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R E V I E W A R T I C L E

Acquired Disorders of Phagocyte Function
Complicating Medical and Surgical Illnesses

Georg Engelich,1,2,a Daniel G. Wright,1,2,3 and Kevan L. Hartshorn1,2,3

1Section of Hematology-Oncology and Departments of 2Medicine and 3Pathology, Boston University School of Medicine, Boston

There is evidence that acquired dysfunction of neutrophils, monocytes, or macrophages is an important cause

of infection in patients with diabetes mellitus, renal or hepatic failure, alcoholism, autoimmune diseases,

influenza or human immunodeficiency virus infection, burns, and trauma. Distinguishable mechanisms of

acquired phagocyte dysfunction include inhibitory effects of metabolic disturbances (e.g., hyperglycemia,

uremia), chemical toxins (e.g., ethanol), viral proteins on phagocyte activation, and pathologic activation of

phagocytes in the circulation (e.g., after hemodialysis, burns, or cardiopulmonary bypass). Although the burden

of morbidity and mortality resulting from acquired phagocyte dysfunction appears to be vast, research in this

area has been hampered by the complexity of the underlying illnesses and by limitations of laboratory assays

and clinical study methodology. Given the advent of improved assays of phagocyte functions and treatments

that can enhance these functions, there is a pressing need for more prospective studies of acquired phagocyte

dysfunction.

A wide variety of common medical and surgical ill-

nesses are associated with an increased risk of infection

with bacterial or fungal organisms that are character-

istically contained by phagocytes (table 1). Although

these illnesses are complex and diverse clinical features

are identified as risk factors for infection (table 1), all

are associated with acquired phagocyte dysfunction (ta-

ble 2). This review will summarize the evidence that

acquired phagocyte dysfunction is an important con-

tributing cause for the infections that complicate these
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disorders. Although the mechanisms of phagocyte dys-

function vary widely, certain general themes emerge.

DIABETES MELLITUS

Infections pose a serious threat to patients with diabetes

and account for up to 22% of deaths [1, 2]. Hyper-

glycemia is associated both with an increased risk of

infection and abnormalities in neutrophil function [3,

4]. Excess use of nicotinamide adenine dinucleotide

phosphate (NADPH) in the aldose reductase pathway

[5] may account for impaired phagocyte NADPH

oxidase activity in patients with diabetes mellitus. In

the neutrophils of patients with diabetes, phagocytosis,

intracellular killing of bacteria, or both are also de-

pressed [3, 6, 7]. Improved glucose control and treat-

ment of patients with diabetes with aldose reductase

inhibitors have been reported to increase respiratory

burst and phagocytic activities of neutrophils in persons

with diabetes [7–10]. In a double-blind, placebo-con-

trolled study, granulocyte colony-stimulating factor (G-

CSF) treatment increased neutrophil superoxide pro-
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Table 2. Differential features of altered neutrophil and monocyte function in medical and surgical illnesses.

Illness Adherence Chemotaxis
Respiratory

burst Phagocytosis
Bacterial

killing

Macrophage
FcR

clearance Miscellaneous

Diabetes mellitus Increase Botha Decrease Decrease Decrease — NADPH decrease, cytosolicCa�� increase

Renal failure Both — Both Decrease — Decrease Cytosolic Ca�� increase

Alcoholb Decrease Not affected Decrease Decrease Decrease — Phosphatidic acid production decrease

Cirrhosis Increase Decrease Both Decrease Decrease Decrease TNF-a, IL-6, IL-8 increase; FcR endocytosis
decrease

SLE Increase Decrease Increase Decrease Decrease Decrease CD11b increase, TGF-b increase

Influenza virus Increase Decrease Decrease Decrease Decrease — Apoptosis increase

HIV Decrease Decrease Decrease Decrease Decrease Decrease Apoptosis, CD11b, TGF-b increase; ADCC
decrease

Burn, trauma Both Decrease Both Decrease Decrease — Monocyte HLA-DR decrease, CD11b
increase

NOTE. ADCC, antibody-dependent cellular cytotoxicity; both, both increase and decrease reported; FcR, Fc receptor; HLA, human leukocyte antigen;
NADPH, nicotinamide adenine dinucleotide phosphate; SLE, systemic lupus erythematosus; TGF, transforming growth factor.

a Some studies have shown increased function, and others have shown decreased function.
b Findings were mostly derived from studies of in vitro effects of ethanol on neutrophil responses.

duction and was associated with more-rapid healing of foot

ulcers related to diabetes [11]. It should be noted that hyper-

glycemia may also depress the ability of phagocytes to kill certain

organisms by direct effects on the organisms [12] or through

inhibition of antimicrobial activity of collectins [13, 14].

RENAL FAILURE

Bacterial infections are a major cause of morbidity and mor-

tality among patients with end-stage renal disease [15–17].

Phagocyte function appears to be altered by uremia per se and

by specific hemodialysis techniques. Phagocytic activities of

neutrophils [18] and macrophages [17] are depressed in pa-

tients with advanced renal failure. Depression of macrophage

phagocytosis in patients with renal failure was correlated with

incidence of infection and improved by dialysis in a prospective

study [17].

Proposed mechanisms for phagocyte dysfunction in uremia

include elevated intracellular calcium concentrations in phago-

cytes [15, 19], iron overload [15, 20, 21], and “uremic toxins”

that depress neutrophil function [15, 22, 23]. Calcium channel

blockers, 1,25-dihydroxyvitamin D [19], and erythropoietin

[15] have been reported to improve phagocyte function in

patients with renal failure.

The use of cuprophane membranes in hemodialysis has been

shown to cause significant alterations of neutrophil function.

This type of membrane causes complement activation, release

of LTB4, rapid up-regulation of CD11b/CD18 expression on

the neutrophil cell surface, and transient neutropenia as a result

of increased neutrophil adhesion and sequestration in the pul-

monary vasculature [24, 25]. Although neutrophil counts re-

cover, circulating neutrophils continue to overexpress adhesion

receptors. Alternative hemodialysis membranes (e.g., polysul-

fone, cellulose acetate, polyacrylonitrile) do not have these ef-

fects. Patients who undergo dialysis with cuprophane mem-

branes also have increased infectious morbidity and mortality

compared with patients who undergo hemodialysis with alter-

native membranes [18, 25, 26]. It is possible that reduced use

of cuprophane dialysis membranes and other improvements in

care (e.g., routine use of erythropoietin and vitamin D) may

account for the reported decrease in infectious mortality as-

sociated with renal disease [15].

ALCOHOLISM AND HEPATIC CIRRHOSIS

Alcoholic persons are well known to be at risk for severe bac-

terial infections, especially bacterial pneumonia [27–31]. In-

cubation with ethanol in vitro reduces the ability of neutrophils

to generate activating signals, produce superoxide, and kill bac-

teria [32–35], and it inhibits cytokine production by macro-

phages [36]. The inhibitory effects of ethanol on certain phago-

cyte functions may result from its ability to inhibit formation

of phosphatidic acid in these cells [33]. Some of these effects

of alcohol may be transient, because depressed neutrophil func-

tions are observed in intoxicated alcoholic individuals [37], but

not in healthy, well-nourished, persons with chronic alcoholism

who are abstinent [38]. Leukopenia and an impaired myelo-

poietic responses to infection have also been described in per-

sons with severe alcoholism [39, 40], although it is unclear

whether these findings relate to prolonged alcohol exposure per

se or other factors.

The spectrum of infections and the nature of phagocyte de-

fects observed in cirrhotic patients differ somewhat from those

associated with alcoholism per se (table 1) [41, 42]. Persons

with cirrhosis appear to be particularly susceptible to pneu-

monia, bacterial peritonitis, urinary tract infections, and mor-
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Table 3. Difficulties in the evaluation of acquired phagocyte dysfunction.

Problem Description

Complexity of medical and
surgical illnesses

Evidence of (possibly aberrant) activation of phagocytes often coexists with evidence of phagocyte
dysfunction and propensity to bacterial infection

Depression of phagocyte activation may serve a physiologic function in protecting against organ
injury (e.g., in sepsis, pregnancy, systemic lupus erythematosus)

Phagocyte dysfunction may be only 1 of several factors impairing host defense; other concurrent
factors often include injury to epithelial or mucosal barriers and impairments of B or T
cell–mediated immunity

Propensity to pyogenic or fungal infection for certain illnesses may be changing because of im-
provements in management of underlying condition (e.g., renal failure, HIV)

Medical or surgical illnesses may have cooperative effects on phagocyte function (e.g., diabetes
mellitus increases risk of bacterial infection during influenza virus infection or cardiac surgery)

Relatively common genetic polymorphisms involving proteins involved in host defense (e.g., Fc re-
ceptors, myeloperoxidase, mannose-binding lectin) may contribute to risk of infection when com-
bined with medical or surgical illnesses [116, 117]

Bacterial infections per se may alter phagocyte function (e.g., Streptococcus pyogenes releases a
C5a peptidase which impairs neutrophil chemotaxis [118] and Clostridium perfringens lyses neu-
trophils [119]); IL-10 elaborated during sepsis inhibits phagocyte function [120]

Technical hurdles in assaying
phagocyte function

Lack of prospective validation of assays as predictors of infection

Phagocytes can become activated during isolation procedure

Assays are technically complex and not standardized between laboratories

Phagocytes exuded into various tissue sites (e.g., soft-tissue, urinary or respiratory tracts) may
have different functional attributes than those in blood

The role of phagocyte response to, or production of, cytokines in vivo is only partially understood

The physiologic roles of phagocyte-derived reactive oxygen and nitrogen species are not fully
elucidated

tality from bacteremia. Macrophage phagocytosis [43, 44] and

some neutrophil functions [45] are impaired in patients with

cirrhosis. Exaggerated proinflammatory cytokine responses in

bacteremic patients with cirrhosis may contribute to mortality

[46]. Murine studies indicate that bacterial trapping is impor-

tant for resolution of bacteremia [47]. Further studies will be

needed to determine whether vascular shunting in cirrhosis

contributes to mortality due to bacteremia.

AUTOIMMUNE DISEASES

Autoimmune diseases (e.g., systemic lupus erythematosus

[SLE], rheumatoid arthritis) have been associated both with

impaired neutrophil function and increased risk of infection.

Among patients with SLE, bacterial infection is among the lead-

ing causes of morbidity and mortality [48–51]. Impaired mac-

rophage phagocytosis has been documented in patients with

SLE [52, 53]. Proposed mechanisms to account for impaired

neutrophil function in autoimmune diseases include aberrant

activation of circulating neutrophils as a consequence of com-

plement activation (or other factors) [54] and inhibitory effects

of antineutrophil antibodies [55]. In a murine model of SLE

(i.e., MRL/lpr mice), elevated levels of transforming growth

factor–b, particularly in a form complexed with IgG, are as-

sociated with marked depression of neutrophil phagocytosis

and increased mortality after challenge with Staphylococcus au-

reus [56]. Initial studies indicate that a similar mechanism may

be responsible for impaired phagocytosis by neutrophils of pa-

tients with SLE [56].

INFLUENZA VIRUS

Bacterial superinfections of the respiratory tract are a major cause

of morbidity and mortality during influenza virus epidemics [57].

In vitro, influenza virus depresses phagocyte chemotaxis, de-

granulation, lysosome-phagosome fusion [58], respiratory burst

responses [59], and bacterial killing [58]. Influenza virus also

accelerates neutrophil and monocyte apoptosis, and markedly

potentiates the apoptotic effects of Escherichia coli or Streptococcus

pneumoniae in neutrophils [60–62]. Influenza-induced depres-

sion of neutrophil functions correlates with an increased sus-

ceptibility to bacterial superinfection in animal models [63, 64].

Depression of neutrophil function by influenza virus appears to

be mediated largely by interactions of the viral hemagglutinin to

sialylated neutrophil surface molecules [65, 66]. Other viruses

that also bind to cells via a hemagglutinin appear to have similar

effects [67–70]. The influenza virus nucleoprotein also inhibits

neutrophil functions [71].
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Although granulocyte-macrophage colony-stimulating factor

(GM-CSF) has been shown to enhance respiratory burst re-

sponses of influenza virus–treated neutrophils [63, 72, 73], it

did not improve host resistance to S. pneumoniae superinfection

in influenza virus–infected chinchillas. Influenza virus–induced

phagocyte dysfunction may be most pronounced in the airway

itself. Vaccination has been shown to reduce the prevalence of

bacterial pneumonia [74]. There are preliminary indications

that inhibitors of influenza neuraminidase may also do this

[75]. Collectins have been shown to inhibit infectivity and he-

magglutination activity of influenza virus and to protect neu-

trophils from influenza virus–induced functional deficits in vi-

tro [76]. Mice that lack pulmonary collectins have an increased

severity of influenza, respiratory syncytial virus, and bacterial

infection (A. M. LeVine et al., unpublished data) [77] that can

be corrected by instillation of collectins.

HIV

Phagocyte dysfunction may contribute to an increased fre-

quency and severity of bacterial infections observed in patients

with HIV [78–81]. Various neutrophil and monocyte functions,

including chemotaxis [82–84], respiratory burst activity [85,

86], bacterial killing [87], and antibody-dependent cell-medi-

ated cytotoxicity [88], are reduced in HIV-infected patients.

HIV infection is associated with accelerated neutrophil apop-

tosis [89] and autoantibodies directed against leukocyte inte-

grins [90]. These abnormalities could contribute both to neu-

tropenia and to neutrophil dysfunction [55, 91]. Elevated

plasma levels of activated complement component C5 and IL-

8 are observed in patients with HIV infection, along with de-

pressed responses of neutrophils to these proteins [82], which

suggests that neutrophils may be desensitized by prolonged

exposure to these stimuli. HIV envelope proteins, like the in-

fluenza hemagglutinin, can cause phagocyte dysfunction by

binding to functionally important phagocyte surface receptors.

Binding of either the gp120 or gp41 components of the HIV

envelope protein to monocyte chemokine receptors results in

inhibition of chemotaxis and other responses to chemokines

through receptor down-regulation [92]. There is some evidence

that reduction of HIV load improves phagocyte function [93].

In one trial that compared treatment of patients with AIDS

with IFN-g or IL-2, no bacterial infections were seen in subjects

treated with IFN-g, whereas 17 of 52 IL-2–treated subjects had

bacterial infections (including frequent bacteremia) [94]. How-

ever, this result may be more attributable to depression of neu-

trophil chemotaxis by IL-2 [95] than to beneficial effects of

IFN-g. In a recent prospective, randomized trial, G-CSF treat-

ment was shown to reduce the incidence and duration of bac-

terial infections in neutropenic subjects with advanced HIV

infection [96].

BURNS AND TRAUMA

Infections are a common cause of death in burn victims [97–99].

The types of infecting organisms [100, 101], and the fact that

most serious infections involve sites other than the burn wound

itself, both suggest that phagocyte dysfunction develops in pa-

tients with burns. There is evidence for both partial activation

and depressed functional responsiveness in the circulating neu-

trophils of patients with burns. Impaired neutrophil adhesion,

chemotaxis, and NADPH oxidase activity have also been doc-

umented in patients with burns [102–104]. Initial up-regulation

of complement receptors (CR1 and CR3) on neutrophils has

been noted after major burns and correlated with reduced neu-

trophil chemotaxis and decreased survival rate of burn victims

[103]. These findings resemble those obtained with patients who

underwent hemodialysis with cuprophane membranes. It is of

interest that similar findings have been noted in severely trau-

matized patients as well [105–108]. Clinical trials of G-CSF, GM-

CSF, or IFN-g in burn or trauma patients have been inconclusive

[109–112]. In contrast, animal studies suggest that inhibition of

phagocyte activation (e.g., through selectin blockade) may be

beneficial in such patients [113].

During cardiopulmonary bypass, blood is exposed to non-

physiologic surfaces, and there is evidence for release of proin-

flammatory cytokines and activation of complement and phago-

cytes that resemble those that are observed in hemodialysis with

cuprophane membranes, burns, and trauma [114, 115]. In this

instance, there is also evidence that blockade of activation (e.g.,

through inhibition of complement activation) may be beneficial.

CONCLUSIONS

As outlined in this review, measurable abnormalities of neu-

trophil, monocyte, and macrophage function have been ob-

served in a number of common medical and surgical conditions

that are also characterized by an increased risk of bacterial and

fungal infections (tables 1 and 2). Although the morbidity and

mortality attributable to acquired phagocyte dysfunction ap-

pears to be vast, there are serious limitations of knowledge in

this field. Few studies have tested prospectively whether ab-

normal measures of phagocyte function predict the likelihood

of infectious complications, or whether interventions directed

at improving or altering phagocyte function reduce such com-

plications in medical and surgical conditions. Table 3 sum-

marizes some of the obstacles that have hindered progress in

understanding acquired phagocyte dysfunction.

An important barrier to the interpretation of observations

in this field is that in vitro assays of phagocyte activation may

be altered by nonspecific activation induced by cell isolation

and preparation procedures. Furthermore, neutrophils isolated

from the circulation may have distinct functional properties

compared with those that have emigrated into tissue locations
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[121–124]. Other aspects of neutrophil function in vivo that

have received insufficient attention in studies of acquired phag-

ocyte dysfunction include the role of cytokines in regulating

neutrophil functions [56, 125, 126], the role of neutrophils as

a source of cytokines [127, 128], and the role of phagocyte-

derived oxidants as signaling molecules [129]. Clearly, the de-

velopment of assays that more accurately reflect the in vivo

functions of phagocytes remains a significant challenge.

Progress in understanding acquired phagocyte dysfunction

will require prospective studies in which individuals at risk are

assessed over time (e.g., see Zimmerli et al. [130]), as well as

the development and validation of reproducible assays requir-

ing minimal ex vivo manipulation of phagocytes [86]. Assays

that directly reflect the activity of these cells at normal sites of

function (e.g., measurements of neutrophil mobilization to sites

of normal turnover, such as the oral mucosa [131]), should be

particularly useful in this regard.

Despite these limitations, certain conclusions regarding ac-

quired phagocyte dysfunction are possible. These functional

abnormalities appear to occur via at least 3 distinguishable

mechanisms. In patients with diabetes mellitus, uremia, and

alcoholism, phagocyte dysfunction appears to be induced by

the direct effects of metabolic disturbances (e.g., hyperglycemia)

or chemical toxins (e.g., alcohol or its metabolites) on phag-

ocytic cells. A second mechanism of acquired phagocyte dys-

function involves the effects of specific inhibitory molecules,

such as viral proteins (see sections on influenza virus and HIV),

specific autoantibodies [90], and cytokines (see section on SLE).

On the other hand, phagocyte dysfunction associated with

burns, extensive trauma, cardiopulmonary bypass, and he-

modialysis appear to arise because of a pathologic activation

of phagocytes in the systemic circulation (e.g., owing to sys-

temic complement activation). Although much attention has

been focused on phagocyte-mediated organ injury resulting

from such activation, it is also likely that inappropriate acti-

vation of circulating phagocytes increases susceptibility to in-

fection [132]. Pathologic activation of phagocytes in the sys-

temic circulation appears to impair normal tissue distribution

and to modify the activation potential of the cells.

There has been considerable interest in the use of recom-

binant cytokines (e.g., G-CSF, GM-CSF, IFN-g) to enhance

phagocyte function in clinical settings in which acquired ab-

normalities of phagocyte function have been described [11, 96,

133]. There is preliminary evidence that cytokine treatment

may reverse acquired abnormalities of phagocyte function and

enhance host defenses, particularly those clinical settings in

which metabolic and chemical toxins or specific inhibitors have

been implicated as mechanisms for these abnormalities. In these

clinical settings, rigorous prospective studies, which examine

reproducible measures of phagocyte function and the incidence

of infection over time, would appear to be justified, particularly

in light of the continued emergence of antibiotic-resistant path-

ogens. In conditions characterized by aberrant activation of

circulating phagocytes, other approaches (e.g., interventions

that inhibit this activation) will be relevant.
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