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Fever’s Glass Ceiling
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The importance of an upper limit of the febrile response has been recognized since the time of
Hippocrates. Although the precise temperature defining this limit varies according to the site at
which body temperature is measured, human core temperature is almost never permitted to rise
above 41°C—42°C during fever. There are compelling physiological reasons for such an upper limit
of regulated body temperature. The mechanisms by which the limit is maintained are most likely
complex and involve special properties of thermoregulatory neurons themselves, circulating endoge-
nous antipyretics (such as arginine vasopressin and a-melanocyte-stimulating hormone), and soluble
receptors for the (pyrogenic) cytokine mediators of the febrile response.

“Heat is the immortal substance of life endowed with intelligence. . . . However, heat must also be refrigerated by
respiration and kept within bounds if the source or principle of life is to persist; for if refrigeration is not provided,

the heat will consume itself.”’

Although the importance of limiting the accumulation of
body heat has been recognized since the time of Hippocrates
[1], the upper limit of the febrile range has received scant
attention in the clinical literature since 1949, when DuBois
[2] published a provocative paper entitled ‘“Why Are Fever
Temperatures over 106°F Rare?”’ In fact, textbooks of physiol-
ogy and medicine rarely consider the matter worthy of even a
passing comment. Nevertheless, experimental data confirming
the existence of an upper limit of the febrile range and stressing
the importance of this limit to life have accumulated in recent
years. The present review summarizes these data as they pertain
to the nature of fever’s ceiling in humans, the physiological
necessity for such a ceiling, and the mechanisms by which it
is maintained.

Fever’s Upper Limit

Clinicians generally subscribe to the notion that the febrile
range has an upper limit [3]. However, there is no agreement
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Hippocrates (1]

as to the precise temperature defining this limit. The lack of a
consensus in this regard is understandable, owing to the fact
that profiles of body temperature in homeotherms vary consid-
erably. Most mammals have temperatures between 36.1°C and
38.8°C, with upper safe limits of 41.6°C to 43.3°C. Birds,
however, have higher and more labile normal temperatures,
with an upper safe limit of 45°C [4]. Furthermore, the upper
limit of the febrile range varies according to disease, with some
infections (such as malaria) inducing notoriously high fevers
and others (e.g., HIV infection) eliciting little if any detectable
fever (Wheeler D, Call S, Wasserman SS, Ingram J, Macko-
wiak PA, unpublished data). Basal temperature exhibits consid-
erable individual variability [6], and it is likely that the same
holds true for the febrile range. In addition, clinical readings
vary depending on the site (oral, rectal, or tympanic membrane)
at which temperature measurements are obtained [7]. Finally,
no systematic study of the question of fever’s upper limit has
been published since the report by DuBois [2] in 1949.

In his report, DuBois [2] placed fever’s upper limit between
41°C and 42°C (105.8°F and 107.6°F). He based this conclusion
on a survey of 1,761 (axillary and rectal) temperature readings
in 357 patients with diseases characterized by high fever. Only
4.3% of the readings exceeded 41.1°C (106°F), and none were
above 42°C (107.6°F). As illustrated in one of the figures in-
cluded in his report (figure 1), fevers rarely reach this upper
limit, even when rectal temperatures are monitored in patients
with especially severe febrile infections.

DuBois [2] conducted his survey before the advent of antibi-
otic therapy. In today’s setting one rarely sces temperature
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readings of >40°C (104°F) in adults, even during the most
intensely febrile infections (figure 2). This rarity is, in part,
because of the fact that today effective antimicrobial therapy
and antipyretic medications are given to such patients but also
because oral rather than rectal temperatures are most often
monitored in today’s clinical setting.

In view of the many variables affecting fever’s ceiling, it is
not appropriate to view the upper limit of the febrile range as
a single temperature applicable to all body sites of all people
at all times during the day. Nevertheless, the febrile response—
unlike the hyperthermia of the neuroleptic malignant syn-
drome, malignant hyperthermia, or heat stroke—1is a regulated
physiological response in which temperature is maintained
within certain carefully controlled limits. The upper limit al-
most never exceeds 42°C [2]—unless there is failure of ther-
moregulatory mechanisms—regardless of the type of infection,
underlying disease, or site at which temperature measurements
are taken.

Physiological Necessity of Fever’s Ceiling

From a physiological standpoint, at neutral ambient tempera-
tures, it should be only slightly more difficult to raise body
temperature from 40°C to 43°C than from 37°C to 40°C [8].
However, temperatures in the former range are rarely seen,
even during the most severe infections. The fact that febrile
temperatures rarely rise above 40°C and are almost never above
42°C suggests a fortiori that the adverse consequences of body

temperatures above the upper limit of the febrile range out-
weigh any potential benefits to the human host.

Experimental evidence supporting this conclusion has been
provided by Kluger et al. [9], Bernheim and Kluger [10], and
Bernheim et al. [11]. In a model involving infection of the
lizard Dipsosaurus dorsalis with one of its natural pathogens,
Aeromonas hydrophila, Kluger et al. [9] demonstrated a posi-
tive correlation between temperature and survival when tem-
perature of the cxperimental poikilotherm was raised by physi-
cal means from 34°C to 40°C. However, when temperature was
increased to 42°C, the highest temperature studied, deaths were
observed for the first time in uninfected control animals. It is
interesting that, whereas the doubling time of A. hydrophila
was constant in vitro between 34°C and 40°C, it began to
decrease rapidly at incubation temperatures of =42°C. Thus,
in the model of Kluger and associates, a body temperature of
=42°C, while deleterious to pathogenic microorganisms, was
also harmful to the host.

The specific adverse consequences of increases in body tem-
perature above 41°C—42°C cannot be reliably ascertained by
studying subjects with infections or other classical febrile disor-
ders, because such disorders are so rarely associated with tem-
peratures of this magnitude and because, in cases of fatal febrile
conditions, it is impossible to separate the morphological and
physiological effects of fever from thosc of the underlying
disease. To ascertain such effects one must examine fatal cases
of heat stroke or fever therapy. In the former instance, body
temperature may exceed the upper limit of the febrile range
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because of failure of thermoregulatory systems; in the latter
instance, body temperature may exceed the upper limit of the
febrile range because such systems are overridden by physical
means.

The cardinal features of classical heat stroke are a core tem-
perature of =40.5°C (105°F); hot, flushed, and dry skin; and
CNS dysfunction [12]. In cases associated with physical exer-
tion (exertional heat stroke), persistence of sweating may ob-
scure the diagnosis, because cooling of the skin by vaporization
masks a markedly elevated core temperature. Acid-base abnor-
malities are common and are due, at least in part, to the fact
that simple heating of healthy subjects leads to hyperventilation
and respiratory alkalosis. Hypokalemia, hypernatremia, hypo-
phosphatemia, and hyperphosphatemia are also seen in some
cases [13]. If circulatory failure and shock supervene, lactic
acidosis tends to complicate the acid-base abnormalities. Dis-
seminated intravascular coagulation with thrombocytopenia
and elevated fibrinolytic split products in plasma and urine are
also features of severe cases of heat stroke.

These protean biological abnormalities reflect the wide-
spread organ dysfunction that occurs at body temperatures of
>41°C-42°C. The pathological picture is characterized by cel-
lular swelling and degeneration and by widespread hemor-
rhages varying from petechiae to massive bleeding [14]. As a
result, affected organs such as the brain, kidneys, and liver are
congested or edematous, with increased weights and swollen
cells. Not all organs are equally susceptible to this form of
injury. For instance, the pancreas and adrenal glands are often

spared, even when there are severe abnormalities in organs
such as the brain, liver, and kidney [14].

Similar morphological abnormalities and associated physio-
logical dysfunction are also occasionally seen in patients sub-
jected to whole-body hyperthermia in devices such as the Ket-
tering Hyperthem Cabinet [15]. The earliest abnormalities
occurring in the course of such therapy are visceral congestion
and disseminated focal hemorrhages in internal organs [16—
19]. The subendocardium is especially susceptible in this re-
gard; however, the brain, lungs, liver, and kidney are also
commonly affected in fatal cases.

The precise explanation for the widespread abnormalities
occurring when body temperature rises above the upper limit
of the febrile range is uncertain. Thermal sensitivity of the
brain, but not other vital organs, has been attributed to the
unique susceptibility of its polyribosomes to thermal injury
[20]. At 40°C—42°C, these polyribosomes begin to disaggre-
gate; above 41°C, irreversible destruction of cerebral mitochon-
dria occurs [21, 22]. However, in most animals thermal death
occurs well below temperatures causing coagulation of proteins
or denaturation of enzymes [23]. In experimental animals both
immunization against endotoxin and administration of antibiot-
ics before heating sharply reduce mortality due to hyperther-
mia, thus suggesting that pyrogens of intestinal origin mediate
at least some of the deleterious effects of heat stroke [12].

In one of the earliest theories concerning mechanisms re-
sponsible for the adverse effect of hyperthermia itself on cell
function, Hartman [24] proposed that anoxia was the prime
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(but not necessarily the sole) factor responsible for such effects.
Hartman theorized that the morphological abnormalities of hy-
perpyrexia, which share many features in common with those
of prolonged asphyxia, are due in large part to alterations in
oxygen supply and delivery. Central to his theory was the
observation that both the metabolic rate and oxygen utilization
increase with temperature, whereas physiological mechanisms
for furnishing oxygen to tissues decrease at body temperatures
of >41°C-42°C [25-27]. He suggested that the respiratory
alkalosis that invariably accompanies hyperpyrexia leads to
increased stability of oxyhemoglobin, thereby impairing release
of oxygen to tissues—the latter effect being at least partially
offset by the hyperthermia itself—which decreases oxyhemo-
globin stability.

Although numerous more contemporary theories have sought
to explain these same abnormalities, none are generally ac-
cepted as valid. Hubbard and Armstrong [28] have proposed
an “‘energy depletion model”’ to explain hyperthermia-induced
cellular dysfunction. According to their model, the increased
morbidity and mortality due to exercise-induced hyperthermia
(as compared with equivalent heat loads in the absence of
physical effort) derives from a thermally driven energy drain
superimposed on the energy lost as a result of exhaustive physi-
cal work. These investigators believe that during heat-induced
cellular dysfunction, a vicious cycle of increasing cellular activ-
ity, increasing energy consumption, and decreasing steady-state
energy levels results in dissipative ionic fluxes, adverse meta-
bolic cascades, and other reactions leading to irreversible cell
damage. In this model, as in all of the models thus far proposed,
the ultimate adverse consequences of hyperthermia on cell
function depend on the duration, intensity, and rate of heating
as well as on variations in regional and local circulation within
the affected tissue.

Lepock and Kruuv [29], for their part, have proposed that
protein denaturation is the most likely initial rate-limiting event
in hyperthermia-induced cytotoxicity. They offer as support
for their theory a wide array of data demonstrating protein
denaturation during exposure of mammalian cells to tempera-
tures in excess of 40°C; these investigators estimate that 5%—
10% of denaturation occurs during 15- to 30-minute exposures
to 45°C. However, the critical target affected by such denatur-
ation has not been identified, nor bas the target been localized
to any particular organ or cellular component.

Yatvin and Cramp [30] have recently concluded from their
own work and a review of the literature that, rather than protein
denaturation per se, alterations in the fluidity of cell membranes
that result from an increase in the content of cholesterol, phos-
pholipids, and protein is the critical cellular derangement in-
duced by hyperthermia. Other researchers have pointed to deg-
radation of DNA, inhibition of DNA synthesis, induction of
chromosomal aberrations [31-34], inhibition of protein synthe-
sis [35, 36], protein denaturation [37], increased protein phos-
phorylation [38], increased lysosomal enzyme activity [39-
41], alterations in cytoskeletal and structural proteins [42-47],
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Figure 3. Sagittal view of a mammalian brain showing an im-
planted thermode for altering hypothalamic temperature and a micro-
electrode for recording firing rates of individual neurons. AH = ante-
rior hypothalamus; OVLT = organum vasculosum lamina terminalis;
PO = preoptic region; RF = reticular formation; SP = septum; STt
= spinothalamic tract. A multisynaptic pathway of skin and spinal
thermoreceptors through the STt and RF to the AH, PO, and SP is
shown (arrows).

and increases in intracellular free calcium in association with
relocation of kinase C [48-51] as events contributing to the
adverse effects of hyperthermia. More than likely, multiple
adverse cellular events are triggered simultaneously by temper-
atures of >>42°C, and together these events mediate the cellular
dysfunction and death due to hyperthermia.

Mechanisms Regulating Fever’s Upper Limit

The foregoing evidence supporting an upper limit of the
febrile range infers the existence of regulatory mechanisms
involved in fever that prevent body temperature from rising
above 41°C—42°C (105.8°F—107.6°F). Since body temperature
and fever are controlled by neural structures near the rostral
hypothalamus, it is likely that fever’s upper limit is controlled
by neurons in this area. The mechanisms involved in such
regulation might lie in the intrinsic properties of the neurons
themselves or in the release of endogenous antipyretic sub-
stances that antagonize the effects of pyrogens on the neurons.

Neuronal Properties

Neurons coordinating thermoregulatory responses are lo-
cated in the preoptic region and anterior hypothalamus (PO/
AH) and in adjacent septal areas. As shown in figure 3, these
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structures are located near the organum vasculosum of the
lamina terminalis (OVLT), a circumventricular region thought
to be the site at which cytokines or other pyrogenic mediators
enter the brain from the blood [52, 53]. The importance of the
PO/AH in thermoregulation is best illustrated in studies of
animals with implanted thermodes that induce localized hypo-
thalamic warming and cooling (figure 3). All physiological and
behavioral thermoregulatory responses can be elicited in these
anmimals simply by changing hypothalamic temperature with
the implanted thermode [54]. Each thermoregulatory response
has its own hypothalamic set-point temperature, such that the
response is evoked when the PO/AH is either warmed or cooled
beyond this set point. PO/AH warming evokes heat loss re-
sponses, like panting [55-57] or sweating [58], whereas PO/
AH cooling evokes heat production responscs, such as shiv-
ering [55, 59] or nonshivering thermogenesis [60, 61]. In addi-
tion, more moderate changes in PO/AH temperature elicit
changes in blood flow in the skin [62] and a variety of thermo-
regulatory behaviors [63, 64].

When hypothalamic temperature is changed and microelec-
trodes record neuronal activity, three cell types are recognized:
temperature-insensitive neurons, warm-sensitive neurons, and
cold-sensitive neurons. Electrophysiological studies have been
conducted, both in vivo (in anesthetized and unanesthetized
animals) and in vitro (in hypothalamic tissue slices and cul-
tures); most studies find similar ratios of these neurons in the
PO/AH and septum as well as throughout the diencephalon
[54, 65, 66]. Approximately 60% of the neurons are classified
as temperature-insensitive, since they show little or no change
in their firing rates when hypothalamic temperature is changed.

Warm-sensitive neurons account for >30% of PO/AH neu-
rons and exhibit increased firing rates during hypothalamic
warming or decreased firing rates during hypothalamic cooling.
By comparison, < 10% of PO/AH neurons are considered cold-
sensitive, with firing rates that increase during cooling or de-
crease during warming. Within each of these three cell popula-
tions, there are neurons that also respond to various nonthermal
stimuli, such as changes in glucose concentration, osmolality,
and reproductive hormones [67—69]. Since these nonthermal
stimuli can alter the activity of thermoregulatory neurons, they
might have a role in regulating fever’s upper limit, which would
be particularly important if these nonthermal stimuli arc altered
by elevated temperatures or other conditions associated with
fever.

In the PO/AH and septum, warm-sensitive and cold-sensitive
neurons also receive afferent input from thermoreceptors in the
skin and spinal cord [70—72]. As shown in figure 3, it is likely
that much of this afferent information arrives over multisynap-
tic pathways from the spinothalamic tract to the reticular forma-
tion in the brain stem and the hypothalamus [73]. In the PO/
AH and septum, this afferent input rarely affects temperature-
insensitive neurons; however, most warm-sensitive and cold-
sensitive neurons respond to changes in skin or spinal cord
temperature [72]. Thus, the thermosensitive neurons integrate
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Figure 4. Model showing responses (4 and B) of neuronal firing
rates (FR) in the preoptic region and anterior hypothalamus and
whole-body metabolic heat production (C) during changes in hypotha-
lamic temperature (7). Thermosensitivity is reflected by the slope of
each plot. The letters inside the cells indicate a warm-sensitive (w)
neuron and a cold-sensitive (c) neuron. During increases in T;, warm-
sensitive neurons increase their FRs, and some warm-sensitive neu-
rons synaptically inhibit (=) other neurons, thus causing the other
neurons to appear cold-sensitive. During decreascs in 7, cold-sensi-
tive neurons increase their FRs, and heat production increases. Pyro-
gens inhibit (—) the FRs of warm-sensitive neurons, thereby resulting
in increased FRs of cold-sensitive neurons and increased heat produc-
tion. The plots show FR and heat production responses during normal
conditions without pyrogens (N) and during low concentrations (P))
and high concentrations (P,) of pyrogens.

thermal information derived from both central and peripheral
sources.

Warm-sensitive neurons in the PO/AH are intrinsically ther-
mosensitive and retain their thermosensitivity even when their
synaptic input is experimentally blocked [74, 75]. Intracellular
recordings from these neurons indicate that the mechanism
responsible for their warm sensitivity is a temperature-depen-
dent depolarizing prepotential that precedes each action poten-
tial [76]. In contrast to warm-sensitive neurons, cold-sensitive
neurons in the PO/AH do not appear to be intrinsically thermo-
sensitive. The activity of cold-sensitive neurons is much more
dependent on excitatory and inhibitory postsynaptic potentials
[76], and neuronal cold sensitivity usually disappears during
synaptic blockade [74, 75].

Experimental data summarized in figure 4 suggest that neu-
ronal cold sensitivity is due to synaptic inhibition from adjacent
warm-sensitive neurons. At 37°C, populations of warm-sensi-
tive neurons display a wide range of spontaneous firing rates,
and these firing rates often correlate with the neurons’ range
of thermosensitivity [54, 73, 76—78]. Warm-sensitive neurons
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with low firing rates usually express their greatest thermosensi-
tivity above 37°C, thus suggesting that such neurons participate
in heat loss responses that are elicited in the hyperthermic
range. By contrast, warm-sensitive neurons with high firing
rates often display their maximum firing rates when the hypo-
thalamic temperature is near 37°C.

Figure 4A shows a warm-sensitive neuron with a high firing
rate under normal conditions (N) in the absence of pyrogens.
Hypothalamic warming above 37°C has little effect on the
firing rate of this neuron; however, cooling below 37°C causes
the firing rate to decrease markedly. As shown in figure 4B,
some warm-sensitive neurons synaptically inhibit adjacent
spontaneously firing neurons, thereby causing the inhibited
neurons to appear to be cold-sensitive. Hypothalamic cooling
decreases the firing rate of warm-sensitive neurons and, there-
fore, decreases the synaptic inhibition of cold-sensitive neu-
rons. This causes cold-sensitive neurons to increase their firing
rate as the hypothalamus is cooled below 37°C. Thus, the firing
rate of cold-sensitive neurons is a mirror image of the firing
rate of warm-sensitive neurons. If some cold-sensitive neurons
control shivering and nonshivering thermogenesis as shown in
figure 4C, heat production should increase when the hypotha-
lamic temperature is cooled below 37°C.

Fever develops when pyrogens alter the activity of hypotha-
lamic neurons that control body temperature [79]. In response
to exogenous pyrogens, such as bacterial lipopolysaccharides,
leukocytes and macrophages produce an array of endogenous
pyrogens that include IL-1, IL-6, TNF, and IFN. Some investi-
gators believe that circulating endogenous pyrogens cause me-
diators, such as prostaglandin E, to be released at the OVLT
(figure 3) [80, 81]. Other researchers suggest that there are
fragments of endogenous pyrogens small enough to cross the
blood-brain barrier or that endogenous pyrogens in the circula-
tion trigger elevations in a separate pool of endogenous pyro-
gens within the brain [82—84]. Several studies have shown that
fever is produced in response to PO/AH or OVLT injections
of prostaglandin E and endogenous pyrogens, such as IL-1 [85,
86). During infections, concentrations of these substances often
increase within the brain [84, 87].

Some electrophysiological studies indicate that pyrogenic
substances inhibit warm-sensitive neurons, excite cold-sensi-
tive neurons, and have either mixed or little effect on tempera-
ture-insensitive neurons [88, 89]. Figure 4 shows how pyrogens
might act on PO/AH neurons to generate fever through in-
creased heat production. The predictive effects of a low concen-
tration of pyrogen (P,) and a high concentration of pyrogen
(P,) on the activity of hypothalamic neurons controlling shiv-
ering and nonshivering thermogenesis are illustrated. These
predictive effects are based on previous studies that correlate
the spontaneous firing rate at 37°C and thermosensitivity (i.e.,
the slope of the firing rate plotted as a function of temperature)
[54,71-73, 77, 78]. Often, in the hyperthermic range, increases
in thermosensitivity occur when warm-sensitive neurons de-
crease their spontaneous firing rate (figure 4A) or when cold-
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sensitive neurons increase their spontaneous firing rate (figure
4B). As a result, thermoresponse curves of both warm-sensitive
and cold-sensitive neurons tend to converge at hypothalamic
temperatures near 42°C—fever’s upper limit.

Figure 4A illustrates the change in activity of a warm-
sensitive neuron during inhibition by low and high concentra-
tions of pyrogen. While low concentrations of pyrogen par-
tially reduce the firing rate at 37°C, the neuron also becomes
sensitive over a wider range of temperatures. High concentra-
tions of pyrogen reduce the firing rate to minimal levels at
37°C so that the neuron is only sensitive to temperatures in
the hyperthermic range. Since neuronal cold sensitivity is
determined by synaptic inhibition from warm-sensitive neu-
rons, the thermoresponse curves in figure 4B are the mirror
images of those in figure 4A.

If cold-sensitive neurons regulate thermogenesis, then simi-
lar responses might be expected for heat production (figure
4C). In the presence of low concentrations of pyrogen, heat
production should increase, even when body temperature is
37°C. This heat production eventually raises body temperature
and is equivalent to the chill phase of fever. Heat production
gradually diminishes as body temperature rises to a new ele-
vated level, and regulation around the new elevated set-point
temperature is equivalent to the plateau phase of fever. High
concentrations of pyrogen maximally inhibit warm-sensitive
neurons and, in this way, allow cold-sensitive neurons to spon-
taneously fire at their highest levels. As shown in figure 4C,
this causes maximal heat production at 37°C; however, when
body temperature rises, heat production quickly decreases as
the temperature approaches the febrile set point.

As illustrated in figure 4, the plots of neuronal firing rates
and heat production tend to converge as body temperature
approaches 42°C. At 42°C the firing rates of warm-sensitive
neurons reach their zenith and cannot be increased further in
response to temperatures of >>42°C. Similarly, the firing rates
of cold-sensitive neurons reach their nadir at 42°C and cannot
decrease further if temperatures increase above 42°C. Thus,
regardless of the pyrogen concentration, thermosensitive neu-
rons may be incapable of providing additional neural signals to
finely regulate body temperature once the temperature reaches
42°C. Regulated increases in body temperature (i.e., fever)
above 42°C, therefore, might not be possible because thermo-
regulatory neurons are incapable of responding appropriately
to temperatures of >42°C.

Endogenous Antipyretics

As indicated above, thermosensitive neurons in the PO/AH
are influenced by a variety of endogenous substances [67—
69]. At least some of these substances appear to function as
endogenous antipyretic agents that might have a role in regulat-
ing fever’s upper limit,

Arginine vasopressin (AVP). The search for endogenous
antipyretics responsible for limiting the height of the febrile
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response began in earnest with studies of the temporarily
blunted febrile response of periparturient ewes and newborn
lambs to challenges with iv endotoxin [90]. Unable to identify
a thermoregulatory defect or an inability of such animals to
synthesize and release endogenous pyrogens, Kasting et al.
[91] hypothesized the existence of an endogenous antipyretic
agent responsible for the state of pyrogen unresponsiveness.
AVP emerged as a likely candidate for such an endogenous
antipyretic, after several groups of investigators [92-94]
showed that the low-molecular-weight neuropeptide was pres-
ent in increased concentrations in the circulation of pregnant
ewes at the time of their diminished responsiveness to challenge
with fever-inducing agents. More importantly, it was shown
that if AVP is perfused into discrete areas of the brain of the
nonpregnant ewe via a push-pull cannula system, application to
the ventral septal area (but not other areas) reduces endotoxin-
induced fever in a dose-dependent manner [95].

Subsequent studies by numerous investigators using a variety
of animal models have established that AVP is present in the
fibers and terminals of the ventral septal area, that it is released
into the ventral septal area during fever, that it reduces fever
via its action at V; receptors when introduced into the ventral
septal area, and that it prolongs fever when inhibited [96].
The means by which AVP brings about a reduction in body
temperature are not yet clear [97]. Its action appears to be
mediated by V)-type receptors [98]. AVP can interfere with
glutamate-induced excitation of neurons [99], but the impor-
tance of this action to its antipyretic effect is not known. It
apparently does not specifically impair thermogenesis [99].
Rather, it appears to prevent or reduce fever through a recep-
tor-mediated action that has no effect on normal body tempera-
ture [100].

Evidence against the role of AVP as a physiologically im-
portant endogenous antipyretic agent comes from work involv-
ing the Brattleboro rat. This genetic variant of the Long-Evans
rat possesses a recessive autosomal allele expressing AVP de-
ficiency. Although animals homozygous for the allele are pro-
foundly deficient in AVP, they do not exhibit an exaggerated
febrile response to challenges with endogenous pyrogens or to
prostaglandin E or endotoxin [101-104]. Nevertheless, it has
been suggested that such conflicting evidence, rather than obvi-
ating a role for AVP in setting the upper limit of the febrile
response, indicates that, like the febrile response itself, endoge-
nous antipyresis most likely involves several peptidergic sys-
tems [20] (vide infra).

a-Melanocyte-stimulating  hormone (0-MSH).  Another
central peptide exhibiting endogenous antipyretic activity is
the neuropeptide @-MSH [105]. This relatively small molecule
shares the 1—13 amino acid sequence with adrenocorticotropic
hormone. Unlike some antipyretic peptides, @-MSH has not
been identified in fibers projecting into the septum [106]. It
does, nevertheless, reduce pyrogen-induced fever when admin-
istered (intragastrically, iv, intracerebroventricularly, or into
the septal region of the brain) to experimental animals in doses
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below those having an effect on afebrile temperature [107-
111]. When given centrally, «-MSH is >25,000 times more
potent as an antipyretic than is acetaminophen [105]. Repeated
central administration of @-MSH does not induce tolerance to
its antipyretic effect [112]. In addition, injection of antiserum
to a-MSH into the cerebral ventricles augments the febrile
response of experimental animals to IL-1 [113].

The greatest increases in central concentrations of a-MSH
have been shown to occur during the chill phase of fever, when
the temperature is rising rapidly, rather than during the plateau
or defervescence phases [114]. No such increase in septal
a~-MSH concentrations occurs when the core temperature is
raised by physical means [105]. Whereas large iv doses of
«a-MSH inhibit fever, they have no demonstrable effect on
other aspects of the acute-phase response [115].

The biochemical pathway through which a-MSH exerts its
antipyretic effect is not yet known. In fact, little can be said
currently of its specific mechanism of action other than that
a-MSH does not inhibit prostaglandin synthesis [116] and does
not act as a receptor antagonist of IL-1 [117]. In addition, it
is not known whether «-MSH exerts its antipyretic effect in
concert with AVP. Nevertheless, from the data reviewed above,
it is clear that it is a potent endogenous antipyretic agent and,
like AVP, might have some role in setting fever’s upper limit.

Miscellaneous antipyretic neurochemicals. Numerous neu-
rochemicals appear to have the capacity to influence the hypo-
thalamic control of body temperature. Depending on the envi-
ronmental temperature, hypothalamic injections of these
substances can often increase or decrease body temperature.
Although antipyretic agents lower body temperature only when
fever is present (i.e., in the presence of endogenous pyrogens),
some of the agents considered below are more appropriately
viewed as hypothermic agents because they have the capacity
to lower body temperature even in the absence of fever. Theo-
retically, either type of neurochemical might be involved in
setting fever’s upper limit; however, proof of such involvement
remains to be established for any of these agents.

Feldberg and Myers [118], in some of the earliest work in
this area, observed that intracerebroventricular injections of
epinephrine and norepinephrine cause a fall in body tempera-
ture in cats, whereas injections of serotonin cause body tempet-
ature to rise. On the basis of these observations, they proposed
that regulation of body temperature depends on the balance
between the release of catecholamines (inducing heat loss) and
serotonin (activating heat production) in the anterior hypothal-
mus. More recent data, including those considered in the pres-
ent review, suggest that the basis of set-point determination
by the thermoregulatory network is considerably more com-
plex [119].

Glucocorticoids and their inducers (corticotropin-releasing
factor and adrenocorticotropic hormone) exhibit striking anti-
pyretic properties under certain conditions. For example, there
are numerous in vitro studies showing inhibition of production
of pyrogenic cytokines such as IL-6 and TNF by glucocorti-
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coids [120-122]. Through such effects, glucocorticoids exert
inhibitory feedback on lipopolysaccharide-induced fever [94].
Lipocortin, a proposed mediator of glucocorticoid function, has
also been shown to inhibit the pyrogenic actions of IL-1 and
IEN [123]. Corticotropin-releasing factor injected into the third
ventricle produces similar antipyretic effects [124], which are
most likely mediated by the associated rise in blood levels of
glucocorticoids [20].

Thyrotropin-releasing hormone [125], gastric inhibitory pep-
tide [126], neuropeptide Y [127], and bombesin [128] are addi-
tional neuropeptides exhibiting hypothermic properties under
certain conditions. Of these neuropeptides, bombesin is proba-
bly the most potent because it constantly produces hyperther-
mia associated with changes of heat dissipation and heat pro-
duction when injected into the PO/AH of conscious goats and
rabbits [128—130]. Bombesin is believed to exert its hypother-
mic effect by increasing the temperature sensitivity of warm-
sensitive and temperature-insensitive neurons [129].

Endogenous Pyrogens and Their Receptors

Pyrogenic cytokines, the mediators of the febrile response,
might themselves play a direct role in determining fever’s upper
limit. For instance, there is experimental evidence indicating
that under certain conditions these cytokines act to lower, rather
than raise, body temperature [113, 131]. Thus, it is possible
that at certain concentrations or in the appropriate physiological
milieu (e.g., at 41°C—42°C), pyrogenic cytokines might func-
tion paradoxically as endogenous antipyretic agents.

The febrile response might also peak at 41°C—42°C, because
such temperatures inhibit the production of pyrogenic cytokines
by inflammatory cells, inhibit the capacity of effector systems
to respond to such cytokines, or might promote the elimination
of pyrogenic cytokines. With regard to the first possibility,
Ensor et al. [132, 133] have recently demonstrated that temper-
atures within the febrile range (40°C) cause degradation of
TNF mRNA in macrophage-like cells in vitro, inhibit TNF-a
release, and inhibit total protein synthesis by lipopolysaccha-
ride-stimulated human macrophages but do not inhibit IL-6
expression (figure 5). Several other group of researchers have
reported similar temperature-dependent inhibition of expres-
sion of various pyrogenic cytokines [134—137]. The specific
effects of temperatures at the upper end of the febrile range
on responsiveness of effector cells to endogenous pyrogens or
on the elimination of such cytokines are not yet known.

A growing body of literature indicates that the release of
pyrogenic cytokines such as IL-1 is followed by increased
shedding of soluble receptors for such cytokines that function
as endogenous inhibitors of such pyrogens [138]. In the case
of IL-1, a 22- to 25-kD molecule that blocks binding of IL-1
to its receptors has been identified in supernatants of human
monocytes [139]. The receptor antagonist of IL-1 is structurally
related to IL-1e and IL-173 [140] and binds to both type I and
type II receptors on various target cells without inducing a
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Figure 5. Effect of incubation temperature on TNF-« and IL-6
secretion by lipopolysaccharide-stimulated human monocyte—derived
macrophages (HUMoM®). Data are expressed as means = SE; * =
P < .01; 1 = P < .05 (compared with 37°C). Reprinted with permission
from the American Journal of Physiology [133].

specific biological response [141, 142]. Similar receptor antag-
onists of TNF-a have been described [143—147]. The precise
biological function of such receptor antagonists is not known.
However, it is possible that one such function is to serve as a
natural braking system for the febrile response.

Conclusion

Extensive clinical experience and the above-reviewed exper-
imental data affirm the existence of an upper limit of the febrile
response. Although the precise temperature defining this limit
varies according to the site at which body temperature is mea-
sured, it is clear that human core temperature is almost never
permitted to rise higher than 41°C—42°C during the regulated
increase in temperature that characterizes fever. Recent investi-
gations have identified several mechanisms by which fever’s
ceiling might be set. The upper limit of the febrile range might
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be determined simply by the maximum and minimum firing
rates of hypothalamic neurons that regulate body temperature.
It is also possible that antipyretic substances that antagonize
the actions of endogenous pyrogens play a pivotal role in this
process. In all likelihood several different mechanisms are in-
volved simultaneously in the process of endogenous ‘‘refrigera-
tion’’ that prevents body heat from ‘‘consuming itself>’ during
the febrile response.
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