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Antipyretic Therapy in Patients with Sepsis
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Sepsis is a clinical syndrome characterized by a systemic inflammatory response to infection.
Mortality rates in sepsis have remained high, despite recent advances in our understanding
of the immunological mechanisms that cause sepsis. Fever, a nonspecific acute-phase response,
has been associated with improved survival and shortened disease duration in some infections.
This article reviews the biological effects of fever and the influence of antipyretic therapy on
the outcome in sepsis in experimental models and in humans and offers clinical recommen-
dations for antipyretic therapy in early and late stages of the disorder.

Sepsis is a syndrome characterized by a systemic inflammatory
response to infection. Mortality rates in human sepsis have re-
mained high (30%–50%), despite heroic efforts to pharmacolog-
ically block its suspected mediators. As a result, it remains the
leading cause of death in noncoronary intensive care units [1].

In 1991, sepsis and related syndromes were rigorously defined
in a consensus conference of the Society of Critical Care Med-
icine and the American College of Chest Physicians [2], a de-
velopment signaling an important advance in the study of these
disease processes, because it permitted more valid interpretation
of the effects of various interventions. The term “systemic in-
flammatory response syndrome” (SIRS) was introduced to de-
scribe a systemic inflammatory state manifested by >2 of the
following criteria: (1) core temperature 1387C or !367C; (2)
heart rate 190 beats/min; (3) respiratory rate 120 breaths/min
or PaCO2 132 mm Hg; and (4) WBC count 112,000 or !4000
cells/mm3 blood or 110% immature forms. Sepsis was defined
as SIRS in the setting of a documented infection. When ac-
companied by dysfunction of >2 organ systems, sepsis was
classified as severe. Septic shock was defined as sepsis accom-
panied by hypotension refractory to fluid resuscitation.

In an effort to provide a framework to better understand
and treat sepsis syndromes, Bone [3] has proposed 3 stages in
the development of SIRS. In stage I, there is local release of
cytokines that regulate the local inflammatory responses and
promote wound healing. In stage II, small quantities of these
same cytokines are released into the circulation and elicit a
systemic response that enhances local resistance to infection.
In stage III, normal regulation of the systemic response is re-
placed by a massive systemic reaction with the activation of a
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number of potentially destructive humoral cascades, activation
of cytolytic effector cells, and diffuse host tissue injury.

Approximately 90% of patients with severe sepsis are febrile
[4–6], whereas many of the remainder are hypothermic (core
temperature <35.57C). Considerable data suggest that fever is
an adaptive response [7]. However, its role in the pathophysiology
of sepsis is uncertain. Although antipyretic therapy is commonly
administered to septic patients, there are few data to support this
practice. In 1 large prospective, blinded, placebo-controlledstudy,
ibuprofen therapy did not improve survival in patients with sep-
sis, although it caused reductions in both body temperature and
metabolic rate [6]. Ibuprofen, however, has many biological ef-
fects other than antipyresis that might also modify the course of
sepsis (principally the inhibition of prostaglandin and throm-
boxane synthesis). Consequently, the results of this study must
be interpreted with caution. It was the anti-inflammatory prop-
erties of ibuprofen, rather than its antipyretic actions, that formed
the theoretical basis for the study. Moreover, because 44% of the
patients in the placebo group and 22% of those in the ibuprofen
group received acetaminophen, the role of ibuprofen as an an-
tipyretic agent in the outcome of sepsis cannot be determined
from this investigation.

To our knowledge, there have been no other prospective con-
trolled studies of antipyretic therapy in human sepsis. Only 2
retrospective, chart reviews have been published. In these sur-
veys, administration of acetaminophen, an antipyretic with
weak anti-inflammatory activity, was an independent predictor
of survival in patients with Escherichia coli bacteremia [8] and
Pseudomonas aeruginosa sepsis [9]; however, in these studies,
use of acetaminophen and improvement in survival were not
correlated with reductions in core temperature.

Lacking definitive clinical studies of the effect of antipyretic
therapy on the outcome of sepsis, one must turn to studies of
the effect of fever itself on sepsis. Many studies suggest that
fever’s effect is beneficial and, by extrapolation, that suppres-
sion of fever might be detrimental in infected patients. For
example, a survey of elderly patients with community-acquired
pneumonia documented a mortality rate of 29% in patients
with neither fever nor leukocytosis, compared with only 4% in
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those exhibiting temperatures 137.87C and circulating leukocyte
counts 110,000 cells/mm3 [10]. Fever has also been reported to
be associated with improved survival in patients with sponta-
neous bacterial peritonitis [11, 12], polymicrobial sepsis [13], E.
coli bacteremia [8], and P. aeruginosa sepsis [9].

By contrast, several retrospective studies have shown that
human survival during serious infections is reduced in the face
of hypothermia (core temperature !35.57C) [4–6, 14] or a failure
to generate a fever, which is defined as a core temperature
138.37C. In 3 recent prospective studies of sepsis, hypothermia
was present in ∼10% of patients surveyed and was associated
with >2-fold higher mortality than that of febrile patients [4
–6]. In a large prospective study of ibuprofen treatment in sep-
sis, mortality in the patients receiving placebo was 90% when
hypothermia was present, compared with only 35% in the feb-
rile patients [6].

Unfortunately, these observational studies are of limited
value in assessing the role of elevations of core temperature,
because the underlying illnesses themselves might dictate both
a weak febrile response and a low survival rate. Studies that
use experimental fever models are also fraught with confound-
ing variables that complicate interpretation of their results. In
most of these studies, core temperatures were manipulated by
externally warming or cooling the animals, thereby bypassing
the normal mechanisms responsible for generating fever. There-
fore, one should exercise caution in applying the results of these
studies to the febrile patient. One such study found that housing
herpesvirus-infected mice at 387C for 6 days increased their core
temperature (by ∼27C) and survival rate (0%–85%), compared
with that of mice maintained at 237C–267C [15]. Bell and Moore
[16] reported a similar survival benefit of warming mice infected
with rabies virus. Increasing core temperature to the febrile
range has also been associated with increased survival rates in
experimental bacterial infections. In an experimental model
using the ectothermic lizard Diposaurus dorsalis, Kluger et al.
[16–22] showed a direct correlation between the animal’s ability
to resist infection after subdermal inoculation with Aeromonas
hydrophilia and increases in body temperature within its phys-
iological range. The improved survival in the warmer animals
was associated with a greater neutrophil infiltration at the in-
oculation site [23]. A similar relationship has been observed in
a mouse bacterial peritonitis model [24]. In this study, mice
infected intraperitoneally with Klebsiela pneumoniae, the sur-
vival rate improved from 0% to 50%, and the ip bacterial load
decreased 100,000-fold when core temperatures increased from
basal (36.57C–377C) to febrile (397C–39.57C) levels by housing
mice at 35.57C. In rabbits infected with pneumococcus, bac-
teremia has been shown to clear more rapidly in the presence
of hyperthermia but was also associated with a modestly higher
mortality [25].

In several other animal models, administration of antipyretic
agents have been associated with reduce survival [26–29] during
bacterial infections. Interestingly, when sodium salicylate was

administered to infected lizards, heat-seeking behavior was
abolished, and survival was reduced [17]. Such data raise fur-
ther questions about the validity of retrospective studies that
suggest a beneficial effect of antipyretic agents on the outcome
of sepsis in humans [8, 9].

Published investigations of the influence of body temperature
on host immunological responses are difficult to interpret for
several reasons. The temperature ranges studied in experimental
models have varied. Moreover, many models have used external
heat to raise the body temperature of experimental animals. In
some studies, the temperatures reached have been more typical
of heat shock than of fever. Although the study of classic heat-
shock temperatures may be relevant to heatstroke, the core
temperatures attained in these experimental models have fre-
quently exceeded the febrile range observed during infections.
Some models have used high doses of bacterial endotoxin or
proinflammatory cytokines that induce responses more closely
modeling late (stage III) sepsis, whereas models that use chal-
lenges with small inocula of viable pathogens have more closely
resembled earlier stages (stages I–II) of sepsis. These parameters
must be considered when extrapolating from the results of such
experimental studies to clinical disease. For example, our own
laboratory found that increasing murine core temperature from
377C to 407C by external warming for 6 h increased peak plasma
TNF-a levels by 13-fold (figure 1A), failed to improve survival
rate, and tended to shorten survival time (figure 1B) in mice
challenged with an LD75 dose of lipopolysaccharide (LPS) [30,
31], but increasing core temperature to 39.57C reduced plasma
TNF-a levels (figure 1C) and significantly improved survival
rate (figure 1D) in mice with experimental Klebsiella pneumoniae
peritonitis [24].

Both potentially beneficial and detrimental effects of fever
on components of the immune response have been reported
[reviewed in 7, 32]. Human polymorphonuclear cell (PMN)
motility [33, 34] and phagocytosis [35, 36] are potentiated at
febrile temperatures in several models, although PMN che-
motaxis is not enhanced, and bactericidal capacity is only
weakly and inconsistently enhanced by exposure to febrile tem-
perature [37, 38]. In contrast with the potentiation of antimi-
crobial functions at febrile temperatures, exposure to temper-
atures above the usual human febrile range (417C–457C) has
been shown to reduce bacterial phagocytosis and killing [35,
38–41], which suggests that any enhancement of relevant PMN
functions during fever might be lost if body temperature exceeds
the usual febrile range.

Several macrophage functions have also been reported to be
enhanced at febrile range temperatures, including expression of
Fc receptors, phagocytosis, pinocytosis, reduction of nitro blue
tetrazolium [42, 43], and killing of intracellular bacteria [44].
Like PMNs, macrophages, however, have markedly reduced
function at temperatures 1417C [42, 43, 45]. By contrast, the
cytotoxic activity of human natural killer (NK) cells has been
shown to be reduced at temperatures within the usual febrile
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Figure 1. Influence of the experimental model on effects of febrile-range core temperature on survival and expression of TNF-a. Effect of
increasing core temperature to febrile levels on plasma TNF-a levels (A and C) and survival (B and D) in mice challenged with an LD75 dose
(50 mg) of lipopolysaccharide (LPS) (A and B) or infected intraperitoneally with an LD100 inoculum of Klebsiela pneumoniae. Data are mean 5

of 6 (A) or 8 (C) mice. LPS-challenged mice (A and B) were warmed to 407C core temperature by anesthetizing with tribroimoethanol andSE
by immersing in water baths for <6 h. K. pneumoniae–infected mice were warmed to 39.57C core temperature by housing at 39.57C for 3 days.
* vs. mice without fever. A and B modified from Jiang et al. [32]; C and D reprinted from Jiang et al. [26] with permission.P ! .05

range [46–48], which demonstrates that the effects of fever on
immune function might be cell specific.

Exposing human lymphocytes to febrile-range temperatures
(387C–417C) in vitro enhances their L-selectin–mediated bind-
ing to lymphatic endothelium [49], an important early step in
lymphocyte recruitment. Several groups have shown that ex-
posing T lymphocytes to febrile temperatures also enhances
their proliferative response to nonspecific mitogens [37, 50–52],
allogeneic lymphocytes [53] , IL–1, and IL-2 [54, 55]. However,
like PMNs and macrophages, T lymphocytes exhibit a reduced
proliferative response when exposed to temperatures >417C
[55, 56]. In mice, T helper cell potentiation of the B cell antibody
response [57–59] and the generation of cytotoxic T lymphocytes
to allogeneic cells [53] and virus-infected cells [60, 61] are also
enhanced by early exposure to febrile temperatures. Together,

these studies indicate that T lymphocyte recruitment, activa-
tion, and expression of helper and cytotoxic functions might
be enhanced by the increases in temperature that occur during
fever.

Antimicrobial defenses are orchestrated, at least in part, by
a structurally and functionally diverse group of proteins called
cytokines. Such cytokines have complex biological activities,
sometimes overlapping and sometimes antagonistic, which in-
fluence immune cell functions. Some cytokines, notably IL-1,
TNF-a, and IFNs, are required for optimal host defense [62–64]
and yet, when dysregulated, appear to participate in the path-
ogenesis of sepsis [65]. The net effect of these cytokines on
survival during sepsis is determined by the magnitude, timing,
and pattern of their collective expression. For example, coad-
ministration of IL-1b [66] or IFN-g [67] enhances the lethal
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Figure 2. Heat shock protein (HSP) 72 expression in human mac-
rophages and mouse tissues after exposure to febrile temperatures.
A, Human monocyte–derived macrophages, which were preincubated
at the indicated temperature for 30 min and then were stimulated with
Esherichia coli lipopolysaccharide (LPS; 0.5 mg/mL) for 4 h. Total RNA
was isolated, and levels of HSP72 mRNA were analyzed by Northern
blotting and were compared with expression of the housekeeping gene
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA. B, Pairs
of mice, which were maintained at 377C (lanes 1 and 2) or 407C core
temperature by anesthetizing with tribromoethanol and by immersing
in 377C or 407C water baths for 3 h (lanes 3 and 4). Mice were allowed
to recover for 3 h, were killed, and liver and kidneys were collected,
homogenized, and analyzed for HSP72 protein levels by Western blot-
ting. Heat-shocked control mice were exposed to 427C for 20 min and
were killed 6 h later (lanes 5 and 6). “L” (lane 7) denotes a positive
control prepared from heat-shocked murine L929 cells (427C for 90
min and then 377C for 18 h). A modified from Ensor et al. [71]; B
reprinted from Jiang et al. [33] with permission.

Figure 3. Inhibition of in vitro IL-1b and TNF-a promoter activity
during overexpression of heat shock factor (HSF)–1.
A, THP-1 promonocyte cell line, which was transiently transfected with
a chloramphenicol acetyltransferase (CAT) reporter construct driven
by the human IL-1b promoter (3MEHT) and increasing concentrations
of an HSF-1 expression plasmid. Transfectants were stimulated with
lipopolysaccharide (LPS) for 24 h at either 377C or 407C, and CAT
activity was measured. B, Raw 264.7 mouse macrophages, which were
transiently transfected with a luciferase reporter construct driven by
the mouse TNF-a promoter and increasing concentrations of an HSF-
1 expression plasmid. Transfectants were stimulated with LPS for 5 h
at either 377C or 407C, and luciferase activity was measured. A reprinted
from Cahill et al. [96]; B modified from Singh et al. [95].

effects of TNF-a in experimental animals. A growing body of
literature has shown that expression of these cytokines is in-
fluenced by body temperature, but these effects are complex
and are influenced by the magnitude and timing of changes in
temperature and by the cytokine-producing cells studied. Early
exposure to temperatures within, as well as above, the usual
febrile range attenuates TNF-a and IL-1ß expression by human
and murine macrophages [30, 68–72], whereas delayed exposure
to supraphysiologic temperatures (427C–437C) enhances TNF-
a release [68, 73].

The direct effects of elevated temperature on IFN generation
are variable and appear to depend on the type of IFN studied,

the magnitude of the increase in temperature, and the stimulus
used to induce IFN production. Incubating human peripheral
blood mononuclear cells (PBMC) at febrile-range temperatures
reduces IFN-g in LPS-stimulated cells [74] but not in mitogen-
stimulated cells [75]. Exposing PBMC to temperatures in the
upper end of the febrile range reduces generation of IFN-g in
mitogen-stimulated, but not in influenza virus-infected, cells
[76]. By contrast, increasing core temperature of humans and
monkeys to febrile levels before collecting PBMC increased
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Figure 4. Proposed mechanism for protective and detrimental effects of fever in sepsis. Dashed line indicates inhibitory effect. HSP, heat shock
protein.

their capacity for generating IFN-g after stimulation with phy-
tohemagglutinin in vitro [77, 78].

In mice, warming to core temperatures within the febrile
range has a beneficial effect on experimental Klebsiella pneumiae
peritonitis, which is associated with suppressed systemic ex-
pression of TNF-a and delayed appearance of circulating IFN-
g [24]. Meanwhile, coexpressioin of TNF-a and IFN-g is en-
hanced within the infected peritoneal compartment in the same
animals. The former effect might contribute to the enhanced
survival of febrile animals by reducing systemic toxicity [67]
whereas the latter effect might contribute by enhancing anti-
microbial defenses in the infected peritoneal compartment [79].

Febrile temperatures appear to influence the biological activ-
ities of cytokines, as well as their expression. Increases in tem-
perature within the febrile range have been shown to enhance
the cytotoxity of human TNF-a [80–82], increase the thymocyte
comitogen activity of murine and rabbit IL-1 [83, 84], increase
the antiviral, antiproliferative, and NK cell–stimulating activities
of human and murine IFNs [48, 85, 86], and potentiate IFN-
induced generation of anergy in mice [87].

A common rationale for reducing fever is to prevent tissue
injury caused by elevated core temperatures. This rationale not
withstanding, we know of no published reports showing that
exposure to temperatures within the usual febrile range is cyto-
toxic. On the contrary, exposing animals or isolated cells or
tissues to supraphysiologic temperatures (427C–457C) is pro-

tective in a number of injury models [reviewed in 88, 89], in-
cluding sepsis [90]. Cytoprotection during heat shock is me-
diated by 4 families of heat shock proteins (HSPs). The reader
is referred to 2 recent reviews for a description of the biological
activities of these proteins [91, 92]. Although the human heat
shock response is generally thought to be activated by tem-
peratures above the usual human febrile range (427C–457C),
incubating LPS-stimulated human macrophages at 407C for 18
h [70] (figure 2A, lane 4) or raising core temperature by exter-
nally warming LPS-challenged mice from 377 to 39.57C core
temperature for 3 h [31] (figure 2B, compare lanes 3 and 4 with
heat-shocked controls in lanes 5 and 6) has been shown to
induce HSP72 expression. Exposing rat myoblast cultures to
397C for 24–48 h increases expression of HSP-73 and confers
protection against subsequent oxidative injury [93]. Heat shock
factor (HSF)–1, the major stress-induced transcription factor
for HSP genes, is at least partially activated when Raw
264.7–transformed murine macrophages are exposed to 39.57C
for only 60 min in both the presence and absence of LPS [94].
Interestingly, when overexpressed in macrophages, HSF-1 is a
negative regulator of the proinflammatory cytokines IL-1b[95]
(figure 3A) and TNF-a [94] (figure 3B). Although it is clear
that HSF activation and HSP expression may modify the host
inflammatory response during febrile illnesses, the role of HSPs
in infections and sepsis is not yet clear.

Another rationale for blocking fever in the septic patient is
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to reduce the metabolic demands of the febrile response. Oxy-
gen consumption increases 20% when core temperature is in-
creased from 387C to 417C by externally warming anesthetized,
paralyzed dogs [96]. In 12 critically ill patients with fever re-
fractory to acetaminophen, reduction of core temperature from
39.47C to 377C by therapeutic paralysis and external cooling
has been shown to decrease oxygen consumption by 18% and
to reduce carbon dioxide production by 20% and cardiac output
by 23% [97]. The host’s ability to meet the increased metabolic
demands of fever may be limited in sepsis because of distur-
bances in normal cardiac and pulmonary function. Increases
in core temperature also cause a progressive reduction in affinity
of hemoglobin for oxygen, which impairs oxygen loading in
the lungs and thus may reduce oxygen delivery to tissues. This
may, however, be balanced by the enhanced tissue oxygen
extraction.

Possible contributions of fever to the outcome of sepsis are
summarized in figure 4. The increase in core temperature in
response to acute phase cytokines enhances cytotoxic activity
of effector cells (e.g., neutrophils and macrophages), leading to
more rapid pathogen clearance, but may also increase the risk
of collateral host tissue injury. Tissue injury may be further
enhanced if the high metabolic demand and limited oxygen
delivery leads to tissue ischemia. The collateral tissue injury
may be mitigated as a result of expression of HSPs, optimi-
zation of proinflammatory cytokine expression, and accelerated
elimination of the immunostimulatory pathogens.

It is clear that prospective, placebo-controlled studies of anti-
pyretic therapy in sepsis are needed to develop rational pro-
tocols for treating fever in septic patients. On the basis of the
available data, we recommend that antipyretic therapy be with-
held during the early stages of sepsis and SIRS, unless body
temperature exceeds the usual febrile range (1417C), or the
metabolic demands of fever pose a specific risk, such as in
patients with severe cardiac or pulmonary dysfunction. Un-
fortunately, the available data do not allow us to make rec-
ommendations regarding antipyretic therapy in severe sepsis at
this time.
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