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BACKGROUND: Plasma concentrations of HDL choles-
terol (HDL-C) and its major protein component apo-
lipoprotein (apo) A-I are strongly inversely associated
with cardiovascular risk, leading to the concept that
therapy to increase HDL-C and apoA-I concentrations
would be antiatherosclerotic and protective against
cardiovascular events. The recent failure of the drug
torcetrapib, a cholesteryl ester transfer protein inhibi-
tor that substantially increased HDL-C concentrations,
has brought focus on the issues of HDL heterogeneity
and function as distinct from HDL-C concentrations.

CONTENT: This review addresses the current state of
knowledge regarding assays of HDL heterogeneity and
function and their relationship to cardiovascular dis-
ease. HDL is highly heterogeneous, with subfractions
that can be identified on the basis of density, size,
charge, and protein composition, and the concept that
certain subfractions of HDL may be better predictors of
cardiovascular risk is attractive. In addition, HDL has
been shown to have a variety of functions that may
contribute to its cardiovascular protective effects, in-
cluding promotion of macrophage cholesterol efflux
and reverse cholesterol transport and antiinflamma-
tory and nitric oxide–promoting effects.

SUMMARY: Robust laboratory assays of HDL subfrac-
tions and functions and validation of the usefulness of
these assays for predicting cardiovascular risk and as-
sessing response to therapeutic interventions are criti-
cally important and of great interest to cardiovascular
clinicians and investigators and clinical chemists.
© 2008 American Association for Clinical Chemistry

An estimated 1.2 million Americans experience myo-
cardial infarction annually (1 ). There is plentiful
evidence for the effectiveness of therapies that de-

crease LDL cholesterol (LDL-C),2 particularly statins,
in both primary and secondary prevention of athero-
sclerotic vascular disease. Despite the antiatherogenic
benefits of statins, however, substantial residual risk
remains. Epidemiological studies and prospective
randomized trials have consistently shown a power-
ful inverse association between the magnitude of HDL
cholesterol (HDL-C) and coronary heart disease
(CHD) (2 ). In the Framingham Heart Study, each
10 mg/dL (0.26 mmol/L) increase in HDL-C was asso-
ciated with a significant decrease in relative risk for
CHD mortality, of 19% in men and 28% in women (3 ).
The prevalence of low HDL-C concentrations, de-
fined by National Cholesterol Education Program
Adult Treatment Panel III guidelines as �40 mg/dL
(�1.04 mmol/L) in men and �50 mg/dL (�1.30 mmol/L)
in women (4 ), was found to be as high as 66% in high-
risk populations with CHD who are on statin therapy,
irrespective of their LDL-C concentrations (5 ). In the
post hoc analysis of the Treating to New Targets trial,
Barter et al. (6 ) found HDL-C to be a significant pre-
dictor of major cardiovascular events, including the
cohort with LDL-C concentrations below 70 mg/dL
(1.81 mmol/L). Thus low HDL-C is predictive of risk
even in statin-treated patients.

Despite the overwhelming observational data in-
dicating an inverse link of HDL-C and apolipoprotein
A-I (apoA-I) concentrations with CHD risk, there are
inconsistencies in the observational and interventional
experience that raise important questions about the
value of HDL-C and apoA-I steady-state measure-
ments as causal indicators of atherosclerosis risk. There
are several genetic syndromes of very low HDL-C and
apoA-I that are not clearly associated with increased
risk of premature CHD. For example, deficiency of
plasma lecithin:cholesterol acyltransferase (LCAT)
does not appear to increase cardiovascular risk despite
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HDL-C concentrations �15 mg/dL (�0.39 mmol/L)
(7 ). It is well known that individuals heterozygous
for the Milano mutation of the apolipoprotein A-I
(APOAI)3 gene do not develop early CHD despite
HDL-C �20 mg/dL (�0.52 mmol/L) (8 ), and the
situation is similar for the APOAI Paris mutation (9 ).
Even Tangier disease, caused by mutations in the
ATP-binding cassette A1 (ABCA1) transporter gene
(ABCA1), in which HDL-C and apoA-I concentrations
are virtually undetectable, is not associated with the
marked increase in CHD that might be expected from
such a dramatic phenotype (10 ). Importantly, patients
with LCAT deficiency and Tangier disease often have
decreased LDL-C concentrations, which may be one
factor offsetting the low HDL-C concentrations
(7, 10 ). These genetic disorders are all associated with
significantly increased turnover of HDL, so steady-
state measures may be less informative than measures
of flux through the HDL pathway (11 ). In any case,
these illnesses illustrate how simple measures of HDL
mass do not always correlate with cardiovascular risk.

Interventional data from randomized controlled
trials targeted to HDL provide a similarly complex pic-
ture. Fibrates, or peroxisome proliferator–activated re-
ceptor � agonists, have modest HDL-increasing effects
in humans, but data regarding their role in reducing
cardiovascular events are mixed. Cardioprotective ef-
fects of fibrates were suggested in the Helsinki Heart
Study (12 ) and the Veterans Affairs High-Density Li-
poprotein Intervention trial (VA-HIT) (13 ). Indeed
the latter trial was specifically targeted to men with low
HDL-C and remains one of the best positive examples
of clinical trial of increasing HDL, but the magnitude of
the HDL increase was small, and the benefit cannot be
directly linked to increasing HDL per se. Other studies
of fibrates, such as the Bezafibrate Infarction Preven-
tion trial (14 ) and the Fenofibrate Intervention and
Event-Lowering in Diabetes study (15 ), although sug-
gestive of possible benefit, were disappointing. Nico-
tinic acid (niacin) is the most effective HDL-increasing
drug currently on the market, but clinical outcome trial
data showing an outcomes benefit (16, 17 ) were ob-
tained before the use of statins, and evidence is limited
for outcomes benefit in the era of widespread statin
treatment. Some atherosclerosis imaging trials using
carotid intima-media thickness (IMT) (18 ) or coro-
nary angiography (19 ) have suggested a benefit of add-
ing niacin to a statin. A metaanalysis of clinical trials
using intravascular ultrasound suggested that changes

in atheroma volume were related to changes in HDL-C
(20 ), consistent with the concept that intervention that
increases HDL could be beneficial.

Experience with torcetrapib, an inhibitor of the
cholesteryl ester transfer protein (CETP), has raised
the most profound questioning regarding the value of
increasing HDL-C concentrations to decrease cardio-
vascular risk. Torcetrapib had been shown to substan-
tially increase HDL-C concentrations by 50%–100%
(21, 22 ) and, based on this effect, was advanced into
phase-III development. However, the large clinical
outcome trial Investigation of Lipid Level Management
to Understand its Impact in Atherosclerotic Events
was terminated early because of increased cardio-
vascular morbidity and total mortality despite an ob-
served 72% increase in HDL-C concentrations in indi-
viduals treated with the drug (23 ). Imaging trials using
intravascular ultrasound (24 ) and carotid ultrasound
to measure IMT (25 ) were negative despite similarly
favorable increases in HDL-C. However, the inter-
pretation of the clinical trial results with torcetrapib
are complicated by the fact that the drug increases
blood pressure and increases aldosterone as an off-
target, non–mechanism-based effect (26 ). Indeed,
another CETP inhibitor, anacetrapib, was recently re-
ported to increase HDL by up to 128% without an
increase in ambulatory blood pressure (27 ). Never-
theless, the torcetrapib experience strongly suggests
that therapeutic measures based solely on increasing
HDL-C may not be adequate for cardiovascular risk
reduction.

The analytical chemistry related to measurement
of HDL-C and HDL subclasses has undergone substan-
tial evolution over the last few decades (28, 29 ). In light
of recent developments, there is a growing need to
identify other HDL-related subclasses and functions,
and to find biomarkers that will better predict cardio-
vascular risk and can be used to assess the clinical ben-
efits of novel HDL-targeted therapies. This need poses
an opportunity for clinical chemists to take the lead in
the development and validation of such biomarkers. In
addition to being a source for better markers of choles-
terol flux, HDL has pleiotropic functions that include
antiinflammatory, antioxidant, antithrombotic, and
nitric oxide–promoting effects. This review focuses on
in vitro methods to assay various HDL subfractions
and HDL functions that could be more effective than
currently available surrogate markers of cardiovascular
risk.

RECENT ADVANCES IN THE UNDERSTANDING OF HDL

METABOLISM AND REVERSE CHOLESTEROL TRANSPORT

The molecular regulation of HDL metabolism and re-
verse cholesterol transport (Fig. 1) is complex. Much
has been learned over the last decade, however, and this

3 Human genes: APOAI, apolipoprotein A-I; ABCA1, ATP-binding cassette, sub-
family A (ABC1), member 1; ABCG1, ATP-binding cassette, sub-family G
(WHITE), member 1; CETP, cholesteryl ester transfer protein, plasma.
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topic has been covered in several excellent reviews (30 –
32 ). ApoA-I is the major HDL protein present on al-
most all HDL particles and is synthesized by both the
liver and the intestine. ApoA-I is secreted as a lipid-
poor protein, and then rapidly acquires phospholipids
and unesterifed cholesterol from the same tissues via
the ABCA1 transporter to form discoidal HDL parti-
cles (33 ). This nascent HDL acquires additional free
cholesterol from other peripheral tissues, and this cho-
lesterol is then esterified to CE by the HDL-associated
enzyme LCAT, generating spherical HDL. The CETP
transfers CE from HDL to apoB-containing lipopro-
teins in exchange for triglyceride. The lipolytic en-
zymes hepatic lipase and endothelial lipase hydrolyze
HDL triglycerides and phospholipids and generate
smaller HDL particles. ApoA-I that is part of mature
HDL is catabolized by the liver, whereas lipid-poor
apoA-I is catabolized by the kidneys.

HDL facilitates a process known as reverse choles-
terol transport (RCT) in which unesterified cholesterol
in peripheral tissues is effluxed to HDL and ultimately
returned to the liver for excretion in bile and feces.
Whether RCT is an important mechanism by which
HDL protects against atherosclerosis remains to be de-

finitively proven. The macrophage is the most impor-
tant cell type for HDL-mediated promotion of choles-
terol efflux, and the molecular regulation of cholesterol
efflux from macrophages has been extensively studied.
The ABCA1 transporter is instrumental in the classic
pathway for macrophage cholesterol efflux and pro-
motes cholesterol efflux to lipid-poor apoA-I as an
acceptor. Another member of this family, ABCG1,
encoded by the ATP-binding cassette, sub-family G
(WHITE), member 1 (ABCG1) gene, promotes macro-
phage cholesterol efflux to mature HDL particles.
ABCA1 and ABCG1 expression are up-regulated by the
nuclear liver X receptor, which is activated by oxy-
sterols, products of macrophage cholesterol metabo-
lism. Once cholesterol is effluxed to HDL, uptake by
the liver is required to complete the RCT process. Two
major pathways of hepatic uptake of HDL cholesterol
exist: HDL cholesterol can be taken up selectively by
the liver via the scavenger receptor type BI (SR-BI), a
pathway very important in rodents, which naturally
lack CETP. A second pathway in humans and other
species that express CETP involves the transfer of CE
via CETP to apoB-containing lipoproteins, which are
taken up by the liver. This pathway may be particularly

Fig. 1. ApoA-I is synthesized by intestine and liver, forming nascent HDL particles through lipid recruitment.

Nascent HDL can promote cholesterol efflux from macrophages via ABCA1 and mature HDL via ABCG1. Cholesterol is esterfied
to cholesterol ester (CE) in the plasma by LCAT, and both unesterified free cholesterol (FC) and CE are transported to the liver
either directly via SR-BI or indirectly via transfer to apoB-lipoproteins (B) via CETP. HDL content is modulated by hepatic lipase
(HL), endothelial lipase (EL), and phospholipid transfer protein (PLTP). BA, bile acids; FC, free cholesterol; A-I, apolipoprotein
A-I; A-II, apolipoprotein A-II; LXR, liver X receptor; LDLR, LDL receptor; TG, triglycerides.
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important in humans for the hepatic uptake of HDL-
derived CE.

Although promotion of cholesterol efflux and
RCT is thought to be the major mechanism by which
HDL protects against atherosclerosis, the last decade
has seen substantial growth in interest in other proper-
ties of HDL that may be atheroprotective. These in-
clude the antioxidant and antiinflammatory properties
of HDL (34 ), as well as endothelial nitric-oxide–
promoting and antithrombotic effects of HDL (35 ).
Thus the concept that HDL particles have a plethora of
properties that protect against atherosclerosis, and that
these functions cannot necessarily be inferred from the
measurement of plasma HDL-C concentrations, has
led to the interest in assays of HDL subfractions and
HDL function to refine the risk assessment associated
with HDL.

HDL HETEROGENEITY AND MEASUREMENT OF

HDL SUBFRACTIONS

HDL is a complex macromolecule comprised of lipids
(phospholipids and unesterified free cholesterol on the
surface and cholesteryl ester and triglycerides in the
core) and proteins (apolipoproteins and a variety of
other proteins in smaller amounts). Multiple subfrac-
tions of HDL based on density, size, charge, and com-
position can be identified in plasma. A topic of consid-
erable interest is whether specific subfractions of HDL
confer greater ability to predict cardiovascular risk
than HDL-C itself or may be of greater utility in assess-
ing the benefits of a therapeutic intervention targeted
to HDL. Patients with coronary disease generally have
smaller, denser HDL particles, leading to the concept
that larger HDL particles may be associated with
greater protection from CHD. However, the data re-
garding the predictive ability of HDL subclasses for
CHD risk are not conclusive.

The classic method for separation of lipoprotein
subfractions is by density. In 1951, Lindgren et al. first
identified 2 HDL subspecies by analytic ultracentrifu-
gation based on their buoyancy (36 ). HDL2, which has
a density range of 1.063–1.125 g/mL, comprises the
larger, cholesterol-rich particles and HDL3, which rep-
resents the range 1.125–1.210 g/mL, comprises small,
lipid-poor particles. Havel et al. first described separa-
tion of lipoproteins by repeated ultracentrifugations
after progressively increasing the solvent density (37 ).
These lipoprotein factions were divided into the fol-
lowing density groups: �1.019, 1.019 –1.063, and
�1.063, which were later named very low-density li-
poproteins (VLDL), low-density lipoproteins (LDL),
and high-density lipoproteins (HDL), respectively.
Density gradient ultracentrifugation continues to be
the gold standard for isolation of lipoproteins, even
after 50 years. Ultimately, more convenient methods

such as preparative ultracentrifugation (38 ) or differ-
ential precipitation were developed. Preparative ultra-
centrifugation yielded HDL3 after a single spin at den-
sity 1.125, and HDL2 is calculated as the difference
between total HDL and HDL3. Selective precipitation
of HDL subfractions HDL2 and HDL3 was developed as
a less labor-intense analytical method (39 ). This
method does not require any specialized apparatus,
and relatively large numbers of plasma samples can be
processed and analyzed at a time (40 ).

The major question is whether separation of HDL
subfractions by density provides more information re-
garding cardiovascular outcomes than measuring
HDL-C itself. In general, controversy still exists in re-
gard to whether the antiatherogenic effect of HDL can
be attributed to one or both HDL subfractions and
what is the relative importance of HDL2 and HDL3

cholesterol. In the Kupio Study (41 ) and Quebec City
Suburbs Study (42 ), HDL2 was inversely associated
with CHD. HDL3 had a stronger inverse association
with CHD in the Physician’s Health Study (43 ), the
5-year follow-up of the CAE Philly and Speedwell study
groups (44 ), and the 9-year follow-up of the Caerphilly
study (45 ). The results of these studies provide no con-
clusive evidence for the usefulness of routine measure-
ment of HDL subfractions in risk stratification for
CHD. The differences in the results of various studies
may be attributable to the different assay methods
used, to ethnic variations, or to the probable heteroge-
neity of the subfractions with different physiological
functions.

The vertical auto profile (VAP) method is an in-
verted rate zonal, single vertical spin, density gradient
ultracentrifugation technique that separates all li-
poproteins in �1 h (46 ). VAP analysis can be per-
formed in less time than other methods because it uses
a vertical rotor in which lipoproteins separate across
the shorter horizontal axis of the centrifuge tube rather
than a longer vertical axis, as in sequential ultracentrif-
ugation, which generally uses a swinging-bucket rotor.
The VAP method is a sensitive test for comprehensive
measurement of the major HDL density subclasses.
Few data exist, however, associating HDL subfractions
as assessed by the VAP method to cardiovascular out-
comes. The VAP, marketed by Atherotech, is available
to clinicians through various reference laboratories as a
fee-for-service test.

HDL subfractions can also be separated based on
size. The original method for size-based separation was
nondenaturing polyacrylamide gradient gel electro-
phoresis (GGE) in conjunction with automated densi-
tometry (47 ). A detailed and comprehensive review of
polyacrylamide GGE for determination of lipoprotein,
including HDL, size was published recently (48 ). Al-
though the methods are well established and reproduc-
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ible, there are few data suggesting that HDL subclasses
determined by polyacrylamide GGE are more predic-
tive of CHD than total HDL-C concentrations. GGE,
marketed by Berkeley Heart Labs, is available to clini-
cians as a fee-for-service test.

Charge is another important property that has
been used to separate HDL subclasses. Nondenaturing
lipoprotein electrophoresis has been used for decades
as a standard laboratory technique to analytically sep-
arate lipoproteins, and HDL migrates as an �-band.
Separation of HDL by 2-dimensional electrophoresis
(incorporating a size-based separation in addition to
separation based on charge) has revealed additional
heterogeneity, with pre–�-1, pre–�-2, and pre-� HDL
in addition to the �-migrating species (49 ). Two-
dimensional electrophoresis has been used to resolve at
least 12 distinct apoA-I– containing HDL subpopula-
tions. A strong negative correlation has also been ob-
served between the large, cholesterol-rich �-1 particles
and CHD (50 ). In the Framingham Offspring Study
(51 ), CHD cases had higher pre–�-1 and �-3 particle
and lower �-1, pre–�-3, and pre–�-1 particle concen-
trations. �-1 and pre–�-3 concentrations had an in-
verse association, whereas �-3 and pre–�-1 particle
concentrations had a positive association with CHD
prevalence after data were adjusted for established
CHD risk factors. �-1 HDL was most significantly as-
sociated with CHD, and each milligram per deciliter
increase in �-1 particle concentration decreased odds
of CHD by 26% (P � 0.0001). Significant negative cor-
relations were also observed in the HDL-Atherosclero-
sis Treatment study (50 ) and the VA-HIT study (52 ).
Conversely, the VA-HIT study demonstrated a signifi-
cant positive correlation between CHD events and the
concentrations of �-3 as well as small, lipid-poor pre–
�-1 particles (52 ).

Nuclear magnetic resonance (NMR) spectroscopy
is another rapid method of assessing HDL subfractions
(53 ). Each subclass of HDL emits distinctive NMR sig-
nals whose individual amplitude can be accurately
measured, and these amplitudes are directly propor-
tional to the numbers of subclass particles emitting the
signal, irrespective of variation in particle lipid compo-
sition. HDL particles quantified by NMR are subclassi-
fied into 3 size classes, large, medium, and small. Pub-
lished data indicate a relationship of HDL subclasses as
assessed by NMR with cardiovascular disease risk. In
the Pravastatin Limitation of Atherosclerosis in the
Coronary Arteries statin intervention trial (54 ), large
and small HDL particle concentrations were inversely
associated with progression of angiographically docu-
mented coronary artery disease, independent of
HDL-C and other lipids. In the VA-HIT trial (55 ),
NMR-measured concentrations of total and small
HDL particles were independent predictors of recur-

rent cardiovascular disease. In the MultiEthnic Study
of Atherosclerosis trial, total HDL particle number was
more strongly associated with carotid atherosclerosis
than was HDL-C (56 ). A recently reported study ad-
dressed the issue of HDL particle size and cardiovascu-
lar disease risk by analyzing the relationship of HDL-C
and HDL particle size (assessed by NMR) to cardiovas-
cular disease risk after controlling for apoA-I and apoB
(57 ). Intriguingly, although HDL-C and HDL particle
size were generally inversely associated with cardiovas-
cular disease risk, after results were controlled for
apoA-I and apoB, the highest levels of HDL-C and
HDL particle size were found to be positively associ-
ated with cardiovascular disease events. Lipoprotein
NMR analysis, marketed by Liposcience, is available to
clinicians as a fee-for-service test.

APOLIPOPROTEIN COMPOSITION AND OTHER PROTEINS IN HDL

The most abundant protein in HDL, apoA-I, can be
measured in plasma using widely available immuno-
assays. Whether plasma apoA-I concentrations are
more predictive of CHD than HDL-C concentrations is
an important question that can be difficult to address
statistically because of the very tight correlation be-
tween apoA-I and HDL-C. Nevertheless, some large
prospective population-based studies have suggested
that apoA-I concentrations may be more predictive of
future CHD events than HDL-C concentrations (58 ).
Furthermore, even after data analysis was controlled
for HDL-C, apoA-I still had a continuous inverse asso-
ciation with cardiovascular disease risk (57 ). It is pos-
sible that apoA-I concentrations may be superior to
HDL-C in predicting cardiovascular disease risk, but
this approach has not yet been incorporated into na-
tional guidelines. Furthermore, novel therapeutic in-
terventions that increase apoA-I concentrations may
be superior to those that primarily increase HDL-C
concentrations, but this superiority remains largely
theoretical at present.

The second most abundant protein in HDL is
apoA-II, and controversy exists regarding the role of
apoA-II in cardiovascular risk. A nested case-control
study in the large European Prospective Investigation
into Cancer and Nutrition in Norfolk trial demon-
strated that plasma apoA-II concentrations were
strongly inversely correlated with CHD events, even
after adjustment for traditional cardiovascular risk fac-
tors and HDL-C and apoA-I concentrations (59 ). Thus
the concept, based largely on mouse studies (60 ), that
apoA-II may be proatherogenic is not supported by the
epidemiologic evidence in humans.

HDL can be separated into 2 primary subclasses
according to their major apolipoprotein composi-
tion, those containing only apoA-I (LpA-I) and those
containing both apoA-I and apoA-II (LpA-I:A-II)
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(61, 62 ). In most people, LpA-I is approximately one-
third and LpA-I:A-II approximately two-thirds of the
total HDL (63 ). LpA-I is found more in HDL2, whereas
LpA-I:A-II is found more in HDL3 (64 ). With regard to
whether either of these particles is more predictive of
CHD, there is considerable variability in reported stud-
ies. Some studies report that individuals with CHD
have reductions in LpA-I only (43, 65 ), whereas others
report reductions in both LpA-I and LpA-I:A-II (66 –
68 ). In the Framingham Offspring Study and the
VA-HIT (69 ), LpA-I and LpA-I:A-II HDL subclass
quantification by differential electroimmunoassay in
male participants provided no additional information
about CHD risk, compared to the traditional lipid
measurements.

HDL particles carry a large number of additional
proteins at considerably lower abundance than apoA-I
and apoA-II. Other apolipoproteins that are well
known to be associated with HDL include apoA-IV;
apoC-I, C-II, and C-III; and apoE. Most of these apo-
lipoproteins are highly exchangeable and can also be
associated with apoB-containing lipoproteins. Thus
measurement of total plasma concentrations of these
apolipoproteins is not specific for their content within
the HDL fraction per se, but this measurement can be
obtained by first precipitating the apoB-containing li-
poproteins and then measuring the apolipoprotein of
interest in the supernatant. Indeed, this approach was
used to demonstrate that HDL-apoC-III was an impor-
tant determinant of atherosclerosis progression (70 ).

Based on the recognition that HDL contains many
proteins, formal proteomic analyses of HDL have been
performed. One recent publication determined that a

large number of proteins involved in inflammation,
complement regulation, and innate immunity are
physiologically bound to human HDL (71 ). These ob-
servations reinforce the concept that HDL evolved as a
component of the innate immune system. One elegant
example of this phenomenon is the demonstration that
HDL serves as a platform for the assembly of a complex
containing apoL-I and haptoglobin-related protein
(both found in the proteomics study) that is highly lytic
for a species of trypanosome (72 ). HDL protein com-
position varies considerably among individuals, con-
sistent with differences in HDL function among indi-
viduals (see below). One hope is that specific measures
of HDL protein concentrations may ultimately permit
links to functionality and thus association with athero-
sclerosis risk.

LABORATORY ASSESSMENT OF CHOLESTEROL EFFLUX AND

REVERSE CHOLESTEROL TRANSPORT

Several properties of HDL have been described that
could contribute to the antiatherogenic, cardioprotec-
tive effects of HDL (Fig. 2). The most popular hypoth-
esis, however, is that HDL and apoA-I protect against
atherosclerosis, at least in part, by promoting choles-
terol efflux from cells, particularly via cholesterol-
loaded macrophages in the arterial wall, and facilitating
the RCT process, the transport of that cholesterol back
to the liver for excretion in bile and ultimately feces.
Whether RCT is an important mechanism of athero-
protection by HDL remains to be established conclu-
sively. Nevertheless, there has been intense interest in
understanding the molecular regulation of this path-
way. Studies from several laboratories have confirmed

Fig. 2. Several antiatherogenic properties of HDL.
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that the rate of RCT is not always correlated with the
plasma concentrations of HDL-C and apoA-I, indicat-
ing that measurements of RCT or its components may
provide important clinical information beyond that
obtained from measurement of HDL-C and apoA-I.
With regard to atherosclerosis, the most important
cell type for HDL-mediated promotion of cholesterol
efflux is the macrophage, and thus the molecular regu-
lation of cholesterol efflux from macrophages has been
of particular interest. This section focuses on
laboratory-based assays that may provide information
about the function of HDL with regard to promotion
of macrophage cholesterol efflux or RCT.

CHOLESTEROL EFFLUX CAPACITY

The best-recognized atheroprotective function of HDL
and apoA-I is the promotion of cholesterol efflux from
cells, particularly macrophages, because they are the
primary cell type to accumulate cholesterol within the
atherosclerotic plaque. There has been substantial in-
vestigation into the molecular mechanisms by which
macrophages efflux cholesterol. The ABCA1 trans-
porter promotes cholesterol efflux to lipid-poor
apoA-I, or pre–�-HDL, as an acceptor (73 ). Macro-
phages from ABCA1-knockout mice have substantially
decreased cholesterol efflux to lipid-poor apoA-I, and
transplantation of ABCA1-deficient bone marrow re-
sulted in significantly increased atherosclerosis (74 ).
More recently, another member of the ABC gene fam-
ily, ABCG1, was identified as a promoter of macro-
phage cholesterol efflux to mature HDL particles
(75, 76 ), the most abundant form of HDL in plasma.
ABCA1 and ABCG1 act cooperatively in vivo to pro-
mote macrophage cholesterol efflux and RCT (77 ),
consistent with the recent observation that mice defi-
cient in macrophage ABCA1 and ABCG1 develop
markedly accelerated atherosclerosis (78 ). Although
SR-BI has been shown to facilitate in vitro cholesterol
efflux from macrophages to mature HDL (79 ), its role
in mediating macrophage RCT in vivo is probably not
quantitatively important (77 ). The expression levels of
macrophage ABCA1 and ABCG1 are regulated by the
nuclear receptors liver X receptors � and � (80 ). A
synthetic liver X receptor agonist significantly pro-
moted macrophage RCT in vivo despite having little
effect on plasma HDL-C concentrations (81 ); syn-
thetic liver X receptors have also been shown to inhibit
or cause regression of atherosclerosis (82– 84 ).

Higher concentrations of circulating HDL-C have
long been considered to indicate greater promotion of
cellular cholesterol efflux and thus greater atheropro-
tection. However, inconsistencies in the relationship of
genetic conditions of HDL metabolism to atheroscle-
rosis, as well as the experience with the CETP inhibitor
torcetrapib, have called this assumption into question.

Indeed, there is considerable variation among individ-
uals with similar HDL-C concentrations with regard to
the ability of their serum to promote cholesterol efflux
ex vivo (85, 86 ), and some evidence that even after nor-
malization, some HDL particles are more effective at
promoting efflux than others (87 ). Thus the ability to
assay human serum or isolated HDL for its cholesterol
efflux capacity could be an important method of deter-
mining HDL function in assessing differences among
individuals or in response to novel therapies. Assays
have been developed and applied in the research set-
ting. Cells (often macrophages) are labeled with 3H-
cholesterol, and then exposed to diluted whole serum,
serum depleted of apoB-containing lipoproteins, or
isolated HDL for a defined period of time, after which
counts in the media, as well as the remaining cell-asso-
ciated counts, are determined and used for quantifica-
tion of the percentage efflux (88 ). Another approach is
focused on cholesterol mass rather than a tracer, and
involves the quantification of increased cholesterol
mass in the media after incubation with acceptor (87 ).
A third approach is the ability of serum to deplete cel-
lular cholesterol available for esterification by acyl
CoA:cholesterol acyl transferase activity as an indirect
measure of cholesterol efflux (89 ). There are multiple
variables in these assays, including the donor cell type,
the nature of the acceptor (i.e., whole serum, apoB-
depleted serum, or isolated HDL), the readout (i.e.,
cholesterol tracer, cholesterol mass, or indirect indica-
tors such as the availability of acyl CoA:cholesterol acyl
transferase) and cholesterol efflux pathways that are
being assessed (i.e., ABCA1, ABCG1, SR-BI, or passive
diffusion).

Measurement of cholesterol efflux capacity is be-
ing increasingly used in preclinical studies (85, 90 –92 )
to assess effects of genetic manipulation or pharmaco-
logic treatment on efflux capacity independent of
HDL-C concentrations. Application to human studies
has been less common but is also increasing. In a small
study using fibroblasts as the donor cell and serum
from men referred for coronary angiography as the ac-
ceptor, depletion of fibroblasts from the available pool
of acyl CoA:cholesterol acyl transferase, but not total
efflux of radiolabeled cholesterol tracer, was shown to
be correlated with cardiovascular outcomes (86 ). HDL
isolated from patients with CETP deficiency was shown
to be more effective in promoting cholesterol efflux
than HDL from healthy individuals (87 ), and HDL
from individuals treated with a high dose of the CETP
inhibitor torcetrapib was also shown to be more effec-
tive in promoting efflux (93 ).

Measurement of cholesterol efflux capacity of se-
rum or HDL is conceptually attractive and has the po-
tential to be developed as a clinical laboratory tool for
risk assessment and evaluation of pharmacologic effi-
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cacy. However, substantial work is needed to relate
measurements of efflux capacity to prevalent cardio-
vascular disease and prospectively to cardiovascular
outcomes, and to determine whether the associations
are independent of plasma HDL-C or apoA-I concen-
trations. Furthermore, the optimal method for per-
forming such studies with regard to donor cells, type of
acceptor, type of readout, and preferred pathways for
interrogation has yet to be determined. Finally, stan-
dardization of the method would be necessary for
broader use of this approach.

CHOLESTEROL ESTERIFICATION BY LCAT

The classic RCT pathway involves the esterifcation of
effluxed cholesterol before transport to the liver (94 ).
LCAT is a lipoprotein-associated enzyme responsible
for esterifying free cholesterol to CE within the plasma
compartment. LCAT deficiency is associated with
markedly decreased HDL-C concentrations, whereas
LCAT overexpression in mice and rabbits markedly in-
creases HDL-C concentrations. The hydrophobic CE
moves to the core of the HDL particle, contributing to
the progressive enlargement of HDL. This process also
removes free cholesterol from the surface of HDL, thus
helping to maintain a free-cholesterol gradient from
cells to HDL (95 ). Although increased LCAT activity
has long been thought to be atheroprotective, inade-
quate data exist to support this. LCAT-deficient pa-
tients do not develop accelerated atherosclerosis, but it
was reported that decreased LCAT function was asso-
ciated with increased carotid IMT (96 ). Thus, in the-
ory, measuring LCAT activity in human plasma could
be a functional test that might provide additional car-
diovascular risk prediction. However, methods to mea-
sure LCAT activity are not standardized. One approach
involves the incubation of an exogenous substrate of
apoA-I/phospholipids containing radiolabeled free
cholesterol with plasma, followed by separation of free
and esterified cholesterol and determination of the per-
centage of cholesterol that was esterified. This assay,
commonly termed the LCAT activity assay, correlates
best with measures of LCAT mass. A second approach
involves the direct mixing of radiolabeled free choles-
terol with plasma, followed by incubation, separation,
and determination of the percentage of esterified cho-
lesterol. This assay, commonly termed the cholesterol
esterification rate, is much more dependent on the
metabolic milieu and distribution of lipoproteins.

Neither of these assays have been applied to large
scale human studies to address the relationship of
LCAT activity or cholesterol esterification rate to prev-
alent cardiovascular disease or outcomes. Perhaps the
most studied LCAT-related assay in humans is known
as the fractional esterification rate on HDL (FERHDL).
This is a functional test that measures the rate of LCAT-

mediated esterification of free cholesterol specifically
on HDL in plasma depleted of apoB-containing li-
poproteins. In a multivariate logistic model, FERHDL

was a significant predictor of the presence of angio-
graphically defined CAD (97 ). The smallest HDL par-
ticles have the fastest esterification rate, whereas the
largest particles have the slowest (98 ). Thus, FERHDL

acts as an indirect measure of the lipoprotein particle
size. If a standardized assay of LCAT mass were to be
developed, this approach would be the easiest to apply
to large population-based studies to determine
whether LCAT mass is a predictor of cardiovascular
events independent of HDL-C and apoA-I concentra-
tions. It remains possible that measurement of LCAT
mass or activity could become another approach to as-
sessing HDL function in predicting cardiovascular risk.

CHOLESTERYL ESTER TRANSFER BY CETP

CETP mediates the transfer of CEs from HDL to apoB-
containing lipoproteins in exchange for triglycerides.
Because apoB-containing lipoproteins are mostly ca-
tabolized by the liver, the CETP pathway may be an
important route by which HDL-derived cholesterol is
transported back to the liver in humans (99 ). On the
other hand, CETP activity results in decreased HDL-C
concentrations, and genetic variation in the cholesteryl
ester transfer protein, plasma (CETP) gene is an impor-
tant source of variation in HDL-C concentrations in
humans. Thus, debate has been ongoing about whether
CETP is pro- or antiatherogenic, a topic clearly impor-
tant to the issue of developing CETP inhibitors. Several
published studies have addressed the association be-
tween plasma CETP protein mass concentrations and
CHD outcomes. Higher CETP protein concentrations
were cross-sectionally associated with CHD (100 ),
greater progression of angiographic CAD (101 ),
greater progression of carotid IMT (102 ), and younger
age of first presentation with acute myocardial infarc-
tion (103 ). In the European Prospective Investigation
into Cancer and Nutrition in Norfolk trial, higher
CETP mass concentrations were associated with a
greater prospective risk of CHD events, but only in
those individuals with higher triglyceride concentra-
tions (104 ). Results of other studies, however, have not
supported CETP mass as a positive risk factor for CHD
(105–107 ). CETP activity could potentially be more
informative than mass, because it is more likely to in-
clude other factors that influence CE transfer rates
beyond the mass of CETP itself, but the assays are dif-
ficult to perform and labor-intensive. In only a small
number of studies, higher CETP activity was associated
with increased atherosclerosis or cardiovascular risk
(103, 108, 109 ). Additional studies of the correlation of
both CETP mass and activity to CHD risk are needed. It
remains possible that an assay of CETP might help re-
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fine cardiovascular risk assessment independent of
HDL-C concentrations.

LABORATORY ASSESSMENT OF ANTIOXIDANT AND

ANTIINFLAMMATORY FUNCTIONS OF HDL

Over the past decade, HDL has been discovered to have
other properties beyond cholesterol efflux promotion
that could contribute to its antiatherogenic effects (Fig.
2). In particular, studies from several laboratories have
identified the antioxidant and antiinflammatory effects
of HDL as potentially important in overall HDL function.

PARAOXONASE ACTIVITY AND ANTIOXIDANT CAPACITY OF HDL

Paraoxonase (PON1) is an HDL-associated esterase/
lactonase, which derived its name from one of its most
commonly used in vitro substrates, paraoxon. PON1
hydrolyzes a variety of oxidized and modified lipids. Its
activity is believed to account for at least some of the
antioxidant activity of HDL. PON1 protects both HDL
and LDL against lipid peroxidation (110, 111 ). PON1
activity can be measured using several different assays,
but is most commonly measured by monitoring p-
nitrophenol formation from the substrate paraoxon
(112 ). Decreased lesion size was observed in human
PON1 transgenic mice, and accelerated atherosclerosis
was seen in PON1 knockout mice (113, 114 ). In hu-
mans, PON1 activity is inversely related to the risk of
cardiovascular diseases. In the Caerphilly Prospective
Study, PON1 activity predicted coronary events inde-
pendent of all other coronary risk factors, including
HDL-C (115 ). D-4F, an apoA-I mimetic peptide, in-
creased paraoxonase activity in LDL-receptor–null
mice after a Western diet and after influenza infection
(116 ). Thus PON1 activity might be developed as a
biomarker of HDL function and cardiovascular risk in-
dependent of HDL-C concentrations.

HDL has the ability to inactivate oxidized phos-
pholipids, in part due to PON1 activity but potentially
also due to other enzymes or properties of HDL. Thus
an integrated assay of HDL antioxidant capacity
would be of research interest and have potential clinical
applicability. One such cell-free assay uses dichloro-
fluorescein as a fluorescent reporter of lipid oxidation
products (117 ). Oxidized phospholipids and dichlo-
rofluorescein are added to HDL and incubated and the
degree of fluorescence is proportional to the ability of
HDL to inactivate the oxidized phospholipids. This ap-
proach, which requires standardization and more val-
idation, has the potential to permit a global assessment
of HDL antioxidant function.

ANTIINFLAMMATORY PROPERTIES OF HDL AS ASSESSED BY

INHIBITION OF ENDOTHELIAL ADHESION MOLECULE EXPRESSION

Cytokines induce endothelial cells to upregulate adhe-
sion molecules designed to tether circulating leuko-

cytes and promote their entry into the intima. HDL has
been shown to inhibit the cytokine-stimulated up-
regulation of endothelial adhesion molecules (34 ). The
basic approach involves incubation of endothelial cells
with HDL, followed by stimulation with a proinflam-
matory cytokine and quantification of adhesion mole-
cules such as vascular cell adhesion molecule-1.

Preclinical models demonstrate the potential util-
ity of this approach in assessing efficacy of therapeutic
interventions (34 ). Limited data suggest that there is
substantial interindividual variability among humans
in the ability of isolated HDL to inhibit endothelial
adhesion molecule expression that is independent of
HDL-C concentrations. A study in humans showed
that a saturated fat diet significantly decreased and a
polyunsaturated fat increased the ability of isolated
HDL to suppress tumor necrosis factor �–induced en-
dothelial expression of intercellular adhesion mole-
cule-1 and vascular cell adhesion molecule-1 (118 ).
This cell-based assay will be difficult to standardize,
and clearly needs to be validated with regard to corre-
lation with atherosclerotic disease and prediction of
cardiovascular events independent of HDL-C concen-
trations. Nevertheless, it appears to be a robust mea-
sure of HDL antiinflammatory function and as such
may provide valuable information.

OTHER POTENTIALLY ANTIATHEROGENIC PROPERTIES OF HDL

HDL has been shown to have additional properties that
may contribute to its antiatherogenic effects (Fig. 2).
These include the ability to stimulate endothelial nitric
oxide production and thus enhance endothelial func-
tion (35, 119 ). Observational data are consistent with
an inverse association between HDL-C concentrations
and endothelial function measures (120, 121 ). The
mechanism of this effect appears to be dependent on
endothelial SR-BI and may involve cholesterol efflux
as a triggering mechanism (35 ). The interindividual
variation in HDL promotion of endothelial nitric oxide
production is unknown, but the concept of establish-
ing an endothelial-based assay for HDL-stimulated ni-
tric oxide production is attractive. Some data suggest
that the nitric oxide–promoting effect of HDL is par-
tially dependent on the endothelial lysophospholipid
receptor sphingosine-1-phosphate (3, 122 ), suggesting
that the content in HDL of lysophospholipids sphin-
gosine-1-phosphate may influence this function of
HDL. Perhaps measurement of HDL-associated sphin-
gosine-1-phosphate could serve as a quantitative sur-
rogate for the nitric oxide–promoting function of
HDL. This is a potential example of one direction this
field will likely take: identification and measurement of
reliable mass-based surrogates of HDL function. HDL
has also been shown to have antithrombotic properties
(35 ) involving effects on the coagulation system as well
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as on platelets. Measurement of the anticoagulant
properties of HDL would be highly labor-intensive and
potentially be subject to substantial assay variation.
Ideally this and other HDL functions would have one
or more mass-based surrogates that are highly corre-
lated with function and could be measured as a panel to
gain information on a range of HDL functional
properties.

Plasma concentrations of HDL-C, while epidemi-
ologically predictive of atherosclerotic cardiovascular
events in large populations, are insufficient to capture
the functional variation in HDL particles and the car-
diovascular risk associated with HDL. Furthermore,
HDL-C concentrations are clearly inadequate for as-
sessment of the potential therapeutic efficacy of novel
HDL-targeted therapies. Substantial progress has been
made in the development of robust and reproducible
methods for assessment of HDL subclasses, and many
of these assays are now commercially available. Com-
pelling data are still lacking, however, to indicate that
any specific HDL subfractions are clearly more predic-
tive than HDL-C itself. The only exception may be
apoA-I, which some data suggest may be more predic-
tive than HDL-C. In contrast to the robust state of clin-
ical chemistry regarding HDL subfractions, the labora-
tory assessment of HDL function remains in its
infancy. In vitro assays of HDL function have been de-

veloped by various research laboratories but are labo-
rious, nonstandardized, and poorly validated with re-
gard to human outcomes. There is a major need for
further research in this area, particularly the develop-
ment of standard methods that can be used to apply
these assays to large population-based studies to test
whether they predict risk independently of HDL-C
concentrations. The hope is that eventually mass-based
assays can be developed that faithfully reflect the
myriad functionality of the HDL particle. Ultimately, a
panel of assays that reflect HDL heterogeneity and
function may be used for cardiovascular risk predic-
tion, but such a tool would likely have to be incorpo-
rated into national guidelines for CHD risk assessment
before they would be widely accepted and used. On the
other hand, HDL functional assays are likely to be used
sooner for the early assessment of the potential efficacy
of novel HDL-targeted therapeutics. Robust laboratory
assays of HDL function, and their validation with re-
gard to cardiovascular risk prediction and in response
to therapeutic interventions, are thus critically impor-
tant and of great interest to the cardiovascular, clinical
chemistry, and pharmaceutical communities.
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