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ABSTRACT

Observational pharmacoepidemiological studies using routinely collected healthcare data are increasingly being used in the
field of nephrology to answer questions on the effectiveness and safety of medications. This review discusses a number of
biases that may arise in such studies and proposes solutions to minimize them during the design or statistical analysis
phase. We first describe designs to handle confounding by indication (e.g. active comparator design) and methods to
investigate the influence of unmeasured confounding, such as the E-value, the use of negative control outcomes and
control cohorts. We next discuss prevalent user and immortal time biases in pharmacoepidemiology research and how
these can be prevented by focussing on incident users and applying either landmarking, using a time-varying exposure,
or the cloning, censoring and weighting method. Lastly, we briefly discuss the common issues with missing data and
misclassification bias. When these biases are properly accounted for, pharmacoepidemiological observational studies can
provide valuable information for clinical practice.
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INTRODUCTION

Pharmacoepidemiology uses epidemiological methods to study
the use, therapeutic effects and risks of medications in large pop-
ulations [1]. Due to the availability of routinely collected health-
care data from registries, electronic health records or claims
databases, observational pharmacoepidemiological studies are
increasingly being used to generate evidence to inform clinical
practice. Our first review discussed the scope and research

questions that are studied within the field of pharmacoepidemi-
ology and described the strengths and caveats of the most com-
monly used study designs to answer such questions [2]. We now
focus on the most common biases that may occur when using ob-
servational data to study the causal effects of medication on
health outcomes. We will attempt to offer possible solutions in
the design or statistical analysis to prevent or minimize such
biases. The review is intended as an introduction to the field for
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those who wish to critically appraise pharmacoepidemiological
studies or conduct such studies.

CONFOUNDING BY INDICATION

Confounding by indication is a threat to any observational study
assessing the effects of medications, as treatment is not ran-
domly assigned to patients. Confounding by indication arises
when the indications for treatment, such as age and comorbid-
ities, are also related to the outcome under study [3]. For exam-
ple, treatment is generally given to those with a worse
prognosis. The reverse may also occur, as when newly intro-
duced drugs are first prescribed to individuals perceived as
healthier and who may be more likely to tolerate them [4]. Both
situations lead to an uneven distribution of prognostic factors
between treatment groups, which biases a direct comparison.
Take the case shown in Figure 1A, where albuminuria is a con-
founder for the effect of angiotensin-converting enzyme inhibi-
tor (ACEi) treatment on kidney replacement therapy:
individuals with albuminuria are more likely to be prescribed
ACEis and albuminuria is also an independent risk factor for
kidney replacement therapy. Unknown or unmeasured con-
founders for the treatment–outcome relationship may also be
present, such as smoking (if this variable has not been mea-
sured and we assume that smoking can affect the decision to
start ACEi therapy as well as the outcome).

Addressing confounding by indication when designing a
pharmacoepidemiological study

When designing observational studies to investigate medication
effectiveness or safety we should be aware that some research

questions will be more susceptible to confounding than others.
Confounding will generally play a larger role when studying the
beneficial or ‘intended’ effects of treatments, as the indications
for treatment are very likely to be related to the prognosis of the
patient [5]. On the other hand, if the outcome is completely
unrelated to the indications for treatment, such as when study-
ing rare side effects or ‘unintended’ effects, no confounding
would be present [6]. A classic example is the relationship be-
tween ACEis and angioedema. Patient characteristics that deter-
mine treatment status (e.g. cardiovascular risk, albuminuria
and blood pressure) are unlikely to be associated with the out-
come angioedema. Consequently the arrow from treatment in-
dication to outcome will be absent and confounding by
indication will not be an issue (Figure 1B).

Applying an active comparator design may also decrease
confounding by indication [7]. In an active comparator design,
the medication of interest is compared with another drug that
has similar indications rather than a nonuser group. The
more exchangeable the active comparator is for the medica-
tion of interest, the lower the risk for potential confounding
will be. After all, if both treatment groups have identical treat-
ment indications (both measured and unmeasured character-
istics), there would be no arrow from indication to treatment
and confounding by indication is removed (Figure 1C) [8]. A re-
cent example for applying an active comparator design inves-
tigated whether proton pump inhibitors (PPIs) increased the
risk of chronic kidney disease (CKD) [9]. Comparing PPI users
with nonusers may suffer from unmeasured confounding,
since nonusers are generally healthier and not all confounders
may have been captured in the dataset and adjusted for.
Histamine-2 receptor antagonists are prescribed for similar
indications as PPIs. Users of these two medications may be

Angioedema

Albuminuria
Cardiovascular disease

Blood pressure

Smoking
(unmeasured) 

Kidney
replacement

therapy 
ACE inhibitor ACE inhibitor

Albuminuria
(measured)

A B

Outcome of
interestTreatment

Negative
control

outcome

Prognostic
factors

Outcome of
interest

Treatment vs.
active comparator

Measured
confounders

Unmeasured
confounders

C D

FIGURE 1: (A) Confounding by indication arises when prognostic factors for the outcome also influence the decision to start treatment. Some confounders may be mea-

sured, which can be adjusted for in the analysis, whereas others are unmeasured, leading to residual confounding. (B) When unintended outcomes are studied, less

confounding by indication will be present. The indications for ACEi treatment likely do not increase the risk for the outcome angioedema. (C) An ideal active compara-

tor has similar indications as the medication under study, thereby decreasing confounding by indication. Ideally the active comparator should have no influence on

the outcome. (D) Negative control outcomes need to have similar measured and unmeasured confounders as the treatment–outcome relationship under study.

Furthermore, treatment should not have an influence on the negative control outcome.
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more similar regarding comorbidities, medication use and
other unmeasured variables.

Adjusting for confounding during the statistical analysis

Selecting an appropriate set of confounders to adjust for is criti-
cal when conducting pharmacoepidemiological studies [10]. In
general, it is not recommended to use data-driven variable se-
lection methods to identify confounders, such as only retaining
statistically significant confounders or including variables that
change the regression coefficient of the treatment variable [11–
13]. Such data-driven approaches can lead to bias if they adjust
for mediators (i.e. variables in the causal pathway between ex-
posure and outcome) [11], colliders (i.e. a variable caused by
both treatment and outcome) [14, 15] and instrumental varia-
bles (i.e. variables strongly related to the exposure but not to the
outcome) [16], although some sophisticated statistical covariate
selection methods are currently under development [10, 17–19].
Instead, we suggest making directed acyclic graphs (DAGs) and
selecting confounders based on subject-matter knowledge and
biological plausibility [20, 21]. Since DAGs rely on prior knowl-
edge and assumed causal effects, they do not tell whether these
assumptions are correct. Different researchers can have differ-
ent views on which factor causes the other and this may result
in different choices regarding which confounders to adjust for.
DAGs can aid in this discussion by making the causal assump-
tions explicit in a graphical manner.

Once the confounders have been selected, various methods
can be used to adjust for confounding. These include, for in-
stance, multivariable regression, standardization and propen-
sity score methods (propensity score matching, weighting,
stratification or adjustment). In the time-fixed setting (i.e. when
treatment is only measured once), all methods generally suffice
to adjust for measured confounding, although the interpreta-
tion of the effect estimate may differ depending on the method,
and some methods are preferred in specific settings [22–25]. A
thorough discussion on the merits and caveats of multivariable
regression and propensity score methods can be found else-
where [26]. Nonetheless, in the setting of time-varying treat-
ments (i.e. when treatment is received at multiple timepoints
and changes over time) and time-varying confounding, meth-
ods based on weighting or standardization are required to give
unbiased estimates if the confounders themselves are affected
by treatment [27]. It should be kept in mind that all statistical
methods mentioned above can only adjust for measured con-
founders, but not for unmeasured confounders as is sometimes
claimed [28], unless the unmeasured confounders are correlated
with the variables that are adjusted for [29, 30].

Assessing the impact of unmeasured confounding

Although the possibility of residual or unmeasured confounding
in observational analyses can never be fully eliminated, a num-
ber of steps can be taken to alleviate concerns and strengthen
inferences. In this section we will elaborate on conducting sen-
sitivity analyses to obtain corrected effect estimates, calculating
the E-value and conducting negative control outcome and con-
trol group analyses.

First and foremost, as many confounders as possible need to
be identified and adjusted for by using appropriate statistical
methods. However, if known confounders (e.g. albuminuria or
smoking) have not been measured, corrected effect estimates
can be calculated in quantitative bias analyses [31–34]. This
requires an input of the assumed association between

confounder and exposure and between confounder and out-
come and the prevalence of the confounder in the population.
These numbers can be based on previous studies and can be
varied over a range of values to give an indication of how sensi-
tive the estimated treatment effect is to unmeasured confound-
ing [35]. If results lead to the same conclusion over a wide range
of relevant scenarios, then the plausibility of the estimated
treatment effect will increase.

Alternatively, one can estimate how strong the unmeasured
confounding would need to be to completely explain away a
certain effect estimate. The E-value has recently been intro-
duced as an easily implemented tool for these purposes [36–39].
The E-value is defined as ‘the minimum strength of association
. . . that an unmeasured confounder would need to have with
both the treatment and the outcome to fully explain away a
specific treatment-outcome association, conditional on the
measured covariates’ [36]. As an example, researchers investi-
gated whether the use of sodium polystyrene sulphonate (SPS)
to treat hyperkalaemia increased the risk of severe adverse gas-
trointestinal events in persons with CKD [40]. After adjustment
for measured confounding, the initiation of SPS was associated
with a 1.25 (95% confidence interval 1.05–1.49) higher risk of se-
vere gastrointestinal events. The corresponding E-value for this
hazard ratio was 1.80, meaning that an unmeasured confounder
would need to be associated with both SPS initiation and severe
gastrointestinal events by a hazard ratio of 1.80 to decrease the
point estimate from 1.25 to 1.00. What constitutes a large E-
value is context-specific and depends on the specific research
question under study, the effect size of the exposure and the
hazard ratios of the confounders that have already been ad-
justed for [38, 41, 42]. Easily implemented online calculators are
available to conduct the discussed sensitivity analyses [37, 43,
44].

For certain research questions ‘negative control outcomes’
can be used to provide guidance about the presence and magni-
tude of unmeasured confounding in observational studies [45].
A negative control outcome is an outcome that is not influenced
by the treatment of interest but shares the same set of mea-
sured and unmeasured confounders as the treatment of inter-
est–outcome relationship (Figure 1D) [46]. Hence we would not
expect to find an association between the exposure of interest
and the negative control outcome. As an example, one may be
concerned that the unmeasured variables body mass index and
smoking bias the results of a study investigating the association
between a cardiovascular drug and the risk of cardiovascular-
related mortality. However, we would not expect the cardiovas-
cular drug to also lower noncardiovascular mortality. If we un-
expectedly found a lower risk of the negative control outcome
noncardiovascular mortality among treated individuals, this
might be an indication of residual confounding or other sources
of bias. In addition to the previously mentioned assumptions,
the negative control outcome should occur with a frequency
similar to the primary study outcome to ensure enough power
to reject the null hypothesis of no association. If such assump-
tions are not met, this may erroneously lead to the conclusion
that no unmeasured confounding is present [47].

Similarly, one can test whether associations are as expected
in a certain ‘control group’. The direction of the expected associ-
ation (either a positive, negative or null association) can be
based on physiologic mechanisms or evidence from random-
ized trials [48]. For example, Weir et al. [49] hypothesized that
users of high-dialysable b-blocker would have an increased risk
of mortality compared with users of low-dialysable b-blocker,
due to loss of high-dialysable b-blocker in the dialysate. To
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strengthen their inferences, a control group of patients with
CKD Stage G4–5 was constructed in which a similar effective-
ness of high- and low-dialysable b-blockers was expected and
subsequently demonstrated. Control groups can also
strengthen inferences by showing similar results between ob-
servational studies and randomized trials. We recently evalu-
ated the effectiveness of b-blockers in patients with heart
failure and advanced CKD, a population that was excluded from
landmark heart failure trials [50]. A positive control group in-
cluding heart failure patients with moderate CKD showed a
benefit similar to that observed in moderate CKD patients from
randomized trials. This positive control analysis further sup-
ported a causal explanation for the results in the advanced CKD
cohort.

PREVALENT USER AND IMMORTAL TIME
BIASES

We now discuss two types of biases that often occur in pharma-
coepidemiological studies but which can and should be avoided
by adhering to a simple principle: aligning the start of the
follow-up with the start of exposure.

Prevalent user bias

When we want to assess the effectiveness of initiating a drug, it
is recommended to include incident medication users instead
of prevalent users [51, 52]. In a new-user or incident-user de-
sign, only individuals who ‘initiate’ the medication of interest
are studied and followed from the date of treatment initiation.
Therefore the start of follow-up and start of treatment will align
and all events that occur after drug initiation are captured [53,
54]. In contrast, prevalent-user designs include individuals who

initiated the exposure of interest some time ‘before’ the start of
follow-up (Figure 2A). Comparing prevalent users to nonusers
may introduce selection bias since individuals who died before
enrolment cannot, per definition, be included in the analysis
and events occurring shortly after drug initiation are not ob-
served [55, 56]. To better understand why this selection bias
arises, we give a real-world example. Suppose we conducted a
randomized trial and found that a certain medication increased
the risk of myocardial infarction with a hazard ratio of 1.24. We
now reanalyse the data by starting follow-up at 2 years after
randomization. Hence we only count the myocardial infarctions
that occurred after 2 years of follow-up. By doing so we also ex-
clude all individuals who died or experienced myocardial infarc-
tion in the first 2 years after randomization. This new analysis
paradoxically (rather erroneously) shows that the medication
‘lowers’ the risk of myocardial infarction. Since the medication
increases the risk of myocardial infarction, the treatment arm
will be progressively depleted of patients most susceptible to
the event [57]. After 2 years the treated group will only consist
of survivors who likely do not have other risk factors for myo-
cardial infarction. Therefore, comparing these survivors in the
treatment group with those remaining in the control group
leads to an unfair advantage for the treatment group. Prevalent-
user bias is one of the proposed reasons why postmenopausal
hormone therapy appeared protective for coronary heart dis-
ease in observational studies but was actually harmful when
subsequent randomized trials were conducted [58, 59]. Besides
the fact that the effect estimates from a prevalent-user design
are biased, they also do not inform decision making, as the deci-
sion to start the treatment was already made in the past.
Studies applying a prevalent-user design do not answer the rel-
evant question of whether treatment should be initiated. The
results of such a study can only tell you that if a person has sur-
vived on treatment for this long, we know he is not susceptible
to the event, which gives him a better prognosis than untreated
individuals who are still susceptible.

Immortal time bias

Immortal time bias occurs when patients are classified into
treatment groups at baseline based on the treatment they take
‘after’ baseline (Figure 2B) [60, 61]. This leads to a period of time
(i.e. immortal time) between baseline and the start of treatment
where no deaths can occur in the treatment group, thereby bias-
ing results in favour of the treatment group. As an example, a
pharmacoepidemiological study investigated the long-term
effects of metformin use versus no metformin use on mortality
and end-stage kidney disease [62]. In this study, follow-up
started when patients had a first creatinine measurement, but
patients were classified as metformin users when they had
been prescribed metformin for >90 days ‘during’ the follow-up
period. Using postbaseline information on metformin use to
classify patients at baseline into the metformin group leads to
an unfair survival advantage for metformin users [63]. Imagine
that all individuals in the metformin group started medication
only after 5 years of follow-up. By definition, no deaths would
then occur in the metformin group during the first 5 years of
follow-up. After all, individuals who have an event prior to tak-
ing up treatment would be classified as untreated. Using
postbaseline information for exposure classification thus
results in immortal time bias [60, 64]. To what extent the effect
estimate is biased depends on the total amount of follow-up
that is erroneously misclassified under the metformin group.
The bias will increase with a larger proportion of exposed study
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FIGURE 2: Graphical visualization of (A) prevalent-user bias and (B) immortal

time bias when setting up the start of follow-up in a study. For prevalent-user

bias, the start of follow-up occurs after treatment initiation, whereas for immor-

tal time bias, the start of follow-up occurs before treatment initiation. These

biases can be prevented by aligning the start of follow-up with the start of
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participants, a longer period of time between start of follow-up
and initiation of treatment and a longer duration of follow-up
[65].

POTENTIAL SOLUTIONS TO MITIGATE
IMMORTAL TIME BIAS

We now discuss three designs that could be applied to avoid im-
mortal time bias: landmarking, using a time-varying exposure
and using treatment strategies with grace periods. Other more
complex solutions exist but are outside the scope of this review
and are discussed elsewhere [66–68].

In pharmacoepidemiological studies we are often interested
in the effects of initiating medication on a particular outcome
after a certain event has occurred. A recent clinical example is
the effect of initiating renin–angiotensin system inhibitors
(RASis) on mortality and recurrent acute kidney injury (AKI) af-
ter AKI [69–71]. When using routinely collected healthcare data
to study such questions, it is often difficult to assign individuals
to the correct exposure groups: individuals become eligible for
inclusion in our study immediately after the AKI event and
follow-up will start at that moment. However, directly after the
AKI event, all individuals will likely be unexposed in our data-
set, as individuals will gradually initiate therapy during follow-
up. We cannot classify individuals in exposure groups based on
postbaseline information, as this will lead to immortal time
bias. The easiest solution is to move the baseline of our study
from the date of the AKI event to a later time, e.g. 6 months after
the AKI event. Our follow-up will therefore start at 6 months af-
ter the index AKI event (Figure 3) [72–74]. This method is called
landmarking and was recently applied by Brar et al. [69] for this
particular research question. In the landmarking method, all
individuals who died or developed the outcome between the
AKI event and the newly chosen start of follow-up (i.e. 6 months
after AKI) are excluded; those who initiate treatment during this
period are considered exposed and those who do not initiate
treatment during this period are considered unexposed.
Although landmarking prevents immortal time bias, the atten-
tive reader will have noted that it can introduce prevalent-user
bias, which was discussed in the previous section.

The next solution that prevents immortal time bias and
allows starting follow-up immediately after the event has

occurred is the use of a ‘time-varying exposure’ (Figure 4).
When using a time-varying exposure, individuals are allowed to
switch exposure status from untreated to treated at the time of
treatment initiation. Hence individuals will contribute person-
time to the unexposed group before treatment initiation and to
the exposed group after treatment initiation. This ensures that
the time between the start of follow-up and initiation of treat-
ment will be correctly assigned to the nonusers. For example,
Hsu et al. [70] used a time-varying exposure to study the effect
of RASis after AKI on the risk of recurrent AKI. As previously
mentioned, using a time-varying exposure involves time-
varying confounding. When these confounders are also influ-
enced by prior treatment, using standard methods such as mul-
tivariable regression may not be appropriate. Instead, methods
such as marginal structural models that are based on inverse
probability weighting can be used [27, 75]. Applying these meth-
ods, the authors found that new use of RASi therapy was not as-
sociated with an increased risk of recurrent AKI.

Lastly, we might be interested in comparing treatment strat-
egies that include a grace period [76]. For example, we could
compare the strategies ‘initiate an ACEi within 6 months after
the AKI event’ versus ‘do not initiate an ACEi within 6 months
after the AKI event’. The length of the grace period depends on
what is commonly done in clinical practice. These treatment
strategies with a grace period can be investigated by using a
three-step method based on cloning, censoring and weighting
(Figure 5). Briefly, each individual is duplicated so that there are
two copies of each individual in the dataset. Each copy is then
assigned to one of the treatment strategies. In the second step,
the copies are censored if and when their observed treatment
no longer adheres to their assigned treatment strategy. Since
this censoring is likely to be informative, the third step applies
inverse probability weighting to correct for this. Bootstrapping
can be used to take into account the cloning and weighting to
obtain valid confidence intervals. An advantage of using treat-
ment strategies with grace periods is that a wide range of ques-
tions can be answered, including questions on the duration of
treatment and dynamic treatment strategies (e.g. when should
treatment be initiated) [76, 77]. However, this method requires
that detailed longitudinal data are present to adequately adjust
for the informative censoring. The three methods of
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FIGURE 3: Design of a landmark analysis to prevent immortal time bias. In the
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In the setting of time-varying exposures, time-varying confounding will be pre-

sent too, which sometimes requires more advanced methods, such as marginal

structural models, to obtain unbiased effect estimates.
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landmarking, time-varying exposure and treatment strategies
with grace periods are contrasted in Table 1 and graphically
depicted in Figures 3–5.

MISSING DATA AND MISCLASSIFICATION

We now briefly discuss the implications of missing data and
misclassification for bias and possible solutions. Although these
two sources of bias are a common issue in pharmacoepidemio-
logical studies, they are often less emphasized compared with
confounding.

Missing data

We usually aim to adjust for as many confounders as possible
in our analysis, including available laboratory tests (e.g. albu-
minuria, potassium) and clinical variables (e.g. blood pressure,
BMI) that are indications for treatment. However, it is not un-
usual that a large proportion of these values are missing in rou-
tinely collected data. For example, in an analysis using data
from the Swedish Renal Registry, baseline potassium and
albuminuria:creatinine ratio measurements were missing in 32
and 41% of patients, respectively [78]. In such situations,
researchers often perform a complete case analysis by restrict-
ing it to individuals with both measurements available.
However, this may lead to a drastic reduction in power and of-
ten also bias [79, 80]. Methods such as multiple imputation are
therefore recommended and are available in most software
packages. These methods can reduce these biases even with
large proportions of missing data (up to 90%) if data are missing
at random or missing completely at random, sufficient auxiliary
information is available and the imputation model is properly
specified [81]. It is therefore important to discuss the reasons
for missingness and the plausibility of the missing-at-random
assumption. In the above example, the researchers explained
that although albuminuria and potassium values were mea-
sured in clinical practice, they were not among the list of man-
datory laboratory markers that needed to be reported to the
Swedish Renal Registry. Thus some clinicians took the time to
report those lab tests and others did not, a decision that could
be assumed to be random. Furthermore, the authors showed
that clinical characteristics were similar for individuals with
and without missing data, thereby making the missing-at-ran-
dom assumption plausible. More information on the different
types of missingness [79, 80], in what situations complete case
analysis leads to unbiased results [82] and tutorials to imple-
ment multiple imputations can be found elsewhere [83].

Misclassification

Although misclassification will be present in nearly every study,
it may be especially important when using routinely collected
healthcare data [84]. For instance, misclassification may occur

End of
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*

Exposed
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Treatment initiation
Censored

Death

Start of follow-up

0 6 12 18 24
Time (months)

*

*
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1
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3
4
5
6

1
2
3
4
5
6

Clones B
Do not start
treatment
within 6
months
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within 6
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FIGURE 5: Design of a study using treatment strategies with a grace period based

on cloning, censoring and weighting. Another method is comparing treatment

strategies that include a grace period. Each individual is duplicated and assigned

to one of two treatment strategies. In this example, Clones 1a–6a follow the

strategy ‘initiate ACEi within 6 months’, whereas Clones 1b–6b follow the strat-

egy ‘do not initiate ACEi within 6 months’. Note that Copies 1a and 1b represent

the same individual. Since Copy 1a is assigned to initiating within 6 months, he

is censored after Month 6, as he did not initiate treatment. The censoring is

likely to be informative and inverse probability weighting is required to adjust

for this.

Table 1. Different methods to address immortal time bias in pharmacoepidemiological analyses

Characteristics Landmark analysis Time-varying exposure Cloning, censoring and weighting

Immortal time bias No No No
Start of follow-up At landmark At event At event
Causal effect Initiating versus not initiating at

x months after event (landmark),
conditional on having survived
until landmarka

Initiating and always using versus
never using (marginal structural
model)

Initiating within x months versus
not initiating within x months
after event

Prevalent user bias Possible No No
Results apply to Individuals surviving until

landmark
All individuals All individuals

Baseline confounding Yes Yes Nob

Time-varying exposure No Yes No
Time-varying confounding No Yes No
Informative censoring No No Yes
G-methodsc required No Sometimes (if confounder is influ-

enced by prior treatment)
Yes (inverse probability weighting)

aThis is often how the effect estimate from a landmark analysis is interpreted. However, the landmark analysis conditions on surviving until a certain timepoint and

classifies individuals into treatment groups based on past information, thereby possibly introducing prevalent-user bias.
bDue to the cloning, at baseline each individual will appear in both treatment arms. Hence no baseline confounding will be present.
cMethods based on standardization or inverse probability weightings, such as the G-formula or marginal structural models.
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when using International Classification of Diseases, Tenth
Revision (ICD-10) codes to ascertain the occurrence of CKD or
AKI, as these are not always coded in clinical practice and many
patients are unaware of their disease [85–87]. When an AKI di-
agnosis based on ICD coding is used as an outcome, differential
misclassification will arise when doctors are more aware or
more likely to encode AKI if certain drugs are prescribed. Basing
kidney outcomes on biochemical criteria may sometimes miti-
gate such biases but can also introduce bias when creatinine
testing is more often directed towards sicker patients or
patients at risk of CKD progression. Misclassification of
comorbidities may be a significant concern in routinely col-
lected data since the absence of a diagnosis (recording) is often
considered to indicate absence of the comorbidity. Residual
confounding may occur when confounders are misclassified
and the direction can be both away or towards a null effect [84].
Misclassification influences study results in ways that are often

not anticipated, and simple heuristics about the impact of mis-
classification (towards the null or not) are often incorrect [88,
89]. Many correction methods for misclassification exist, but
these require information about its magnitude and structure
(i.e. dependent, nondependent, differential and nondifferential)
[90–93]. As such information is often not available in electronic
databases, sensitivity analyses similar to those for unmeasured
confounding can be performed to estimate the influence of mis-
classification on results [33, 94].

CONCLUSION

Pharmacoepidemiological studies are increasingly being used to
answer causal questions on the effectiveness and safety of
medications in order to inform clinical decision making. In this
review we discussed the most important biases that commonly

Table 2. Potential biases in pharmacoepidemiological studies and proposed solutions

Potential biases Example of how biases may arise Possible solutions and recommendations

Confounding by
indication

Confounding by indication arises when prognostic factors
for the outcome are also an indication for initiating
treatment.

Unmeasured/residual confounding arises when confound-
ers are not adjusted for, either if they are not measured
in the dataset or if they are unknown.

Time-varying confounding occurs when investigating time-
varying exposures. When the confounder is influenced
by past treatment, conventional methods to control for
confounding will be biased.

Research question: Unintended medication effects (e.g. rare
side effects) may be less susceptible to confounding by
indication than intended medication effects.

Design: Active comparator designs may decrease confound-
ing bias if medication is given for similar indications.

Statistical methods: Multivariable regression, standardiza-
tion or propensity score methods (matching, weighting,
stratification and adjustment) can be used to control for
measured confounding. Propensity score methods may
have a number of advantages compared with regression,
such as the ability to check if balance in confounders has
been achieved. In the presence of time-varying con-
founding that is influenced by treatment, conventional
methods lead to bias and the so-called G-methods are
required.

After analysis: The impact of unmeasured confounding on
effect estimates can be investigated in simulation analy-
ses. Negative control outcomes may investigate whether
unmeasured confounders bias effect estimates.

Prevalent-user
bias

Comparing ever-users versus never-users. Including indi-
viduals after they initiate treatment will miss early out-
come events and exclude those that died (depletion of
susceptibles).

Prevalent-user bias can and should be prevented by align-
ing initiation of treatment with the start of follow-up; in-
clude new users of treatment.

Exclude prevalent users, e.g. those with drug prescription in
12 months prior to inclusion.

Immortal time
bias

Classifying individuals in treatment groups based on future
information not present at the start of follow-up. A pe-
riod of time is created for the treated group during which
the outcome cannot occur.

Immortal time bias can and should be prevented by align-
ing initiation of treatment with the start of follow-up. Do
not use information after the start of follow-up to classify
individuals into exposure groups.

Landmarking, time-varying exposure and the cloning, cen-
soring and weighting method.

Missing data Routinely collected healthcare data are prone to missing
data. In multivariable analyses, individuals with missing
confounder data will be excluded. Complete case analysis
often leads to bias when data are not missing completely
at random, but a number of exceptions exist.

Multiple imputations can be used to decrease bias and in-
crease precision, even with large proportions of missing
data (up to 90%) if data are missing at random or missing
completely at random and the imputation model is prop-
erly specified.

Discuss the missing data mechanism and the plausibility of
the missing (completely)-at-random assumption

Misclassification Misclassification of the outcome may occur when outcomes
are differentially ascertained depending on treatment
status.

Misclassification of confounders may lead to residual
confounding.

The impact of misclassification on the estimated effect size
can be quantified in sensitivity analyses. Online tools are
available to implement these methods.

When external data are available, regression calibration,
multiple imputations for measurement error or propen-
sity score calibration can be used.
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occur in such studies. We also reviewed methods to account for
these biases, which are summarized in Table 2. Researchers can
and should prevent problems arising from immortal time and
prevalent-user biases in their study design. Confounding by in-
dication bias can be tackled by using an active comparator de-
sign and adequately adjusting for confounders. When concerns
remain about confounding or misclassification, quantifying
their impact on effect estimates is recommended. When these
principles are correctly applied, pharmacoepidemiological ob-
servational studies can provide valuable information for clinical
practice.
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