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While adult clinical trials of coronavirus disease 2019 (COVID-19) vaccines have moved quickly into phase 3 clinical trials, clinical 
trials have not started in children in the United States. The direct COVID-19 impact upon children is greater than that observed for 
a number of other pathogens for which we now have effective pediatric vaccines. Additionally, the role of children in severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission has clearly been underappreciated. Carefully conducted phase 2 
clinical trials can adequately address potential COVID-19 vaccine safety concerns. Delaying phase 2 vaccine clinical trials in chil-
dren will delay our recovery from COVID-19 and unnecessarily prolong its impact upon children’s education, health, and emotional 
well-being, and equitable access to opportunities for development and social success. Given the potential direct and indirect benefits 
of pediatric vaccination, implementation of phase 2 clinical trials for COVID-19 vaccines should begin now.
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The US government has launched and invested billions of dol-
lars in a massive effort to safely accelerate coronavirus disease 
2019 (COVID-19) vaccine candidates toward licensure at “warp 
speed.” Development of COVID-19 vaccines has been exped-
ited partly by basic science and vaccine research conducted 
on related coronaviruses, severe acute respiratory syndrome 
(SARS) and Middle Eastern respiratory syndrome (MERS) [1]. 
Conducting in parallel the multiple aspects of clinical trial de-
velopment further accelerated vaccine development in adults 
while protecting subject safety. Phase 1 and 2 data are now 
available for a number of vaccine candidates [2–6], and phase 3 
clinical trials have begun.

Despite efforts to advance vaccines for adults at warp speed, 
COVID-19 vaccine clinical trials for children remain stuck in 
neutral. Children are infected with severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), transmit the virus, and 
suffer COVID-19 complications. Safe and effective vaccines, 
when given to children, may provide both direct and indirect 
benefits. At the time that phase 3 adult clinical trials are initiated, 
data support the initiation of careful pediatric phase 2 clinical 

trials to evaluate the safety and immunogenicity of advanced 
COVID-19 vaccine candidates. These initial pediatric studies 
should be conducted in parallel with adult efficacy trials, rather 
than delaying until adult efficacy is established. Additionally, it 
is incumbent upon us to begin these studies to address the eco-
nomic, educational, and equity impact of COVID-19.

POTENTIAL DIRECT AND INDIRECT BENEFIT IN 
VACCINATING CHILDREN

Potential for Direct Benefit

Current estimates of US pediatric hospitalizations through  
29 August 2020 are 15.8 per 100 000 in children 0–4 years of 
age and 9.2 per 100 000 in those 5–17 years of age [7]. Although 
the COVID-19 hospitalization burden is smaller in children 
than adults [8], hospitalizations rival the prevaccine-era hos-
pitalization burden of other now vaccine-preventable viruses 
(Table  1). Approximately one-third of hospitalized children 
with polymerase chain reaction–positive SARS-CoV-2 and up 
to 80% of those with multisystem inflammatory syndrome in 
children (MIS-C) are admitted to the intensive care unit [8, 9]. 
The risk of serious COVID-19 in children (both hospitaliza-
tions and MIS-C) occurs with disproportionately higher rates 
in both Hispanics and Blacks as compared with Whites [8–10]. 
A pediatric COVID-19 vaccine could dramatically reduce hos-
pitalization and racial disparities from COVID-19.

Children in the United States are dying of COVID-19– 
related complications; in the first 5  months of the pandemic, 
103 children have died in the United States from COVID-19 
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through 9 September 2020 [11]. It is important to recognize 
that other vaccine-preventable diseases for which vaccination 
is recommended today resulted in similar or fewer annual pe-
diatric deaths before vaccines became widely utilized (eg, hep-
atitis A, varicella, rubella, rotavirus) (Table  1) [13,16,17,20]. 
Additionally, pediatric COVID-19 deaths are rapidly ap-
proaching the 110–188 influenza-associated pediatric deaths 
per season from the past 4 seasons (2016–2020) [21]. The antici-
pated persistence of SARS-CoV-2 circulation and the burden of 
COVID-19 hospitalizations and deaths in children justify the 
development of a pediatric indication for COVID-19 vaccines.

In addition to direct medical benefits, a COVID-19 vaccine 
could provide direct benefits on childhood education by allowing a 
safer return to school, a critical factor in children maximizing their 
potential. The intermittent or complete closure of schools to onsite 
education threatens to adversely impact that opportunity across 
all households that cannot provide direct educational oversight 
and is worse among households without adequate access to online 
learning—an issue disproportionately affecting racial minorities. 
In addition to the altered learning environment, social distancing 
and the lack of extracurricular activities (eg, sports, drama, music, 
art, social events) impact the emotional and psychological develop-
ment of children. Thus, an approved COVID-19 vaccine for chil-
dren could have far-reaching positive ramifications on health and 
educational equity.

Potential for Indirect Benefits From Pediatric COVID-19 Vaccination

Vaccinated children would receive potential direct impact 
from a COVID-19 vaccine, but substantial potential for indi-
rect effects of implementing a vaccine in children should also 
be recognized, as has been observed with hepatitis A, rotavirus, 
pneumococcus, rubella, and potentially influenza [22–29]. 
Marked declines in adult pneumococcal disease occurred after 
implementation of 7-valent pediatric pneumococcal conjugate 
vaccine (PCV) [26]. Additional pronounced impact occurred 
after implementation of PCV-13 [25], such that routine PCV-
13 vaccination is no longer routinely recommended in adults 
65 years of age or older [30]. The potential for an indirect im-
pact depends upon the ability of the vaccine to prevent trans-
mission of a pathogen to unvaccinated populations. Although it 
is unknown whether this will be the case for COVID-19, recent 
nonhuman primate data in which animals received COVID-19 
vaccination followed by SARS-CoV-2 challenge demonstrated 
declines in both disease and viral titers in the nose [31]. These 
nonhuman primate challenge data in conjunction with high 
neutralizing antibodies achieved in early human trials provide 
strong support for the potential of a direct and indirect impact 
of vaccination.

Vaccination of children against COVID-19 may mimic the in-
direct benefits previously identified with other vaccines [22, 23]. 
Data from a study of close contacts of SARS-CoV-2– infected 
patients suggest that, while children were less likely to have se-
vere symptoms, they were just as likely to be infected as adults 
(rate of ~7% in both) [32]. Several studies suggest that the viral 
titers in the respiratory tracts of children are greater than those 
in adults [33, 34]. A large contact-tracing study of COVID-19 
cases, conducted while schools were closed in South Korea, 
supports the concept that older children can transmit COVID-
19, as the highest COVID-19 rate (18.6%) occurred in house-
hold contacts of those 10–19 years of age [35]. An outbreak at 
a summer camp reported an attack rate of 44%, demonstrating 
that children of all ages were susceptible to SARS-CoV-2 infec-
tion and that they may play a role in transmission [36]. Recent 
modeling demonstrated that US school closures were tempo-
rally associated with overall decreased COVID-19 incidence 
and mortality [37]. Approximately 3.8 million children are 
born in the United States annually; all are naive to COVID-19. 
Without a COVID-19 vaccine, children will likely serve as a res-
ervoir, which would undermine efforts to end the pandemic. 
Until all children can more safely return to school and parents 
can return to full-time work, it is difficult to imagine that the 
economy can completely recover.

ADDRESSING POTENTIAL COVID-19 VACCINE 
SAFETY CONCERNS IN CHILDREN

Ensuring the safety of potential vaccine candidates is para-
mount, particularly in children. Data in adults show that all 
COVID-19 vaccines evaluated thus far have local (eg, pain, 

Table 1.  Numbers of Hospitalizations and Deaths for COVID-19 in 
Comparison to Varicella, Rubella, Hepatitis A, and Rotavirus in the 
Prevaccine Era

Virus Hospitalizations/Year Deaths

COVID-19 15.8 per 100 000 ages 0–4 years 103 children

9.2 per 100 000 ages 5–17 years Age ≤18 years

Through 11 September 2020 [7] Through 11 September 2020 
[11]

Varicella 4–31 per 100 000 50 children per year

Age <20 years Age <15 years

Years 1988–1995 [12] Years 1970–1994 [13]

Rubella Not availablea 17 children per year

All ages

Years 1966–1968 [14]

Hepatitis Ab 107 hospitalized children 3 children per year

Age <15 years Age <20 years

Year 2005 [15] Years 1990–1995 [16]

Rotavirus 55 000–70 000 children 20–60 children per year

Age <5 years Age <5 years

Years 1993–2002 [17, 18] Years 1999–2007 [17, 19]

Data methods of collection and ages are variable across the pathogens but are summar-
ized by age and year(s) during which data were collected before widespread implementa-
tion of a vaccine. Data on the impact of other vaccines have previously been summarized 
[14]. 

Abbreviation: COVID-19, coronavirus disease 2019.
aData are not available, to our knowledge, about this outcome before vaccine 
implementation.
bHepatitis A  hospitalization data after implementation of routine vaccination in those 
≥2 years of age in 11 states with elevated rates of disease, but before routine hepatitis 
A vaccination was implemented in all children.
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redness, swelling, induration) and systemic (eg, fever, chills, 
myalgia) reactogenicity [2–4, 6, 38, 39]. Reactogenicity is self-
limited, treatable, and reflects a typical innate immune re-
sponse to antigen exposure. More important is vaccine safety. 
Uncommon, unexpected safety events can occur after vaccina-
tion, such as thrombocytopenia after the measles, mumps, and 
rubella (MMR) vaccination; febrile seizures with certain vac-
cines; and intussusception associated with the original tetrava-
lent rotavirus vaccine [40–42]. All vaccines have the potential 
for unknown and uncommon safety problems. The potential 
benefits and risks of new vaccines should be considered. A care-
fully designed clinical development plan can ensure that poten-
tial benefits outweigh risks. This approach has been successful 
in moving vaccines against respiratory syncytial virus (RSV), 
cytomegalovirus, and other pathogens into clinical trials. The 
vaccine safety network within the United States includes sev-
eral postmarketing surveillance systems for all vaccines to de-
tect rare adverse events that were not detected prelicensure 
[43]. Importantly, withdrawal for safety has only occurred once, 
with the tetravalent rotavirus vaccine [44]. Thus, the process 
of obtaining Food and Drug Administration (FDA) licensure 
and postlicensure safety surveillance should remain rigorous 
and robust in ensuring safe vaccines. Statements by the FDA to 
date suggest that this will remain the case for COVID-19 vac-
cines [45].

Vaccine-associated immune-mediated enhanced disease 
(VAED), while a theoretical concern, is a process that is con-
sidered unlikely to occur with SARS-CoV-2. VAED may be 
associated with 2 different mechanisms of action [46]. Antibody-
dependent enhancement (ADE), as has been observed with 
dengue, occurs when a vaccine-induced antibody paradoxically 
mediates increased viral entry [46], particularly with exposure 
to a different strain of virus. Although minor mutations have 
occurred in circulating SARS-CoV-2, including the D614G 
[47], available data do not suggest that major mutations have 
emerged. Vaccine-associated enhancement of respiratory di-
sease (VAERD) occurred in association with use of a formalin-
inactivated RSV vaccine in the 1960s. Investigations into the 
pathophysiology suggest that this was due to nonneutralizing 
antibodies and a predominantly T-helper (Th) 2–biased re-
sponse [46]. Importantly, all COVID-19 vaccines with available 
data induce high levels of neutralizing antibodies, and some 
also generate a Th1 response [2–4, 6, 39, 48].

The final safety issue that has been raised is the potential for 
induction of MIS-C associated with COVID-19. The timing of 
MIS-C (frequently weeks after infection) and the detection of 
neutralizing and receptor-binding-domain antibodies at the 
time of illness suggest that this might be an immune-mediated 
injury triggered by SARS-CoV-2 infection [9, 49]. Given the vi-
remia that is known to occur with COVID-19 [50] and the re-
sponse of most patients to brief courses of immunomodulators 
(eg, steroids), it may be due to immunological recognition of 

viral antigens (or live virus) rather than triggering of an au-
toimmune condition. Although not powered to detect rare 
events, data from early clinical studies in humans have not yet 
identified any cases of ADE, or VAERD [2–4, 38, 39]. A vac-
cine that prevents infection could also prevent MIS-C; available 
data suggest that vaccines prevent COVID-19 in a nonhuman 
primate challenge model without enhancement of disease [31, 
51, 52]. Large phase 3 efficacy trials conducted in adults may 
provide additional insights into vaccine-elicited immunity and 
enhanced disease, and such data would be anticipated to be 
available during the phase 2 pediatric clinical trials. Given the 
rarity of MIS-C with natural infection, any risk is unlikely to 
be resolved even with carefully conducted, large pediatric clin-
ical trials, and ongoing surveillance for MIS-C will be necessary 
even after a vaccine approval.

RECOMMENDATIONS FOR ADVANCING COVID-19 
VACCINES IN CHILDREN

The current default position, waiting until data from adult ef-
ficacy studies are available, will unduly delay phase 2 clinical 
trials of leading COVID-19 vaccines in children, resulting in 
additional pediatric hospitalizations and deaths. Data are now 
available from early-phase adult clinical trials [2–6]. Pediatric 
clinical trials of leading vaccine candidates can safely be initi-
ated now. To establish safety, trials should start with adolescents 
and older children before expanding to younger children. The 
strategy of age de-escalating trials to bridge vaccines from adult 
studies to children is one that has been commonly used in the 
past to ensure early identification of safety signals while min-
imizing risks, establishing dosing, and evaluating immune re-
sponses. Similar to adult studies, it will take time to conduct 
these studies safely in children.

Moving forward now with pediatric COVID-19 vaccine trials 
will help prevent delays in obtaining a pediatric indication from 
the US FDA. The Pediatric Research Equity Act (PREA, sec-
tion 505B of the Federal Food, Drug, and Cosmetic Act [FD&C 
Act]; 21 USC 355c) requires manufacturers to conduct vac-
cine studies of safety and effectiveness in children. Although 
the timing of pediatric studies is not delineated in the Act, we 
believe the FDA, funding agencies, investigators, and manufac-
turers should join to initiate these studies now. The FDA clari-
fied that, to ensure compliance with 21 CFR part 50, subpart D, 
considerations of the prospect of direct benefit and acceptable 
risk to support initiation of pediatric studies and the appropriate 
design and endpoints for pediatric studies should be discussed 
in the context of specific vaccine-development programs [53].

Despite FDA guidance and requirements of the law, to our 
knowledge no studies of COVID-19 vaccines in children have 
been developed or initiated in the United States. It would be 
beneficial, in our opinion, for the funders and overseers of 
US vaccine efforts (eg, Operation Warp Speed, the US FDA, 
manufacturers) to ensure that pediatric studies of COVID-19 
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vaccines begin at the same time that vaccines move into phase 
3 adult clinical trials. To assist industry and government spon-
sors in moving forward with pediatric COVID-19 trials, the 
Infectious Diseases Clinical Research Consortium, in partner-
ship with the Division of Microbiology and Infectious Diseases 
of the National Institutes of Health, convened a panel of vaccine 
experts to develop a pediatric COVID-19 vaccine protocol tem-
plate. The template is adaptable to multiple vaccines currently 
under evaluation in adults and could standardize the approach 
and endpoints across vaccine manufacturers. It features an age 
de-escalation strategy, incorporating multiple provisions that 
will allow these vaccines to be safely evaluated in adolescents, 
young children, and infants.

CONCLUSIONS

Children are at substantial risk of COVID-19. Delays in starting 
phase 2 vaccine clinical trials in children will delay our recovery 
from COVID-19 and unnecessarily prolong its impact upon 
children’s health and emotional well-being, their education, and 
equitable access to opportunities for development and social 
success, as well as the country’s economy. Understanding the 
safety, immunogenicity, and efficacy of COVID-19 vaccines in 
children is critical to protect children and adults. For children, a 
vaccine has the added benefit of returning them safely to school 
and extracurricular activities and allowing them to engage with 
their world face-to-face once again. Ensuring acceleration of 
vaccine clinical trials to warp speed for children will be critical 
in making this our future reality.
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