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Abstract
Previous studies suggest that gyrification is associated with superior cognitive abilities in humans, but the strength of this
relationship remains unclear. Here, in two samples of related individuals (total N = 2882), we calculated an index of local
gyrification (LGI) at thousands of cortical surface points using structural brain images and an index of general cognitive
ability (g) using performance on cognitive tests. Replicating previous studies, we found that phenotypic and genetic LGI–g
correlations were positive and statistically significant in many cortical regions. However, all LGI–g correlations in both
samples were extremely weak, regardless of whether they were significant or nonsignificant. For example, the median
phenotypic LGI–g correlation was 0.05 in one sample and 0.10 in the other. These correlations were even weaker after
adjusting for confounding neuroanatomical variables (intracranial volume and local cortical surface area). Furthermore,
when all LGIs were considered together, at least 89% of the phenotypic variance of g remained unaccounted for. We
conclude that the association between LGI and g is too weak to have profound implications for our understanding of the
neurobiology of intelligence. This study highlights potential issues when focusing heavily on statistical significance rather
than effect sizes in large-scale observational neuroimaging studies.
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Introduction
Gyrification refers to the folding of the cerebral cortex. A popular
method of quantifying gyrification is the “gyrification index”
(GI), or the ratio of the total and superficially exposed corti-
cal surface areas (Schaer et al. 2008; Zilles et al. 1988). Onto-
genetically, gyrification is likely caused by processes such as
neurogenesis and dendritic growth (Rakic 2009; Van Essen 1997;
Welker 1990; Zilles et al. 2013). The phylogeny of gyrification is
less clear. Human brains are highly gyrenphalic, suggesting that
there is an association between gyrification and comparative
intelligence across species. However, it could argue that this
association is somewhat weak because other large and less
intelligent mammals, such as elephants and whales, have higher
GIs than humans (Zilles et al. 2013).

Based on the putative between-species correlation between
gyrification and intelligence, several authors have explored the
possibility that gyrification and cognitive abilities are correlated
within samples of healthy humans (Chung et al. 2017; Docherty
et al. 2015; Gautam et al. 2015; Green et al. 2018; Gregory et al.
2016). To date, the strongest evidence for this hypothesis comes
from a study involving 1102 participants from two independent
samples (Gregory et al. 2016). This study reported positive and
statistically significant associations between an index of local
gyrification (LGI; Schaer et al. 2008), calculated at thousands of
points on the cortex, and an index of general cognitive ability
(g; Spearman 1904), calculated from performance on cognitive
tests. The authors considered LGI, rather than whole-brain GI,
to examine potential regional specificity; indeed, LGI–g associa-
tions were more often significant in brain regions implicated by
the parieto-frontal integration theory of intelligence (P-FIT; Jung
and Haier 2007) than in the rest of the brain (cf., Green et al. 2018).
Several other studies also provided evidence for an association
between LGI and cognitive abilities (Chung et al. 2017; Gautam et
al. 2015; Green et al. 2018), although their observed associations
only reached significance within small subsets of brain regions
or when certain cognitive measures were considered.

Previous studies certainly provide compelling evidence
for the existence of an association between gyrification and
cognitive abilities. However, it could be argued that because
these studies sparingly reported correlation coefficients or
other transparent measures of effect size, the strength of
this association remains unclear. Is the association stronger
or weaker than previously observed relationships between
cognitive abilities and other anatomical traits, such as height
(Keller et al. 2013), brain volume (Pietschnig et al. 2015), and
cortical surface area (Vuoksimaa et al. 2015)? If stronger,
gyrification per se may play a specific and important role
in the neurobiology of human intelligence. Is the association
strong enough such that cognitive abilities may be predicted
from gyrification, or vice versa? If so, gyrification would
hold considerable promise for future studies, especially those
that consider the clinical utility of gyrification as a potential
endophenotype of psychiatric disorders (Glahn et al. 2014).

What might explain an association between gyrification
and cognitive abilities? Shared genetic factors (pleiotropy) is
one intriguing possibility. However, while a previous study
estimated genetic correlations between whole-brain GI and an
index of general cognitive ability, it did not conclude that this
correlation was statistically significant (Docherty et al. 2015).
One could argue that this previous study may have missed
potential regional specificity because it used a singular index of
whole-brain GI, which reflects aggregate gyrification over the

entire cortex, rather than many region-specific LGI values (cf.,
Gregory et al. 2016). Another possibility is that because neither
GI nor LGI are independent of other neuroanatomical traits
(Gautam et al. 2015; Hogstrom et al. 2013), the LGI–g association
is an indirect consequence of another brain-behavior relation-
ship. Previous studies considered this possibility by covarying
for a single potential confounding variable, such as intracranial
volume (ICV; Chung et al. 2017; Gautam et al. 2015; Green et
al. 2018; Gregory et al. 2016) or overall cortical surface area
(Docherty et al. 2015). However, it could be argued that these
studies may have obtained different results if they had each
considered a range of possible confounders.

Here, we calculated LGIs and other neuroanatomical traits
using high-resolution structural magnetic resonance imaging
(MRI) scans in two large samples of related individuals: 1) the
Genetics of Brain Structure and Function Study (GOBS; McKay
et al. 2014), a cohort of multigenerational extended pedigrees
(N = 1769); and 2) the Human Connectome Project (HCP; Van
Essen et al. 2013), a twin study (N = 1113). We also calculated
g in the same participants and estimated phenotypic LGI–g
correlations. However, in contrast to previous studies where all
participants were unrelated (e.g., Chung et al. 2017; Gautam et
al. 2015; Green et al. 2018; Gregory et al. 2016), we exploited the
degrees of relatedness between individuals to estimate narrow-
sense heritabilites of the traits, followed by genetic and environ-
mental LGI–g correlations. In contrast to a previous twin study
(Docherty et al. 2015), we considered LGI, rather than a single
value of whole-brain GI per individual, so that our analyses were
sensitive to potential regional specificity. Because this is the
largest study on this topic to date (total N = 2882), we were best
powered to detect statistically significant correlations. Crucially,
however, we also provide summaries of all raw correlation coef-
ficients, significant and nonsignificant, to make the strengths
of these correlations abundantly clear. To consider the possible
confounding roles of other traits, we estimated partial phe-
notypic, genetic, and environmental LGI–g correlations under
models including height, ICV, cortical surface area, and cortical
thickness as potential confounders. We also considered the
extent to which LGIs considered together explained the pheno-
typic variance of g via ridge regression. Finally, we examined the
consistency of regional specificity of LGI–g correlations across
samples and compared these spatial patterns to the P-FIT (Jung
and Haier 2007).

Materials and Methods
Participants

GOBS is a cohort of randomly ascertained, multigenerational
extended pedigrees of Mexican American ancestry from San
Antonio, TX (McKay et al. 2014). MRI images, age, sex, and
pedigree information were available for 1433 participants (mean
age: 40.8 years; age range: 18–85 years; mean family size: 14.9;
819 females). Height was available for 1661 participants (mean
age: 41.2 years; age range: 17–97 years; mean family size: 17.5;
982 females), and g was calculated for 1769 participants (1057
females; mean age: 42.3 years; age range: 18–97 years; mean
family size: 18.6). The subset with complete data was 1216
participants (mean age: 39.6 years; age range: 18–81 years; mean
family size: 13.1; 689 females). However, multivariate analyses
(described later) made maximal use of unbalanced data and
were not restricted to individuals with complete data.
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HCP is a cohort of twins and siblings whose data are freely
available for researchers (Van Essen et al. 2013). We used data
from the “S1200” release, which included height, cognitive data,
age, sex, and zygosity information for 1205 participants (mean
age 28.8 years; age range 22–37 years; 655 females). MRI images
were available for a subset of 1113 participants (mean age
28.8 years; age range 22–37 years; 605 females). Again, analyses
made use of all data.

All participants provided written informed consent in accor-
dance with institutional review boards at their respective insti-
tutions.

Neuroanatomical Traits

In GOBS, up to seven T1-weighted images were acquired per
participant on a Siemens 3 T TIM Trio scanner (for details, cf.,
McKay et al. 2014). Images were averaged and then processed
using the FreeSurfer 5.3.0 pipeline (Dale et al. 1999; Fischl et al.
1999). Among other traits, this produced the estimates of ICV.

In HCP, T1-weighted MRI images were acquired on a
customized Siemens 3 T Skyra scanner (Van Essen et al. 2013;
Glasser et al. 2013). We used “processed” versions of the images
(e.g., skull-stripped, corrected for field-strength heterogeneity)
produced by a modified version of the FreeSurfer pipeline.
This pipeline produced estimates of ICV. To be consistent with
GOBS, we also ran HCP images through standard the FreeSurfer
pipeline.

FreeSurfer cortical surface models were registered to the
“fsaverage5” template. Three vertexwise traits (LGI, area, and
thickness) were calculated at each vertex using the “qdec” and
“qcache”commands (cf., Dale et al. 1999; Fischl et al. 1999; Schaer
et al. 2008) and smoothed with a Gaussian kernel of 10 mm of
full width at half maximum, which was chosen because it is
sufficient to approximate the areal interpolation method used
by FreeSurfer to an ideal, mass-conservative (pycnophylactic)
method (Winkler et al. 2018); for consistency, we also applied
10-mm smoothing to LGI and thickness. Vertices were labeled
as belonging to regions of interest (ROIs) according to several
atlases. Vertices labeled as “unknown” or the corpus callosum
according to the Desikan–Killiany atlas (Desikan et al. 2006) were
dropped, along with a small number of additional vertices which
had values of 0 across all participants, leaving 18 408 vertices for
analysis.

Calculation of g

GOBS participants completed a cognitive test battery cover-
ing a wide range of domains, such as episodic memory, fluid
intelligence, processing speed, recognition memory, sustained
attention, working memory, and verbal fluency. Details of these
tests are provided elsewhere (e.g., Glahn et al. 2007; Glahn et al.
2010; Knowles et al. 2014). Measures used in the present study
are summarized in Table 1.

HCP participants completed a different, but similarly com-
prehensive, cognitive test battery, described by Barch et al. (2013),
also summarized in Table 1. We used the measures of raw per-
formance (not age-adjusted).

All cognitive measures were standardized, and outliers
greater or less than 3.29 were dropped (for a normally
distributed variable, dropped values would lie beyond the
99.95th percentile). Participants with 50% or more missing
cognitive data were dropped. To avoid entirely excluding
remaining participants with incomplete cognitive data, missing

values were imputed using the “mice” package (van Buuren
and Groothuis-Oudshoorn 2011) in R (R Core Team 2013). The
composite index of general cognitive ability, g, was the first
principal component extracted using the FactoMineR package
(Le et al. 2008).

Statistical Analysis

Univariate Models
All traits were rank-based inverse-normal transformed to
ensure that they were normally distributed, and then analyzed
using univariate variance components (polygenic) models in
SOLAR (Almasy and Blangero 1998). One such model was fitted
per trait (g, height, ICV, LGI at each vertex, area at each vertex,
and thickness at each vertex), resulting in 110 456 univariate
polygenic models (55 228 models per sample). These models
exploit the expected proportion of alleles that are identical by
descent among relatives to provide estimates of narrow-sense
heritability, defined as the proportion of phenotypic variance
that can be explained by additive genetic factors, denoted by h2

(Visscher et al. 2008). An intercept, age, age squared, sex, and
their interactions were included as fixed-effect covariates in
all models. We performed a single one-tailed test per model to
determine whether h2 was significantly greater than 0. These
tests involved comparing the likelihood of the polygenic model
and that of a model with an identical design except that h2

was constrained to 0. For the vertexwise traits, P values were
corrected using a false-discovery rate (FDR) (Benjamini and
Hochberg 1995) of 0.05. FDR correction was applied separately
per sample and vertexwise trait.

Bivariate Models
A bivariate polygenic model is an extension of a univariate
model and provides heritability estimates for two traits, as well
as estimates of their genetic and environmental correlations.
The genetic correlation, denoted by ρG, describes the correlation
between the latent additive genetic factors influencing both
traits. The environmental correlation, denoted by ρE, describes
the correlation between the traits’ nongenetic components. Both
ρG and ρE were free parameters in these models. The phenotypic
correlation, denoted by ρP, was not a free parameter and was
estimated deterministically. We fitted 36 816 bivariate models
(18 408 per sample) with LGI at one vertex as the first trait and
g as the second trait. We fitted four additional bivariate models
(two per sample) to examine the relationships between height
and g and ICV and g.

For each bivariate model, we performed three two-tailed sig-
nificance tests to determine whether the phenotypic, genotypic,
and environmental LGI–g correlations differed from 0. Tests of
genetic and environmental correlations involved comparing the
likelihood of the full bivariate polygenic model to that of a model
where the parameter of interest was constrained to 0. Since ρP

was deterministic, testing it required the reparameterization of
each bivariate model so that ρP was a free parameter that could
be constrained it to 0. FDR correction was applied to separately
per sample and type of correlation.

Trivariate Models
A trivariate polygenic model provides heritability estimates for
three traits, along with genetic and environmental correlations
between all pairings of traits. Phenotypic correlations were
estimated deterministically. Trivariate models also provide
partial genetic, environmental, and phenotypic correlations,

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/30/6/3439/5730338 by guest on 13 M

arch 2024



3442 Cerebral Cortex, 2020, Vol. 30, No. 6

Table 1 Cognitive measures used to calculate g

Cohort Test Cognitive domain Measure

HCP Picture sequence memory Episodic memory Unadjusted scale score
Dimensional change card sort Executive function Unadjusted scale score
Flanker Executive function Unadjusted scale score
Progressive matrices Fluid intelligence Number correct
Oral reading recognition Language Unadjusted scale score
Picture vocabulary Language Unadjusted scale score
Pattern comparison Processing speed Unadjusted scale score
Line orientation Spatial orientation Number correct
Continuous performance Sustained attention Number of hits
Word Memory Episodic memory Number correct
List sorting Working memory Unadjusted scale score
Emotion recognition Emotion recognition Number correct

GOBS Verbal learning Episodic memory Number recalled
Digit-symbol coding Processing speed Number correct
Conditional exclusion Executive function Number correct
Conditional exclusion Executive function Number of learned rules
Spatial working memory Working memory Number correct
Verbal learning (delayed) Episodic memory Number recalled
Facial memory Episodic memory Number correct
Facial memory (delayed) Episodic memory Number correct
Trail making (A) Processing speed Time taken
Trail making (B) Executive function Time taken
Continuous performance Sustained attention Number of hits
Digit span (forward) Working memory Span
Digit span (backward) Working memory Span
Letter–number sequencing Working memory Span
Balloon analog Risk taking Number correct
Oral word association (FAS) Language Number valid
Oral word association (semantic) Language Number valid
Emotion recognition Emotion recognition Number correct

which describe the correlation between two traits adjusted
for the third trait. This is advantageous to a bivariate model
including two traits of interest residualized for the third trait
because the former approach provides a clearer picture of the
genetic and environmental relationships between all three
traits. Partial correlations were estimated deterministically. We
fitted 147 264 trivariate models (73 632 per sample) in total. Each
model contained LGI at one vertex as the first trait, g as the
second trait, and either height, ICV, area (at the same vertex), or
thickness (at the same vertex) as the third trait.

Trivariate models took a long time to converge. We did not
perform significance tests of parameters from the trivariate
models because it was unfeasible to fit additional reparame-
terized and/or constrained versions of these models given the
constraints of our computational resources.

Ridge Regression
One could argue that LGI measured at a single vertex is likely to
have greater associated measurement error than, for instance,
whole-body or whole-brain traits, such has height or ICV. If
so, it would not be surprising if individual LGI–g correlations
were weak. By extension, it would not be surprising for LGI at
a typical vertex to explain only a small portion of the variance
of g. It would therefore make sense to quantify the variance
of g explained by all LGIs together. However, this could not be
achieved with ordinary least-squares regression because the
model would be overidentified (more predictors than observa-
tions). An alternative strategy is to calculate the variance of g

explained by whole-brain GI. However, as argued by Gregory et al.
(2016) and others, this strategy may miss regional specificity. We
opted for ridge regression (Hoerl and Kennard 1970), which mit-
igates the problem of overidentification by regularizing regres-
sion coefficients. We performed ridge regression with g as the
outcome and all LGIs as predictors using the sklearn package
(Pedregosa et al. 2011) in Python (Python Software Foundation
2018). All traits were residualized, using the covariates described
previously, prior to this analysis. Since LGI is not independent
of ICV, the ensemble predictive ability of LGI would likely be
inflated by the well-established association between g and ICV;
therefore, g was additionally residualized for ICV. The regular-
ization factor for ridge regression was selected by fitting with
different regularization factors and choosing the model with
the lowest leave-one-out cross validation estimator. Variance
explained was calculated in the usual way, by squaring the
correlation between the observed and predicted outcomes.

Across-Sample Correlations
Because vertexwise traits were registered to the same tem-
plate, it was possible to examine across-sample consistency in
regional specificity. For example, suppose genetic LGI–g corre-
lations exhibited a strong positive across-sample correlation;
this would suggest that if LGI and g were strongly genetically
correlated at a given brain region in GOBS, they were strongly
genetically correlated at the same brain region in HCP. We com-
puted such across-sample correlations and subjected them to
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two-tailed significance tests with FDR correction applied sepa-
rately per sample.

P-FIT Tests
Previous studies suggest that the spatial pattern of LGI–g correla-
tions may be consistent with the P-FIT (Jung and Haier 2007). The
P-FIT implicates, by Brodmann areas: the dorsolateral prefrontal
cortex (6, 9, 10, 45, 46, 47); the inferior (39, 40) and superior (7)
parietal lobule; the anterior cingulate (32); and regions within
the temporal (21, 37) and occipital (18, 19) lobes. We followed
Green et al. (2018) by considering a given vertex to be implicated
by the P-FIT if it belonged to one of a subset of ROIs from the
Destrieux et al. atlas (Destrieux et al. 2010) selected by Green
et al. to closely match the original Brodmann areas. We tested
whether parameter estimates from polygenic models related
to vertexwise measures were stronger at P-FIT than non-P-FIT
vertices by computing Bayes factors (BFs) using JASP (JASP Team
2018). We placed a half-Cauchy prior on effect sizes to reflect
the direction of hypothesized effects (P-FIT > non-P-FIT) with
“default” scale 0.707 (Rouder et al. 2009). The advantage of BFs
over P values is that they state evidence for or against the null
hypothesis. Here, the null hypothesis was that correlations were
not stronger in P-FIT than non-P-FIT regions.

Results
Heritability

Figure 1A shows the estimates of narrow-sense heritability for g,
height, and ICV. In both samples, height was the most heritable
of these traits (GOBS: h2 (

Height
) = 0.85; HCP: h2 (

Height
) = 0.89),

followed by ICV (GOBS: h2 (ICV) = 0.79; HCP: h2 (ICV) = 0.88),
followed by g (GOBS: h2(g) = 0.69; HCP: h2(g) = 0.82). These were
all significant (FDR-corrected P < 0.001) and consistent with pre-
vious estimates (Baare et al. 2001; Deary et al. 2006; Silventoinen
et al. 2003).

Figure 1A also shows the distributions of heritability esti-
mates for vertexwise traits. LGI was significantly heritable (FDR-
corrected P < 0.05) at all vertices in both samples (GOBS: median
h2 (LGI) = 0.44, interquartile range = 0.37, 0.51; HCP: median
h2 (LGI) = 0.55, interquartile range = 0.47, 0.62). To our knowl-
edge, heritability estimates of LGI have not been reported pre-
viously. Area was significantly heritable (FDR-corrected P < 0.05)
at 18 316 vertices (99.5%) in GOBS (median h2 (Area) = 0.36,
interquartile range = 0.28, 0.44) and 18 400 vertices (99.96%) in
HCP (median h2 (Area) = 0.39, interquartile range = 0.31, 0.48).
Thickness was significantly heritable at 16 924 vertices (92%) in
GOBS (median h2 (

Thickness
) = 0.20, interquartile range = 0.14,

0.26) and 18 375 vertices (99.8%) in HCP (median h2 (
Thickness

)

= 0.34, interquartile range = 0.28, 0.40). Heritability estimates
of vertexwise area and thickness were consistent with those
reported previously (Eyler et al. 2012).

LGI–g Correlations

Figure 1B shows the distributions of LGI–g correlation estimates
from the bivariate polygenic models. In GOBS, these were mostly
positive yet extremely weak (median ρP

(
LGI, g

) = 0.05; interquar-
tile range = 0.03, 0.07). Nevertheless, 4570 of them (25%) were sig-
nificant (FDR-corrected P < 0.05). The corresponding correlations
in HCP were somewhat stronger but also weak in absolute terms
(median ρP

(
LGI, g

) = 0.10; interquartile range = 0.06, 0.14); 13 651
of them (74%) were significant (FDR-corrected P < 0.05). Thus, at

a typical vertex, LGI explained between 0.25% and 1% of the total
phenotypic variance of g.

Genetic LGI–g correlation estimates (Fig. 1B) were mostly
positive and stronger than phenotypic LGI–g correlations,
particularly in HCP. However, again, they were all weak in
absolute terms (GOBS: median ρG

(
LGI, g

) = 0.07; interquartile
range = 0.02, 0.011; HCP: median ρG

(
LGI, g

) = 0.18; interquartile
range = 0.12, 0.24). None of these correlations reached the
threshold of statistical significance in GOBS. In HCP, 14 022 (76%)
of these correlations were significant (FDR-corrected P < 0.05).

Environmental LGI–g correlation estimates (Fig. 1B) were all
extremely weak in both samples (GOBS: median ρE

(
LGI, g

) =
0.03; interquartile range = −0.01, 0.08; HCP: median ρE

(
LGI, g

) =
−0.06; interquartile range = −0.10, 0.02). None was significant in
either cohort.

Partial LGI–g Correlations

Figure 1B also shows the distributions of all partial LGI–g correla-
tion estimates. Partial phenotypic LGI–g correlations were weak-
est with ICV as the third trait (GOBS: median ρP

(
LGI, g|ICV

) =
0.03, interquartile range = 0.001, 0.05; HCP: median ρP

(
LGI, g|ICV

)

= 0.06, interquartile range = 0.03, 0.09), followed by area (GOBS:
median ρP

(
LGI, g|Area

) = 0.04, interquartile range = 0.01, 0.06;
HCP: median ρP

(
LGI, g|Area

) = 0.08, interquartile range = 0.04,
0.12), followed by height (GOBS: median ρP

(
LGI, g|Height

) = 0.05,
interquartile range = 0.03, 0.07; HCP: median ρP

(
LGI, g|Height

)

= 0.10, interquartile range = 0.06, 0.14), followed by thickness
(GOBS: median ρP

(
LGI, g|Thickness

) = 0.06, interquartile
range = 0.03, 0.07; HCP: median ρP

(
LGI, g|Thickness

) = 0.10,
interquartile range = 0.07, 0.14). Thus, partialing out the
influence of other anatomical traits, particularly those related
to brain size (ICV and area), further reduced already weak
phenotypic LGI–g correlations.

Estimates of partial genetic LGI–g correlations were also
weakest with ICV as the third trait (GOBS: median ρG

(
LGI, g|ICV

)

= 0.02, interquartile range = −.02, 0.07; HCP: median ρG
(
LGI, g|ICV

)

= 0.12, interquartile range = 0.07, 0.17), followed by area (GOBS:
median ρG

(
LGI, g|Area

) = 0.02, interquartile range =−.03, 0.08;
HCP: median ρG

(
LGI, g|Area

) = 0.10, interquartile range = 0.03,
0.17), followed by height (GOBS: median ρG

(
LGI, g|Height

) = 0.07,
interquartile range = 0.01, 0.12; HCP: median ρG

(
LGI, g|Height

)

= 0.18, interquartile range = 0.11, 0.24), followed by thickness
(GOBS: median ρG

(
LGI, g|Thickness

) = 0.06, interquartile
range = 0.03, 0.07; HCP: median ρG

(
LGI, g|Thickness

) = 0.18,
interquartile range = 0.12, 0.25).

Other Correlations

Height–g and ICV–g correlations were estimated with additional
bivariate polygenic models. In GOBS, phenotypic and environ-
mental height–g correlations were significant (FDR-corrected
P < 0.001), but not the genetic height–g correlation (ρP

(
Height, g

)

= 0.16; ρG
(
Height, g

) = 0.08; ρE
(
Height, g

) = 0.22); and only the
phenotypic ICV–g correlation was significant (FDR-corrected
P < 0.001) (ρP

(
ICV, g

) = 0.12; ρG
(
ICV, g

) = 0.14; ρE
(
ICV, g

) =
0.11). In HCP, none of the height–g correlations was significant
(ρP

(
Height, g

) = 0.00; ρG
(
Height, g

) = 0.15; ρE
(
Height, g

) =
−0.12); but the phenotypic and genetic ICV–g correlations were
significant (FDR-corrected P < 0.001) (ρP

(
ICV, g

) = 0.27; ρG
(
ICV, g

)

= 0.30; ρE
(
ICV, g

) = 0.02). Notably, in both samples, ICV–g
correlations were stronger than most of the LGI–g correlations.
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We did not explicitly test associations between vertexwise
area/thickness and g because these have been explored thor-
oughly in previous studies (e.g., Vuoksimaa et al. 2015). However,
our trivariate models provided estimates area–g and thickness–
g correlations (although they were not tested for statistical
significance), as well as corresponding partial correlations
adjusted for LGI. Figure 1B shows the distributions of these
correlations. Consistent with previous studies, phenotypic area–
g correlations (GOBS: median ρP

(
Area, g

) = 0.07, interquartile
range = 0.05, 0.09; HCP: median ρP

(
Area, g

) = 0.11, interquartile
range = 0.08, 0.14) and genetic area–g correlations (GOBS:
median ρG

(
Area, g

) = 0.12, interquartile range = 0.06, 0.18;
HCP: median ρG

(
Area, g

) = 0.21, interquartile range = 0.15, 0.27)
were mostly positive. Notably, these correlations were similar
in strength to those between LGI and g. After partialing out
LGI, phenotypic and genetic area–g correlations were slightly
weaker. Also consistent with previous studies (e.g., Vuoksimaa
et al., 2015), all thickness–g correlations were very weak (GOBS:
median ρP

(
Thickness, g

) = 0.03, interquartile range = 0.01,
0.05; HCP: median ρP

(
Thickness, g

) = 0.00, interquartile
range = −0.03, 0.04) and genetic thickness–g correlations (GOBS:
median ρG

(
thickness, g

) = 0.00, interquartile range = −0.08,
0.08; HCP: median ρG

(
Thickness, g

) = 0.01, interquartile
range = −0.07, 0.07).

Ridge Regressions on g

In both GOBS and HCP, ridge regression estimated the pheno-
typic variance explained by ensemble variation in LGI. In GOBS,
this analysis yielded R2 = 0.11 (regularization factor = 105). In
HCP, the same analysis yielded R2 = 0.05 (regularization factor
= 106). Thus, all LGIs considered together failed to account for
at least 89% of the phenotypic variance of g. The regulariza-
tion factors of the ridge regressions were high because LGI at
one vertex tended to correlated very strongly with all other
LGIs.

Neuroanatomical Specificity

Figure 2B shows the neuroanatomical patterns of heritability
estimates for LGI, area, and thickness. In both samples, regions
of strong heritability included the perimeter of the central
sulcus, insula, anterior cingulate, and junctions of the isthmus,
precuneus, and cuneus. Regions of relatively weak heritability
included middle frontal, superior parietal, and inferior temporal
lobes. The across-sample correlation in LGI heritability was
strong (Fig. 2A; r = 0.59; R2 = 0.35; FDR-corrected P < 0.001). In
other words, if LGI was strongly heritable at a given vertex
in GOBS, it tended to be strongly heritable at the same
vertex in HCP. Thus, the neuroanatomical specificity of LGI
heritability was consistent across samples. The same was true
of area (r = 0.73; R2 = 0.54; FDR-corrected P < 0.001) and, to
a lesser extent, thickness (r = 0.44; R2 = 0.19; FDR-corrected
P < 0.001).

Figure 3B shows the neuroanatomical patterns of LGI–g corre-
lations. There was a strong across-sample correlation in pheno-
typic LGI–g correlation (Fig. 3A; r = 0.63; R2 = 0.40; FDR-corrected
P < 0.001), a moderate across-sample correlation in genetic
LGI–g correlation (r = 0.44; R2 = 0.19; FDR-corrected P < 0.001),
but no correlation in environmental LGI–g correlation (r = 0.00;
R2 = 0.00).

Comparisons to the P-FIT

Figure 4 shows the distributions of LGI heritability estimates
and LGI–g correlations as a function of whether vertices were
implicated by the P-FIT. In all cases, the median heritability or
correlation was actually weaker in P-FIT than non-P-FIT vertices,
contrary to the hypothesized direction. Thus, unsurprisingly, all
one-sided Bayesian t tests provided decisive evidence for the null
hypothesis, namely that parameter estimates were not higher
for vertices in P-FIT regions, according to the nomenclature
proposed by Jeffreys (1961) (largest BF = 0.005).

Discussion
In the present study, we analyzed data from two samples of
related individuals to examine the association between gyrifica-
tion and general cognitive ability. We used a popular automatic
method to calculate LGI across the cortex from MRI images
(Schaer et al. 2008), and calculated g from performance on bat-
teries of cognitive tests. We estimated the heritability of height,
ICV, and g, as well as the heritability LGI, area, and thickness at all
vertices. We estimated phenotypic, genetic, and environmental
LGI–g correlations, as well as partial LGI–g correlations with
height, ICV, area (at the same vertex), and thickness (at the
same vertex) as potential confounding variables. We estimated
the amount of phenotypic variance of g explained by all LGIs
together via ridge regression, and examined the across-sample
consistency of neuroanatomical specificity in heritability of LGI,
area, and thickness, as well as LGI–g correlations. Finally, we
tested whether heritability estimates and LGI–g correlations
were stronger in regions implicated by the P-FIT, a model of the
neurological basis of human intelligence (Jung and Haier 2007).

A novel finding of the present study was that LGI was heri-
table across the cortex, extending a previous study that estab-
lished the heritability of whole-brain GI (Docherty et al. 2015).
This finding was not particularly surprising because many fea-
tures of brain morphology are heritable. Nevertheless, it was
necessary to establish the heritability of LGI before calculating
genetic LGI–g correlations, which are only meaningful if both
LGI and g are heritable traits. The previous study estimated the
heritability of GI to be 0.71, which is much greater than most
of the heritability estimates for LGI observed in GOBS or HCP.
This result is also not surprising, because GI is likely to be con-
taminated by less measurement error than LGI. Heritabilities of
all other traits were consistent with those published in previous
studies.

The present study represents a replication of previous work
and provides several important extensions to our understanding
of the relationship between gyrification and cognition. First,
we replicated previous work by finding positive and signifi-
cant phenotypic LGI–g correlations (e.g., Gregory et al. 2016).
Furthermore, we found that genetic LGI–g correlations were
positive and significant (but only in HCP), suggesting that the
relationship between gyrification and intelligence may be driven
by pleiotropy. Since environmental LGI–g correlations were not
significant, their net sign differed across GOBS and HCP, and
their spatial patterns showed no consistency across samples,
it is reasonable to conclude that they mostly reflected mea-
surement error rather than meaningful shared environmental
contributions to LGI and g.

In our view, the most important finding from the present
study is that all LGI–g correlations, even the significant ones,
were weak. Phenotypically, LGI at a typical vertex poorly
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Figure 1. (A) Heritability estimates of all quantitative traits used in the present study. Violins are kernel density estimates (KDEs) of the distributions of heritability
estimates of all vertexwise traits, split by hemisphere and with first, second, and third quartiles included as horizontal lines. (B) KDEs of full and partial LGI–g, area-g,
and thickness-g correlation estimates.
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Figure 2. (A) Across-sample correlations in h2 parameter estimates. Darker hexagons indicate higher density and the oblique line denotes the linear trend. Such was

the precision of each linear trend that 99% bootstrapped confidence intervals are not visible. (B–D) Neuroanatomical patterns of heritability estimates projected onto
the fsaverage5 white-matter surface. While LGI, area, and thickness actually pertain to gray matter, it is convenient to use the white-matter surface instead because
sulci are more readily viewable.
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Figure 3. Same as Fig. 2, but for LGI–g correlations.
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Figure 4. (A) Regions from the Destrieux et al. (2010) atlas considered to be impli-

cated by the P-FIT by the present study, following Green et al. (2018). (B) KDEs
of heritability LGI–g correlation estimates partitioned by whether each vertex
was implicated by the P-FIT, with first, second, and third quartiles included as
horizontal lines.

predicted g. Even when the predictive ability of all LGIs was
considered together via ridge regression, at least 89% of the
variance of g remained unaccounted for. Phenotypic and genetic
LGI–g correlations were weaker than ICV–g correlations in the
same participants, and about the same as area–g correlations.
Partialing out ICV or area further reduced LGI–g correlations.

The volume of cortical mantle is often computed as the
product of its area and thickness, but at the resolution of meshes
typically used to represent the cortex, the variability of area
is higher than the variability of thickness such that surface
area is the primary contributor to the variability of cortical
volume (Winkler et al. 2010), and therefore of its relationship
to other measurements; the same holds, more strongly even,
for parcellations of the cortex in large anatomical or functional
regions. This means that the association between overall brain
volume and cognitive abilities reported by previous studies (e.g.,
Pietschnig et al. 2015) is probably primarily driven by area–g
correlations (Vuoksimaa et al. 2015). LGI is strongly correlated
with area (Gautam et al. 2015; Hogstrom et al. 2013), which
explains why partialing out either ICV or area reduced phe-
notypic and genetic LGI–g correlations in the present study.
Thus, we conclude, based on our results, that the association

between gyrification and cognitive abilities to a large extent
reflects the already well-established relationship between sur-
face area and cognitive abilities, and that the particular associ-
ation between the unique portion of gyrification and cognitive
abilities is extremely small.

The above conclusion is consistent with that of a previous
twin study (Docherty et al. 2015), which examined genetic asso-
ciations between overall cortical surface area, whole-brain GI,
and cognitive abilities. The authors concluded that the genetic
GI–g correlation could be more or less fully explained by the
area–g correlation. It has been argued previously that focus-
ing on whole-brain GI may miss important neuroanatomical
specificity; however, our findings suggest that Docherty et al.’s
conclusion holds for both local and global gyrification.

The P-FIT is a popular hypothesis concerning which brain
regions matter most for human cognition (Jung and Haier
2007). The P-FIT was initially proposed to explain activation
patterns observed during functional MRI experiments, but has
been extended to aspects of brain structure. Previous studies
have suggested that the association between gyrification and
cognitive abilities may be stronger in P-FIT regions than the rest
of the brain (Green et al. 2018; Gregory et al. 2016). However,
when we tested this hypothesis, we actually found evidence
to the contrary. Since neuroanatomical patterns of phenotypic
and genetic LGI–g correlations were consistent across GOBS
and HCP, this unexpected finding was unlikely to have been
caused by a lack of specificity, such as if LGI–g correlations
were distributed randomly over the cortex. Instead, while
LGI–g correlations exhibited a characteristic neuroanatomical
pattern, this pattern did not match the P-FIT. A potential
limitation of the present study in this regard is that there
is no widely accepted method of matching Brodmann areas
(used to define P-FIT regions) to surface-based ROIs (used to
group vertices). Therefore, one could argue that our selection of
P-FIT regions was incorrect. While our selection was based on
that of a previous study (Green et al. 2018), we nevertheless
reperformed our analysis several times with different selections
of P-FIT regions, and the results remained the same. Importantly,
although we argue that the P-FIT is not a good model for the
association between gyrification—a purely structural aspect of
cortical organization—and cognitive abilities, our results should
not be used to criticize the P-FIT as a hypothesis of the brain’s
functional organization, because function does not necessarily
follow structure.

Most of our results were consistent across samples. However,
estimates of heritability and genetic correlations were generally
weaker in GOBS than HCP. Notably, some genetic LGI–g correla-
tions were strong enough to surpass the FDR-corrected thresh-
old for significance in HCP, but not GOBS. Such differences could
be related to study design. One limitation of all family studies is
that polygenic effects are susceptible to inflation due to shared
environmental factors, which would cause overestimation of
both heritability and genetic correlations. It could be argued that
extended-pedigree studies, such as GOBS, are less susceptible to
this kind of inflation than twin studies, such as HCP, because
there are usually fewer shared environmental factors between
distantly related individuals than twins (Almasy and Blangero
2010); this reduction in inflation comes at the expense of a
reduction in power to detect polygenic effects, which could also
explain the lack of significant genetic correlations in GOBS. It
is unlikely that differences in results between samples were
caused by differences in scanner or scanning protocol (Han et al.
2006). Furthermore, while GOBS and HCP participants completed
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different cognitive batteries, both were comprehensive in terms
of measured cognitive abilities, ensuring that g indexed a similar
construct in both samples.

With the recent emergence of large, open-access data sets
and international consortia, neuroimaging and genetics studies
have entered a new era characterized by samples comprising
many thousands of participants. In such large studies, trivial
effects may be labeled as statistically significant. This observa-
tion is not new (Berkson 1938) and numerous solutions have
been proposed, such as adopting more stringent significance
criteria (Benjamin et al. 2018), scaling criteria by sample size
(Mudge et al. 2012), testing interval-null rather than point-null
hypotheses (Morey and Rouder 2011), and, most radically, aban-
doning the notion of statistical significance altogether (McShane
et al. 2019). One could argue that these solutions suffer from
their own drawbacks and are unlikely to be adopted by the sci-
entific mainstream in near future. Therefore, in the meantime,
we believe that it is imperative to judge, at least qualitatively,
whether the sizes of statistically significant effects are large
enough to justify one’s conclusions, particularly when these
conclusions may have broad, overarching implications. This idea
is not new either (Kelley and Preacher 2012) but deserves to
be restated. Based on the results of the present study, we are
inclined to believe that gyrification minimally explains variation
in cognitive abilities and therefore has somewhat limited impli-
cations for our understanding of the neurobiology of human
intelligence.
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