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Contact with nature has been linked to human health, but little information is available for how
individuals utilize urban nature. We developed a bidirectional long short-term memory model
for classifying whether tweets describe the proposed pathways through which nature influences
health: exercise, aesthetic stimulation, stress reduction, safety, air pollution mediation, and/or social
interaction. To adjust for regional variations in urban nature context, we integrated OpenStreetMap
data on nature and non-nature features for each long-short term memory cell. Training (n = 63073),
development (n = 5000), and test (n = 5000) sets consisted of labeled tweets from Portland, Oregon.
Tweets from New York City (NYC) (n = 5000) were also labeled to test generalizability. The model
was applied retrospectively to 20 million tweets from 2017 and continuously to Meetup posts for
7,708 cities in North America. F1Scores ranged from 0.54 to 0.82 in the NYC dataset, a 24% to 92%
improvement over current methods. Precision ranged from 0.58 to 0.83, while recall ranged from
0.39 to 0.81. Adding OpenStreetMap features led to greater percent and absolute F1Scores in NYC
compared to Portland. Average F1Scores were greater in models with a nature label in addition to
human behavior labels (0.59 vs. 0.65), suggesting health behaviors are influenced by urban nature.
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1. INTRODUCTION

Natural components of the built environment (e.g. parks, tree-
lined streets, backyards), are associated with multiple health
benefits, including reduced blood pressure [1], reduced rates
of childhood obesity [2], depression and anxiety [3] and type-
2 diabetes [4], and increased rates of attention restoration [5],
positive attitude [6], ability to cope with stress [7], and social
cohesion [1, 8]. Previous studies suggest these health benefits
are attributable to multiple human-nature interactions, includ-
ing promoting physical exercise [9], aesthetic stimulation [10,
11], promoting social activities [8, 10, 12], air pollution miti-
gation [13, 14], and providing safe environments [2, 15].

While most studies support these hypothesized pathways
of action, identifying and creating ideal urban nature envi-
ronments remains challenging for public health researchers
and urban planners, respectively. Associations between nature

and health might differ with respect to land use classification
(e.g. parks, backyard, neighborhood) [11] [16], nature com-
position (e.g. grass, trees, lake) [17], socioeconomic status
(e.g. income, education level) [16], surrounding nature den-
sity (small forested city vs. sprawling urban metropolis) [18],
and personal affinity for nature [19]. Further, human-nature
interactions are dynamic, influenced by both repeatable time-
series [20] (e.g. seasonal park access) and unanticipated events
(e.g. wildfires, public protests) [21]. Cumulatively, the diversity
of urban nature composition and intra-population behaviors
makes it difficult to standardize, quantitatively measure, and
predict ideal urban nature environments, and modify envi-
ronments as population needs change both temporarily and
permanently over time.

Social media has significant potential to capture behaviors
and perceptions that drive human interactions with nature.
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Eighty-one percent of American teenagers [22] and 69% of all
American adults [23] use one or more social media channels.
Social media has become an essential component of young
adult communications, and provides rich textual, visual, and
meta data for capturing self-reported human-nature interac-
tions. For example, Twitter is a publicly available social media
data stream which includes up to 240 characters of text, hash-
tags for highlighting keywords and topics of interest, emoticons
for emphasizing emotional states, and hyperlinks. With more
than 500 million tweets per day, Twitter has significant poten-
tial to provide insight on human-nature interactions.

Unfortunately, methods for analyzing nature-related tweets
(and other forms of social media) are limited. There are several
candidate methods for nature-related social-media analytics.
First, you could collect a large continuous sample of social
media posts and label records by hand or via crowdsourcing
methods such as Mechanical Turk. Mechanical Turk involves
paying workers a small sum of money for performing simple
and subjective tasks, such as filling out a short survey or
labeling images (https://www.mturk.com/). This method has
significant limitations for large datasets, restricted budgets, and
ongoing analyses, all of which are common in public health
research and policy. Second, sample records can be collected
that include the name of a nature body (e.g. Grand Canyon,
a frequently used abbreviation for Grand Canyon National
Park, a popular tourist attraction and UNESCO World Her-
itage Site) [24]. Restricting tweets to known entities has high
precision, but potentially low recall. Furthermore, behaviors
at named entity locations such as parks are likely to differ
from behaviors in informal nature locations (e.g. backyards,
gardens, unnamed trails and forests). Third, you could col-
lect tweets with hashtags that indicate nature-related themes
(e.g. #nature, #lastchildinthewoods, #lake, etc.) [25]. How-
ever, hashtag sampling has limited recall, as a large percent-
age of nature-related tweets don’t include popular hashtags.
Hashtag sampling requires frequent updates to the hashtag
list, and misses hashtag posts that occur before new relevant
hashtags are added to the list. Finally, semantic analyses can
be used that applied part of speech (POS) tagging, bag of
words, and/or topic modeling (see the following github repos-
itory for an example application of POS tagging and topic
modeling with a set of social media posts related to urban
nature: https://github.com/larkinandy/Portland_UrbanNature_
Twitter). These semantic grouping- based methods have a deli-
cate balance between precision and recall, as inclusion of words
or semantic structures with multiple meanings may be essential
for high recall, but have reduced precision. For example, run-
ning is an essential keyword for capturing exercise behaviors,
but in addition to humans, animals, cars, and noses also run.

Bidirectional long-short term memory (BiLSTM) models
have significant potential to capture complex grammatical con-
text and generate inference in language-related tasks. BiLSTMs
include one or more layers of long-short term memory (LSTM)
cells with connections between previous and following cells to

integrate past and future states into cell outputs (e.g. previous
and following words in a sentence). LSTM models have been
successfully developed for multiple domains, including speech
recognition [26], text translation [27], sentiment analysis [28],
and POS tagging [29]. To date, LSTM models have not been
implemented in large scale, automated processing of nature-
related tweets.

We set out to develop a BiLSTM model which can infer
human-nature interactions from social media text. We chose to
focus on identifying human-nature interactions as a test case
because it represents an understudied area that is difficult to
measure with traditional data. This approach was designed to
achieve the following objectives:

1) Classify social media text records with multiple labels,
including whether the record describes urban nature
and/or identified pathways through which nature
either directly (e.g. reducing stress) or indirectly (e.g.
improving air quality) influences health.

2) Find an optimal balance between precision and recall,
measured by the F1Score (harmonic mean of precision
and recall) for the different human-nature interaction
pathways.

3) Generalize across diverse populations and geographical
extents with minimal variation in precision and recall.

4) Develop model architectures that capture interactions
between labels.

5) Georeference tweets to the finest spatial extent possible.
Overall, this approach will be able to leverage Twitter
data to accurately identify how individuals interact with
nature in cities, which can inform future urban planning,
sustainability and environmental health research.

2. METHODS

All scripts for model training and evaluation, along with sample
training records are available at http://github.com/larkinandy/
GreenTweet_MultivariateBiLSTM. Tables and figures which
supplement but are not essential to the manuscript body (Sup-
plemental Tables and Supplemental Figures, respectively) are
appended to the end of the manuscript.

2.1. Twitter Data Collection

Twitter data was collected using Python (v. 2.7) [30] and
Tweepy (v. 3.5) (http://docs.tweepy.org/en/latest/). From Jan-
uary 1st to December 31st 2017, tweets containing one or
more of the search keywords in Table 1 were continuously
downloaded from the Twitter data stream and stored in mySQL
(v. 5.7) [31] (the corresponding SQL data dictionary, which
describes the variables and format of the collected Twitter data
while stored in SQL format, is available in Supplemental Table
1). Downloaded records include time of initial post. Post times
among the downloaded Tweets cover 99.7% of the minutes in
2017.
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TABLE 1. Twitter Search Keywords

Twitter Search Keywords
backyard(s) forest(s) lawn(s) pasture(s) stream(s)

bush(es) garden(s) leaves plant(s) trail(s)
crop(s) grass mountain(s) prairie(s) tree(s)
field(s) hay nature river(s) wood(s)
flower(s) lake(s) park(s) riverside yard(s)

FIGURE 1. Example Tweets From the Training Dataset Before and After Preprocessing. Preprocessing steps include substituting emoticons with
their descriptions, removing hashtag symbols, padding punctuations, and adding flags for words and punctuations that originated from hashtags,
emoticons, and match a named entity in OpenStreetMap records (e.g. Silver Falls State Park, a restaurant named Fire on the Mountain). The
meaning of the word ‘yeos’ in the original tweet text is unknown. Red, blue, and purple colors correspond to hashtag, emoticon, and OSM values
that differ from the default value of 0.

Tweets were screened to remove retweets and tweets which
contained common phrases that contain search keywords but
don’t correspond to nature (e.g. ‘snake in the grass’, ‘data
stream’, ‘George Bush’).

2.2. Data Subset and Labeling

Tweets specific to Portland, Oregon were identified from
tweet authors self-identified as living in the Portland, Oregon
metropolitan region. These tweets were labeled by the
manuscript authors for the following labels (tweet examples
of positive and negative labels for each outcome are in
Supplemental Table 2).

Nature—Does the tweet include a non-anthropogenic object
that contributes to the composition of the built environment?
Weather, animals, and nature references within similes or
metaphors were not included.

Air—does the tweet mention air quality or respiratory func-
tion directly influenced by the atmospheric composition?

Aesthetic—does the tweet describe the visual aesthetic qual-
ity of an object or overall visual aesthetic quality of the envi-
ronment? Does not include quality descriptions for other senses
(e.g. beautiful music).

Exercise—are there any descriptions of physical activity?
Includes short moments of exercise (e.g. running through the
yard).

Safety—are there perceptions of overall safety, events that
signify a safety failure (e.g. murder) or success (e.g. rescue) or
descriptions of acts that increase or decrease safety?

Social—interactions between individuals, activities designed
for community engagement, or activities performed by
groups.

Stress—descriptions of increased or decreased anxiety,
workload, mental pressure, or general unease.

In addition to tweets from Portland, OR, 5000 tweets from
New York City (NYC) were randomly sampled from the 2017
dataset and coded by the lead author. The NYC dataset was used
to evaluate the potential generalizability of model inferences,
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as the NYC population and urban environment significantly
differs from Portland, OR.

2.3. Data Preprocessing

Data preprocessing was performed in Python (v. 2.7). During
preprocessing, hashtags symbols were removed, and emoti-
cons were replaced with Emoji 5.0 descriptions (a full list of
descriptions and corresponding emojis are available at https://
emojipedia.org/emoji- HYPERLINK “https://emojipedia.org/
emoji-5.0/“5.0). Tweets were then parsed using the snowball
parser algorithm in the natural language toolkit (NLTK) Python
module, which consists of a suite of well-established tools for
natural language processing [32].

Tweet texts were transformed into word vector arrays using
the Stanford GloVe (Global Vectors for Word Representation)
Common Crawl dictionary (https://nlp.stanford.edu/projects/
glove/). The GloVe dictionary contains 300 dimensional (300d)
numerical vector representations of words derived using an
unsupervised algorithm applied to data from website crawl
of 840 billion tokens (2.2 million vocabulary words, differ-
ing between cased and non-cased words) [33]. To account
for unknown words and variable sentence lengths, two 300d
vectors were initialized with random weights from a uniform
distribution (0,0.1) and added to the dictionary with ‘UNK’
and ‘PAD_TOKEN’ keys. Words present in tweets but missing
from the GloVe dictionary were assigned the UNK vector,
and PAD_TOKENS were appended so all tweets contained the
same number of word vectors as the longest tweet. Each word
vector array was appended with two binary units, indicating
whether the corresponding word from the tweet text originated
from a hashtag or emoticon (Figure 1).

To increase the likelihood that tweets contained enough
information for inferring labels, tweets were restricted to those
that met the following inclusion criteria: 1) Word length > =
5; 2) contained three or more words from the Stanford GloVe
dictionary, excluding words originating from hashtags and
emoticons; 3) differed from temporally preceding tweet records
by at least one trigram, excluding words originating from
hashtags and emoticons.

The North America OpenStreetMap (OSM) data was used
to link specific names in Tweets to geolocated nature and non-
nature objects already classified in OSM data. The OSM release
for March 12, 2019 was downloaded from http://download.
geofabrik.de/ [34]. Records were converted into shapefiles
using GDAL (Geospatial Data Abstraction Library) (v. 2.4.0)
[35]. A categorical variable or ‘flag’ was added to the shape-
files, in which records with a nature-related json (JavaScript
Object Notation) tag (e.g. natural.∗, tourism.picnic site) were
assigned a value of 1, records with a nature keyword in the
name but without a nature-related tag (e.g. Columbia River
High School) were assigned a value of −1, and all other
records were assigned a value of 0. Portland and NYC tweet
text records were then searched for references to named OSM

objects within 100 km of each respective city center. Search
parameters included ignoring upper case and allowing for
common abbreviations (e.g. rd for road). Abbreviations are
listed in Supplemental Table 3. Each word vector array was
then appended with a categorical integer or ‘flag’ (referred to
as OSM flag in Figure 1), with the value of the derived OSM
categorical value if the word referenced an OSM object, or 0
otherwise (Figure 1).

Finally, Portland tweets were partitioned into three datasets.
Ten thousand tweets were randomly selected and evenly parti-
tioned into development (dev) (n = 5000) and test (n = 5000)
datasets. The remaining Portland tweets (n = 63,073) make
up the training dataset. NYC tweets that met inclusion criteria
(n = 4850) collectively make up the fourth dataset used to test
generalizability of model inferences.

2.4. Neural Network Model Structure

Models were built, trained, and evaluated using TensorFlow
(v. 1.15) [36]. Additional system properties of interest include
Windows 10 Operating System and NVIDIA Titan Volta GPUs.
The BiLSTM model structure is shown below in Figure 2. Input
features consist of a 303-element vector for each LSTM cell:
300 elements for the word vector, and three elements for the
binary hashtag, binary emoticon, and categorical OSM flags.
Output from the forward and reverse passes of the bi-directional
LSTM cells are fed into a fully connected neural network layer,
which is followed by n (tunable hyperparameter) additional
fully connected layers. The final layer consists of seven nodes
with sigmoid activation functions to predict binary labels for
the seven classes of interest.

2.4.1. Cost Function
The cost function Jtotal is the unweighted arithmetic mean cost
Jc for all c outcomes in a given candidate model.

Jtotal = 1

m

m∑

c=1

Jc(w, b) Eq. 1.

Jc = 1

n

n∑

i=1

L( ˆyc,i, yc,i) Eq. 2.

L( ˆyc,i, yc,i) = (1 − yc,i)log(1 − yc,i) − yc,i log( ˆyc,i) Eq. 3.

Where.

ˆyc,i = predicted label for label c and sample i.

yc,i = actual label for label c and sample i.

L( ˆyc,i, yc,i) = loss for outcome c of sample i.

Jc = loss for outcome c.

m = number of outcomes labels.

n = number of records.
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FIGURE 2. Neural Network Model Structure. Input features into BiLSTM cells include word vectors, binary flags for hashtag and emoticon, and
a categorical flag for OSM references. BiLSTM cells are followed by several fully connected layers, and finally a layer of sigmoid nodes to predict
seven binary class labels. Note that the first layer in the model diagram, transforming words into word vectors, is part of preprocessing and not
trainable. The diagram is designed to match the underlying Tensorflow [36] models, which takes an embedding dictionary and words as input and
transforms words into vectors as the first step in the Tensorflow session.

2.4.2. Hyperparameter Tuning
Model hyperparameters and candidate hyperparameter val-
ues considered during tuning are shown below in Table 2.
Model overfitting was addressed using two dropout rates, one
for BiLSTM cells and another for the fully connected lay-
ers between the BiLSTM cells and the sigmoid layer. Num-
ber of epochs was set prior to hyperparameter tuning, and
default parameters were used for the Adam Optimizer (an
adaptive algorithm used during gradient descent optimiza-
tion to dynamically adjust the model learning rate). Hyperpa-
rameter values were selected which maximized F1Score and
minimized cost for the training set without overfitting the
dev set.

Once hyperparameter values were selected, the model was
trained for 250000 epochs, with dev cost evaluated every 500
epochs. Weights from the epoch with the lowest dev cost were
selected as the final model.

2.4.3. Model Evaluation
Model performance metrics include the confusion matrix, pre-
cision, recall, F1Score, and MCC for all seven nature-human
interactions labels for the train, dev, test, and NYC datasets.
The training dataset was used to train model weights, the
dev dataset was used for hyperparameter tuning, and the test
dataset was used to evaluate model performance. To evalu-
ate the relative contributions of the hashtag, emoticon, and
OSM flags, three sensitivity models were created with one
of the three feature flags removed from each model. To test
for interactions between nature pathway labels, we trained an
additional sensitivity model with six output labels instead of
seven, excluding the nature output label.

To compare model performance against published methods,
F1Score, precision, and recall were calculated for the NYC
dataset using the hashtag, and bag of words classification meth-
ods described in the introduction section. For hashtag-based
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TABLE 2. Candidate Hyperparameter Values Considered During Training and Chosen Hyperparameter Values in the Final Model

Hyperparameter Selected Value Tested Values

Learning Rate 9e-05 {1e-5, 5e-5, 7.5e-5, 9e-5, 1e-4, 1.1e-4, 1.25e-4,}
Minibatch Size 64 {32, 64, 128, 256}
Dropout Rate LSTM Layers 0.1 {0, 0.1, 0.25, 0.75, 0.9}
Dropout Rate Post LSTM 0.5 {0.1, 0.5, 0.9}
# Hidden Post-LSTM Layers 2 {1, 2, 3}
# Hidden Nodes in Post-LSTM Layer 256 {32, 64, 128, 256}
# Hidden Nodes in Pre-sigmoid Layer 14 {14, 28, 56}
Activation Function tangent {tangent, ReLu∗∗, leaky ReLu∗∗}
# epochs 120000 NA
momentum rate of Adam Optimizer 0.9 NA
RMSProp of Adam Optimizer 0.999 NA
small constant of Adam Optimizer 1.00E-08 NA
# BiLSTM cells n + 1∗ NA

Values with NA in the Tested Values column were set prior to model tuning.
∗n consists of the number of words in the longest tweet among the training,dev, test, and NYC datasets.
∗∗ReLu: Rectified Linear Unit, a ramp function where negative input values output either 0 (ReLu) or a small positive gradient (leaky ReLu).

classification, precision was assumed to be 100%, which is an
overly optimistic scenario but allows for best case comparisons
against the trained BiLSTM.

2.5. Model inference

The trained BiLSTM model was used to generate labels for
the collection of 2017 tweets originating from towns and cities
in the United States and Canada with populations greater than
10,000 (n = 7708). To demonstrate the feasibility of near real
time analytics and utilizing other social media data streams,
the model was also applied to the social media site ‘Meetup’
events data stream for the same set of US and Canada towns
and cities. Meetup records were streamed in real time via Kafka
(a low-latency platform for ingesting and transferring data in
real time), to a Python docker container for pre-processing, fol-
lowed by model inference via Tensorflow serving (a platform
for deploying Tensorflow models in a production pipeline).
Labels for both Twitter and Meetup records were joined with
OpenStreetMap records and stored in a backend Geoserver
(v. 2.14.4) and accessed via a spatial-temporal website GUI,
built using React (a JavaScript library for responding to com-
plex user input and dynamically updating website content,
v. 16.7).

3. RESULTS

3.1. Labeled Data Descriptive Statistics

Descriptive statistics for the train, dev, test, and NYC datasets
are shown in Table 3, stratified by nature labels. Additional
descriptive statistics are available in Supplemental Table 4. Per-
cent tweets with a positive nature label in the train, test, and dev

datasets (tweets originating from Portland) range from 58.04
to 58.74, while percent tweets in the NYC dataset is 49.35.
Percent tweets with positive safety labels are greater for tweets
with positive nature labels, and between Portland and NYC
datasets. Similarly, percent tweets with positive exercise labels
is greater for Portland compared to NYC datasets and positive
compared to negative nature labels, respectively. Percent tweet
with positive social labels are greater for NYC compared to
Portland and positive compared to negative nature labels. Col-
lectively, these summary statistics suggest self-reported nature
utilization levels differ between Portland and NYC, and self-
reported behaviors differ both between nature and non-nature
tweets.

3.2. Model Precision and Recall

Precision and recall across all datasets are shown below in
Table 4. Precision for nature, safety, aesthetic, exercise, and
social labels range from 0.81 to 0.92, while precision for
stress and air labels range from 0.77 to 0.89 and 0.58 to
0.95. Differences in precision between train, test, and NYC
datasets are within 0.06 for nature, safety, aesthetic, social,
and stress labels, while exercise and air precision is 12% and
37% lower, respectively, in the NYC compared to the training
dataset.

Recall across all outcomes and datasets range from 0.33
to 0.91. Recall is above 0.70 across all datasets for nature,
safety, aesthetic, and exercise. Recall for the social label ranges
from 0.50–0.72, while recall for the air label ranges from
0.45 to 0.72. The average absolute difference in recall is 9%
and 14% for test and NYC datasets, respectively, compared
to the training dataset, with greatest differences in safety and
exercise.
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TABLE 3. Descriptive Statistics for Train, Test, Dev, and NYC Datasets, Stratified by Nature Label

Nature Label = Yes Nature Label = No
Train Test Dev NYC Train Test Dev NYC

Sample Size 36541 2835 2937 2397 26422 2165 2063 2460
Percent 58.04 56.70 58.74 49.35 41.96 43.30 41.26 50.65

Yes Label
Frequency (%)

Safety 7.77 9.38 8.07 12.22 2.50 3.19 2.62 8.29
Beauty 6.74 7.97 7.29 6.13 1.08 1.43 1.50 1.50

Exercise 10.07 10.69 10.49 6.76 0.91 0.88 0.63 0.93
Social 13.40 15.66 15.73 22.11 4.52 4.85 5.14 6.46
Stress 1.44 1.52 1.16 1.29 0.46 0.37 0.58 0.41

Air 1.12 1.06 1.40 0.25 0.27 0.37 0.15 0.16
Emoticon

Frequency (%)
10.08 10.44 12.39 9.85 5.86 5.91 6.20 5.49

Hashtag
Frequency (%)

23.89 24.02 24.65 29.37 18.18 19.08 17.45 26.83

OSM Record
Frequency (%)

2.80 2.72 2.52 4.34 7.57 7.81 6.79 21.67

Mean Tweet
Length (words)

18.44 18.65 18.83 18.06 19.62 19.78 19.38 19.02

TABLE 4. Precision and Recall Scores for the Trained Model

Precision Recall
Train Dev Test NYC Train Dev Test NYC

Nature 0.89 0.86 0.85 0.83 0.91 0.88 0.89 0.81
Safety 0.82 0.83 0.88 0.86 0.78 0.72 0.76 0.47
Aesthetic 0.86 0.82 0.87 0.92 0.80 0.73 0.69 0.71
Exercise 0.92 0.81 0.82 0.80 0.82 0.72 0.73 0.62
Social 0.81 0.83 0.83 0.89 0.72 0.60 0.62 0.50
Stress 0.86 0.77 0.87 0.89 0.33 0.37 0.39 0.39
Air 0.95 0.92 0.77 0.58 0.66 0.52 0.45 0.70

3.3. Model Generalizability

Comparing model performance in Portland and New York
datasets provides insight into how well the model generalizes
beyond the geographical extent of the training dataset (based on
tweets originating from Portland only). Precision is similar for
the test and NYC datasets, except for the air label. Aesthetic,
social, and stress labels have greater precision in the NYC
dataset compared to the test dataset, while differences in nature,
safety, and exercise label precision between the two datasets are
within 2%. However, recall is significantly lower in the NYC
compared to the test dataset for four out of seven labels.

3.4. Input Feature Sensitivity Analysis

Figure 3 shows precision vs. recall for all labels, sensitivity
models, and datasets. X and y axis limits differ to highlight

intra label differences. Precision vs. Recall graphs with fixed
axes are available in Supplemental Figure 1, and performance
scores for all models in Figure 3 are available in Supplemental
Tables 5–9. Precision is strongly positively correlated with
recall for nature (r = 0.8) and exercise (r = −0.9) and negatively
correlated with recall for safety (r = −0.71). Removing the
hashtag input feature has the greatest impact on exercise, aes-
thetic, and stress. Removing the emoticon input feature has the
greatest impacts on safety and stress labels (−0.09 and − 0.12
change in NYC F1Score, respectively). Removing the OSM
location input feature has the greatest impact on safety and
stress (−0.07 and − 0.10, respectively). Removing all three
flag input features has the greatest impact on safety and stress
(−0.08 and − 0.16 change in NYC F1Score, respectively).
Removing the nature outcome label from the model has the
greatest impacts on safety and stress (−0.12 and − 0.14 change
in NYC F1Score, respectively). Adding greenspace as an out-
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TABLE 5. Comparison of Word List, Hashtag-based, and LSTM Performance in the NYC Dataset

F1Score Precision Recall
Word Hash LSTM % Word∗ % Hash∗∗ Word Hash LSTM Word Hash BiLSTM

Nature 0.66 0.45 0.82 24 82 0.49 1 0.83 1.00 0.29 0.81
Safety 0.32 0.48 0.60 88 25 0.55 1 0.86 0.23 0.32 0.47
Aesthetic 0.48 0.52 0.80 67 54 0.36 1 0.92 0.71 0.35 0.71
Exercise 0.43 0.50 0.70 63 40 0.31 1 0.8 0.70 0.33 0.62
Social 0.35 0.43 0.64 83 49 0.59 1 0.89 0.25 0.27 0.50
Stress 0.03 0.42 0.54 1700 29 0.02 1 0.89 0.12 0.27 0.39
Air 0.17 0.33 0.64 276 94 0.09 1 0.58 1.00 0.20 0.70

LSTM F1Score is between 0.12 and 0.47 units greater than Word and Hash models.
∗Percent Improvement of LSTM model relative to bag of words classification.
∗∗Percent Improvement of LSTM model relative to hashtag-based classification.

TABLE 6. Number of Twitter Labels for Five Select Cities in the US and Canada

Name Nature Safety Exercise Beauty Social Stress Air

Vancouver, BC 137072 13963 10090 8595 30174 7538 2410
Detroit, MI 108223 11047 3813 4499 30168 7689 2454
Orlando, FL 185017 17888 7288 8288 48582 8396 2896
Dallas, TX 275045 27369 11016 13980 79388 16108 5828
Wichita, KS 34850 4422 1457 1332 8252 2256 597

Tweet numbers correspond to tweets continuously collected from the Twitter data stream throughout 2017. Note that collected tweets are a representative sample rather than a
complete set of records.

come label improves NYC F1Score for other labels on average
by 0.06.

3.5. Model Comparison to Alternative Methods

Model performance for the BiLSTM, hashtag-based, and bag
of word labeling methods are shown in Table 5. For all labels,
BiLSTM model F1Scores are between 0.12 to 0.31 units greater
than the best score from the comparative labeling methods.
BiLSTM model advantage is greatest for the air label and
smallest for safety and stress.

3.6. Model Inference

An example screenshot of model application and inferences
derived from 2017 tweets and the real time Meetup events
datastream is shown below in Figure 4. Labels were suc-
cessfully derived for more than 21 million nature-related
tweets. For example, during 2017 there were 275,045 nature-
related tweets from Dallas, TX (Table 6). Note that these
are total number of nature labels, unadjusted for population
size. From June 10th to November 21st, 2019, the Tensorflow
server inferred labels for more than 12,000 Meetup events
per day. Events were processed within 5 to 15 minutes
of initial post, depending on server load (virtual machine
resources allocated to Tensorflow serving consisted of one
NVIDIA Titan Volta GPU, 32GB ram, and four virtual CPU
threads).

Tweets were successfully joined to georeferenced OSM
records using automated entity name recognition (left side
of the graphical user interface in Figure 4). Similarly, the
right side of the graphical user interface (GUI) demon-
strates that an automated pipeline can capture fine temporal
variations in self-reported behaviors at specific locations,
in this case Forest Park in Portland, OR. Readers can
access the pilot project GUI and corresponding records at
spatialhealthsocialmedia.com (planned availability through
2022).

4. DISCUSSION

4.1. Rationale for Model Development

Urban nature can promote behaviors which influence health
and wellness. Social media is a temporally fine and contex-
tually rich data source with self-reported behaviors that can
be used to characterize urban-nature interactions, as well as
other complex behavioral and environmental conditions that
are not easy to measure using traditional data sources. Current
methods for automated classification of social media records
have limited precision and/or recall, with little potential for
improvement. We developed a BiLSTM model to test the
potential of deep learning for improving classifications. This
method can be applied to all social media data to better under-
stand a range of human-environment interactions.
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FIGURE 3. Precision vs. Recall for Each Outcome, Dataset, and Sensitivity Model. Marker symbols correspond to LSTM model structure, while
colors correspond to dataset. Abbreviations: No Hash—no hashtag indicator in model. No Emot—no emoticon indicator in model. No Loc—no
OSM flag in model. No Nature—no nature outcome in model. ∗Reference lines correspond to the precision and recall performance space for the
nature label.

For all labels of interest, F1Scores in the developed BiL-
STM model are noticeably greater than alternative methods,
even under the assumption that hashtag-based classification
has 100% precision. This is the first attempt to develop a
deep learning model for nature-related tweet classification. We
chose to focus on identifying human-nature interactions as a
test case because it represents an understudied area that is
difficult to measure with traditional data and there are a diverse
range of pathways that test the application of our modelling
approach in different domains. Advantages of a deep learning
model approach are likely to increase further as larger datasets,

deeper neural network models, and alternative neural network
architectures are evaluated.

4.2. Model Performance

Comparison of precision between NYC and Portland test
datasets suggest model precision generalizes well across
geographical extents: NYC precision is greater than or within
2% of Portland test precision for all outcome labels except
air. This is partly attributable to the OSM feature flag, which
increased nature precision in the NYC dataset by 9%. The
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FIGURE 4. Spatial and Temporal Distribution of Automated Large-Scale Model Inferences.

OSM flag increases the model’s ability to classify tweets with
named entities that weren’t in the training dataset, possibly
through reducing the weight of the literal inference of a name
(e.g. Sunset Park) in favor of greater weight on the surrounding
context (e.g. apartments for rent in Sunset Park).

Recall in the NYC dataset was significantly lower than
the Portland test dataset, particularly for safety and social
outcomes. This is partly attributable to behaviors encountered
in the NYC dataset, but not the training dataset. For example,
nearly 20% of the false negative safety predictions in our NYC
dataset were describing the 2017 shooting of United States
Senator Scalise at a baseball field. While our model correctly
predicted safety labels for multiple descriptions of violent
actions in parks, we hypothesize the word baseball likely led
the model to predict the word shoot was being used in relation
to sports (e.g. shooting hoops), and the model incorrectly
predicted the safety outcome as false. In a follow up sensitivity
analysis, when 50% of the Scalise shooting-related tweets were
added to the training dataset the model correctly predicted the
remaining 50% as positive for safety. Together, these results
suggest that the model’s ability to accurately predict labels
for contexts similar to those in the training dataset generalizes
well across geographical extents, but the ability to capture
behaviors outside of the contextual coverage space provided
by the training dataset is limited.

Increasing model recall in the near term is highly probable.
Recall of all model-outcome combinations in Figure 3 are

moderately correlated with the number of positive labels in the
training dataset (r = 0.34). Most notably, precision and recall
for nature, which contains 4x greater number of positive labels
in the training dataset than any other outcome, were highly
correlated (r = 0.80) and greater than 80% across all datasets.
It’s also noteworthy that less than 1% of the training dataset
contains positive labels for stress and air, which provides few
positive examples for the model to learn from. Increasing the
number of positive labels in the training dataset is very likely to
increase recall and, to a lesser extent, precision. Recall can also
be improved by integrating data records across geographical
regions, providing greater diversity of described behaviors,
named entities, and local dialects within the training dataset.

4.3. Limitations and Future Directions

There are several limitations to the current model and mod-
elling approach that should be highlighted. First, OSM records
include unverified contributions from the OSM community,
and the quality of feature naming and tag-labeling can vary.
Second, cultural references to nature objects can often inflate
false positive labels. For example, tweets referencing the song
‘Supermarket Flowers’ by Ed Sheeran led to 41 false posi-
tive nature labels in the Portland test dataset within a very
short amount of time surrounding the song’s release date.
Term Frequency-Inverse Document Frequency and other Nat-
ural Language Processing methods can potentially identify
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temporary spikes in these cultural references. In our compar-
ison between methods, we did not include POS tagging, topic
modeling, or other NLP-based methodologies. In a related
study, the authors evaluated the Portland dataset using POS and
topic modeling. While the study is not published at the time of
this writing, scripts and supplemental materials are available at
the GitHub repository https://github.com/larkinandy/Portland_
UrbanNature_Twitter. Third, model performance for behavior
labels is slightly greater when concomitantly predicting nature
(average F1Score improves by 0.16). While the improvement is
slight at present, it’s possible that future models with improved
precision and recall will be able to better capture nature-
behavior interactions. Integrating convolutional layers (e.g.
pooling subsets of trigram word vectors), attention-retention
layers, and similar model structures with high interpretability
can potentially better capture and infer nature-behavior inter-
actions. Fourth, in this model application we chose to focus
on Twitter datasets. However, we believe this model is a prime
candidate for transfer learning to generate models and infer-
ences for other text-based social media platforms (e.g. Meetup,
Reddit, etc.). Social media streams have distinct geographical
and demographic distributions and capturing multiple social
media streams is essential for accurate population inferences.
Each social media stream has unique dataset properties, but
there is significant potential for the development of transfer
learning models. For example, here we demonstrated that the
trained BiLSTM model can infer labels for Meetup events,
albeit without validation.

In this model we chose to focus specifically on urban nature,
as this where we have expert domain knowledge for optimizing
model labels and identifying potential biases related to the
subject matter. This is just a first step, as human-environment
interactions are influenced by many additional environmental
features (e.g. weather) and non-urban land use properties (e.g.
nearby countryside, water bodies, mountains). Future models
would ideally integrate domain knowledge from multiple
fields to capture a more holistic set of human-environmental
interactions.

5. CONCLUSIONS

We developed the first deep learning model for classifying
human-nature interactions from Twitter records, integrating
OSM data to provide additional contextual information. In
our most stringent test dataset, model performance improved
F1Scores between 24 to 94% for class labels compared to
hashtag-based and bag of word classification methods. The
model was able to capture a range of complex pathways (e.g.
safety, exercise, beauty) frequently observed in primary data
collection studies. We also demonstrated how this model
could be applied in near-real time to collect, analyze and
display human-nature data from Twitter and Meetup, which can
inform future urban planning, sustainability and environmental

health research. This modelling approach has significant
potential to be expanded to other social media data streams and
questions.
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