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BACKGROUND: Diagnostic and prognostic or predictive
models serve different purposes. Whereas diagnostic
models are usually used for classification, prognostic
models incorporate the dimension of time, adding a
stochastic element.

CONTENT: The ROC curve is typically used to evaluate
clinical utility for both diagnostic and prognostic mod-
els. This curve assesses how well a test or model dis-
criminates, or separates individuals into two classes,
such as diseased and nondiseased. A strong risk pre-
dictor, such as lipids for cardiovascular disease, may
have limited impact on the area under the curve, called
the AUC or c-statistic, even if it alters predicted values.
Calibration, measuring whether predicted probabili-
ties agree with observed proportions, is another com-
ponent of model accuracy important to assess. Reclas-
sification can directly compare the clinical impact of
two models by determining how many individuals
would be reclassified into clinically relevant risk strata.
For example, adding high-sensitivity C-reactive pro-
tein and family history to prediction models for car-
diovascular disease using traditional risk factors moves
approximately 30% of those at intermediate risk levels,
such as 5%–10% or 10%–20% 10-year risk, into higher
or lower risk categories, despite little change in the c-
statistic. A calibration statistic can asses how well the
new predicted values agree with those observed in the
cross-classified data.

SUMMARY: Although it is useful for classification, eval-
uation of prognostic models should not rely solely on
the ROC curve, but should assess both discrimination
and calibration. Risk reclassification can aid in com-
paring the clinical impact of two models on risk for the
individual, as well as the population.
© 2007 American Association for Clinical Chemistry

Diagnostic and prognostic models are quite common
in the medical field, and have several uses, including
distinguishing disease states, classification of disease
severity, risk assessment for future disease, and risk
stratification to aid in treatment decisions. These two
types of models, however, have different purposes. Di-
agnosis is concerned with determining the current state
of the patient and accurately identifying an existing,
but unknown, disease state. One may be interested, for
example, in distinguishing cases of myocardial infarc-
tion from those with more minor symptoms, or those
with early-stage cancer from those without.

Prognostic models add the element of time (1 ).
Although typically in medical terms prognosis refers to
the most likely clinical course of a diseased patient, the
term can also be applied to the prediction of future risk
in a normal population. Except in rare instances, both
of these settings include a stochastic element, one that
is subject to chance (2 ). Prognostication and predic-
tion involve estimating risk, or the probability of a fu-
ture event or state. The outcome not only is unknown,
but does not yet exist, distinguishing this task from
diagnosis. Clinically, prognostic models are most often
used for risk stratification, or for assigning levels of risk
(3 ), such as high, intermediate, or low, which may then
form the basis of treatment decisions. A well-known
example of a prognostic model is the Framingham risk
score, which predicts the 10-year risk of cardiovascular
disease (4 ).

Screening for early detection of disease is con-
ducted for diagnostic purposes. In cancer screening,
the aim of mammography or colonoscopy, for exam-
ple, is to find evidence of small, but existing, tumors
before clinical symptoms develop. In screening for car-
diovascular disease, however, screening is often con-
ducted to detect risk factors for disease. Blood pressure
or cholesterol screening detects levels that lead to
higher risk of later myocardial infarction or stroke. The
results of the screening are then used in prognostic
models for later cardiovascular events.

MODEL EVALUATION

Evaluation of models for medical use should take the
purpose of the model into account. In diagnostic mod-
els, the goal is the accurate classification of individuals
into their true disease states. In prognostic models,
however, the goal is more complex. While correctly
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predicting whether a future event will occur is of inter-
est, it is more difficult owing to its stochastic nature.
Accurately estimating the risk itself, and accurate clas-
sification into risk strata, is often the best that can be
achieved in this setting.

Model accuracy has several aspects, and is often
described by two components corresponding to the
above goals, namely discrimination and calibration
(5 ). Discrimination is the ability to separate those with
and without disease, or with various disease states.
It is the ultimate goal of diagnostic models that aim
to classify individuals into categories. Calibration, on
the other hand, is the ability to correctly estimate the
risk or probability of a future event. It measures how
well the predicted probabilities, usually from a model
or other algorithm, agree with the observed propor-
tions later developing disease. The use of the term is
analogous in clinical chemistry when laboratory mea-
surements are compared to a known standard. In
modeling, the standard is the observed proportion.
Calibration is most suited to the prognostic setting where
we would like to predict risk in the future. Although dis-
crimination or accurate classification is of most impor-
tance in diagnosis, both discrimination and calibration
are of prime interest in prognostication or risk prediction.

DISCRIMINATION

When a single binary diagnostic test is used to predict
disease or no disease, we can use a simple 2-by-2 table
to assess how well the test classifies when the disease
state is known by other means, generally by using a
more invasive or expensive gold standard, such as a
biopsy. The sensitivity (or the probability of a positive
test among those with disease) and the specificity (or the
probability of a negative test among those without dis-
ease) can easily be computed or assessed. In comparing
tests, we prefer those that are higher in both sensitivity and
specificity. Because one test may have higher sensitivity
but lower specificity than another, the diagnostic like-
lihood ratio is sometimes used to combine these mea-
sures. The likelihood ratio for a positive test result is de-
fined as LR(�)1 � sensitivity/(1 � specificity), and the
likelihood ratio for a negative test result is defined as
LR(�) � (1 � sensitivity)/specificity. Although sensi-
tivity and specificity are thought to be unaffected by dis-
ease prevalence, they may be related to such factors as
case mix, severity of disease (6), and selection of control
subjects, as well as measurement technique and quality of
the gold standard (7).

More typically, however, the test is not a simple
binary one, but may be a continuous measure, such as
blood pressure or level of plasma protein. In addition,
multimarker models can be used to develop a contin-
uous score or function of a set of risk predictors. A
positive test could be defined by classifying those with
scores above a given cut point into one category, such
as diseased, and those with lower scores into the other,
such as nondiseased. Sensitivity and specificity can be
defined for the given cut point.

An alternative is to consider the whole range of
scores arising from the model. The most popular mea-
sure of discrimination using such a range is the re-
ceiver operating characteristic (ROC) curve, a plot of
sensitivity vs 1 � specificity (8 ). A typical ROC curve is
shown in Fig. 1. Area under the curve (AUC) is also
known as the c-statistic or c index, and can range from
0.5 (no predictive ability) to 1 (perfect discrimination).
The c-statistic for models predicting 10-year risk of
cardiovascular disease among a healthy population is
often in the range 0.75 to 0.85.

The c-statistic is based on the ranks of the pre-
dicted probabilities and compares these ranks in indi-
viduals with and without disease. It is related to the
Wilcoxon rank-sum statistic (9 ) and can be computed
and compared using either parametric or nonparamet-
ric methods (10 ). Other features of the ROC curve
may be of interest in particular applications, such as

1 Nonstandard abbreviations: LR, likelihood ratio; ROC, receiver operating char-
acteristic; AUC, area under the curve; OR, odds ratio; NRI, net reclassification
index.

Fig. 1. ROC curves for model with a variable X with
an odds ratio of 16 per 2 standard deviation units
(solid line) and for a model with X and a second
independent predictor Y with an odds ratio of 2 per 2
standard deviation units (dashed line).
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the partial AUC (11 ), which could be used, for exam-
ple, when the specificity for a cancer screening test
must be above a threshold to be clinically useful (12 ).
The curve may also be used to estimate an optimal
threshold for clinical use, such as that which maxi-
mizes both sensitivity and specificity. The optimal
threshold, however, should also be a function of the
relative costs of misclassifying diseased and nondis-
eased individuals.

The ROC curve does not use the estimated proba-
bilities themselves, however, so it may not be sensitive
to differences in probabilities between models. For ex-
ample, suppose that the predicted probabilities for a
control with rank 10 and a case with rank 20 are 0.01
and 0.02, respectively, whereas those for a control
with rank 80 and a case with rank 90 are 0.20 and 0.40,
respectively. The influence of the two pairs on the c-
statistic would be the same, despite the much larger
difference in predicted probabilities in the latter pair.

ROC CURVES AND ODDS RATIOS

The odds ratio (OR), or alternatively, the rate ratio or
hazards ratio, relating a predictor to a disease outcome,
may have limited impact on the ROC curve and c-sta-
tistic (13 ). To have an impact on the curve, the OR for
an individual measure or score needs to be sizeable,
such as 16 per 2 SD units, roughly corresponding to
comparing upper and lower tertiles (13 ). This size ef-
fect is achievable with a risk score, such as the Framing-
ham risk score (4 ), but is unlikely to be achievable for

many individual biologic measures. In cardiovascular
disease, the individual components of the Framingham
score, such as total and low-density lipoprotein choles-
terol, systolic blood pressure, or even smoking, all have
far smaller hazard ratios, typically in the range 1.5 to 2.5
(4 ), clinically important but unlikely individually to
have an impact on an ROC curve. In Women’s Health
Study data, the hazard ratio per 2 SD of systolic blood
pressure is only 2.2 given the other components of the
score (14 ). The hypothetical impact of such an effect
can be seen in Fig. 1. While an OR of 2 is quite sizeable,
there is little change in the curve.

The ROC curve and c-statistic are insensitive in
assessing the impact of adding new predictors to a score
or predictive model (14 ). Suppose that there is a set of
traditional markers that form a score denoted by X, and
adding a new marker Y to the score is under consider-
ation. The change in the ROC curve depends on both
the predictive ability of the original set and the strength
of the new marker, as well as the correlation between
them. If X and Y are independent, the c-statistic is sim-
ply a function of the ORs (expressed here per 2 SDs) for
each marker. In Fig. 1, the OR for X is 16, and that for
Y is 2. The AUC is 0.84 for both the model with only
X and the model with both X and Y. Fig. 2 shows the
impact on the c-statistic for different combinations of
ORs for X and Y. Whereas the c-statistic increases with
the OR for Y, the change in the c-statistic decreases as
the OR for X increases. Thus, the impact of a new pre-
dictor on the c-statistic is lower when other strong

Fig. 2. The effect on the c-statistic of adding an independent variable Y to a model including variable or risk factor
score X as a function of odds ratios per 2 standard deviation units for X (ORX) and Y (ORY).
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predictors are in the model, even when it is uncorre-
lated with the other predictors. Lipid measures, which
are accepted measures in cardiovascular risk predic-
tion, have ORs closer to 1.7 (4, 14 ), leading to very
little change in the ROC curve. In a more extreme
example, Wang et al. (15 ) examined a risk score for
cardiovascular disease that was based on multiple
plasma biomarkers. Estimates of 8-year risk of all-cause
mortality in the high risk (top 20% of risk scores) and
low risk (bottom 40% of risk scores) groups were 20%
and 3%, respectively, indicating important differences
in predicted risk. However, incorporation of these
plasma biomarkers (with a multivariate hazard ratio of
4) into a risk function led to little improvement in the
c-statistic compared with conventional risk factors alone.

CALIBRATION

Alternatively, calibration concerns itself directly with
the estimated probabilities or predictive values. The
positive predictive value is defined as the probability of
disease given a positive test result, and the negative pre-
dictive value is the probability of no disease given a
negative test result. When a risk score is used, the con-
tinuous analog is the probability of disease given the
value or range of the score. An assessment of calibra-
tion directly compares the observed and predicted
probabilities. Because “observed risk” or proportions
can only be estimated within groups of individuals,
measures of calibration usually form subgroups and
compare predicted probabilities and observed propor-
tions within these subgroups. The most popular mea-
sure of calibration, the Hosmer-Lemeshow goodness-
of-fit test (16 ), forms such subgroups, typically using
deciles of estimated risk. Within each decile, the esti-
mated observed proportion and average estimated pre-
dicted probability are estimated and compared. The
statistic has a �2 distribution with g � 2 degrees of
freedom, where g is the number of subgroups formed.
Although deciles are most commonly used to form
subgroups, other categories, such as those formed on
the basis of the predicted probabilities themselves
(such as 0 to �5%, 5 to �10%, etc.), may be more
clinically useful.

Because groups must be formed to evaluate cali-
bration, this test is somewhat sensitive to the way
such groups are formed (17 ). Ideally the predicted
probability would estimate the underlying or true risk
for each individual (perfect calibration). Since we can-
not know the underlying risk, but can only observe
whether the individual gets the disease, a stochastic
event, the Hosmer-Lemeshow statistic is a somewhat
crude measure of model calibration.

In diagnostic testing and modeling, calibration is
typically not of as much interest as discrimination.

Samples are often not population-based, and the pre-
dicted probabilities may be applicable only to the pa-
tients sampled. Predictive values depend on disease
prevalence, so unless a population sample is used or a
valid estimate of prevalence is available, the sensitivity
and specificity are of greater interest. In estimating fu-
ture risk, however, as in prognostic models, the actual
risk itself is of greatest concern, and calibration, as well
as discrimination, is important. The patient and clini-
cian are interested in the future risk of disease rather
than the probability of a positive test (18 ).

CLINICAL RECLASSIFICATION

In clinical prognostic models, risk stratification is im-
portant for advising patients and making treatment
decisions. The ATP III guidelines (19 ), for example,
suggest cholesterol-lowering medications for individu-
als with predicted risk scores above 20% based on Fra-
mingham risk models. In comparing models, we would
prefer those that stratify individuals correctly into the
various categories (i.e., those that are better calibrated).
We would also prefer those that are able to classify
more into the highest and lowest risk categories (i.e.,
that better discriminate), as long as these are accurate
classifications.

The distribution of predicted values from each
model separately, or the marginal distribution, can de-
scribe how many are classified into intermediate risk
categories, but not whether this is done correctly. They
also do not describe whether one model is better at
classifying individuals, or if individual risk estimates
differ between two models. One way of evaluating this
is to examine the joint distribution through clinical
risk reclassification (14, 20 ). This method classifies
predicted risk estimates into clinically relevant catego-
ries and cross-classifies these categories, such as in
Table 1.

As an example, suppose that a model is formed
using traditional risk factors with score X as above,
and a new model includes the risk factors in X along
with a new independent biomarker Y. In the example
in Table 1, 10 000 simulated observations were gener-
ated using an initial risk score X with an odds ratio of 16
per 2 SDs, and a new uncorrelated biomarker Y with an
OR of 2 per 2 SDs, with an overall risk of disease of
10%. The rows of Table 1 represent the model based on
X only, and the columns represent the model including
both X and Y. The categories represented are based on
ones suggested for 10-year risk of cardiovascular dis-
ease (19, 21 ).

The percent reclassified can be used as an indica-
tion of the clinical impact of a new marker, and will
likely vary according to the original risk category. The
total percentages reclassified into new risk categories in
Table 1 were 6%, 38%, 35%, or 15%, depending on the
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initial risk category. In the two intermediate categories,
some individuals moved up and some moved down
with the new classification. Whereas in the example
simulations here X and Y are uncorrelated, the degree
of reclassification will lessen if the markers are highly
correlated.

Also shown in the table are the average estimated
risks from the two models for each cell. The average
predicted risks based on the initial model are denoted
by Ave Pr(D�X), and those from the new model are
denoted by Ave Pr(D�X, Y). The change in estimated
risk for individuals in the off-diagonal categories can be
seen by comparing these two numbers. For example,
for those initially in the 5 to �10% category, 14% are
reclassified to the 10 to �20% category, and the aver-
age estimated risk changes from 8% to 12%, which
could change recommended treatment under some
guidelines.

Besides the percentage reclassified, it is important
to verify that these individuals are being reclassified
correctly, i.e., that the new risk estimate is closer to

their actual risk. This can be examined by comparing
the predicted risks from the models to the crude pro-
portion developing events within each cell, or the ob-
served risk. This is a form of calibration, and the num-
bers in the table show that the observed risk is closer to
that estimated from the model with both X and Y than
that with X alone. This can be formally tested using a
Hosmer-Lemeshow test using the cross-classified
rather than the marginal cells (22 ). To avoid the effect
of sparse data, only cells with at least 20 individuals are
included. The observed proportions are compared to
the predicted risks for each model separately. For the
model using just X, the �2 statistic is 40.8 with 8 degrees
of freedom and P �0.0001, suggesting a lack of fit. For
the model with both X and Y, the statistic is 5.8 with 8
degrees of freedom and P � 0.67, indicating acceptable
fit. Thus Y seems to add important information despite
little change in the ROC curve as seen in Fig. 1. This
method has been demonstrated for binary outcomes,
but it can be extended to survival data by using Kaplan-
Meier estimates of survival at a given time point in each

Table 1. Comparison of predicted risks in models including a variable or risk factor score X with an OR of
16 per 2 SD units with and without a new biomarker Y with an OR of 2, assuming an overall disease frequency

of 10% in a simulated cohort of 10 000 individuals.

Model with
X only

Model with X and Y
Total %

reclassified0% to <5% 5% to <10% 10% to <20% 20%�

0% to �5% N 4728 314 3 0

% Reclassified 93.7 6.2 0.1 0.0 6.3

Ave Pr(D�X), % 1.9 4.2 4.5 –

Ave Pr(D�X, Y), % 2.1 6.1 10.3 –

Observed risk, % 1.6 8.3 – –

5% to �10% N 473 1285 296 1

% Reclassified 23.0 62.5 14.4 0.1 37.5

Ave Pr(D�X), % 6.2 7.2 8.3 7.1

Ave Pr(D�X, Y), % 4.0 7.1 12.1 21.8

Observed risk, % 3.6 6.8 10.8 –

10% to �20% N 5 348 1035 213

% Reclassified 0.3 21.7 64.6 13.3 35.4

Ave Pr(D�X), % 12.0 12.2 14.3 17.3

Ave Pr(D�X, Y), % 4.2 8.3 14.2 24.0

Observed risk, % – 8.9 14.1 25.4

20%� N 0 2 190 1107

% Reclassified 0.0 0.2 14.6 85.3 14.7

Ave Pr(D�X), % – 20.3 23.7 36.1

Ave Pr(D�X, Y), % – 9.5 17.1 36.8

Observed risk, % – – 17.9 36.9

Percentage reclassified are those moved into a new risk category when Y is added to a model including X. Ave Pr(D�X) is the average predicted probability, expressed
as a percent, in the model for X only for individuals in that cell. Ave Pr(D�X, Y) is the corresponding percent from the model including both X and Y.

Prognostic versus Diagnostic Models Mini-Review

Clinical Chemistry 54:1 (2008) 21

D
ow

nloaded from
 https://academ

ic.oup.com
/clinchem

/article/54/1/17/5628417 by guest on 20 April 2024



cell along with the predicted survival probability at the
same time t.

Pencina et al. (23 ) suggest a single measure to
summarize the reclassification table. They describe the
net reclassification index (NRI) as a measure of change
in these clinical categories. They first form separate re-
classification tables for cases and controls. They then
examine the proportions moving up or down categories
among cases and controls separately. The NRI is the dif-
ference in proportions moving up and down among cases
vs controls, or NRI � [Pr(up � case) � Pr(down � case)]
� [Pr(up � control) � Pr(down � control)]. In the exam-
ple data, the NRI � 5.7% (P � 0.0003), indicating that
5.7% more cases appropriately move up a category of
risk than down compared with controls. Because this sta-
tistic essentially compares rankings of cases and controls,
it is a measure of discrimination rather than calibration,
useful primarily for case-control data. It has the advantage
over the ROC curve, however, that categories can be
formed based on clinically important risk estimates.

For clinical use, it is often those in the inter-
mediate-risk categories for whom treatment is ques-
tionable. For reasons of cost-effectiveness, it may be
preferable to reserve the use of expensive markers or
invasive procedures for this group. The middle 2 rows
of Table 1 contain those in this gray area who are most
likely to benefit from additional measures. In this sub-
group, the NRI is 21% (P �0.0001), suggesting that the
reclassification may be more important in these
individuals.

As an example, in data from the Women’s Health
Study, a model predicting cardiovascular disease risk
that included high-sensitivity C-reactive protein and
family history of myocardial infarction, in addition to
traditional Framingham risk factors, led to an im-
provement in risk classification for individuals (24 ).

In those in the intermediate categories of 5%–10% or
10%–20% 10-year risk based on Framingham risk
factors only, approximately 30% of individuals moved
up or down a risk category with the new model. The
overall NRI in test data was 4.7%, whereas that for
those at intermediate risk was 12.0% (22 ). The new risk
model was also more accurate in terms of calibration
(P � 0.047 for the Framingham variables vs P � 0.56
for the new model using the Hosmer-Lemeshow test
with cross-classified categories), although there was lit-
tle change in the c-statistic.

Conclusions

The purposes of diagnostic and prognostic models dif-
fer; the latter incorporate the added element of time
and are stochastic in nature. Because prognostic mod-
els are created to predict risk in the future, the esti-
mated probabilities are of primary interest. Instead of
relying solely on the c-statistic, methods of model eval-
uation should accordingly focus on the predicted val-
ues and assess whether these are computed accurately.
Besides examining these for a single model, when com-
paring models the joint distribution of risk estimates
should be considered. An examination of clinical risk
reclassification can describe how a new marker may
add to predictive models for clinical use, and statistics
such as the NRI and calibration test for the cross-clas-
sified categories can be used to more formally assess
clinical utility.
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