
© The British Computer Society 2017.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution,
and reproduction in any medium, provided the original work is properly cited.

Advance Access publication on 21 November 2017 doi:10.1093/comjnl/bxx108

Relative Suffix Trees

ANDREA FARRUGGIA1, TRAVIS GAGIE
2,3, GONZALO NAVARRO

2,4*,
SIMON J. PUGLISI5 AND JOUNI SIRÉN6

1Department of Computer Science, University of Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa PI, Italy
2CeBiB—Center for Biotechnology and Bioengineering, Santiago, Chile

3Escuela de Informática y Telecomunicaciones, Diego Portales University, Ejército 441, Santiago, Chile
4Department of Computer Science, University of Chile, Beauchef 851, Santiago, Chile

5Department of Computer Science, University of Helsinki, Helsinki, Finland
6Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK

*Corresponding author: a.farruggia@di.unipi.it

Suffix trees are one of the most versatile data structures in stringology, with many applications in
bioinformatics. Their main drawback is their size, which can be tens of times larger than the input
sequence. Much effort has been put into reducing the space usage, leading ultimately to com-
pressed suffix trees. These compressed data structures can efficiently simulate the suffix tree, while
using space proportional to a compressed representation of the sequence. In this work, we take a
new approach to compressed suffix trees for repetitive sequence collections, such as collections of
individual genomes. We compress the suffix trees of individual sequences relative to the suffix tree
of a reference sequence. These relative data structures provide competitive time/space trade-offs,
being almost as small as the smallest compressed suffix trees for repetitive collections, and competi-

tive in time with the largest and fastest compressed suffix trees.

Keywords: suffix trees; compressed text indexing; repetitive collections

Received 12 May 2017; revised 1 September 2017; editorial decision 16 October 2017;
Handling editor: Raphael Clifford

1. INTRODUCTION

The suffix tree [1] is one of the most powerful bioinformatic
tools to answer complex queries on DNA and protein sequences
[2–4]. A serious problem that hampers its wider use on large
genome sequences is its size, which may be 10–20 bytes per
character. In addition, the non-local access patterns required by
most interesting problems solved with suffix trees complicate
secondary-memory deployments. This problem has led to
numerous efforts to reduce the size of suffix trees by represent-
ing them using compressed data structures [5–17], leading to
compressed suffix trees (CST). Currently, the smallest CST is
the so-called fully compressed suffix tree (FCST) [10, 14],
which uses 5 bits per character (bpc) for DNA sequences, but
takes milliseconds to simulate suffix tree navigation operations.
In the other extreme, Sadakane’s CST [5, 11] uses about 12 bpc
and operates in microseconds, and even nanoseconds for the
simplest operations.
A space usage of 12 bpc may seem reasonable to handle, for

example, one human genome, which has about 3.1 billion
bases: it can be operated within a RAM of 4.5 GB (the
representation contains the sequence as well). However, as the

price of sequencing has fallen, sequencing the genomes of a
large number of individuals has become a routine activity. The
1000 Genomes Project [18] sequenced the genomes of several
thousand humans, while newer projects can be orders of magni-
tude larger. This has made the development of techniques for
storing and analyzing huge amounts of sequence data flourish.
Just storing 1000 human genomes using a 12 bpc CST

requires almost 4.5 TB, which is much more than the amount
of memory available in a commodity server. Assuming that a
single server has 256 GB of memory, we would need a cluster
of 18 servers to handle such a collection of CSTs (compared
with over 100 with classical suffix tree implementations!). With
the smaller (and much slower) FCST, this would drop to 7–8
servers. It is clear that further space reductions in the representa-
tion of CST would lead to reductions in hardware, communica-
tion and energy costs when implementing complex searches
over large genomic databases.
An important characteristic of those large genome data-

bases is that they usually consist of the genomes of indivi-
duals of the same or closely related species. This implies that
the collections are highly repetitive, that is, each genome can

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VOL. 61 NO. 5, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/5/773/4643569 by guest on 20 April 2024

http://creativecommons.org/licenses/by/4.0/

be obtained by concatenating a relatively small number of
substrings of other genomes and adding a few new characters.
When repetitiveness is considered, much higher compression
rates can be obtained in CST. For example, it is possible to
reduce the space to 1–2 bpc (albeit with operation times in
the milliseconds) [13], or to 2–3 bpc with operation times in
the microseconds [15]. Using 2 bpc, our 1000 genomes could
be handled with just three servers with 256 GB of memory.
Compression algorithms best capture repetitiveness by

using grammar-based compression or Lempel–Ziv compres-
sion.1 In the first case [19, 20], one finds a context-free gram-
mar that generates (only) the text collection. Rather than
compressing the text directly, the current CSTs for repetitive
collections [13, 15] apply grammar-based compression on
the data structures that simulate the suffix tree. Grammar-
based compression yields relatively easy direct access to the
compressed sequence [21], which makes it attractive com-
pared to Lempel–Ziv compression [22], despite the latter
generally using less space.
Lempel–Ziv compression cuts the collection into phrases,

each of which has already appeared earlier in the collection.
To extract the content of a phrase, one may have to recur-
sively extract the content at that earlier position, following a
possibly long chain of indirections. So far, the indexes built
on Lempel–Ziv compression [23] or on combinations of
Lempel–Ziv and grammar-based compression [24–26] sup-
port only pattern matching, which is just one of the wide
range of functionalities offered by suffix trees. The high cost
to access the data at random positions lies at the heart of the
research on indexes built on Lempel–Ziv compression.
A simple way out of this limitation is the so-called relative

Lempel–Ziv (RLZ) compression [27], where one of the
sequences is represented in plain form and the others can
only take phrases from that reference sequence. This enables
immediate access for the symbols inside any copied phrase
(as no transitive referencing exists) and, at least, if a good ref-
erence sequence has been found, offers compression competi-
tive with the classical Lempel–Ziv. In our case, taking any
random genome per species as the reference is good enough;
more sophisticated techniques have been studied [28–30].
Structures for direct access [31, 32] and even for pattern
matching [33] have been developed on top of RLZ.
Another approach to compressing a repetitive collection

while supporting interesting queries is to build an automaton
that accepts the sequences in the collection, and then index
the state diagram as an directed acyclic graph (DAG); see, for
example, [34–36] for recent discussions. The first data struc-
ture to take this approach was the generalized compressed
suffix array (GCSA) [37, 36], which was designed for pange-
nomics so queries can return information about sequences not

in the collection but that can be obtained from those in the
collection by recombination.
The FM-index of an alignment (FMA) [38, 39] is similar

to the GCSA but indexes only the sequences in the collection:
whereas the GCSA conceptually embeds the automaton in a
de Bruijn graph, the FMA embeds it in a colored de Bruijn
graph [40], preserving its specificity. Both the GCSA and the
FMA are practical but neither support the full functionality of
a suffix tree. The precursor to the FMA, the suffix tree of an
alignment (STA) [41, 42], allows certain disjunctions in the
suffix tree’s edge labels in order to reduce the size of the tree
while maintaining its functionality. Unlike the FMA, how-
ever, the STA has not been implemented. Both the STA and
the FMA divide the sequences in the collection into regions
of variation and conserved regions, and depend on the con-
served regions being long enough that they can be distin-
guished from each other and the variations. This dependency
makes these structures vulnerable to even a small change in
even one sequence to an otherwise-conserved region, which
could hamper their scalability.

1.1. One general CST or many individual CST s

It is important to note that the existing techniques to reduce
the space of a collection of suffix trees on similar texts build
a structure that indexes the collection as a whole, which is
similar to concatenating all the texts of the collection and
building a single suffix tree on the concatenation. As such,
these structures do not provide the same functionality of hav-
ing an individual CST of each sequence.
Exploiting the repetitiveness of a collection while retaining

separate index structures for each text has only been achieved
for a simpler pattern-matching index, the suffix array (SA) [43],
by means of the so-called relative FM-indexes (FMIs) [44]. The
SA is a component of the suffix tree.
Depending on the application, we may actually need a single

CST for the whole collection, or one for each sequence. In bio-
informatics, a single CST is more appropriate for search and dis-
covery of motifs across a whole population, for example, by
looking for approximate occurrences of a certain sequence in the
genomes of the population or by discovering significant
sequences that appear in many individuals. Other bioinformatic
problems, for example related to the study of diseases, inherit-
ance patterns or forensics, boil down to searching or discovering
patterns in the genomes of individuals, by finding common
approximate subsequences between two genomes, or looking
for specific motifs or discovering certain patterns in a single
genome.
An example of recent research making use of the relative

storage of individual genomic datasets is how Muggli et al.
[45] (see also [46, 47]) adapted relative FMIs to an FMI vari-
ant that Bowe et al. [48] had described for de Bruijn graphs,
thus obtaining a space-efficient implementation of Iqbal

1We refer to ‘long-range’ repetitiveness, where similar texts may be found
far away in the text collection.

774 A. FARRUGGIA et al.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VOL. 61 NO. 5, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/5/773/4643569 by guest on 20 April 2024

et al.’s [49] colored de Bruijn graphs. These overlay de
Bruijn graphs for many individuals to represent genetic vari-
ation in a population.

1.2. Our contribution

In this paper, we develop a CST for repetitive collections by
augmenting the relative FMI with structures based on RLZ.
This turns out to be the first CST representation that takes
advantage of the repetitiveness of the texts in a collection
while at the same time offering an individual CST for each
such text. Besides retaining the original functionality, such an
approach greatly simplifies inserting and deleting texts in the
collection and implementing the index in distributed form.
Our compressed suffix tree, called relative suffix tree (RST),

follows a trend of CSTs [6–9, 11, 13] that use only a SA and an
array with the length of the longest common prefix (LCP)
between each suffix and the previous one in lexicographic order
(called LCP). We use the relative FMI as our SA, and compress
LCP using RLZ. On top of the RLZ phrases we build a tree of
range minima that enables fast range minimum queries, as well
as next- and previous-smaller-value queries, on LCP [13]. All
the CST functionality is built on those queries [6]. Our main
algorithmic contribution is this RLZ-based representation of the
LCP array with the required extra functionality.
On a collection of human genomes, our RST achieves less

than 3 bpc and operates within microseconds. This perform-
ance is comparable to that of a previous CST [15] (as
explained, however, the RST provides a different functional-
ity because it retains the individual CSTs).

2. BACKGROUND

A string [] = ¼S n s s1, , , n1 is a sequence of characters over
an alphabet sS = { ¼ }1, , . For indexing purposes, we often
consider text strings []T n1, that are terminated by an end-
marker [] = =T n $ 0 not occurring elsewhere in the text.
Binary sequences are sequences over the alphabet { }0, 1 . If
[]B n1, is a binary sequence, its complement is binary

sequence []B n1, , with [] = - []B i B i1 .
For any binary sequence []B n1, , we define the subsequence
[]S B of string []S n1, as the concatenation of the characters si

with [] =B i 1. The complement []S B of subsequence []S B is
the subsequence []S B . Contiguous subsequences []S i j, are
called substrings. Substrings of the form []S j1, and []S i n, ,

Î []i j n, 1, , are called prefixes and suffixes, respectively. We
define the lexicographic order among strings in the usual way.

2.1. Full-text indexes

The suffix tree (ST) [1] of text T is a tree containing the suf-
fixes of T , with unary paths compacted into single edges.

Because the degree of every internal node is at least two, there
can be at most -n2 1 nodes, and the suffix tree can be stored
in O()n nlog bits. In practice, this is at least n10 bytes for small
texts [50], and more for large texts as the pointers grow larger.
If v is a node of a suffix tree, we write p ()v to denote the con-
catenation of the labels of the path from the root to v.

SAs [43] were introduced as a space-efficient alternative to
suffix trees. The SA SA []n1,T of text T is an array of pointers
to the suffixes of the text in lexicographic order.2 In its basic
form, the SA requires n nlog bits in addition to the text, but
its functionality is more limited than that of the suffix tree. In
addition to the SA, many algorithms also use the inverse SA
ISA[]n1, , with SA ISA[[]] =i i for all i.

Let lcp()S S,1 2 be the length of the (LCP) of strings S1 and
S2. The LCP array [43] LCP[]n1, of text T stores the LCP
lengths for lexicographically adjacent suffixes of T as LCP[] =i
lcp SA SA([[-]] [[]])T i n T i n1 , , , (with LCP[] =1 0). Let v
be an internal node of the suffix tree, p= ()∣ ∣ℓ v the string
depth of node v, and SA[]sp ep, the corresponding SA inter-
val. The following properties hold for the lcp-interval
LCP[]sp ep, : (i) LCP[] <sp ℓ; (ii) LCP[] ³i ℓ for all <sp
£i ep; (iii) LCP[] =i ℓ for at least one < £sp i ep; and

(iv) LCP[+] <ep ℓ1 [51].
Abouelhoda, Kurtz and Ohlebusch [51] showed how traver-

sals on the suffix tree could be simulated using the SA, the
LCP array, and a representation of the suffix tree topology
based on lcp-intervals, paving the way for more space-efficient
suffix tree representations.

2.2. Compressed text indexes

Data structures supporting rank and select queries over
sequences are the main building blocks of compressed text
indexes. If S is a sequence, we define rank ()S i,c as the number
of occurrences of character c in the prefix []S i1, , while
select ()S j,c is the position of the occurrence of rank j in
sequence S. A bitvector is a representation of a binary sequence
supporting fast rank and select queries. Wavelet trees (WT) [52]
use bitvectors to support rank and select on general sequences.
The Burrows–Wheeler transform (BWT) [53] is a revers-

ible permutation BWT[]n1, of text T . It is defined as
BWT SA[] = [[] -]i T i 1 (with BWT[] = []i T n if SA[] =i 1).
Originally intended for data compression, the BWT has been
widely used in space-efficient text indexes, because it shares
the combinatorial structure of the suffix tree and the SA.
Let LF be a function such that SA LF SA[()] = [] -i i 1

(with SA LF[()] =i n if SA[] =i 1). We can compute it as
LF C BWT rank BWTBWT() = [[]] + ()[]i i i,i , where C[]c is the
number of occurrences of characters with lexicographical
values smaller than c in BWT. The inverse function of LF is Y,
with select BWT CY() = (- [])i i c,c , where c is the largest

2We drop the subscript if the text is evident from the context.

775RELATIVE SUFFIX TREES

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VOL. 61 NO. 5, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/5/773/4643569 by guest on 20 April 2024

character value with C[] <c i. With functions Y and LF, we
can move forward and backward in the text, while maintaining
the lexicographic rank of the current suffix. If the sequence S
is not evident from the context, we write LFS and YS.
Compressed SAs (CSA) [54–56] are text indexes support-

ing a functionality similar to the SA. This includes the fol-
lowing queries: (i) find() = []P sp ep, determines the
lexicographic range of suffixes starting with pattern []P ℓ1, ;
(ii) locate SA() = []sp ep sp ep, , returns the starting positions
of these suffixes; and (iii) extract() = []i j T i j, , extracts sub-
strings of the text. In practice, the find performance of CSAs
can be competitive with SAs, while locate queries are orders
of magnitude slower [57]. Typical index sizes are less than
the size of the uncompressed text.
The FMI [55] is a common type of CSA. A typical imple-

mentation [58] stores the BWT in a wavelet tree [52]. The
index implements find queries via backward searching. Let
[]sp ep, be the lexicographic range of the suffixes of the text
starting with suffix [+]P i ℓ1, of the pattern. We can find the
range matching suffix []P i ℓ, with a generalization of function
LF as

LF C rank BWT

C rank BWT

([] [])= [[[]] + (-) +

[[]] + ()]
[]

[]

sp ep P i P i sp

P i ep

, , , 1 1,

, .
P i

P i

We support locate queries by sampling some SA pointers.
If we want to determine a value SA[]i that has not been
sampled, we can compute it as SA SA[] = [] +i j k, where
SA[]j is a sampled pointer found by iterating LF k times,
starting from position i. Given sample interval d , the samples
can be chosen in suffix order, sampling SA[]i at positions div-
isible by d , or in text order, sampling []T i at positions divis-
ible by d and marking the sampled SA positions in a
bitvector. Suffix-order sampling requires less space, often
resulting in better time/space trade-offs in practice, while
text-order sampling guarantees better worst-case performance.
We also sample the ISA pointers for extract queries. To
extract []T i j, , we find the nearest sampled pointer after []T j ,
and traverse backwards to []T i with function LF.

CST [5] are compressed text indexes supporting the full
functionality of a suffix tree (see Table 1). They combine a
CSA, a compressed representation of the LCP array, and a
compressed representation of suffix tree topology. For the
LCP array, there are several common representations:

• LCP-byte [51] stores the LCP array as a byte array. If
LCP[] <i 255, the LCP value is stored in the byte
array. Larger values are marked with a 255 in the byte
array and stored separately. As many texts produce
small LCP values, LCP-byte usually requires n to n1.5
bytes of space.

• We can store the LCP array by using variable-length
codes. LCP-dac uses directly addressable codes [59]
for the purpose, resulting in a structure that is typically

somewhat smaller and somewhat slower than LCP-
byte.

• The permuted LCP (PLCP) array [5] PLCP[]n1, is the
LCP array stored in text order and used as LCP[] =i
PLCP SA[[]]i . Because PLCP PLCP[+] ³ [] -i i1 1,
the array can be stored as a bitvector of length n2 in

o+ ()n n2 bits. If the text is repetitive, run-length
encoding can be used to compress the bitvector to take
even less space [6]. Because accessing PLCP uses
locate, it is much slower than the above two encodings.

Suffix tree topology representations are the main difference
between the various CST proposals. While the CSAs and the
LCP arrays are interchangeable, the tree representation deter-
mines how various suffix tree operations are implemented.
There are three main families of CST:

• Sadakane’s compressed suffix tree (CST-Sada) [5]
uses a balanced parentheses representation for the tree.
Each node is encoded as an opening parenthesis, fol-
lowed by the encodings of its children and a closing
parenthesis. This can be encoded as a bitvector of
length ¢n2 , where ¢n is the number of nodes, requiring
up to o+ ()n n4 bits. CST-Sada tends to be larger and
faster than the other compressed suffix trees [11, 13].

• The fully compressed suffix tree (FCST) of Russo
et al. [10, 14] aims to use as little space as possible. It

TABLE 1. Typical compressed suffix tree operations.

Operation Description

Root() The root of the tree
Leaf()v Is node v a leaf?
Ancestor()v w, Is node v an ancestor of node w?
Count()v Number of leaves in the subtree with v as the root
Locate()v Pointer to the suffix corresponding to leaf v
Parent()v The parent of node v
FChild()v The first child of node v in alphabetic order
NSibling()v The next sibling of node v in alphabetic order
LCA()v w, The lowest common ancestor of nodes v and w

SDepth()v String depth: length p= ()∣ ∣ℓ v of the label from
the root to node v

TDepth()v Tree depth: the depth of node v in the suffix tree
LAQ ()v d,S The highest ancestor of node v with string depth at

least d
LAQ ()v d,T The ancestor of node v with tree depth d
SLink()v Suffix link: Node w such that p p() = ()v c w for a

character Î Sc
SLink ()vk Suffix link iterated k times
Child()v c, The child of node v with edge label starting with

character c

Letter()v i, The character p ()[]v i

776 A. FARRUGGIA et al.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VOL. 61 NO. 5, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/5/773/4643569 by guest on 20 April 2024

does not require an LCP array at all, and stores a
balanced parentheses representation for a sampled sub-
set of suffix tree nodes in o()n bits. Unsampled nodes
are retrieved by following suffix links. FCST is smal-
ler and much slower than the other CST [10, 13].

• Fischer, Mäkinen and Navarro [6] proposed an inter-
mediate representation, CST-NPR, based on lcp-
intervals. Tree navigation is handled by searching for
the values defining the lcp-intervals. Range minimum
queries rmq()sp ep, find the leftmost minimal value in
LCP[]sp ep, , while next/previous smaller value queries
nsv()i /psv()i find the next/previous LCP value smal-
ler than LCP[]i . After the improvements by various
authors [7–9, 11, 13], the CST-NPR is perhaps the
most practical compressed suffix tree.

For typical texts and component choices, the size of CST
ranges from the n1.5 to n3 bytes of CST-Sada to the n0.5 to n
bytes of FCST [11, 13]. There are also some CST variants for
repetitive texts, such as versioned document collections and
collections of individual genomes. Abeliuk et al. [13] devel-
oped a variant of CST-NPR that can sometimes be smaller
than n bits, while achieving performance similar to the FCST.
Navarro and Ordez [15] used grammar-based compression for
the tree representation of CST-Sada. The resulting compressed
suffix tree (GCT) requires slightly more space than the CST-
NPR of Abeliuk et al., while being closer to the non-repetitive
CST-Sada and CST-NPR in performance.

2.3. Relative Lempel–Ziv

RLZ parsing [27] compresses target sequence S relative to
reference sequence R. The target sequence is represented as
a concatenation of z phrases = ()w p ℓ c, ,i i i i , where pi is the
starting position of the phrase in the reference, ℓi is the
length of the copied substring and ci is the mismatch charac-
ter. If phrase wi starts from position ¢p in the target, then
[¢ ¢ + -] = [+ -]S p p ℓ R p p ℓ, 1 , 1i i i i and [¢ +] =S p ℓ ci i.
The shortest RLZ parsing of the target sequence can be found

in (essentially) linear time. The algorithm builds a CSA for the
reverse of the reference sequence, and then parses the target
sequence greedily by using backward searching. If the edit dis-
tance between the reference and the target is s, we need at most
s phrases to represent the target sequence. On the other hand,
because the relative order of the phrases can be different in
sequences R and S, the edit distance can be much larger than
the number of phrases in the shortest RLZ parsing.
In a straightforward implementation, the phrase pointers pi

and the mismatch characters ci can be stored in arrays Wp and
Wc. These arrays take ∣ ∣z Rlog and sz log bits. To support ran-
dom access to the target sequence, we can encode phrase
lengths as a bitvector Wℓ of length ∣ ∣S [27]: we set [] =W j 1ℓ

if []S j is the first character of a phrase. The bitvector requires

O+ ()z zlog n

z
bits if we use the sdarray representation [60].

To extract []S j , we first determine the phrase wi, with
rank= ()i W j,ℓ1 . If [+] =W j 1 1ℓ , we return the mismatch

character []W ic . Otherwise we determine the phrase offset
with a select query, and return the character [[] + -R W i jp

select ()]W i,ℓ1 .
Ferrada et al. [32] showed how, by using relative pointers

instead of absolute pointers, we can avoid the use of select
queries. They also achieved better compression of DNA col-
lections, in which most of the differences between the target
sequences and the reference sequence are single-character
substitutions. By setting select[] = - ()W i p W i,r i ℓ1 , the gen-
eral case simplifies to [] = [[] +]S j R W i jr . If most of the dif-
ferences are single-character substitutions, +pi 1 will often be

+ +p ℓ 1i i . This corresponds to [+] = []W i W i1r r with rela-
tive pointers, making run-length encoding of the pointer array
worthwhile.
When we sort the suffixes in lexicographic order, substitu-

tions in the text move suffixes around, creating insertions and
deletions in the SA and related structures. In the LCP array,
an insertion or deletion affecting LCP[]i can also change the
value of LCP[+]i 1 . Hence, RLZ with relative pointers is not
enough to compress the LCP array.
Cox et al. [61] modified Ferrada et al.’s version of RLZ to

handle other small variations in addition to single-character sub-
stitutions. After adding a phrase to the parse, we look ahead a
bounded number of positions to find potential phrases with a
relative pointer []W ir close to the previous explicit relative
pointer []W jr . If we can find a sufficiently long phrase this way,
we encode the pointer differentially as [] - []W i W jr r . Otherwise
we store []W ir explicitly. We can then save space by storing the
differential pointers separately using less bits per pointer.
Because there can be multiple mismatch characters between
phrases i and +i 1, we also need a prefix-sum data structure L
for finding the range []W a b,c containing the mismatches. Cox
et al. showed that their approach compresses both DNA
sequences and LCP arrays better than Ferrada et al.’s version,
albeit with slightly slower random access. We refer the reader to
their paper for more details of their implementation.

3. RELATIVE FMI

The relative FMI (RFM) [44] is a compressed SA of a
sequence relative to the CSA of another sequence. The index
is based on approximating the longest common subsequence
(LCS) of BWTR and BWTS, where R is the reference sequence
and S is the target sequence, and storing several structures
based on the common subsequence. Given a representation of
BWTR supporting rank and select, we can use the relative
index RFM ∣S R to simulate rank and select on BWTS.
In this section, we describe the relative FMI using the nota-

tion and the terminology of this paper. We also give an expli-
cit description of the locate and extract functionality, which

777RELATIVE SUFFIX TREES

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VOL. 61 NO. 5, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/5/773/4643569 by guest on 20 April 2024

was not included in the original paper. Finally, we describe a
more space-efficient variant of the algorithm for building a
relative FMI with full functionality.

3.1. Basic index

Assume that we have found a long common subsequence of
sequences X and Y . We call positions []X i and []Y j lcs-
positions, if they are in the common subsequence. If BX and
BY are the binary sequences marking the common subse-
quence (select select[()] = [()]X B i Y B i, ,X Y1 1), we can move
between lcs-positions in the two sequences with rank and
select operations. If []X i is an lcs-position, the corresponding
position in sequence Y is select rank[(())]Y B B i, ,Y X1 1 . We
denote this pair of lcs-bitvectors Align() = á ñX Y B B, ,X Y .
In its most basic form, the relative FMI RFM ∣S R only sup-

ports find queries by simulating rank queries on BWTS. It does
this by storing Align BWT BWT(),R S and the complements
(subsequences of non-aligned characters) Align BWT()R and
Align BWT()S . The lcs-bitvectors are compressed using
entropy-based compression [62], while the complements are
stored in structures similar to the reference BWTR.
To compute rank BWT()i,c S , we first determine the number

of lcs-positions in BWTS up to position []S i with =k
rank BWT()B i,1 S . Then we find the lcs-position k in BWTR with

select BWT= ()j B k,1 R
. With these positions, we can compute

rank BWT rank BWT

rank Align BWT

rank Align BWT

() = ()
- (() -)
+ (() -)

i j

j k

i k

, ,

,

, .

c S c R

c R

c S

3.2. Relative select

We can implement the entire functionality of a CSA with
rank queries on the BWT. However, if we use the CSA in a
compressed suffix tree, we also need select queries to support
forward searching with Y and Child queries. We can always
implement select queries by binary searching with rank quer-
ies, but the result will be much slower than the rank queries.
A faster alternative to support select queries in the relative

FMI is to build a relative select structure rselect [63]. Let FX

be a sequence consisting of the characters of sequence X in
sorted order. Alternatively, FX is a sequence such that F [] =iX

BWT [Y ()]iX X . The relative select structure consists of bitvec-
tors Align F F(),R S , where F BWT[] = [Y ()]B i B iRR R

and F [] =B iS

BWT [Y ()]B iSS , as well as the C array CLCS for the common
subsequence.
To compute select BWT()i,c S , we first determine how many

of the first i occurrences of character c are lcs-positions with
rank C CLCSF BWT= ([] +) - []k B c i c,1 S S

. Then we check from
bit CF BWT[[] +]B c iS S

whether the occurrence we are looking
for is an lcs-position or not. If it is, we find the position in

BWTR as select BWT select C CLCSF= (([] +) - [])j B c k c, ,c R R1 R ,
and then map j to select BWT()i,c S by using Align BWT(,R

BWT)S . Otherwise we find the occurrence in Align BWT()S with
select Align BWT= (() -)j i k,c S , and return select BWT() =i,c S

select BWT()B j,0 S .

3.3. Full functionality

If we want the relative FMI to support locate and extract
queries, we cannot build it from any common subsequence of
BWTR and BWTS. We need a bwt-invariant subsequence [44],
where the alignment of the BWTs is also an alignment of the
original sequences.

DEFINITION 1. Let X be a common subsequence of BWTR

and BWTS, and let BWT []iR R and BWT []iS S be the lcs-positions
corresponding to []X i . Subsequence X is bwt-invariant if

SA SA SA SA[] < [] [] < []⟺i j i jR R R R S S S S

for all positions Î { ¼ }∣ ∣i j X, 1, , .

In addition to the structures already mentioned, the full
relative FMI has another pair of lcs-bitvectors, Align()R S, ,
which marks the bwt-invariant subsequence in the original
sequences. If BWT []iR R and BWT []iS S are lcs-positions, we set

SA[[] -] =B i 1 1R R R and SA[[] -] =B i 1 1S S S .3

To compute the answer to a locate()i query, we start by iter-
ating BWTS backwards with LF queries, until we find an lcs-
position BWT [¢]iS after k steps. Then we map position ¢i to the
corresponding position ¢j in BWTR by using Align BWT(,R

BWT)S . Finally, we determine SA [¢]jR with a locate query in
the reference index, and map the result to SA [¢]iS by using
Align()R S, .4 The result of the locate()i query is SA [¢] +i kS .
The ISA []iS access required for extract queries is supported

in a similar way. We find the lcs-position [+]S i k for the
smallest ³k 0, and map it to the corresponding position []R j
by using Align()R S, . Then we determine ISA [+]j 1R by
using the reference index, and map it back to ISA [+ +]i k 1S

with Align BWT BWT(),R S . Finally, we iterate BWTS +k 1
steps backward with LF queries to find ISA []iS .
If the target sequence contains long insertions not present

in the reference, we may also want to include some SA and
ISA samples for querying those regions.

3.4. Finding a bwt-invariant subsequence

With the basic relative FMI, we approximate the longest com-
mon subsequence of BWTR and BWTS by partitioning the

3For simplicity, we assume that the endmarker is not a part of the bwt-
invariant subsequence. Hence SA[] >i 1 for all lcs-positions BWT []i .

4If BWT [¢]iS and BWT [¢]jR are lcs-positions, the corresponding lcs-positions
in the original sequences are SA[[¢] -]S i 1S and SA[[¢] -]R j 1R .

778 A. FARRUGGIA et al.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VOL. 61 NO. 5, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/5/773/4643569 by guest on 20 April 2024

BWTs according to lexicographic contexts, finding the longest
common subsequence for each pair of substrings in the parti-
tioning, and concatenating the results. The algorithm is fast,
easy to parallelize and quite space-efficient. As such, RFM
construction is practical, having been tested with datasets of
hundreds of gigabytes in size.
In the following, we describe a more space-efficient variant

of the original algorithm [44] for finding a bwt-invariant sub-
sequence. We

• save space by simulating the mutual SA SARS with
CSAR and CSAS;

• match suffixes of R and S only if they are adjacent in
SARS; and

• run-length encode the match arrays to save space.

DEFINITION 2. Let R and S be two sequences, and let
SA SA= RS and ISA ISA= RS. The left match of suffix []∣ ∣R i R,
is the suffix SA ISA[[[] -] -]∣ ∣ ∣ ∣S i R S1 , , if ISA[] >i 1 and
SA ISA[[] -]i 1 points to a suffix of S (SA ISA[[] -] > ∣ ∣i R1).
The right match of suffix []∣ ∣R i R, is the suffix SA ISA[[[] +S i
] -]∣ ∣ ∣ ∣R S1 , , if ISA[] < ∣ ∣i RS and SA ISA[[] +]i 1 points to a
suffix of S.
We simulate the mutual SA SARS with CSAR, CSAS, and

the merging bitvector BR S, of length ∣ ∣RS . We set
[] =B i 1R S, , if SA []iRS points to a suffix of S. The merging

bitvector can be built in O LF()∣ ∣ ·S t time, where LFt is the
time required for an LF query, by extracting S from CSAS

and backward searching for it in CSAR [64]. Suffix []∣ ∣R i R,
has a left (right) match, if select ISA[([]) -] =B B i, 1R S R S R, 0 ,

1 (select ISA[([]) +] =)B B i, 1 1R S R S R, 0 ,).
Our next step is building the match arrays left and right, which

correspond to the arrays [][]·A 2 and [][]·A 1 in the original algo-
rithm. This is done by traversing CSAR backwards from
ISA [] =∣ ∣R 1R with LF queries and following the left and the
right matches of the current suffix. During the traversal, we main-
tain the invariant SA= []j iR with LF() ¬ (() -)i j i j, , 1R . If
suffix []∣ ∣R j R, has a left (right) match, we use the shorthand

rank select() = (() -)l j B B i, , 1R S R S1 , 0 , (rank() = (r j B ,R S1 ,

select () +)B i, 1R S0 ,) to refer to its position in CSAS.
We say that suffixes []∣ ∣R j R, and [+]∣ ∣R j R1, have the

same left match if LF() = ((+))l j l j 1S . Let []∣ ∣R j R, to
[+]∣ ∣R j ℓ R, be a maximal run of suffixes having the same

left match, with suffixes []∣ ∣R j R, to [+ -]∣ ∣R j ℓ R1, start-
ing with the same characters as their left matches.5 We find
the left match of suffix []∣ ∣R j R, as SA¢ = [()]j l jS by using
CSAS, and set left[+ -] = [¢ ¢ + -]j j ℓ j j ℓ, 1 , 1 . The right
match array right is built in a similar way.
The match arrays require ∣ ∣ ∣ ∣R S2 log bits of space. If

sequences R and S are similar, the runs in the arrays tend to
be long. Hence, we can run-length encode the match arrays to
save space. The traversal takes O LF rank select((+ +) +∣ ∣ ·R t t t

LF)·rd t time, where rankt and selectt denote the time required
by rank and select operations, r is the number of runs in the
two arrays, and d is the SA sample interval in CSAS.

6

The final step is determining the bwt-invariant subse-
quence. We find a binary sequence []∣ ∣B R1,R , which marks
the common subsequence in R, and a strictly increasing inte-
ger sequence Y , which contains the positions of the common
subsequence in S. This can be done by finding the longest
increasing subsequence over R, where we consider both left[]i
and right[]i as candidates for the value at position i, and using
the found subsequence as Y . If []Y j comes from left[]i
(right[]i), we set [] =B i 1R , and align suffix []∣ ∣R i R, with its
left (right) match [[]]∣ ∣S Y j S, in the bwt-invariant subse-
quence. We can find BR and Y in O()∣ ∣ ∣ ∣R Rlog time with
O()∣ ∣ ∣ ∣R Rlog bits of additional working space with a straight-
forward modification of the dynamic programming algorithm
for finding the longest increasing subsequence. The dynamic
programming tables can be run-length encoded, but we found
that this did not yield good time/space trade-offs.
As sequence Y is strictly increasing, we can convert it into

binary sequence []∣ ∣B S1,S , marking [[]] =B Y j 1S for all j.
Afterwards, we consider the binary sequences BR and BS as
the lcs-bitvectors Align()R S, . Because every suffix of R starts
with the same character as its matches stored in the left and
right arrays, subsequences []R BR and []S BS are identical.

For any i, let select= ()i B i,R R1 and select= ()i B i,S S1 be
the lcs-positions of rank i. As suffixes []∣ ∣R i R,R and []∣ ∣S i S,S

are aligned in the bwt-invariant subsequence, they are also
adjacent in the mutual SA SARS. Hence,

ISA ISA ISA ISA[] < [] [] < []⟺i j i jR R R R S S S S

for £ £ ∣ ∣i j Y1 , , which is equivalent to the condition in
Definition 1. We can convert Align()R S, to
Align BWT BWT(),R S in O LF((+))∣ ∣ ∣ ∣ ·R S t time by traversing
CSAR and CSAS backwards. The resulting subsequence of
BWTR and BWTS is bwt-invariant.

Note that the full relative FMI is more limited than the basic
index, because it does not handle substring moves very well.
Let =R xy and =S yx, for two random sequences x and y of
length /n 2 each. Because BWTR and BWTS are very similar,
we can expect to find a common subsequence of length almost
n. On the other hand, the length of the longest bwt-invariant
subsequence is around /n 2, because we can either match the
suffixes of x or the suffixes of y in R and S, but not both.

4. RELATIVE SUFFIX TREE

The RST is a CST-NPR of the target sequence relative to a
CST of the reference sequence. It consists of two major com-
ponents: the relative FMI with full functionality and the rela-
tive LCP (RLCP) array. The optional relative select structure

5The first character of a suffix can be determined by using the C array. 6The time bound assumes text-order sampling.

779RELATIVE SUFFIX TREES

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VOL. 61 NO. 5, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/5/773/4643569 by guest on 20 April 2024

can be generated or loaded from disk to speed up algorithms
based on forward searching. The RLCP array is based on
RLZ parsing, while the support for nsv/psv/rmq queries is
based on a minima tree over the phrases.

4.1. Relative LCP array

Given LCP array LCP[]n1, , we define the differential LCP
array DLCP[]n1, as DLCP LCP[] = []1 1 and DLCP[] =i
LCP LCP[] - [-]i i 1 for >i 1. If BWT[] = + -i j c, j i1 for
some Î Sc , then LCP LF LF[() + ()]i j1, is the same as
LCP[+]i j1, , with each value incremented by 1 [6]. This
means DLCP LF LF DLCP[() + ()] = [+]i j i j2, 2, , making
the DLCP array of a repetitive text compressible with grammar-
based compression [13].
We make a similar observation in the relative setting. If tar-

get sequence S is similar to the reference sequence R, then
their LCP arrays should also be similar. If there are long identi-
cal ranges LCP LCP[+] = [+]i i k j j k, ,R S , the corresponding
DLCP ranges DLCP [+ +]i i k1,R and DLCP [+ +]j j k1,S

are also identical. Hence, we can use RLZ parsing to compress
either the original LCP array or the DLCP array.
While the identical ranges are a bit longer in the LCP array,

we opt to compress the DLCP array, because it behaves better
when there are long repetitions in the sequences. In particular,
assembled genomes often have long runs of character N ,
which correspond to regions of very large LCP values. If the
runs are longer in the target sequence than in the reference
sequence, the RLZ parsing of the LCP array will have many
mismatch characters. The corresponding ranges in the DLCP
array typically consist of values {- }1, 0, 1 , making them
much easier to compress.
We consider DLCP arrays as strings over an integer alpha-

bet and create an RLZ parsing of DLCPS relative to DLCPR.
After parsing, we switch to using LCPR as the reference. The
reference is stored in a structure we call slarray, which is a
variant of LCP-byte. [51]. Small values LCP [] <i 255R are
stored in a byte array, while large values LCP [] ³i 255R are
marked with a 255 in the byte array and stored separately. To
quickly find the large values, we also build a rank255 structure
over the byte array. The slarray provides reasonably fast ran-
dom access and fast sequential access to the underlying array.
The RLZ parsing produces a sequence of phrases =wi

()p ℓ c, ,i i i (see Section 2.3; since we are using Cox et al.’s
version, ci is now a string). Because some queries involve
decompressing an entire phrase, we limit the maximum
phrase length to 1024. We also require that >∣ ∣c 0i for all i,
using the last character of the copied substring as a mismatch
if necessary.
Phrase lengths are encoded in the Wℓ bitvector in the usual

way. We convert the strings of mismatching DLCP values ci

into strings of absolute LCP values, append them into the
mismatch array Wc and store the array as an slarray. The

mismatch values are used as absolute samples for the differ-
ential encoding.
To access LCP []jS , we determine the phrase wi as usual,

and check whether we should return a mismatch character. If
so, we compute which one using a prefix sum query on L,
and return it. If not, we determine the starting positions pi
and si of the phrase wi in the reference and the target, respect-
ively. We can then compute the solution as

LCP LCP DLCP

LCP DLCP

LCP LCP LCP

å

å

[]= [-] + []

= [-] + []

= [-] + [¢] - [-]

=

=

¢

j s k

s k

s j p

1

1

1 1 ,

S S i
k s

j

S

S i
k p

j

R

S i R R i

i

i

where ¢ = + -j p j si i. Each RLZ phrase ends with at least
one mismatch character, so LCP [-]s 1S i is readily available.
After finding LCP []jS , accessing LCP [-]j 1S and LCP [+]j 1S

is fast, as long as we do not cross phrase boundaries.
Example. Figure 1 shows an example reference sequence R

and target sequence S, with their corresponding arrays SA,
LCP and DLCP. The single edit at []S 4 with respect to []R 4
may affect the positions of suffixes 4 and previous ones in
SA, although in general only a limited number of preceding
suffixes are affected. In our example, suffix 4 moves from
position 7 in SAR to position 4 in SAS, and suffix 3 moves
from position 11 in SAR to position 10 in SAS . Each suffix
that is moved from SA []iR to SA []jS may alter the values at
positions i or +i 1 (depending on whether >j i or <j i), as
well as j and +j 1, of LCPS. We have surrounded in rectan-
gles the conserved regions in LCPS (some are conserved by
chance). Even some suffixes that are not moved may change
their LCP values. In turn, each change in LCP []kS may change
values DLCP []kS and DLCP [+]k 1S .
After the change, we can parse DLCPS into three phrases (with

the copied symbols surrounded by rectangles): ()1, 4, 0 ,

ACGCGATCACG$R =

ACG GATCACG$S = A

1 2 3 4 6 7 8 9 0 1 2
1

5

1 2 3 4 6 7 8 9 0 1 2
1

5

SA =

LCP =

DLCP =

12 9 1 2 11 7

0 3 1 0 1 0

0 3 1−2 1 −2

4 6 10 3 5

1 0 1 2

0 −1 1 −2

2

1

SA =

LCP =

DLCP = 0 3 1 1−2 −1 1 −2 0 −1

0 3 1 0 1 2 0 1 1 02

0

12 9 1 6 8 4 2 11 5 3 710

8

0

0

0

0

FIGURE 1. An example of our RLZ compression of DLCP.

780 A. FARRUGGIA et al.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VOL. 61 NO. 5, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/5/773/4643569 by guest on 20 April 2024

(-)5, 3, 2 , (-)6, 2, 2 , where the latter is formed by chance.
We represent this parsing as = á ñW 1, 0, 0c (since we store the
absolute LCPS values for the mismatches), =W 100001000100ℓ ,
and = á ñW 1, 5, 6p (or rather = á - - ñW 0, 1, 4r).
Let us compute LCP []jS for =j 8. This corresponds to

phrase number rank= () =i W j, 2ℓ , which starts at position
select= () =s W i, 6i ℓ in LCPS. The corresponding position

in LCPR is = [] =p W i 5i p (or rather = + [] =p s W i 5i i r),
and the mapped position j is ¢ = + - =j p j s 7i i . Finally,
LCP [-] = [-] =s W i1 1 1S i c . According to our formula, then,
we have LCP LCP LCP LCP[] = [-] + [¢] - [-] =s j p8 1 1S S i R R i

+ - =1 2 1 2.

4.2. Supporting nsv/psv/rmq queries

Suffix tree topology can be inferred from the LCP array with
range minimum queries (rmq) and next/previous smaller
value (nsv/psv) queries [6]. Some suffix tree operations are
more efficient if we also support next/previous smaller or
equal value (nsev/psev) queries [13]. Query nsev()i
(psev()i) finds the next (previous) value smaller than or equal
to LCP[]i .
In order to support the queries, we build a 64-ary minima

tree over the phrases of the RLZ parsing. Each leaf node
stores the smallest LCP value in the corresponding phrase,
while each internal node stores the smallest value in the sub-
tree. Internal nodes are created and stored in a levelwise fash-
ion, so that each internal node, except perhaps the rightmost
one of each level, has 64 children.
We encode the minima tree as two arrays. The smallest LCP

values are stored in LCPM , which we encode as an slarray.
Plain array ML stores the starting offset of each level in LCPM ,
with the leaves stored starting from offset [] =M 1 1L . If i is a
minima tree node located at level j, the corresponding min-
imum value is LCP []M i , the parent of the node is [+] +M j 1L

(- [])/⌊ ⌋i M j 64L , and its first child is [-] + ·M j 1 64L

(- [])i M jL .
A range minimum query rmq()sp ep, starts by finding the

minimal range of phrases ¼w w, ,l r covering the query and
the maximal range of phrases ¼¢ ¢w w, ,l r contained in the
query (note that £ ¢ £ +l l l 1 and - £ ¢ £r r r1). We
then use the minima tree to find the leftmost minimum value

LCP= []j M k in LCP [¢ ¢]M l r, , and find the leftmost occurrence
LCP[] =i j in phrase wk. If < ¢l l and LCP [] £M l j, we
decompress phrase wl and find the leftmost minimum value
LCP[¢] = ¢i j (with ¢ ³i sp) in the phrase. If ¢ £j j, we update
() ¬ (¢ ¢)i j i j, , . Finally, we check phrase wr in a similar way,
if > ¢r r and LCP [] <M r j. The answer to the range minimum
query is LCP[] =i j, so we return ()i j, .7 Finally, the

particular case where no phrase is contained in []sp ep, is
handled by sequentially scanning one or two phrases in LCP.
The remaining queries are all similar to each other. In order

to answer query nsv()i , we start by finding the phrase wk con-
taining position i, and then determining LCP[]i . Next we scan
the rest of the phrase to see whether there is a smaller value
LCP LCP[] < []j i later in the phrase. If so, we return

LCP([])j j, . Otherwise we traverse the minima tree to find
the smallest ¢ >k k with LCPLCP [¢] < []M k i . We decompress
phrase ¢wk , find the leftmost position j with LCP LCP[] < []j i ,
and return LCP([])j j, .

5. EXPERIMENTS

We have implemented the RST in C++, extending the old
relative FMI implementation.8 The implementation is based
on the Succinct Data Structure Library (SDSL) 2.0 [65].
Some parts of the implementation have been parallelized
using OpenMP and the libstdc++ parallel mode.
As our reference CSA, we used the succinct SA (SSA) [58,

66] implemented using SDSL components. Our implementa-
tion is very similar to csa_wt in SDSL, but we needed better
access to the internals than what the SDSL interface provides.
SSA encodes the BWT as a Huffman-shaped wavelet tree,
combining fast queries with size close to the order-0 empir-
ical entropy. This makes it the index of choice for DNA
sequences [57]. In addition to the plain SSA with uncom-
pressed bitvectors, we also used SSA-RRR with entropy-
compressed bitvectors [62] to highlight the the time-space
trade-offs achieved with better compression
We sampled SA in suffix order and ISA in text order. In

SSA, the sample intervals were 17 for SA and 64 for ISA. In
RFM, we used sample interval 257 for SA and 512 for ISA to
handle the regions that do not exist in the reference. The sam-
ple intervals for suffix order sampling were primes due to the
long runs of character N in the assembled genomes. If the
number of long runs of character N in the indexed sequence
is even, the lexicographic ranks of almost all suffixes in half
of the runs are odd, and those runs are almost completely
unsampled. This can be avoided by making the sample inter-
val and the number of runs relatively prime.
The experiments were done on a system with two 16-core

AMD Opteron 6378 processors and 256 GB of memory. The
system was running Ubuntu 12.04 with Linux kernel 3.2.0.
We compiled all code with g++ version 4.9.2. We allowed
index construction to use multiple threads, while confining
the query benchmarks to a single thread. As AMD Opteron
uses a non-uniform memory access architecture, accessing
local memory controlled by the same physical CPU is faster
than accessing remote memory controlled by another CPU. In

7The definition of the query only calls for the leftmost minimum position i.
We also return LCP[] =i j, because suffix tree operations often need it.

8The current implementation is available at https://github.com/jltsiren/
relative-fm.

781RELATIVE SUFFIX TREES

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VOL. 61 NO. 5, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/5/773/4643569 by guest on 20 April 2024

https://github.com/jltsiren/relative-fm
https://github.com/jltsiren/relative-fm

order to ensure that all data structures are in local memory,
we set the CPU affinity of the query benchmarks with the
taskset utility.
As our target sequence, we used the maternal haplotypes

of the 1000 Genomes Project individual NA12878 [67]. As
the reference sequence, we used the 1000 Genomes Project
version of the GRCh37 assembly of the human reference gen-
ome.9 Because NA12878 is female, we also created a refer-
ence sequence without chromosome Y.
In the following, a basic FMI is an index supporting only

find queries, while a full index also supports locate and extract
queries.

5.1. Indexes and their sizes

Table 2 lists the resource requirements for building the rela-
tive indexes, assuming that we have already built the corre-
sponding non-relative structures for the sequences. As a
comparison, building an FMI for a human genome typically
takes 16–17 min and 25–26 GB of memory. While the con-
struction of the basic RFM index is highly optimized, the
other construction algorithms are just the first implementa-
tions. Building the optional rselect structures takes 4 min
using two threads and around 730 megabytes (+∣ ∣ ∣ ∣R S bits)
of working space in addition to RFM and rselect.
The sizes of the final indexes are listed in Table 3. The full

RFM is over twice the size of the basic index, but still 3.3–3.7
times smaller than the full SSA-RRR and 4.6–5.3 times smaller

than the full SSA. The RLCP array is 2.7 times larger than the
RFM index with the full human reference and 1.5 times larger
with the female reference. Hence having a separate female ref-
erence is worthwhile, if there are more than a few female gen-
omes among the target sequences. The optional rselect
structure is almost as large as the basic RFM index.
Table 4 lists the sizes of the individual components of the

relative FMI. Including the chromosome Y in the reference
increases the sizes of almost all relative components, with the
exception of Align BWT()S and Align()R S, . In the first case,
the common subsequence still covers approximately the same
positions in BWTS as before. In the second case, chromosome
Y appears in bitvector BR as a long run of 0-bits, which com-
presses well. The components of a full RFM index are larger
than the corresponding components of a basic RFM index,
because the bwt-invariant subsequence is shorter than the
approximate longest common subsequence (see Table 2).
The size breakdown of the RLCP array can be seen in

Table 5. Phrase pointers and phrase lengths take space pro-
portional to the number of phrases. As there are more mis-
matches between the copied substrings with the full human
reference than with the female reference, the absolute LCP
values take a larger proportion of the total space with the full
reference. Shorter phrase length increases the likelihood that
the minimal LCP value in a phrase is a large value, increasing
the size of the minima tree.
In order to use relative data structures, we also need to

have the reference data structures in memory. The basic SSA
used by the basic RFM takes 1283MB with chromosome Y
and 1248MB without, while the full SSA used by the full
RFM takes 2162MB and 2110MB, respectively. The

TABLE 2. Sequence lengths and resources used by index construction for NA12878 relative to the human reference genome with and without
chromosome Y. Approx and Inv denote the approximate LCS and the bwt-invariant subsequence, respectively. Sequence lengths are in millions
of base pairs, while construction resources are in minutes of wall clock time and gigabytes of memory.

Sequence length RFM (basic) RFM (full) RST

ChrY Reference (M) Target (M) Approx (M) Inv (M) Time (min) Memory (GB) Time (min) Memory (GB) Time (min) Memory (GB)

Yes 3096 3036 2992 2980 1.42 4.41 175 84.0 629 141
No 3036 3036 2991 2980 1.33 4.38 173 82.6 593 142

TABLE 3. Various indexes for NA12878 relative to the human reference genome with and without chromosome Y. The total for RST includes
the full RFM. Index sizes are in megabytes and in bits per character.

SSA SSA-RRR RFM RST

ChrY Basic Full Basic Full Basic Full RLCP Total rselect

Yes 1248MB 2110MB 636MB 1498MB 225MB 456MB 1233MB 1689MB 190MB
3.45 bpc 5.83 bpc 1.76 bpc 4.14 bpc 0.62 bpc 1.26 bpc 3.41 bpc 4.67 bpc 0.52 bpc

No 1248MB 2110MB 636MB 1498MB 186MB 400MB 597MB 997MB 163MB
3.45 bpc 5.83 bpc 1.76 bpc 4.14 bpc 0.51 bpc 1.11 bpc 1.65 bpc 2.75 bpc 0.45 bpc

9ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/

782 A. FARRUGGIA et al.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VOL. 61 NO. 5, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/5/773/4643569 by guest on 20 April 2024

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/

reference LCP array used by the RLCP array requires
3862MB and 3690MB with and without chromosome Y.

5.2. Query times

Average query times for the basic operations can be seen in
Tables 6 and 7. The results for LF and Y queries in the full
FMIs are similar to the earlier ones with basic indexes [63].
Random access to the RLCP array is about 30 times slower
than to the LCP array, while sequential access is 10 times
slower. The nsv, psv and rmq queries are comparable with
1–2 random accesses to the RLCP array.
We also tested the locate performance of the full RFM

index, and compared it with SSA and SSA-RRR. We built
the indexes with SA sample intervals 7, 17, 31, 61 and 127,
using the reference without chromosome Y for RFM.10 The

ISA sample interval was the maximum of 64 and the SA sam-
ple interval. We extracted 2 million random patterns of length
32, consisting of characters ACGT , from the target sequence,
and measured the total time taken by find and locate queries.
The results can be seen in Fig. 2. While SSA and SSA-RRR
query times were proportional to the sample interval, RFM
used 5.4–7.6 μs per occurrence more than SSA, resulting in
slower growth in query times. In particular, RFM with sample
interval 31 was faster than SSA with sample interval 61. As
the locate performance of the RFM index is based on the
sample interval in the reference, it is generally best to use
dense sampling (e.g. 7 or 17), unless there are only a few tar-
get sequences.

5.3. Synthetic collections

In order to determine how the differences between the refer-
ence sequence and the target sequence affect the size of rela-
tive structures, we built RST for various synthetic datasets.
We took a 20MB prefix of the human reference genome as
the reference sequence, and generated 25 target sequences
with every mutation rate Î {p 0.0001, 0.0003, 0.001, 0.003,

}0.01, 0.03, 0.1 . A total of 90% of the mutations were single-
character substitutions, while 5% were insertions and another
5% deletions. The length of an insertion or deletion was
³k 1 with probability -·0.2 0.8k 1.
The results can be seen in Fig. 3 (left). The size of the RLCP

array grew quickly with increasing mutation rates, peaking at
=p 0.01. At that point, the average length of an RLZ phrase

TABLE 4. Breakdown of component sizes in the RFM index for NA12878 relative to the human reference genome with and without chromo-
some Y in bits per character.

Basic RFM Full RFM

ChrY Yes (bpc) No (bpc) Yes (bpc) No (bpc)

RFM 0.62 0.51 1.26 1.11
Align BWT()R 0.12 0.05 0.14 0.06
Align BWT()S 0.05 0.05 0.06 0.06
Align BWT BWT(),R S 0.45 0.42 0.52 0.45
Align()R S, – – 0.35 0.35
SA samples – – 0.12 0.12
ISA samples – – 0.06 0.06

Bold values aimed to emphasize the base structure (RFM).

TABLE 5. Breakdown of component sizes in the RLCP array for NA12878 relative to the human reference genome with and without chromo-
some Y. The number of phrases, average phrase length and the component sizes in bits per character. ‘Parse’ contains Wr and Wℓ, ‘Literals’ con-
tains Wc and L , and ‘Tree’ contains LCPM and ML .

ChrY Phrases (million) Length Parse (bpc) Literals (bpc) Tree (bpc) Total (bpc)

Yes 128 23.6 1.35 1.54 0.52 3.41
No 94 32.3 0.97 0.41 0.27 1.65

TABLE 6. Average query times in microseconds for 10 million ran-
dom queries in the full SSA, the full SSA-RRR and the full RFM for
NA12878 relative to the human reference genome with and without
chromosome Y.

ChrY SSA SSA-RRR RFM rselect

LF (μs) Y (μs) LF (μs) Y (μs) LF (μs) Y (μs) Y (μs)

Yes 0.328 1.048 1.989 2.709 3.054 43.095 5.196
No 0.327 1.047 1.988 2.707 2.894 40.478 5.001

10With RFM, the sample intervals apply to the reference SSA.

783RELATIVE SUFFIX TREES

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VOL. 61 NO. 5, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/5/773/4643569 by guest on 20 April 2024

was comparable with what could be found in the DLCP arrays
of unrelated DNA sequences. With even higher mutation rates,
the phrases became slightly longer due to the smaller average
LCP values. The RFM index, on the other hand, remained small
until =p 0.003. Afterwards, the index started growing quickly,
eventually overtaking the RLCP array.
We also compared the size of the RST with GCT [15],

which is essentially a CST-Sada for repetitive collections.
While the structures are intended for different purposes, the
comparison shows how much additional space is used for
providing access to the suffix trees of individual datasets. We
chose to skip the CST-NPR for repetitive collections [13], as
its implementation was not stable enough.
Figure 3 (right) shows the sizes of the compressed suffix

trees. The numbers for RST include individual indexes for each
of the 25 target sequences as well as the reference data, while
the numbers for GCT are for a single index containing the 25
sequences. With low mutation rates, RST was not much larger
than GCT. The size of RST starts growing quickly at around
=p 0.001, while the size of GCT stabilizes at 3–4 bpc.

5.4. Suffix tree operations

In the final set of experiments, we compared the performance
of RST with the SDSL implementations of various CST. We

used the maternal haplotypes of NA12878 as the target
sequence and the human reference genome without chromo-
some Y as the reference sequence. We built RST, CST-Sada,
CST-NPR and FCST for the target sequence. CST-Sada uses
Sadakane’s CSA (CSA-Sada) [54] as its CSA, while the other
SDSL implementations use SSA. We used PLCP as the LCP
encoding with both CST-Sada and CST-NPR, and also built
CST-NPR with LCP-dac.
We used three algorithms for the performance comparison.

The first algorithm is preorder traversal of the suffix tree using
SDSL iterators (cst_dfs_const_forward_iterator).
The iterators use operations Root, Leaf , Parent, FChild and
NSibling, though Parent queries are rare, as the iterators
cache the most recent parent nodes.
The other two algorithms find the maximal substrings of

the query string occurring in the indexed text, and report the
lexicographic range for each such substring. This is a key
task in common problems such as computing matching statis-
tics [68] or finding maximal exact matches. The forward
algorithm uses Root, SDepth, SLink, Child and Letter , while
the backward algorithm [69] uses LF, Parent and SDepth.
We used the paternal haplotypes of chromosome 1 of

NA12878 as the query string in the maximal substrings algo-
rithms. Because some tree operations in the SDSL CST take
time proportional to the depth of the current node, we trun-
cated the runs of character N in the query string into a single

TABLE 7. Query times in microseconds in the LCP array (slarray) and the RLCP array for NA12878 relative to the human reference genome
with and without chromosome Y. For the random queries, the query times are averages over 100 million queries. The range lengths for the rmq
queries were 16k (for ³k 1) with probability 0.5k. For sequential access, we list the average time per position for scanning the entire array.

LCP array RLCP array

ChrY Random (μs) Sequential (μs) Random (μs) Sequential (μs) nsv (μs) psv (μs) rmq (μs)

Yes 0.054 0.002 1.580 0.024 1.909 1.899 2.985
No 0.054 0.002 1.480 0.017 1.834 1.788 3.078

127

Sample interval

T
im

e
(µ

s
/ o

cc
ur

re
nc

e)

1
10

10
0 SSA

SSA−RRR
RFM

Size (bpc)

7 17 31 61 0 2 4 6 8 10

SSA
SSA−RRR
RFM

FIGURE 2. Average find and locate times in microseconds per occurrence for 2 million patterns of length 32 with a total of 255 million occur-
rences on NA12878 relative to the human reference genome without chromosome Y. Left: query time vs. suffix array sample interval. Right:
query time vs. index size in bits per character.

784 A. FARRUGGIA et al.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VOL. 61 NO. 5, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/5/773/4643569 by guest on 20 April 2024

character. Otherwise searching in the deep subtrees would
have made some SDSL suffix trees much slower than RST.
The results can be seen in Table 8. RST was 1.8 times

smaller than FCST and several times smaller than the other
CST. In depth-first traversal, RST was four times slower than
CST-NPR and about 15 times slower than CST-Sada. FCST
was orders of magnitude slower, managing to traverse only
5.3% of the tree before the run was terminated after 24 h.
It should be noted that the memory access patterns of tra-

versing CST-Sada, CST-NPR and RST are highly local.
Traversal times are mostly based on the amount of computa-
tion done, while memory latency is less important than in the
individual query benchmarks. In RST, the algorithm is essen-
tially the following: (i) compute rmq in the current range; (ii)
proceed recursively to the left subinterval and (iii) proceed to
the right subinterval. This involves plenty of redundant work,
as can be seen by comparing the traversal time (m0.90 s per
node) to sequential RLCP access (m0.017 s per position). A
faster algorithm would decompress large parts of the LCP
array at once, build the corresponding subtrees in postorder
[51], and traverse the resulting trees.

RST with rselect is as fast as CST-Sada in the forward
algorithm, 1.8–2.7 times slower than CST-NPR, and 4.1 times

faster than FCST. Without the additional structure, RST
becomes 2.6 times slower. As expected [69], the backward
algorithm is much faster than the forward algorithm. CST-
Sada and RST, which combine slow backward searching with
a fast tree, have similar performance to FCST, which combines
fast searching with a slow tree. CST-NPR is about an order of
magnitude faster than the others in the backward algorithm.

6. DISCUSSION

We have introduced RST, a new kind of compressed suffix
tree for repetitive sequence collections. Our RST compresses
the suffix tree of an individual sequence relative to the suffix
tree of a reference sequence. It combines an already known
relative SA with a novel relative-compressed LCP representa-
tion (RLCP). When the sequences are similar enough (e.g.
two human genomes), the RST requires about 3 bits per sym-
bol on each target sequence. This is close to the space used
by the most space-efficient CST designed to store repetitive
collections in a single tree, but the RST provides a different
functionality as it indexes each sequence individually. The
RST supports query and navigation operations within a few

Mutation rate

0.0001 0.001 0.01 0.1

RST
GCT

Mutation rate

S
iz

e
(b

pc
)

0.0001 0.001 0.01 0.1

0
3

6
9

12
15

RFM
RLCP
Reference
RST

FIGURE 3. Index size in bits per character vs. mutation rate for 25 synthetic sequences relative to a 20MB reference.

TABLE 8. Compressed suffix trees for the maternal haplotypes of NA12878 relative to the human reference genome without chromosome Y.
Component choices; index size in bits per character; average time in microseconds per node for preorder traversal; and average time in microse-
conds per character for finding maximal substrings shared with the paternal haplotypes of chromosome 1 of NA12878 using forward and back-
ward algorithms. The figures in parentheses are estimates based on the progress made in the first 24 hours.

Maximal substrings

CST CSA LCP Size (bpc) Traversal (μs) Forward (μs) Backward (μs)

CST-Sada CSA-Sada PLCP 12.33 0.06 79.97 5.14
CST-NPR SSA PLCP 10.79 0.23 44.55 0.46
CST-NPR SSA LCP-dac 18.08 0.23 29.70 0.40
FCST SSA – 4.98 (317.30) 332.80 3.13
RST RFM RLCP 2.75 0.90 208.62 3.72
RST + rselect RFM RLCP 3.21 0.90 80.20 3.71

785RELATIVE SUFFIX TREES

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VOL. 61 NO. 5, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/5/773/4643569 by guest on 20 April 2024

microseconds, which is competitive with the largest and fast-
est CST.
The size of RST is proportional to the amount of sequence

that is present either in the reference or in the target, but not
both. This is unusual for relative compression, where any
additional material in the reference is generally harmless.
Sorting the suffixes in lexicographic tends to distribute the
additional suffixes all over the SA, creating many mismatches
between the suffix-based structures of the reference and the
target. For example, the 60 million suffixes from chromosome
Y created 34 million new phrases in the RLZ parse of the
DLCP array of a female genome, doubling the size of the
RLCP array. Having multiple references (e.g. male and
female) can hence be worthwhile when building relative data
structures for many target sequences.
While our RST implementation provides competitive time/

space trade-offs, there is still much room for improvement.
Most importantly, some of the construction algorithms require
significant amounts of time and memory. In many places, we
have chosen simple and fast implementation options, even
though there could be alternatives that require significantly
less space without being too much slower.
Our RST is a relative version of the CST-NPR. Another

alternative for future work is a relative CST-Sada, using RLZ
compressed bitvectors for suffix tree topology and PLCP.

FUNDING

This work was supported by Basal Funds FB0001, Conicyt,
Chile; Fondecyt Grant [1-170048], Chile; Academy of
Finland grants [258308] and [250345] (CoECGR); the Jenny
and Antti Wihuri Foundation, Finland; and the Wellcome
Trust grant [098051].

REFERENCES

[1] Weiner, P. (1973) Linear Pattern Matching Algorithms. Proc. SWAT
(FOCS) 1973, Iowa City, IA, October 15–17, pp. 1–11. IEEE.

[2] Gusfield, D. (1997) Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, Cambridge, UK.

[3] Ohlebusch, E. (2013) Bioinformatics Algorithms: Sequence
Analysis, Genome Rearrangements, and Phylogenetic
Reconstruction. Oldenbusch Verlag, Germany.

[4] Mäkinen, V., Belazzougui, D., Cunial, F. and Tomescu, A.I.
(2015) Genome-Scale Algorithm Design. Cambridge University
Press, Cambridge, UK.

[5] Sadakane, K. (2007) Compressed suffix trees with full func-
tionality. Theory Comput. Syst., 41, 589–607.

[6] Fischer, J., Mäkinen, V. and Navarro, G. (2009) Faster
entropy-bounded compressed suffix trees. Theor. Comput. Sci.,
410, 5354–5364.

[7] Ohlebusch, E. and Gog, S. (2009) A Compressed Enhanced
Suffix Array Supporting Fast String Matching. Proc. SPIRE
2009, Saariselkä, Finland, August 25–27, pp. 51–62. Springer,
Berlin, Germany.

[8] Ohlebusch, E., Fischer, J. and Gog, S. (2010) CST++. Proc.
SPIRE 2010, Los Cabos, Mexico, October 11–13, pp.
322–333. Springer, Berlin, Germany.

[9] Fischer, J. (2010) Wee LCP. Inf. Process. Lett., 110, 317–320.
[10] Russo, L.M.S., Navarro, G. and Oliveira, A.L. (2011) Fully

compressed suffix trees. ACM Trans. Algorithms, 7, article 4.
[11] Gog, S. (2011) Compressed suffix trees: design, construction,

and applications. PhD thesis, Ulm University, Germany.

[12] Gog, S. and Ohlebusch, E. (2013) Compressed suffix trees:
Efficient computation and storage of lcp-values. ACM J. Exp.
Algorithmics, 18, article 2.1.

[13] Abeliuk, A., Cánovas, R. and Navarro, G. (2013) Practical
compressed suffix trees. Algorithms, 6, 319–351.

[14] Navarro, G. and Russo, L.M.S. (2014) Fast fully-compressed
suffix trees. Proc. DCC 2014, Snowbird, UT, March 26–28,
pp. 283–291. IEEE, Los Alamitos, CA.

[15] Navarro, G. and Ordóñez, A. (2016) Faster compressed suffix
trees for repetitive text collections. ACM J. Exp. Algorithmics,
21, article 1.8.

[16] Ocker, C. (2015) Engineering fully-compressed suffix trees. M.
Sc. thesis, Karlsruhe Institute of Technology, Germany.

[17] Belazzougui, D., Cunial, F., Gagie, T., Prezza, N. and Raffinot,
M. (2015) Composite Repetition-aware Data Structures. Proc.
CPM 2015, Ischia Island, Italy, 29 June–1 July, pp. 26–39.
Springer, Berlin, Germany.

[18] The 1000 Genomes Project Consortium (2015) A global refer-
ence for human genetic variation. Nature, 526, 68–74.

[19] Kieffer, J.C. and Yang, E.-H. (2000) Grammar-based codes: a
new class of universal lossless source codes. IEEE Trans. Inf.
Theory, 46, 737–754.

[20] Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran,
M., Sahai, A. and Shelat, A. (2005) The smallest grammar
problem. IEEE Trans. Inf. Theory, 51, 2554–2576.

[21] Bille, P., Landau, G.M., Raman, R., Sadakane, K., Rao, S.S.
and Weimann, O. (2015) Random access to grammar-
compressed strings and trees. SIAM J. Comput., 44, 513–539.

[22] Ziv, J. and Lempel, A. (1977) A universal algorithm for sequen-
tial data compression. IEEE Trans. Inf. Theory, 23, 337–343.

[23] Kreft, S. and Navarro, G. (2013) On compressing and indexing
repetitive sequences. Theor. Comput. Sci., 483, 115–133.

[24] Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y. and
Puglisi, S.J. (2012) A Faster Grammar-based Self-index. Proc.
LATA 2012, Tarragona, Spain, March 5–9, pp. 240–251.
Springer, Berlin, Germany.

[25] Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y. and
Puglisi, S.J. (2014) LZ77-Based Self-indexing with Faster
Pattern Matching. Proc. LATIN 2014, Montevideo, Uruguay,
31 March–4 April, pp. 731–742. Springer, Berlin, Germany.

[26] Gagie, T. and Puglisi, S.J. (2015) Searching and indexing genomic
databases via kernelization. Front. Bioeng. Biotechnol., 3, 12.

[27] Kuruppu, S., Puglisi, S.J. and Zobel, J. (2010) Relative
Lempel–Ziv Compression of Genomes for Large-scale Storage

786 A. FARRUGGIA et al.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VOL. 61 NO. 5, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/5/773/4643569 by guest on 20 April 2024

and Retrieval. Proc. SPIRE 2010, Los Cabos, Mexico, October
11–13, pp. 201–206. Springer, Berlin, Germany.

[28] Kuruppu, S., Puglisi, S.J. and Zobel, J. (2011) Reference
Sequence Construction for Relative Compression of Genomes.
Proc. SPIRE 2011, Pisa, Italy, October 17–21, pp. 420–425.
Springer, Berlin, Germany.

[29] Kuruppu, S., Beresford-Smith, B., Conway, T.C. and Zobel, J.
(2012) Iterative dictionary construction for compression of
large DNA data sets. IEEE/ACM Trans. Comput. Biol.
Bioinformatics, 9, 137–149.

[30] Liao, K., Petri, M., Moffat, A. and Wirth, A. (2016) Effective
Construction of Relative Lempel–Ziv Dictionaries. Proc.
WWW 2016, Montreal, Canada, April 11–15, pp. 807–816.
IW3C2, Geneva, Switzerland.

[31] Deorowicz, S. and Grabowski, S. (2011) Robust relative com-
pression of genomes with random access. Bioinformatics, 27,
2979–2986.

[32] Ferrada, H., Gagie, T., Gog, S. and Puglisi, S.J. (2014)
Relative Lempel–Ziv with Constant-time Random Access.
Proc. SPIRE 2014, Ouro Preto, Brazil, October 20–22, pp.
13–17. Springer, Berlin, Germany.

[33] Do, H.H., Jansson, J., Sadakane, K. and Sung, W.-K. (2014)
Fast relative Lempel–Ziv self-index for similar sequences.
Theor. Comput. Sci., 532, 14–30.

[34] Maciuca, S., del Ojo Elias, C., McVean, G. and Iqbal, Z.
(2016) A Natural Encoding of Genetic Variation in a Burrows–
Wheeler Transform to Enable Mapping and Genome Inference.
Proc. WABI 2016, Aarhus, Denmark, 22–24 August, pp.
222–233. Springer, Berlin, Germany.

[35] Paten, B., Novak, A.M., Eizenga, J.M. and Garrison, E. (2017)
Genome graphs and the evolution of genome inference.
Genome Res., doi: 10.1101/gr.214155.116.

[36] Sirén, J. (2017) Indexing Variation Graphs. Proc. ALENEX
2017, Barcelona, Spain, January 17–18, pp. 13–27. SIAM.

[37] Sirén, J., Välimäki, N. and Mäkinen, V. (2014) Indexing
graphs for path queries with applications in genome
research. ACM/IEEE Trans. Comput. Biol. Bioinformatics,
11, 375–388.

[38] Na, J.C., Kim, H., Park, H., Lecroq, T., Léonard, M.,
Mouchard, L. and Park, K. (2016) FM-index of alignment: a
compressed index for similar strings. Theor. Comput. Sci., 638,
159–170.

[39] Na, J.-C., Kim, H., Min, S., Park, H., Lecroq, T., Léonard, M.,
Mouchard, L. and Park, K. (2017) FM-index of alignment
with gaps. Theoretical Computer Science, doi: 10.1016/j.
tcs.2017.02.020.

[40] Iqbal, Z., Caccamo, M., Turner, I., Flicek, P. and McVean, G.
(2012) De novo assembly and genotyping of variants using col-
ored de Bruijn graphs. Nat. Genet., 44, 226–232.

[41] Na, J.C., Park, H., Crochemore, M., Holub, J., Iliopoulos,
C.S., Mouchard, L. and Park, K. (2013) Suffix Tree of
Alignment: An Efficient Index for Similar Data. Proc.
IWOCA 2013, Rouen, France, July 10–12, pp. 337–348.
Springer, Berlin, Germany.

[42] Na, J.C., Park, H., Lee, S., Hong, M., Lecroq, T., Mouchard,
L. and Park, K. (2013) Suffix Array of Alignment: A Practical

Index for Similar Data. Proc. SPIRE 2013, Jerusalem, Israel,
October 7–9, pp. 243–254. Springer, Berlin, Germany.

[43] Manber, U. and Myers, G. (1993) Suffix arrays: a new method
for on-line string searches. SIAM J. Comput., 22, 935–948.

[44] Belazzougui, D., Gagie, T., Gog, S., Manzini, G. and Sirén, J.
(2014) Relative FM-Indexes. Proc. SPIRE 2014, Ouro Preto,
Brazil, October 20–22, pp. 52–64. Springer, Berlin, Germany.

[45] Muggli, M.D., Bowe, A., Noyes, N.R., Morley, P., Belk, K.,
Raymond, R., Gagie, T., Puglisi, S.J. and Boucher, C. (2017)
Succinct colored de Bruijn graphs. Bioinformatics, 33, 3181–3187.

[46] Alipanahi, B., Muggli, M.D., Jundi, M., Noyes, N. and
Boucher, C. (2017) Resistome SNP calling via read colored de
Bruijn graphs. Technical report. bioRxiv.

[47] Almodaresi, F., Pandey, P. and Patro, R. (2017) Rainbowfish:
A Succinct Colored de Bruijn Graph Representation. Proc.
WABI 2017, pp. 18:1–18:15.

[48] Bowe, A., Onodera, T., Sadakane, K. and Shibuya, T. (2012)
Succinct de Bruijn Graphs. Proc. WABI 2012, pp. 225–235.

[49] Iqbal, Z., Caccamo, M., Turner, I., Flicek, P. and McVean, G.
(2012) De novo assembly and genotyping of variants using col-
ored de Bruijn graphs. Nat. Genet., 44, 226–232.

[50] Kurtz, S. (1999) Reducing the space requirement of suffix
trees. Softw. Pract. Exp., 29, 1149–1171.

[51] Abouelhoda, M.I., Kurtz, S. and Ohlebusch, E. (2004)
Replacing suffix trees with enhanced suffix arrays. J. Discrete
Algorithms, 2, 53–86.

[52] Grossi, R., Gupta, A. and Vitter, J.S. (2003) High-Order
Entropy-compressed Text Indexes. Proc. SODA 2003,
Baltimore, MD, January 12–14, pp. 841–850. SIAM.

[53] Burrows, M. and Wheeler, D.J. (1994) A block sorting lossless
data compression algorithm. Technical Report 124. Digital
Equipment Corporation, Palo Alto, CA.

[54] Sadakane, K. (2003) New text indexing functionalities of the
compressed suffix arrays. J. Algorithms, 48, 294–313.

[55] Ferragina, P. and Manzini, G. (2005) Indexing compressed
text. J. ACM, 52, 552–581.

[56] Grossi, R. and Vitter, J.S. (2005) Compressed suffix arrays and
suffix trees with applications to text indexing and string match-
ing. SIAM J. Comput., 35, 378–407.

[57] Ferragina, P., González, R., Navarro, G. and Venturini, R.
(2009) Compressed text indexes: from theory to practice. ACM
J. Exp. Algorithmics, 13, article 1.12.

[58] Ferragina, P., Manzini, G., Mäkinen, V. and Navarro, G.
(2007) Compressed representations of sequences and full-text
indexes. ACM Trans. Algorithms, 3, article20.

[59] Brisaboa, N.R., Ladra, S. and Navarro, G. (2013) DACs: bring-
ing direct access to variable-length codes. Inf. Process.
Manage., 49, 392–404.

[60] Okanohara, D. and Sadakane, K. (2007) Practical Entropy-
Compressed Rank/Select Dictionary. Proc. ALENEX 2007,
New Orleans, LA, 6 January, pp. 60–70. SIAM.

[61] Cox, A.J., Farruggia, A., Gagie, T., Puglisi, S.J. and Sirén, J.
(2016) RLZAP: Relative Lempel–Ziv with Adaptive Pointers.
Proc. SPIRE 2016, Beppu, Japan, October 18–20, pp. 1–14.
Springer, Berlin, Germany.

787RELATIVE SUFFIX TREES

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VOL. 61 NO. 5, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/5/773/4643569 by guest on 20 April 2024

[62] Raman, R., Raman, V. and Satti, S.R. (2007) Succinct index-
able dictionaries with applications to encoding k-ary trees, pre-
fix sums and multisets. ACM Trans. Algorithms, 3, article 43.

[63] Boucher, C., Bowe, A., Gagie, T., Manzini, G. and Sirén, J.
(2015) Relative Select. Proc. SPIRE 2015, London, UK,
September 1–4, pp. 149–155. Springer, Berlin, Germany.

[64] Sirén, J. (2009) Compressed Suffix Arrays for Massive Data.
Proc. SPIRE 2009, Saariselkä, Finland, August 25–27, pp.
63–74. Springer, Berlin, Germany.

[65] Gog, S., Beller, T., Moffat, A. and Petri, M. (2014) From
Theory to Practice: Plug and Play with Succinct Data
Structures. Proc. SEA 2014, Copenhagen, Denmark, 29 June–1
July, pp. 326–337. Springer, Berlin, Germany.

[66] Mäkinen, V. and Navarro, G. (2005) Succinct suffix
arrays based on run-length encoding. Nordic J. Comput.,
12, 40–66.

[67] Rozowsky, J. et al (2011) AlleleSeq: analysis of allele-specific
expression and binding in a network framework. Mol. Syst.
Biol., 7, article522.

[68] Chang, W.I. and Lawler, E.L. (1994) Sublinear approximate
string matching and biological applications. Algorithmica, 12,
327–344.

[69] Ohlebusch, E., Gog, S. and Kügel, A. (2010) Computing
Matching Statistics and Maximal Exact Matches on Compressed
Full-text Indexes. Proc. SPIRE 2010, Los Cabos, Mexico,
October 11–13, pp. 347–358. Springer, Berlin, Germany.

788 A. FARRUGGIA et al.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, VOL. 61 NO. 5, 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/61/5/773/4643569 by guest on 20 April 2024

	Relative Suffix Trees
	1. INTRODUCTION
	1.1. One general 𝖢𝖲𝖳 or many individual 𝖢𝖲𝖳 s
	1.2. Our contribution

	2. BACKGROUND
	2.1. Full-text indexes
	2.2. Compressed text indexes
	2.3. Relative Lempel–Ziv

	3. RELATIVE FMI
	3.1. Basic index
	3.2. Relative select
	3.3. Full functionality
	3.4. Finding a bwt-invariant subsequence

	4. RELATIVE SUFFIX TREE
	4.1. Relative LCP array
	4.2. Supporting nsv/psv/rmq queries

	5. EXPERIMENTS
	5.1. Indexes and their sizes
	5.2. Query times
	5.3. Synthetic collections
	5.4. Suffix tree operations

	6. DISCUSSION
	FUNDING
	References

