“lm.pred,” “step” and “drop” in the R package (version: x64 3.4.1;
https://www.r-project.org/).

As it is well known, even though this model of OLS can
be considered potently productive for accurateness, it is still
remains some critical drawbacks that can be hardly tackled:
(1) OLS was designed as a unbiased statistic, but multiple co-
linearity of independent variables would result in the out-of-
control variance, and thus, the performance of this model would
be biased at the expense of lower predictive parameters and
(2) in terms of interpretation of predictive model, it is better to
constrain the free or alternative parameters in the OLS model—
if in this case—the model would be interpretative and accurate.
Thus, to address this concern well, previous studies applied the
Penalty function for the feature selection and estimations of
free parameters, particularly in the LASSO algorithm (Tibshirani
1996, 2011). LASSO algorithm for the regression analysis was
raised by Tibshirani (1996), and was used for the shrinkage esti-
mate leveraging L1 regularized penalty term. Regression model
of LASSO would utilize the L1 norm to constrain the model
parameters (i.e., β) and thus result in these parameters to be
less and further compress parameters—whose absolute values
are close to 0—as 0 straightforward. In this vein, this model is
not only beneficial from the less parameters to ameliorate the
interpretation but also tailors this model for the robustness. In
other words, owing to the advances of the LASSO algorithm for
compressed sensing, a L1-LASSO regression model was drawn
on estimations of these parameters for our predictive fits.

Prediction for Procrastination with Bayesian
Estimation Model

Furthermore, the Bayesian model estimation of regression was
performed as well. As was well known to all, the over-reliance
on conventional NHST has largely impeded the reproducibility
of outcomes in many profiles of psychology during the last
decade (Anderson et al. 2000; Gliner et al. 2001; Wasserstein
and Lazar 2016). Instead, the Bayes estimation based on the a
priori information was increasingly advocated to replace the
NHST due to its superior statistical properties, such as the
liberal precondition, sensitive detection power, and the clear
corroboration for null hypothesis (Benavoli et al. 2016; Nathoo
and Masson 2016). Algorithm and equation for the estimations
of the Bayesian factor can be found in the SI Method.
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As indicated in the previous study (Wagenmakers et al.
2018), we accept the default prior width with revised Cauchy
distribution provided by JASP software (version: x64 0.9.0.1;
https://jasp-stats.org; JASP team 2017). All the variables, which
were permitted to enter this optimal model, were utilized as
the a posteriori evidence in the Bayesian regression model for
probing the adaptive prediction model.

Prediction for Procrastination with Machine Learning

Owing to the predominant capability on the generalization for
new data in the prediction model yielded by machine learning,
the epsilon-insensitive SVR (EI-SVR) based on the kernel method
of Gaussian radial basis function (RBF) was undertaken. Given
considerations on the calculation of inner products of vectors
(� (xi)·� (xj)), all included variables were preprocessed for the
scaling to the range [−1 1] with Min–Max normalization (x∗ = x-
min/max-min) implemented in the Matlab 2016b (MathWorks
Inc.) prior to the SVR analysis. What’s more, this operation could
also overcome the drawback that the smaller numeric ranges
were prone to be predominantly obscured by the greater ones
(Schoelkopf et al. 2002).

For the remarkably productive SVR analysis, the RBF kernel
function was applied here. Unlike function of linear kernel, RBF
could function on the nonlinear space with the high perfor-
mance as well, which largely depended on the mappings of
training samples into higher-dimensional Hilbert space so that
the dual object function could be solved rapidly (Keerthi and Lin
2003). In addition, the advantages of RBF on the balance between
precision of statistical approximation and complexity of hyper-
parameters as well as the less arithmetical difficulties drove
this selection for kernel function (Schoelkopf et al. 2002; Vapnik
2002). Thus, to combine these parameters of penalty function (C
and γ ), RBF was conducted in this SVR analysis and highlighted
its justification. It should be borne in mind that the accuracy of
the SVR was determined by the overarching parameters (C and
γ ) of RBF to a large extent (Benoudjit 2002; Taouali 2018).

As a consequence, estimating and modulating C and γ in the
level-one-out cross-validation (LOOCV) devoted to the crux in
our next step. As recommended by Ozay et al. (2017), the fast
grid search method (GS) was adopted for seeking the optimum
parameters in this study (Ozay et al. 2017). GS served as an
exhaustive searching strategy to capture the best one from all
the possible candidates for penalty function, and it showed
strikingly feasible properties in small and moderate data sets
(Bao and Liu 2006; Ma and Zhang 2015). Notwithstanding that,
this straightforward searching seemed to be naive for parameter
optimization to some degree. According to an evolutionary algo-
rithm outlined by Kennedy and Eberhart (1999), the searching
approach concerning particle swarm optimization (PSO) algo-
rithm was undertaken as well (Kennedy and Eberhart 1999).
Contrary to GS, PSO devoted to approximations or heuristics for
seeking global optimum solution with quick convergence, thus
being practice and robust in the EI-SVR model (Hu 2002; Coelho
2010; Lin et al. 2010). Meanwhile, the LOOCV procedures were
largely prevented from the potential overfitting and underfitting
issues (Cawley and Talbot 2004). Ultimately, the pair of these
parameters derived from the GS method was applied for the
reoptimization of SVR model, whose performance in the predic-
tion was best relative to other alternatives.

For assessing the corresponding statistical significance of
these prediction models with SVR method, the permutation test
was performed iterating 20 000 times implemented by using

Table 2 Results for the whole-brain VBM analysis concerning which
brain regions can significantly predict procrastination with GMV in
the Sample 1

Brain regions Location BA MNI coordinates t value

x y z

Only +
Insula Left 47/48 −30 18 −15 3.89
Anterior cingulum

cortex
Left 11 −6 42 2 3.66

PHC Right 36 24 −6 −38 3.87
Only −

Middle frontal
gyrus, dlPFC

Left 46 −43 54 2 −2.09

our self-made script (Cui et al. 2017; Liu et al. 2018). In each
iteration, all normalized variables, including the dependent
and independent factors, would be randomly extracted and
were further rearranged as these factors beforehand. Then, SVR
analysis would be subsequently used in each permutation for
structuring the resubmitted statistics and its background distri-
bution. Finally, the ratio of number of same prediction statistic
occurring in the permutations on the total of permutations
(20 000 times) was estimated for the statistical significance with
correction.

All estimations concerning SVR were actualized in the
Libsvm package (http://www.csie.ntu.edu.tw/&#x007E;cjlin/
libsvm/) with default settings of parameters except the C and γ

of RBF (Chang and Lin 2011).

Results
All raw data and files concerning results can be free to access at
OSF (website: https://osf.io/kdtp2).

Behavioral Brain Configuration

VBM Analysis
To ascertain the neuroanatomical understructure of behavioral
procrastination as to the local volumetric dynamic, whole-brain
VBM analysis was performed to correlate the procrastination to
the GMV and GMD of brain. Results demonstrated that procrasti-
nation had a significantly positive correlation with local GMV in
left insula (peak MNI coordinate [mm]: −30, 18, −15), left anterior
cingulate cortex (ACC, peak MNI coordinate: −6, 42, 2), and left
PHC (peak MNI coordinate: 24, −6, −38), but it was negatively
correlated to GMV of left middle frontal gyrus (dlPFC, peak MNI
coordinate: −43, 54, −2) as well (see Table 2 and Fig. 1).

With regard to the alternation of local GMD, we revealed
parallel scenario that procrastination was positively associated
with GMD of both left ACC (peak MNI coordinates: −2, 31, 0) and
right middle frontal gyrus (vmPFC, peak MNI coordinates: 4, 41,
−13; see Table 3). The specific location of these brain regions was
illustrated in Figure 2.

DBM Analysis
There were null findings in the DBM analysis after the TFCEC.

SBM Analysis
Cortical thickness. Owing to the sound sensibility of CT for
description of the brain shape, we constructed the same model
to examine associations between behavioral procrastination
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Figure 1. Brain maps and scatter plots for the correlation between the GMVs (z-scores) of significant clusters and the procrastination (PPS scores) in the Sample 1. The
sagittal brain maps with both medial and lateral sides located at left hemisphere were mapped to the MNI152 space of the glass brain template. The shadow areas

indicated the corresponding 95% CI for the estimated model.

Table 3 Results for the whole-brain VBM analysis concerning which
brain regions can predict the procrastination with GMD in the
Sample 1

Brain regions Location BA MNI coordinates t value

x y z

Only +
Anterior

cingulum cortex
Left 11/25 −2 31 0 6.58

Middle frontal
gyrus, vmPFC

Right 11 4 41 −13 2.98

and CT. The results uncovered significantly positive association
between procrastination and CT of bilateral OFC (left hemi-
sphere, peak MNI coordinates: −4, 59, −20; right hemisphere,
peak MNI coordinates: 6, 42, 2). Detailed information regarding
these outcomes have been shown in Table 4 and Figure 3.

Cortical folding (gyrification and cortical 3D complexity). To further
substantiate the brain shapes of procrastination, we performed
the examination for the key link between procrastination and
cortical folding including gyrification and surface complexity.
Results showed that procrastination was positively correlated
with cortical 3D complexity of bilateral OFC (left hemisphere,
peak MNI coordinates: −4, 47, −16; right hemisphere, peak MNI
coordinates: 9, 51, −2) (see Table 5 and Fig. 4). No significant
association between the gyrification and procrastination was
detected here.

Taken together, we built up the close link between procrasti-
nation and brain morphological dynamics in both brain size and
brain shape. In detail, procrastination was negatively correlated

to GMV of dlPFC, whereas positively associated with GMV of the
insular, ACC, PHC and GMD of ACC, vmPFC, and CT/complexity
of OFC.

Brain-Behavioral Reconfiguration

Given the increasing debates and controversy on reliability and
reproducibility of the neuroimaging researches, we recruited the
independent sample 2 (n = 215) further undertook the brain-
behavioral analysis to cross-validate our results.

VBM Analysis
As aforementioned, significant associations between GMV of left
insula (MNI coordinates [−30, 18, −15]), ACC (MNI coordinates
[−6, 42, 2]), PHC (MNI coordinates [24, −6, −38]), dlPFC (coordi-
nates [−43, 54, −2]), and procrastination were identified in the
Sample 1. Here, these clusters were further drawn as masks
for the extraction of the GMV. Subsequently, these values of
GMV calculated from masks were utilized for the proportional
global scaling. Finally, we built second-level model for partial
correlation between values of these corresponding masks and
procrastination in independent sample 2, while age, gender,
education, BMI, and big-five personality were used as the covari-
ables of no interests. Encouragingly, all the significant outcomes
could be replicated in independent sample 2: local GMV of
the ACC (r = 0.226, P < 0.001; 95% CI: 0.105–0.349), PHC (r = 0.240,
P < 0.001; 95% CI: 0.122–0.359), and insula (r = 0.191, P < 0.005;
95% CI: 0.068–0.323) was positively correlated with procrastina-
tion, whereas local GMV of dlPFC was negatively associated to
procrastination (r = −0.195, P < 0.004; 95% CI: −0.341 to −0.032).
The scatter plots for these correlations have been depicted in
Figure 5A–D.
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Figure 2. Brain maps and scatter plots for the correlation between the GMD (z-scores) of significant clusters and the procrastination (PPS scores) in the Sample 1. The
sagittal brain maps with left medial and right medial sides were, respectively, mapped to the MNI152 space of the glass brain template. The shadow areas indicated

the corresponding 95% CI for the estimated model.

Table 4 Results for the whole-brain SBM analysis concerning which
brain regions can significantly predict procrastination with CT in the
sample 1

Brain regions Location BA MNI coordinates t value

x y z

Only +
Medial, OFC Left 11/12 −4 59 −20 4.36
Medial, OFC Right 11/12 6 42 2 4.01

The parallel results were found in this brain-behavioral
reconfiguration as well: the significantly positive correlation
between the GMD of left ACC (r = 0.317, P < 0.001; 95% CI: 0.210–
0.421), vmPFC (r = 0.318, P < 0.001; 95% CI: 0.216–0.426), and pro-
crastination was verified in the Sample 2 (see Fig. 5E,F).

SBM Analysis
Cortical thickness. Here, the independent multiscale atlases
were concatenated to produce the mask of brain surfaces linking
to procrastination, namely Desikan–Killiany atlas and Destrieux
atlas. In the Sample 1, bilateral OFC (left hemisphere, MNI
coordinates [−4, 59, −20]; right hemisphere, MNI coordinates
[6, 42, 2]) was identified as the targeting brain regions for
the explanation of neuroanatomical substrate underlying
procrastination.

According to the automatic matching recognition imple-
mented in the CAT toolbox, the masks of these significant brain
surfaces were constrained in the vicinity of “medial/OFC” area
of Desikan–Killiany atlas and 31 areas (rectus and suborbital

sulcus) of Destrieux atlas. In this vein, these areas were further
conducted as masks to make correlation between CT of brain
surface and the procrastination in another independent sample
for the sake of identification of the reproducibility of our
findings. Finally, the partial correlation model was performed to
examine this association.

Likewise, the significant positive correlations between
CT of bilateral OFC and procrastination were replicated in
independent sample 2 as well, irrespective of which masks
of atlases were adopted (OFC [medial/OFC] of Desikan–Killiany
atlas: r [left] = 0.192, P < 0.005, 95% CI: 0.068–0.320; r [right] = 0.163,
P < 0.05, 95% CI: 0.026–0.304; OFC [31 area/rectus and suborbital
sulcus] of Destrieux atlas: r [left] = 0.244, P < 0.001, 95% CI: 0.108–
0.357; r [right] = 0.207, P < 0.005, 95% CI: 0.074–0.326) (see SI
Results, Supplementary Fig. 7).

Cortical folding. To further examine the robust linking of
dynamics of cortical surfaces on procrastination, we made use
of partial correlation model for brain-behavioral reconfiguration
regarding the cortical folding (i.e., cortical complexity) in
Sample 2 for the validation of these findings. As aforemen-
tioned, the increased cortical complexity in bilateral OFC (left
hemisphere, MNI coordinates [−4, 47, −16]; right hemisphere,
MNI coordinates [9, 51, −2]) was positively correlated with
procrastination. Interestingly, we found the significantly
positive correlation between cortical complexity in the masks
of bilateral OFC derived from Desikan–Killiany/Destrieux atlas
and the procrastination, respectively (OFC [medial/OFC] of
Desikan–Killiany atlas: r [left] = 0.189, P < 0.005, 95% CI: 0.043–
0.320; r [right] = 0.145, P < 0.05, 95% CI: 0.010–0.272; OFC [70 area,
suborbital sulcus] of Destrieux atlas: r [left] = 0.217, P < 0.001, 95%
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Figure 3. Brain spatial pattern for the parameter statistical map of t-values without thresholding procedures (A) and with threshold at the P < 0.05 of TFCEC (B) and
the boxplots for the CT (mm) of whole-brain surface parceled from the Desikan–Killiany atlas of FreeSurface protocol (C). l = left hemisphere; r = right hemisphere.

Table 5 Results for the whole-brain SBM analysis concerning which
brain regions can significantly predict procrastination with cortical
folding in the Sample 1

Brain regions Location BA MNI coordinates t Value

x y z

Cortical complexity
Only +

Medial, OFC Left 11, 12 −4 47 −16 3.89
Medial, OFC Right 11, 12 9 51 −2 3.73

CI: 0.066–0.357; r [right] = 0.195, P < 0.005, 95% CI: 0.059–0.325) (see
SI Results, Supplementary Fig. 8).

All in all, this brain-behavioral reconfiguration confirmed
theses results of the significant association between volumetric
features of brain morphology (i.e., GMV of the dlPFC, PHC,
insular, ACC, and GMD of ACC, vmPFC, and CT/complexity of
OFC) and procrastination in Sample 2. These findings have
largely acknowledged the high reproducibility of this study. Such
procedures potently preserved from potential risk of double
dipping as well.

Prediction of Brain Morphology for Procrastination

Step-Wise Multiple Linear Regression Model
To obtain further insights into predictive role of brain mor-
phological dynamics on the procrastination, the step-wise
regression analysis was utilized to fit the model for dependent

variable “scores of the procrastination” on independent
variables including GMV of insula, GMV of ACC, GMV of PHC,
GMV of dlPFC, GMD of ACC, GMD of vmPFC, CT of bilateral
OFC, and the cortical complexity in bilateral OFC. Given the
requirement for statistical benchmark of the regression model
(Nelder and Wedderburn 1972; Pike et al. 1981; Cornell 1990),
we utterly scrutinized the shape of data distribution for all
variables with Kolmogorov–Smirnov test and Shapiro–Wilk
test to determine whether it was corresponding to Gaussian
distribution prior to the estimation of this model. Encouragingly,
all the candidates were observed without significant skew on
the Gaussian distribution (see Supplementary Table 1). For
wider comprehension, we further provided informative details
including range, mean, skewness, and kurtosis for all variables
in Table 6.

Thus, all variables would be putted into the initial multiple
regression model. Here, the entered criterion of stepwise process
was defined with probability of F ≤ 0.05 for each independent
variable, whereas one would be rejected into the model in case
of the probability of F ≥ 0.10 for dependent variable. Afterwards,
the step-wise iteration would automatically stop until no one
could fit this criterion. Finally, GMV of dlPFC, GMV of PHC,
GMV of insula, GMD of ACC, CT of right OFC, and cortical
complexity in left OFC were available to enter the multiple
regression model for explanation on the procrastination. The
final model (Model VI) that encapsulated above six variables
was captured as the best model (AIC = 853.45; BIC = 877.05) to
significantly predict procrastination with account for 25.1%
of total variance in dependent variable (adjust R2 = 0.251, F(6,
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Figure 4. Flatmaps for the prediction of significant surfaces on the procrastination (middle panel) and boxplots for the distributions of cortical complexity (left panel)

and gyrification (right panel) derived from Desikan–Killiany atlas in the Sample 1. These significant brain surfaces at P < 0.05 with Free-Threshold Cluster Enhancement
correction devoting to predict procrastination are highlighted with bulge.

Figure 5. Scatter plots for the correlations between procrastination (PPS scores) and the GMVs (z-scores) of these significant clusters (A–D) and GMVs (z-scores) of
those significant brain regions (E,F) in the Sample 2. All the values (i.e., GMV and GMD) of brain regions were extracted with the generated masks. Specific location of
these brain regions in the mask was visualized behind corresponding scatter plot via the sagittal maps superimposed in MNI152 space. The shadow areas indicated
the corresponding 95% CI for the estimated model.

214) = 13.282, P < 0.001; b[GMD_ACC] = 0.237, t = 3.977, P < 0.001;
b[Complexity_l_OFC_2009s] = 0.124, t = 2.023, P < 0.05; b[Pro_GMV_dlPFC] =
−0.377, t = −5.302, P < 0.001; b[Pro_GMV_PHC] = 0.232, t = 3.145,
P < 0.005; b[R_OFC_2009s] = 0.132, t = 2.227, P < 0.05; b[Pro_GMV_Insula] =
0.159, t = 2.008, P < 0.05). Details concerning all models have
been sorted in the SI Results (see Supplementary Table 2).
Furthermore, the L1-LASSO regression model obtain highly

parallel findings to substantiate the reliability of predictive
role of these brain morphological dynamics to procrastination
(Model 6 R2 = 27.3%; df = 7; step = 6; Rss = 10 647; Cp = 7.00;
β[GMD_ACC] = 154.51, β[GMD_Insular] = 17.38, β[GMD_PHC] = 16.33,
β[Complexity_l_OFC_2009s] = 5.80,β[GMV_dlPFC] = −45.44,β[CT_r_OFC_2009s]

= 1.88) (see more details in SI Results). In short, the find-
ings derived from this predictive model underscored a vital
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Table 6 Results of Bayesian factor model for the step-wise multiple
linear regression

P (M)P (M|data) Bayes factorM Bayes factor10 Error %

Model I 0.500 0.500 1.000 6189.331 1.61 × 10−4

Model II 0.250 9.041 40.692 84406.243 0.003
Model III 0.125 0.838 36.158 468832.197 0.002
Model IV 0.063 0.892 124.394 364092.079 0.006
Model V 0.031 0.573 41.567 565831.240 0.004
Model VI 0.016 0.284 24.961 742488.911 0.002

indication that GMV of dlPFC, GMV of PHC, GMV of insula, GMD
of ACC, CT of right OFC, and cortical complexity in left OFC
could be allowed for prediction of procrastination. There was
no significance for other brain morphological dynamics, thus
indicating denying them to adjust this prediction model.

Bayesian Estimation Model
Furthermore, as we briefly reviewed in Introduction sec-

tion, to resolve potential biases of false-positive stemming
from NHST, we conducted the Bayes factor analysis that
has been adopted previously to provide more robust evi-
dence to examine the predictive model. According to the
requirement for the Bayes analysis, the prior width of Bayes
factor was evaluated with the default parameters embodied
in JASP (Cauchy distribution, r = 0.354). Likewise, GMV of
dlPFC, GMV of PHC, GMV of insula, GMD of ACC, CT of right
OFC, and cortical complexity in left OFC were allowed to
enter the regression model with sound statistical effects
(Bayesian factor (BF)[GMD_ACC] = 6179.331; BF[Complexity_l_OFC_2009s] =
32.524; BF[Pro_GMV_dlPFC] = 10.989; BF[Pro_GMV_PHC] = 4.040;
BF[R_OFC_2009s] = 6.850; BF[Pro_GMV_Insula] = 3.053). Encouragingly,
we obtained the similar findings concerning the predication
of these variables on procrastination in the Bayesian linear mul-
tiple model: The evidence is to support that these brain morpho-
logical dynamics could significantly predict the procrastination,
which was much more 468 832 times stronger than null model
in the light of those posteriori information (BF10 = 468832.197,
BFM = 0.002, Error = 0.002%). More information regarding all the
six models were documented in Table 6 in detail.

As reported in prior studies, the Bayes factors (BF10) was
considered as the strength of evidence for alternative model,
with <3 for anecdotal supports, 3–10 for moderate supports, 10–
30 for strong supports, 30–100 for very strong supports, and >100
for decisive evidence (Jeffreys 1998); Wagenmakers et al. 2018).
As a consequence, these outcomes indicated the remarkable
prediction of above brain structural substrates for procrastina-
tion, including GMV of dlPFC, GMV of PHC, GMV of insula, GMD
of ACC, CT of right OFC, and cortical complexity in left OFC.

ES-SVR Embodied in Machine Learning Model
Finally, owing to better generalization performance of SVR of
machine learning algorithm relative to above, EI-SVR, in con-
junction of RBF kernel, was undertaken to prediction of above
neuroanatomical characteristics for behavioral procrastination.
Compared to searching strategy for optimal PSO algorithm, the
fast grid method showed better machine performance on esti-
mation for C and γ of RBF. Thus, the parameter settings of
SVR model was undergone with the results derived from GS
searching (C = 9.189, γ = 0.108; see SI Results, Supplementary Fig.
9). Our findings showed that these brain features could sig-
nificantly predict procrastination (r2 = 0.629, mean square error
(MSE) = 0.001, P = 0.011, permuted with 20 000 times). Thus, this

Table 7 Summaries of the findings across the GMV, GMD, CT, and
cortical complexity (3D CC)

GMV GMD CT (mm) 3D CC

Self-control dlPFC ↓ – – –
ACC ↑ ACC ↑ – –

Emotional process Insular ↑ – OFC ↑ OFC ↑
– – OFC ↑ OFC ↑

Episodic prospection PHC ↑ vmPFC ↑ – –
– – – –

outcome encouraged us to draw the conclusion that comprehen-
sive dynamics of both brain size (GMV of dlPFC, Insular and PHC,
GMD of ACC) and brain shape (CT and complexity of OFC) could
predict procrastination accurately.

Sum-Up in the Network-Based Insights

On balance, to gain all-round insights into the neural mor-
phological dynamics of procrastination, the behavioral-brain
analysis and the test–retest brain-behavioral examination were
undertaken, respectively. Results converged in this line that
procrastination was negatively correlated with GMV of dlPFC
but was positively associated to GMV of ACC, insula, PHC, GMD
of ACC, vmPFC, CT of OFC, and complexity of OFC (see Table 7).
Furthermore, deriving from the prediction estimations (e.g.,
machine learning), the predictive roles of GMV of dlPFC, insula,
PHC, GMD of ACC, and CT/complexity of OFC on procrastination
have been ascertained in robust (see Fig. 6A). In this vein, as we
introduced beforehand these findings on the behavioral brain
configuration highlighted the underlying dynamics of insular,
OFC playing hub roles in the emotional regulation system,
alternations of the dlPFC, ACC taking part in the self-control,
and features of PHC, vmPFC touching upon the function of
the episodic future thinking for the procrastination. In other
words, overall these outcomes have indicated us to advance a
model to account the core components of the procrastination
in the brain morphological subnetworks, namely self-control
network, emotional regulation network, and the episodic future
prospection network (see Fig. 6B).

Discussion
Brief Summary

This study recruited a large sample (n = 688) to explore the brain
morphological dynamics of procrastination by using the robust
measures for brain volumes (size) and cortical surfaces (shape).
Our findings showed that the GMV of dlPFC was negatively
correlated to procrastination, while the GMV of ACC, insular,
PHC, and GMD of ACC, OFC, and CT/complexity of OFC were
positively correlated to procrastination. Encouragingly, these
findings could be cross-validated in independent sample 2. Fur-
thermore, predication analysis demonstrated that these brain
morphological features (i.e., GMV of dlPFC, PHC, insular, GMD of
ACC, and CT/complexity of OFC) were the robust predictor for
the procrastination. In this vein, these outcomes converged to
this line that the dynamics of dlPFC, ACC responsible for self-
control regulation, insular, ACC involved in emotional processes
and vmPFC, and PHC taking part in the episodic future thinking
could be recognized as neural understructure of procrastination
comprehensively. In conclusion, this study concerning the
brain morphological dynamics of procrastination elucidated
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Figure 6. Summary of this study for major findings among all the brain morphological dynamics. (A) Identified common and separate features in the brain morphology
across brain size, cortical surface, and cortical folding. The color of the background indicates the correlations of these clusters on the procrastination expecting the

last one. Red represents the positive correlation, whereas the blue shows the negative association. (B) The triple brain network of the procrastination was proposed
according to above results. Each color of the background is corresponding to the specific system (network).

the robustly predictive role of self-control system, emotional
regulation system, and episodic prospection system for
procrastination, which provided the novel comprehension for
biobehavioral underpinning of procrastination and further
clarified the potential targets useful for intervention.

Core Role of These Triple Brain Systems

Self-Control Network
As aforementioned, the GMV of dlPFC and the GMD of ACC
were significantly correlated to procrastination, which were
consistently encapsulated into the brain self-control network.
A considerable round of studies indicated that self-control has

been widely considered as most robust portrait for the core
component of procrastination (Steel 2007; Zhang et al. 2019b).
Previous studies indicated that self-control governed the irra-
tional pursuit toward the short-sighted “comfort” of task-free
instead of the task engagement, thus driving procrastination
straightforward (Eerde 2003; Gustavson et al. 2014; Wu et al.
2016). In addition, this idea was in line with the psychological
model concerning the self-imposed deadline for task (Ariely and
Wertenbroch 2002). They accounted the nature of procrastina-
tion as the failure of self-control for precommitment on this
task. Emerging studies provided evidences robust to evince that
the self-control for impulsive decisions toward intertemporal
decision can heavily constrain the undue delay discounting for
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future profits (Zhang and Feng 2019; Zhang et al. 2019b). As
to the role of self-control for procrastination, researchers do
believe that it would work for the subjective evaluation of future
outcome, thus determining the expectancy of outcome (utility)
(Steel 2007; Zhang et al. 2019b). The dlPFC was known as the
hub for regulation of self-control for the long time (Hare et al.
2009). As the hub of self-control system, the function of dlFPC
was selectively responsible for the top–down cognitive control
for downstream signals (MacDonald, 3rd et al. 2000; Hare et al.
2009; Figner et al. 2010).

In other regard, self-control system in brain pattern has been
widely adopted to expand for ACC as well. Ample evidences have
clarified the role of ACC as conflict monitoring and reinforce-
ment learning of the error signals in the processes of decision
(MacDonald, 3rd et al. 2000; Botvinick 2007; Pine et al. 2009;
Peters and Büchel 2011). Even though the ACC seemed to be
hard to probe self-control directly, it would be in charge for
the modulation of cognitive resources in favor of processes of
the self-control remarkably (Botvinick 2007; Marco-Pallarés et al.
2010). Intriguingly, in terms of brain intrinsic functional network,
the dlPFC and ACC were observed as an integrative system
(network), called cognitive control network (Bae et al. 2006;
Alexopoulos et al. 2012). More vulnerabilities in neuropsychiatric
illnesses pertaining to the deficits of cognitive self-control were
frequently reported in low-performance of this unit (Alexopou-
los et al. 2012; Whelan et al. 2012). Naturally, it was reasonable
and justified to perceive dlPFC and ACC into this more compre-
hensive self-control network as brain morphological benchmark
for core component of procrastination, with disturbance of self-
control network for procrastination.

Emotional Regulation Network
As far as the core components of procrastination were con-

sidered, emotional processes for the engagements of task should
be noticed in the brain morphological features. Fortunately, this
study found the positive correlation between GMV of insular,
GMD of OFC, and CT/complexity of OFC and procrastination,
and these regions fitted well with theoretical account. Taking
into account that major reason of procrastination was negative
emotional feedback for the task, how to induce or regulate
emotional processes for intended courses was increasingly
becoming the crux that should be tackled (Ackerman and Gross
2005; Steel 2007).

Till now, emotion regulation theory raised by Sirois and
Pychyl (2013) was considered as one of the most solid account
for elucidating cognitive mechanism of procrastination (Sirois
2014a, 2014b). This model maintains this idea that individuals
are more likely to postpone scheduled tasks in order to repair
emotional depletion stemming from the task per se. In other
word, to avoid short-term negative emotions resulting from the
task, individuals would rather sacrifice long-term task rewards
to experience well, thus rendering procrastination. Also, several
lines of evidence have corroborated this explanation, showing
predictive role of emotional regulation for procrastination
(Pychyl et al. 2000; Lavoie and Pychyl 2001; Myrick 2015;
Eckert et al. 2016). All in all, the current study provided
neuroanatomical evidence sound reliable to substantiate this
account straightforward.

Obviously, as the crucial subcortical region for the salience
network, the insular played a cardinal role of social emotion
and averseness on the task-evoked signals (Sridharan et al. 2008;
Uddin 2015). Moreover, several lines of evidence substantiate
this case straightforward that the insular had highly implicated

to emotional downregulation and follow-up processes (Phan
et al. 2005; Lindquist et al. 2012). Likewise, the function of OFC
was considered to be comparable with insular (Davidson et al.
2000; Ochsner and Gross 2005). OFC was widely reported to
engage in regulation for negative emotions and further in-depth
processes toward re-evaluations (Kanai and Rees 2011; Petrovic
et al. 2016). Literature of the affective neuroscience provided
evidence to powerfully prove the role of OFC for emotional
coding and regulation in a general brain network (Lindquist et al.
2012). In addition, the dysfunctions of OFC were regarded as the
robust fingerprint for affective disruption, such as obsessive–
compulsive disorder (Piras et al. 2013; Shaw et al. 2015; Fouche
et al. 2017). These findings derived from previous literature
hinted this standpoint that both regions could be perceived
into an integrated system called “emotion-regulation” network,
which was specialized to emotional processes for the averseness
in task engagements, with high-performance emotional regula-
tion for less procrastination.

Episodic Prospection Network
In this study, GMV of PHC and GMD of vmPFC were together
correlated to procrastination positively. Just like intertemporal
decisions, procrastination could be also regarded as a future-
orientation decision, which required individuals make a choices
between “to do it now” and “to do it later.” Thinking for the
future serves to an integral function of human beings, which
can be refined as a projection of self-cognition for the future
events and its pre-experiences (Atance and O’Neill 2001). In this
vein, it makes sense to attempt to delineate the mechanism
of procrastination by performance of episodic future thinking.
Even though it is still lack for a theoretical account to explain
the episodic prospection as underlying component for procrasti-
nation, a robust body of studies has highlighted the role of such
episodic future thinking toward future incentive for inhibition
of procrastination (Daniel et al. 2013; Rebetez et al. 2016). As
reviewed above, episodic future prospection was attested as car-
dinal component for the processes of procrastination in the task
valuation (Zhang et al. 2019b). Typically, the episodic prospection
toward future referred to a productive tactic allowed the con-
straint of undue discounts on the task future long-term profits,
thus mitigating procrastination in the light of high evaluation
for the task outcomes (Peters and Büchel 2010; Benoit et al. 2011;
Daniel et al. 2013). PHC served as the hub of medial temporal lobe
(MTL) to partake of the episodic memory and episodic future
thinking (Okuda et al. 2003; Peters and Büchel 2010, 2011). Previ-
ous literature pertaining to organic brain damage indicated that
the deficits of PHC in MTL circuit could result in prominently
specific curb for the episodic memory of past experience and
future-orientated episodic thinking (Race et al. 2011; Irish et al.
2013; Schacter et al. 2017).

Aside from this subcortical hub, as the high-order prefrontal
topology, vmPFC functioned to the episodic future thinking as
well, especially in future-focused and goal-oriented prospection
(Bertossi et al. 2016; Bertossi et al. 2017). Unlike to retrospective
details of pre-experiences in MTL, the overarching contributions
of vmPFC to episodic future thinking were to yield more abstract
imagination after self-referential processes for individuals per
se (D’Argembeau 2013; Motzkin et al. 2014). In this vein, the
engagements of vmPFC in episodic future thinking would do
works to deliberate processes for the future task costs and
outcomes leveraging the updated self-knowledge (experience)
simulation, thus determining whether the task would be pro-
tracted (Bertossi et al. 2016; Bertossi et al. 2017). Thus, a sound
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promising conjecture was advanced for this explanation here,
which integrated PHC and vmPFC into the episodic prospection
network to account the functions of future thinking for the
procrastination (Andrews-Hanna et al. 2014). On balance, we
drew the conclusion that procrastination could be attributed to
maladaptive episodic future thinking for the task value since the
brain morphological aberrant alternation in the brain episodic
prospection network (i.e., PHC and vmPFC).

Limitations and Directions

One major concern regarding these findings of this study was
that these outcomes rarely answered real-time processes of the
procrastination giving a task. Future research leveraging the
exquisite design for the task-related fMRI can potently extend
the explanation of the theoretical account in the more specific
details of the task processes of procrastination. Another lim-
itation in this study involved the issue of the classifications
of the procrastination using the machine learning. To extend
these findings to a wider application, the procrastination can
be encoded as the binary label for the diagnosis in the future.
In addition, in this study, it should be warranted some cau-
tions that the prediction of these brain morphological dynam-
ics for procrastination implicated a statistical association but
not actually causal pathways from neurobiological substrates
to procrastination. In this vein, there was a promising aspect
of future researches to reveal a practical causal pathway for
understandings of procrastination. We do believe that the neu-
rointervention—such as transcranial magnetic stimulation and
transcranial direct current stimulation—can reap huge fruits for
insights into causal identification in the future study.

Owing to the growing calls for the understandings of brain
connectome, neurobehavioral underpinning can be not only
described as the dysfunctions of single network but rather
attributed to the connections or connectome of these brain sub-
systems (Sporns et al. 2005; Bassett and Sporns 2017). Although
we can hardly delineate the interplay of these triple brain
networks (systems) on the basis of this study, it still should
be discussed here as the future directions. In this vein, it is
more valuable to depict the procrastination in the network-
connectome model, which would allow us to obtain some more
powerful evidence as to how these core components work and
interact with the processes of the procrastination. Recently,
an investigation for the role of the interplay among brain
intrinsic large-scale networks does pioneer this insight into
the network-connectome facet: The connection of the Salience
Network–Subcortical Network can predict the procrastination
significantly (Su et al. 2018). Thus, the future researches can
reap huge fruits from the examinations for the pattern of
the interplay across these brain subsystems, namely self-
control network, emotional regulation network, and episodic
prospection network.

Conclusion
Here, we described the brain morphological dynamics of pro-
crastination in terms of brain size and cortical surfaces, which
showed the significant positive link of GMV in the insula, PHC,
ACC and GMD of ACC, vmPFC, and CT/3D complexity of bilateral
OFC to procrastination. On the other hand, the GMV of the dlPFC
was negatively correlated to procrastination. Furthermore, we
manifested the certainly predictive role of the specific brain neu-
roanatomical characteristics for procrastination, which included

the GMV of dlPFC, PHC, insula, and the GMD in the ACC, as
well as CT/3D complexity in the cluster of OFC. In conclu-
sion, this study provided the first insights into all-around brain
morphological dynamics of procrastination and promoted the
understandings of the neural understructure of the procrastina-
tion in the triple brain subsystems, including self-control net-
work, emotional regulation network, and episodic prospection
network.
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Supplementary data is available at Cerebral Cortex online.
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