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Quasi-experimental study designs are frequently used to assess interventions that aim to limit the emergence of antimicrobial-

resistant pathogens. However, previous studies using these designs have often used suboptimal statistical methods, which

may result in researchers making spurious conclusions. Methods used to analyze quasi-experimental data include 2-group

tests, regression analysis, and time-series analysis, and they all have specific assumptions, data requirements, strengths, and

limitations. An example of a hospital-based intervention to reduce methicillin-resistant Staphylococcus aureus infection rates

and reduce overall length of stay is used to explore these methods.

Choosing the appropriate study design is critical when per-

forming antimicrobial resistance intervention studies. When

randomized studies in single hospitals or multihospital cluster-

randomized trials are infeasible, investigators often choose be-

fore-and-after quasi-experimental designs [1, 2]. Quasi-exper-

imental studies can assess interventions applied at the hospital

or unit level (e.g., hygiene education program in the medical

intensive care unit [MICU] [3]) or individual level (e.g., meth-

icillin-resistant Staphylococcus aureus [MRSA] decolonization

programs [4]), in which data are collected at equally spaced

time intervals (e.g., monthly) before and after the intervention.

Nonrandomization and the resulting data structure of quasi

experiments impart several methodological challenges for

analysis. First, common statistical methods, including 2-group

Student’s t tests and linear regression, were developed to analyze

independent, individual-level observations, whereas quasi-

experimental data are typically correlated unit-level observa-

tions; for example, MRSA counts (defined as the number of

MRSA infections at multiple time intervals) collected 1 month

apart are likely more similar than MRSA counts collected 2

months apart. Second, nonrandom assignment of the inter-
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vention often necessitates analytical control for potential

confounders.

Unfortunately, application of statistical techniques to quasi

experiments is rarely described in introductory biostatistics

texts and courses. We aim to provide a resource for bridging

the gap between clinician researchers and biostatisticians by

introducing clinicians to statistical analysis of quasi experiments

while guiding biostatisticians regarding design-related chal-

lenges of intervention studies for controlling antimicrobial re-

sistance, thereby improving conduct and reporting of these

studies, as recently outlined [5, 6]. Strength of evidence from

quasi-experimental data depends on the study design [1, 2, 7].

Studies with a concurrent nonequivalent control group provide

stronger evidence about effectiveness of an intervention than

do studies without a control group. Also, studies with several

preintervention observations provide stronger evidence than do

studies with few or no preintervention observations. As dis-

cussed below, the internal validity of quasi experiments is par-

tially related to study design elements that affect researchers’

ability to control for correlation, confounding, and time trends.

Thus, before a study is initiated, hypotheses should be clearly

stated, and design and analysis plans should be carefully

developed.

We discuss several statistical techniques using the following

example (motivated by a study by Pittet et al. [3]). After several

months of abnormally high MRSA infection rates in the MICU,

a hospital epidemiologist launches an education-based inter-

vention to increase compliance with hand-disinfection proce-

dures. The epidemiologist aims to compare rates of positivity

for MRSA in clinical cultures before and after implementing
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Table 1. Statistical method and software commands by outcome type.

Outcome type

Statistical method (software command)

Two-group tests

Regression analysis Time-series analysis

Standard model Segmented model Standard model Segmented model

Continuous Two-sample Student’s
t test (PROC TTEST
in SAS)

Linear regression
(PROC GLM in SAS)

Segmented linear
regression (PROC
GLM in SAS)

ARIMA models (PROC
ARIMA in SAS)

Segmented ARIMA
models (PROC
ARIMA in SAS)

Count Two-rate x2 test (PROC
GENMOD in SAS)

Poisson regression
(PROC GENMOD
in SAS)

Segmented Poisson
regression (PROC
GENMOD in SAS)

GARMA models
(garma in R)

Segmented
GARMA models
(garma in R)

NOTE. ARIMA, autoregressive, integrated, moving-average; GARMA, generalized autoregressive moving-average.

Table 2. Characteristics of each statistical method.

Characteristic

Statistical method

Two-group
tests

Regression analysis Time-series analysis

Standard
model

Segmented
model

Standard
model

Segmented
model

Data requirements, no. of observations �2 (1 before,
1 after)

�10 per
parameter

�10 per
parameter

�50 overall and
�10 per parameter

�50 overall and
�10 per parameter

Can control for confounders and time trends No Yes Yes Yes Yes
Can estimate changes in time trends No No Yes No Yes
Can account for autocorrelation No No No Yes Yes

the intervention. A secondary aim is to assess whether the

intervention decreases overall length of stay (LOS) in the

MICU. For both aims, data from 36 months before the inter-

vention (2003–2005) are compared with data from 12 months

after the intervention (2006). For ease of explanation, we first

describe statistical methods for this example without a control

group. We then discuss adaptations of methods for studies with

a nonequivalent control group.

We discuss 2-group tests (e.g., Student’s t test and x2 test),

regression analysis (including segmented models), and time-

series analysis in application to quasi-experimental studies of

interventions to control antibiotic-resistant bacterial pathogens.

We use simulated data for illustration and review data require-

ments, software, strengths, and limitations for each statistical

method (tables 1 and 2). Persons seeking additional resources

on statistics or quasi experiments are urged to consult a sta-

tistics primer [8] and literature regarding quasi-experimental

studies, respectively [1, 2, 7].

TWO-GROUP TESTS

Two-group (i.e., bivariate) tests make crude comparisons (i.e.,

unadjusted for confounders) of MRSA infection rates and mean

LOS in pre- and postintervention periods. We specifically dis-

cuss Student’s t tests for continuous outcomes (e.g., LOS) and

2-rate x2 tests for count outcomes (e.g., number of MRSA

infections).

Continuous outcomes. For continuous outcomes, 2 mean

values are compared using Student’s t test. In our example, we

test the equality of the mean LOS before and after the edu-

cation-based hand disinfection intervention. When data from

several preintervention and postintervention periods are col-

lected, as in interrupted time-series study designs [1, 2, 7], data

from multiple periods before and after implementation of the

intervention are pooled to produce 2 grand mean values. For

example, 2300 patients per year (6900 total) with a mean LOS

of 3.0 days during 2003–2005 (preintervention period) and

2800 patients with a mean LOS of 2.5 days in 2006 (postin-

tervention period) can be compared. However, Student’s t tests

are sensitive to outlying values. If some patients have atypically

long LOS, the median value is the preferred measurement of

central tendency. Transformation (e.g., natural logarithm) of

individual patients’ LOS or a nonparametric test to compare

median values (e.g., Wilcoxon rank-sum test) can be used.

Count outcomes. Crude comparisons can be made for

count outcomes (e.g., number of MRSA infections) by per-

forming a 2-rate x2 test. In our example, because the number

of hospital admissions varies over time, comparing numbers

of pre- and postintervention MRSA infections may produce

invalid results. Summarizing data as a proportion, with the

number of MRSA infections divided by the number of hospital

admissions (e.g., 150 infections/6900 hospital admissions

[2.2%], compared with 40 infections/2800 hospital admissions

[1.4%]; ), is appropriate if all patients are observedP p .009

for the same duration of follow-up, when the proportion is
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Figure 1. Changes in rate of infection with methicillin-resistant Staph-
ylococcus aureus (MRSA) over time before and after an intervention
implemented at month 36, showing a change in slope that would not be
detected by 2-group tests. Preintervention and postintervention rates are
6.8 and 6.6 infections per 1000 person-days, respectively ( , byP p .87
2-rate x2 test). Preintervention and postintervention slopes are 0.25 and
�0.75 infections per 1000 person-days per month, respectively.

interpreted as risk of infection for that particular follow-up

period (e.g., 3-day risk of MRSA infection). However, obser-

vation of patients in infection-control studies is typically limited

to hospital stays that vary in duration. The 2-rate x2 test ac-

commodates this difference by comparing rates (number of

infections per unit of person-time) between pre- and postin-

tervention periods [6]. Given 150 and 40 infections before and

after the intervention, respectively, if 6700 preintervention per-

son-days per year (20,100 total) and 6600 postintervention per-

son-days are observed, then the rates are 7.5 and 6.1 infections

per 1000 person-days before and after the intervention, re-

spectively ( ). Thus, correcting for person-time usingP p .21

rates may produce conclusions different from those using

proportions.

The 2-rate x2 test assumes that infection counts follow a

Poisson distribution [9–11]. The Poisson assumption implies

that the mean infection count per person-time equals the var-

iance in the infection count for that person-time. If this as-

sumption is violated, then incorrect SE estimates are calculated,

resulting in incorrect confidence intervals and P values.

In interrupted time-series study designs, rates are collected

at several periods, allowing the variance of infection counts per

person per unit of time to be empirically estimated and com-

pared with the mean value. If the “mean equals variance” as-

sumption is not valid, a test using “robust” SEs on the basis

of empirically estimated variances is recommended [12, 13].

Consider 12 months of data on MRSA infection rates with a

mean rate of 2.8 cases per 1000 person-days and a variance of

2.2. Thus, the Poisson assumption appears valid. In contrast,

consider MRSA infection rates with a mean rate of 4.4 cases

per 1000 person-days and a variance of 6.6. This latter example

is typical such that satisfying the Poisson assumption is rare in

practical applications. Therefore, researchers should perform

both 2-rate x2 tests (with and without robust SEs) to evaluate

whether confidence intervals and P values vary across assump-

tions. If conclusions differ between the 2 methods, test results

using the more conservative robust SEs should be reported.

Strengths and limitations. Strengths of 2-group tests in-

clude simplicity, interpretability of results, and minimal data

requirements (2 observation periods) (table 2). These tests can

accommodate 12 groups (e.g., before intervention, after inter-

vention, and after intervention plus change in antimicrobial

prescribing), using analysis of variance for continuous out-

comes and x2 tests for count outcomes.

Two-group tests are limited by several assumptions. One

assumption, independence between patients admitted to the

hospital in the same period, is implausible because infectious

organisms are transmissible. Independence of observations be-

tween periods is also implausible, because patients admitted to

the hospital in different months may be exposed to constant

antibiotic prescribing patterns. Also, without multiple levels of

stratification, the ability to adjust for potential confounders

(e.g., differences in severity of illness) is limited. Last, 2-group

tests can detect changes in outcome levels but not changes in

trends (e.g., monthly increases or decreases in the MRSA in-

fection rate). If we use the 2-rate x2 test with data in figure 1,

the MRSA infection rates for 36 months before and 12 months

after an intervention are 6.8 and 6.6 cases per 1000 person-

days, respectively ( ). However, figure 1 shows rates in-P p .87

creasing by 0.25 cases per 1000 person-days per month until

implementation of the intervention, then decreasing by 0.75

cases per 1000 person-days per month. By pooling counts into

single pre- and postintervention rates, the 2-rate x2 test cannot

detect this change in slope or trend, incorrectly finding no

evidence of effectiveness of the intervention. To detect changes

in slopes, a different statistical method, such as segmented re-

gression, is needed.

REGRESSION ANALYSIS

Regression analysis quantifies the relationship between an out-

come (e.g., LOS or MRSA infection) and an intervention, al-

lowing for statistical control of known confounders. Linear

regression is used for continuous normally distributed out-

comes (e.g., average monthly LOS or log-transformed individ-

ual LOS). Other outcome types, including MRSA counts, re-

quire analysis using generalized linear models [14]. In our

example, MRSA infections are considered as MRSA counts per
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Figure 2. Interrupted time-series data regarding length of hospital stay (LOS) simulated from a segmented linear regression model with a change
in slope (before vs. after the intervention), fit with a nonsegmented linear regression model that cannot estimate a change in slope (A) and a segmented
linear regression model that can estimate a change in slope (B). The intervention was implemented at month 36.

time period with an assumed Poisson distribution; thus, the

appropriate method is Poisson regression.

Unlike in statistical literature, in clinical literature, “seg-

mented regression” means regression analysis in which changes

in mean outcome levels and trends before and after an inter-

vention are estimated [15]. If changes in slopes are not esti-

mated (e.g., nonsegmented regression model is fit), then esti-

mates of the slopes may be biased, and changes in time trends

attributable to the intervention would be undetected. Seg-

mented regression models can be fit to estimate changes in

levels and trends. In our example below, we estimate pre- and

postintervention changes in LOS and MRSA levels and trends.

Continuous outcomes. Although individual LOS is usually

skewed, mean monthly LOS is approximately normally dis-

tributed for large sample sizes (i.e., 130 patients per month).

If LOS increases over time secondary to a steady increase in

MRSA infection rates, regression analysis can model this pattern

and estimate the effect of an intervention controlling for po-

tential confounders (e.g., age and reasons for hospitalization).

Given intervention status and potential confounders, the out-

come variable (in this case, LOS) must satisfy the assumption

of having constant variance.

Using the same data, we estimate changes in mean LOS,

controlling for trends, using 2 different models (figure 2). Fig-

ure 2A shows the results of nonsegmented linear regression,

which cannot assess a change in time trend (i.e., slope). Figure

2B shows the results of segmented linear regression, which

allows the slopes to differ before and after the intervention.

Compared with the model in figure 2A, the estimated time

trend using segmented linear regression in figure 2B is flatter

after the intervention. Forcing equal slopes before and after the

intervention when they are unequal can lead to spurious con-

clusions about an intervention’s effectiveness.

Count outcomes. Poisson regression is preferred over linear

regression for estimating the association between the interven-

tion and monthly MRSA infection rates, controlling for time

trend, because counts are not normally distributed (figure 3).

Differences estimated from this model are summarized as in-

cident rate ratios of MRSA infections.

Using the same data, we estimate changes in MRSA infection

rates, controlling for trends, using 2 models (figure 3). Figure

3A shows the results of nonsegmented Poisson regression,

which precludes estimation of changes in time trend (i.e.,

slope), whereas figure 3B shows the results of segmented Pois-

son regression, which allows different slopes before and after

the intervention.

SE estimates of Poisson regression models are constrained

by the “mean equals variance” assumption. This assumption is

relaxed by fitting an overdispersed Poisson regression model

[14, 16]. Allowing overdispersion can affect SE estimates if the

Poisson assumption is false without changing estimated re-

gression parameters, producing more valid inferences. Poisson

regression and overdispersed Poisson regression result in equal

incident rate ratio estimates but different confidence intervals.

Strengths and limitations. Regression allows estimation of

associations between the intervention and outcome while con-

trolling for potential confounders, which is particularly im-

portant in nonrandomized quasi-experimental studies (table



ANTIMICROBIAL RESISTANCE • CID 2007:45 (1 October) • 905

Figure 3. Interrupted time-series methicillin-resistant Staphylococcus aureus (MRSA) infection data simulated from a segmented Poisson regression
model with a change in slope (before vs. after the intervention), fit with a nonsegmented Poisson regression model that cannot estimate a change
in slope (A) and a segmented Poisson regression model that can estimate a change in slope (B). The intervention was implemented at month 36.

2). Segmented regression models estimate changes in mean

outcome levels (i.e., intercepts) and trends (i.e., slopes), unlike

standard regression models. However, some limitations previ-

ously discussed with 2-group tests remain. Specifically, inde-

pendence between individuals and time periods is assumed.

Additionally, regression analysis, in contrast to 2-group tests,

requires data from multiple pre- and postintervention time

intervals to estimate the slope. General guidelines suggest the

use of at least 10 observations per model parameter to avoid

overfitting [17]. The models in figures 2B and 3B contained 5

parameters; thus, they should be used only for studies with at

least 50 total observations (in our example, months). For in-

tervention studies, data from at least 10 observations before

and after the intervention should be used. However, using at

least 24 observations (in our example, 12 months before and

after the intervention) would capture potential seasonal

changes. Data from shorter intervals can be used (e.g., bi-

weekly); however, choice of time interval is a compromise be-

tween maximizing the number of observations and maintaining

sufficient data within each interval to provide interpretable

summary measures [15, 18]. In SAS, the command PROC

GENMOD can estimate Poisson and linear regression models

(table 1) [19].

TIME-SERIES ANALYSIS

Time-series analysis consists of advanced statistical techniques

that require understanding of regression and correlation.

Whereas “interrupted time-series design” refers to studies con-

sisting of equally spaced pre- and postintervention observa-

tions, “time-series analysis” refers to statistical methods for

analyzing time-series design data. Two-group tests and regres-

sion analysis assume that monthly LOS and MRSA infection

rates are independent over time. In contrast, time-series analysis

estimates regression models while relaxing the independence

assumption by estimating the autocorrelation between obser-

vations collected at different times (e.g., MRSA infection counts

among MICU patients across different periods). To estimate

autocorrelation, a correlation model is specified along with the

regression model, resulting in more accurate SE estimates and

improved statistical inference.

Continuous outcomes. Time-series analysis accommodates

the previously discussed regression models; however, the chal-

lenge is how to correctly model correlation. In linear regression,

monthly LOS measurements are assumed to be independent.

However, autocorrelation may take one of several forms. For

example, if correlation between 2 observations gradually de-

creases as time between them increases (e.g., correlation be-

tween months 1 and 2 is 0.5, correlation between months 1

and 3 is 0.25, and correlation between months 1 and 4 is 0.12),

autocorrelation is likely autoregressive. However, if autocor-

relation between 2 observations is initially strong but abruptly

decreases to ∼0 (e.g., correlation between months 1 and 2 is

0.5 and correlation between months 1 and 3 is 0.05), a moving-

average model is more appropriate. Occasionally, autocorre-

lation is strong for observations close in time and then sharply

decreases to a nonzero level after some time threshold. In this

case, autoregressive or moving-average models would be in-

adequate, and autoregressive moving-average (ARMA) models
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Figure 4. Segmented Poisson regression analysis of interrupted time-
series methicillin-resistant Staphylococcus aureus (MRSA) infection data,
comparing infection rates in the medical intensive care unit (MICU; in-
tervention group) and surgical intensive care unit (SICU; control group)
before and after the intervention (implemented at month 36). The reduction
of 0.6 infections per 1000 person-days in the SICU suggests that the
reduction of 0.8 infections per 1000 person-days in the MICU was not
solely due to the intervention.

should be used. When correlation between observations does

not decrease with duration of time, autoregressive, integrated,

moving-average (ARIMA) models may be appropriate. In SAS,

PROC AUTOREG estimates autoregressive models, and PROC

ARIMA estimates autoregressive, moving-average, ARMA, and

ARIMA models.

Count outcomes. Although most time-series software as-

sume that outcomes are normally distributed, methods for

Poisson counts are available [20–23]. One approach is to trans-

form counts into monthly rates and use time-series methods

for normal data (rates are approximately normally distributed

if they are based on large numbers). In addition, Autoregressive

[22, 23], moving-average [21], and ARMA [20] models have

been extended for generalized linear models (including Poisson

models), called generalized ARMA models. The “garma” com-

mand in the R software library VGAM estimates generalized

ARMA models [24].

Strengths and limitations. Time-series methods estimate

dependence (i.e., correlation) between observations over time,

lessening a common threat to valid inferences. They also ac-

commodate segmented models. Thus, time-series methods gen-

eralize regression by relaxing the assumption of independent

observations. However, the large data requirements often pre-

clude its use. A general guideline is having ∼50 time points

(e.g., 3 years of monthly preintervention data and 1 year of

monthly postintervention data) to estimate complex correlation

structures [25]. If fewer observations are available, only simple

correlation structures can be reliably estimated [15].

Another limitation of time-series analysis is difficulty in

building and interpreting correlation models. Several technical

resources are available to guide analysts [26–28]. Review articles

[25, 29, 30] and biomedical examples are also available [18, 31,

32]. Bootstrapping circumvents the problem of specifying and

estimating an autocorrelation model. Bootstrap SEs can be cal-

culated by estimating regression parameters assuming inde-

pendence (i.e., linear or Poisson regression). Resulting SEs ac-

count for autocorrelation by sampling the data multiple (e.g.,

1000 times) with replacement and estimating the parameters

with each sample [33]. Thus, the bootstrap with regression is

an alternative to time-series analysis when too few time intervals

are observed.

ADDING A CONTROL GROUP

Each method can easily accommodate comparison with a no-

nequivalent control group, a preferred epidemiological quasi-

experimental design, because regression to the mean and mat-

uration effects are common threats in these studies [1, 7]. In

our example, the intervention could be implemented in the

MICU, and the nonequivalent control group could be the sur-

gical intensive care unit. A 2-group t test would then compare

changes in the mean LOS in the MICU and surgical intensive

care unit (mean LOS after the intervention minus mean LOS

before the intervention). Regression analysis (e.g., linear and

Poisson) controlling for confounding variables can be per-

formed by fitting separate trends for the MICU and surgical

intensive care unit and comparing differences in changes in

levels (i.e., intercepts) and trends (i.e., slopes) between the 2

units (figure 4). In our example, the MRSA infection rate in

the MICU decreases by 0.8 cases per 1000 person-days im-

mediately on implementation of the intervention, suggesting a

large impact of the intervention. However, the MRSA infection

rate in the surgical intensive care unit decreases by 0.6 cases

per 1000 person-days, suggesting that the decrease in the MRSA

infection rate is partially attributable to nonintervention fac-

tors, which could not have been identified without a control

group. Hence, including a control group is recommended to

identify the true impact of an intervention.

DISCUSSION

In summary, 2-group tests, regression analysis, and time-series

analysis can accommodate interrupted time-series quasi-

experimental data. However, statistical validity depends on us-

ing appropriate methods for the study question, meeting data

requirements, and verifying modeling assumptions. This last

step requires premodeling exploratory data analysis and post-

modeling diagnostics not addressed here [14, 17, 26, 27].

Obtaining high-quality results depends on performing a well-
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designed study, because statistics cannot correct for a poor

initial design [1, 7, 34], nor can they compensate for poor

reporting of methods [5, 6]. Results from analyses can only

provide valid inference on the level of intervention. We provide

guidelines of minimal data requirements for using each statis-

tical method (table 2). However, larger sample sizes may be

needed to obtain a desired precision for estimating measures

of association (e.g., mean difference or rate ratio) or power for

statistical tests. A simulation study can determine required sam-

ple size using model-generated data analyzed with an appro-

priate method [35]. Investigators are encouraged to report sam-

ple size calculations in addition to statistical analysis methods

[5, 6]. Analyzing quasi-experimental data is challenging; there-

fore, we recommend collaboration between investigators, epi-

demiologists, and statisticians.
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