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In distance-based network indices, the distance between two vertices is measured by the length of
shortest paths between them. A shortcoming of this measure is that when it is used in real-world
networks, a huge number of vertices may have exactly the same closeness/eccentricity scores. This
restricts the applicability of these indices as they cannot distinguish vertices. Furthermore, in
many applications, the distance between two vertices not only depends on the length of shortest
paths but also on the number of shortest paths between them. In this paper, first we develop a new
distance measure, proportional to the length of shortest paths and inversely proportional to the
number of shortest paths, that yields discriminative distance-based centrality indices. We present
exact and randomized algorithms for computation of the proposed discriminative indices. Then,
by performing extensive experiments, we first show that compared with the traditional indices, dis-
criminative indices have usually much more discriminability. Then, we show that our randomized
algorithms can very precisely estimate average discriminative path length and average discrimina-
tive eccentricity, using only few samples. Then, we show that real-world networks have usually a
tiny average discriminative path length, bounded by a constant (e.g. 2). We refer to this property
as the tiny-world property. Finally, we present a novel link prediction method that uses discrimina-
tive distance to decide which vertices are more likely to form a link in future, and show its

superior performance.
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1. INTRODUCTION

An important category of network indices is based on the
distance (the length of the shortest paths) between every
two vertices in the network. It includes closeness centrality,
average path length, vertex eccentricity, average graph
eccentricity, etc. Indices in this category have many important
applications in different areas. For example, in disease trans-
mission networks, closeness centrality is used to measure vul-
nerability to disease and infectivity [1]. In routing networks,
vertex eccentricity is used to determine vertices that form the
periphery of the network and have the largest worst-case
response time to any other device [2, 3]. In biological net-
works, vertices with high eccentricity perceive changes in
concentration of their neighbor enzymes or molecules [4].

Using the length of shortest paths as the distance measure
has shortcomings. A well-studied shortcoming is that extend-
ing it to disconnected graphs (and also directed graphs) is
controversial [5–8]. The other—less studied—shortcoming is
that by using this measure, a huge number of vertices may
find exactly the same closeness/eccentricity score. For
instance, Shun [9] recently reported that around 30% of the
(connected) vertices of the Yahoo graph have the same non-
zero eccentricity score. Our experiments, reported in Section
6.1, reveal that this happens in many real-world graphs. This
restricts the applicability of distance-based indices such as
closeness and eccentricity, as they cannot distinguish vertices.
For example, when closeness or eccentricity is used for the
facility location problem [10], they may not be able to
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distinguish one location among a set of candidate locations.
Finally, in many cases, the distance between two vertices not
only depends on the length of shortest paths, but also on the
number of shortest paths between them. As a simple example,
consider a network of locations where edges are roads con-
necting the locations. In a facility location problem, given
two (or more) candidate locations, we want to choose the one
which is more accessible from the rest of the network. Then,
we may prefer the location which is slightly farther from the
rest of the network but has more connections to the location
which is closest to the rest of the network. In particular, if
two locations have exactly the same distance from the other
locations, the one connected to the rest of the network by
more roads is preferred.
These observations motivate us to develop a new distance

measure between vertices of a graph that yields more discrim-
inative centrality notions. Furthermore, it considers both
shortest path length and the number of shortest paths. In this
paper, our key contributions are as follows:

• We propose new distance-based network indices,
including discriminative closeness, discriminative path
length, discriminative vertex eccentricity and average
discriminative graph eccentricity. These indices are
proportional to the length of shortest paths and
inversely proportional to the number of shortest paths.
Our empirical evaluation of these notions reveals an
interesting property of real-world networks. While
real-world graphs have the small-world property
which means they have a small average path length
bounded by the logarithm of the number of their verti-
ces, they usually have a considerably smaller average
discriminative path length, bounded by a constant
(e.g. 2). We refer to this property as the tiny-world
phenomena.

• We present algorithms for exact computation of the
proposed discriminative indices. We then develop a
randomized algorithm that precisely estimate average
discriminative path length (and average discriminative
eccentricity) and show that it can give an (ε,δ)-
approximation, where e Î + and δ∈ (0,1).

• We perform extensive experiments over several real-
world networks from different domains. First, we
examine discriminability of our proposed indices and
show that compared with the traditional indices, they
are usually much more discriminative.1 Second, we
evaluate the empirical efficiency of our simple rando-
mized algorithm for estimating average discriminative
path length and show that it can very precisely

estimate average discriminative path length, using
only few samples. Third, we show that our simple ran-
domized algorithm for estimating average discrimina-
tive eccentricity can generate high-quality results,
using only few samples. This has analogy to the case
of average eccentricity where a simple randomized
algorithm significantly outperforms more advanced
techniques [9].

• In order to better motivate the usefulness of our pro-
posed distance measure in real-world applications, we
present a novel link prediction method that uses dis-
criminative distance to indicate which vertices are
more likely to form a link in future. By running exten-
sive experiments over several real-world datasets, we
show the superior performance of our method, com-
pared with the well-known existing methods.

The rest of this paper is organized as follows. In Section 2,
preliminaries and necessary definitions related to distance-
based indices are introduced. A brief overview on related
work is given in Section 3. In Section 4, we introduce our
discriminative distance-based indices and discuss their exten-
sions and properties. We present exact and approximate algo-
rithms for computing discriminative indices in Section 5. In
Section 6, we empirically evaluate discriminability of our
indices and the efficiency and accuracy of our randomized
algorithms. In Section 7, we present our link prediction meth-
od and show its superior performance. Finally, the paper is
concluded in Section 8.

2. PRELIMINARIES

In this section, we present definitions and notations widely
used in the paper. We assume that the reader is familiar with
basic concepts in graph theory. Throughout the paper, G
refers to a graph (network). For simplicity, we assume that G
is a connected, undirected and loop-free graph without multi-
edges. Throughout the paper, we assume that G is an
unweighted graph, unless it is explicitly mentioned that G is
weighted. V(G) and E(G) refer to the set of vertices and the set
of edges of G, respectively. We use n and m to refer to |V(G)|
and |E(G)|, respectively. We denote the set of neighbors of a
vertex v by vN( ).
A shortest path (also called a geodesic path) between two

vertices v,u ∈ V(G) is a path whose length is minimum,
among all paths between v and u. For two vertices v,u ∈ V(G),
we use d(v,u), to denote the length (the number of edges) of a
shortest path connecting v and u. We denote by σ(v,u) the
number of shortest paths between v and u. By definition, d(v,
v) = 0 and σ(v,v) = 0. We use deg(v) to denote the degree
of vertex v. The diameter of G, denoted by Δ(G), is defined
as d v umax ,v u V G, ( )Î ( ) . The radius of G is defined as

d v umin max , .v V G u V G v ( )Î ( ) Î ( ) { }\

1Note that having a total ordering of the vertices is not always desirable
and by discriminative indices, we do not aim to do so. Instead, we want to
have a partial ordering over a huge number of vertices that using traditional
distance-based measures, find exactly the same value.
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Closeness centrality of a vertex v ∈ V(G) is defined as
[11]2

C v
n

d v u
1

1
, . 1

u V G v
å( ) =

-
( ) ( )

Î ( ) { }\

Average path length of graph G is defined as [13]

APL G
n n

d v u
1

1
, . 2

v V G u V G v
å å( ) =

´ ( - )
( ) ( )

Î ( ) Î ( ) { }\

Eccentricity of a vertex v ∈ V(G) is defined as [14, 15]3

E v
n

d v u
1

1
max , . 3

u V G v
( ) =

-
( ) ( )

Î ( ) { }\

Average eccentricity of graph G is defined as [14, 15]

AE G
n n

d v u
1

1
max , . 4

v V G u V G v
å( ) =

´ ( - )
( ) ( )

Î ( ) Î ( ) { }\

Center of a graph is defined as the set of vertices that have
the minimum eccentricity. Periphery of a graph is defined as
the set of vertices that have the maximum eccentricity.

3. RELATED WORK

The widely used distance-based indices are closeness central-
ity, average path length, eccentricity and average eccentricity
defined in Section 2. In all these indices, it is required to com-
pute the distance between every pair of vertices. The best
algorithm in theory for solving all-pairs shortest paths is
based on matrix multiplication [16] and its time complexity is
O(n2.3727). However, in practice breadth-first search (for
unweighted graphs) and Dijkstra’s algorithm (for weighted
graphs with positive weights) are more efficient. Their time
complexities for all vertices are O(nm) and O nm n nlog2( + ),
respectively. In the following, we briefly review exact and
inexact algorithms proposed for computing closeness and
eccentricity.

3.1. Closeness centrality and average path length

Eppstein and Wang [17] presented a uniform sampling algo-
rithm that with high probability approximates the inverse

closeness centrality of all vertices in a weighted graph G
within an additive error εΔ(G). Their algorithm requires
O nlog

2( )e
samples and spends O n n mlog( + ) time to process

each one. Brandes and Pich [18] extended this sampler by
considering different non-uniform ways of sampling. Cohen
et al. [19] combined the sampling method with the pivoting
approach [20, 21], where pivoting is used for the vertices that
are far from the given vertex. Olsen et al. [22] suggested stor-
ing and re-using the intermediate results that are common
among different vertices. Okamoto et al. [23] presented an
algorithm for ranking top k highest closeness centrality verti-

ces that runs in O k n n n n mlog log
2
3

1
3(( + )( + )) time.

There are several extensions of closeness centrality for spe-
cific networks. Kang et al. [11] defined closeness centrality of
a vertex v as the (approximate) average distance from v to all
other vertices in the graph and proposed algorithms to com-
pute it in MapReduce. Tarkowski et al. [24] developed a
game-theoretic extension of closeness centrality to networks
with community structure.

3.2. Eccentricity and average eccentricity

Dankelmann et al. [25] showed that the average eccentricity

of a graph is at least O 1n9

4 deg 1m
+ ( )

( + )
, where degm is the

minimum degree of the graph. Roditty and Williams [26]
developed an algorithm that gives an estimation E v( )ˆ of the
eccentricity of vertex v in an undirected and unweighted
graph, such that E v( )ˆ is bounded as follows:

E v E v E v2

3

3

2
( ) £ ( ) £ ( )ˆ . Time complexity of this algorithm

is O m n nlog( ). Takes and Kosters [3] presented an exact
eccentricity computation algorithm, based on lower and upper
bounds on the eccentricity of each vertex of the graph. They
also presented a pruning technique and showed that it can sig-
nificantly improve upon the standard algorithms. Chechik et al.
[27] introduced an O m mlog 3 2(( ) )/ time algorithm that gives
an estimate E v( )ˆ of the eccentricity of vertex v in an undirected
and weighted graph, such that E v E v E v3

5
( ) £ ( ) £ ( )ˆ . Shun

[9] compared shared-memory parallel implementations of sev-
eral average eccentricity approximation algorithms. He showed
that in practice a two-pass simple algorithm significantly out-
performs more advanced algorithms such as [26, 27].

4. DISCRIMINATIVE DISTANCE-BASED INDICES

In this section, we present the family of discriminative
distance-based indices.

4.1. Indices

The first index is discriminative closeness centrality. Similar
to closeness centrality, discriminative closeness is based on

2The more common definition of closeness centrality is as follows [12]:
C(v) = (n − 1)/(∑u ∈ V(G)\{v}d(v,u)). In this paper, due to consistency with
the definitions of the other distance-based indices, we use the definition pre-
sented in Equation (1). Note that this change has no effect on the results pre-
sented in the paper and they are still valid for the more common definition of
closeness.

3Again, while the common definition of eccentricity does not have the nor-
malization factor n1 1/ - , here in order to have consistent definitions for all
the distance-based indices, we add it to Equation (3).
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the length of shortest paths between different vertices in the
graph. However, unlike closeness centrality, discriminative
closeness centrality considers the number of shortest paths,
too. For a vertex v∈ V(G), discriminative closeness of v,
denoted with DC(v), is formally defined as follows:

DC v
n

d v u

v u

1

1

,

,
. 5

u V G v
å s

( ) =
-

( )
( )

( )
Î ( ) { }\

If in the definition of average path length, closeness cen-
trality is replaced by discriminative closeness centrality
defined in Equation (5), we get average discriminative path
length of G, defined as follows:

ADPL G
n n

d v u

v u

1

1

,

,
. 6

v V G u V G v
å å s

( ) =
´ ( - )

( )
( )

( )
Î ( ) Î ( ) { }\

In a similar way, discriminative eccentricity of a vertex v ∈
V(G), denoted by DE(v), is defined as follows:

DE v
n

d v u

v u

1

1
max

,

,
. 7

u V G v s
( ) =

-
( )
( )

( )
Î ( ) { }\

Finally, average discriminative eccentricity of G is defined
as follows:

ADE G
n n

d v u

v u

1

1
max

,

,
. 8

v V G u V G v
å s

( ) =
´ ( - )

( )
( )

( )
Î ( ) Î ( ) { }\

All these notions are based on replacing distance by discrim-
inative distance, defined as follows. For v,u ∈ V(G), discrimina-
tive distance between v and u, denoted with dd(v,u), is defined
as

d v u

v u

,

,s
( )
( )

. We define discriminative diameter and discriminative
radius of G respectively as follows:

DD G
d v u

v u
max max

,

,
, 9

v V G u V G v s
( ) =

( )
( )

( )
Î ( ) Î ( ) { }\

DR G
d v u

v u
min max

,

,
. 10

v V G u V G v s
( ) =

( )
( )

( )
Î ( ) Î ( ) { }\

Finally, we define discriminative center of a graph as the
set of vertices that have the minimum discriminative eccentri-
city; and discriminative periphery of a graph as the set of ver-
tices that have the maximum discriminative eccentricity.

4.1.1. Generalizations
We can consider two types of generalizations of
Equations (5)–(10). In the first generalization, in the denomin-
ator of the equations, instead of using the number of shortest
paths, we may use the number of a restricted class of shortest
paths, e.g. vertex disjoint shortest paths, edge disjoint shortest
paths etc. In the second generalization, instead of directly
using distances and the number of shortest paths, we may

introduce and use functions f and g, defined respectively on
the length and the number of shortest paths. Then, by chan-
ging the definitions of f and g, we can switch among different
distance-based notions. For example, for any two vertices
v,u ∈ V(G), if f(d(v,u)) and g(σ(v,u)) are, respectively, defined
as d(v,u) and 1, we will have the traditional distance-based
indices introduced in Section 2. If f(d(v,u)) and g(σ(v,u)) are,

respectively, defined as
d v u

1

,( )
and 1, we will have harmonic

closeness centrality [7] defined as follows:

HC v
n d v u

1

1

1

,
.

u V G v
å( ) =

- ( )Î ( ) { }\

Then, someone may define discriminative harmonic close-
ness centrality of vertex v as

DHC v
n

v u

d v u

1

1

,

,
, 11

u V G v
å

s
( ) =

-
( )
( )

( )
Î ( ) { }\

where f(d(v,u)) and g(σ(v,u)) are, respectively, defined as

d v u

1

,( )
and

v u

1

,s ( )
.

4.1.2. Connection to the other indices
Path-based indices such as betweenness centrality [28, 29]
(and its generalizations such as group betweenness centrality
[30] and co-betweenness centrality [31]) consider the number
of shortest paths that pass over a vertex. However, between-
ness centrality does not consider the shortest path length and
it is used as an indicator of the amount of control that a vertex
has over shortest paths in the network. Some variations of
betweenness centrality, such as length-scaled betweenness
centrality and linearly scaled betweenness centrality [32], are
more similar to our proposed notions. However, they still
measure the amount of control that a vertex has over shortest
paths, but give a weight (which is a function of distance) to
the contribution of each shortest path. In our proposed
notions, the number of shortest paths passing over a vertex
does not always contribute to the centrality of the vertex.
Indices such as Katz centrality [33] and personalized
PageRank [34] consider both the length and the number of
paths between two vertices. However, there are important dif-
ferences, too. For example, Katz centrality is proportional to
both the length and the number of paths. Furthermore, it con-
siders all paths. This makes it inappropriate for the applica-
tions where the concept of shortest paths is essential. This
index is mainly used in the analysis of directed acyclic
graphs. If in the Katz index of two vertices v and u, denoted
by K(v,u), the paths are limited to shortest paths (and the bias
constant β is set to 0), we can express it using our generaliza-
tion of discriminative indices. If this limitation is applied,
K(v,u) will be defined as αd(v,u)σ(v,u), where α is the attenu-
ation factor [33]. Then, this index can be seen as a special
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case of our generalized discriminative index, where f(d(v,u))
is defined as αd(v,u) and g(σ(v,u)) is defined as

v u

1

,s ( )
.

The other index that may have some connection to our dis-
criminative indices is clustering coefficient [35]. Both cluster-
ing coefficient and discriminative indices are sensitive to the
local density of the vertices, however, they have different
goals. While clustering coefficient aims to directly reflect the
local density, discriminative indices aim to take into account
the density of different regions of the graph, when computing
distances.

4.1.3. Disconnected or directed graphs
When the graph is disconnected or directed, it is possible that
there is no (shortest) path between vertices v and u. In this

case, d(v,u) = ∞ and σ(v,u) = 0, hence,
d v u

v u

,

,s
( )
( )

is undefined.

For closeness centrality, when d(v,u) = ∞, a first solution is
to define d(v,u) as n. The rationale is that in this case d(v,u) is
a number greater than any shortest path length. We can use a
similar technique for discriminative distance: when there is
no path from v to u, we define d(v,u) as n and σ(v,u) as 1.
This discriminative distance will be greater than the discrim-
inative distance between any two vertices v′ and u′ that are
connected by a path from v′ to u′. The second solution sug-
gested for closeness centrality is to use harmonic centrality
[7]. As stated in Equation (11), this can be applied to discrim-
inative closeness, too. When d(v,u) = ∞, Equation (11)
yields 0

¥
, which is conventional to define as 0.

4.1.4. A property
A nice property of shortest path length is that for vertices v,u,
w ∈ V(G) such that w is on a shortest path between v and u,
the following holds: d(v,u) = d(v,w) + d(w,u). This property
is useful in e.g. designing efficient distance computation algo-
rithms. This property does not hold for discriminative distance
as dd(v,u) can be less than or equal to dd(v,w) + dd(w,u). An
example is presented in Fig. 1. However, we believe this is
not a serious problem. The reason is that more than shortest
path length that satisfies the above-mentioned property, dis-
criminative distance is based on the number of shortest paths,
which satisfies the following property: σw(v,u) = σ(v,w) × σ

(w,u), where σw(v,u) is the number of shortest paths between v
and u that pass over w. As we will discuss in Section 5, these
two properties can help us to design efficient algorithms for
computing discriminative distance-based indices.

4.1.5. Why our proposed indices are more discriminative
It is very difficult to theoretically prove that for general
graphs, our proposed indices are always more discriminative
than the existing distance-based indices. However, we can
still provide arguments explaining why in practice our pro-
posed indices are more discriminative. We here focus on
unweighted graphs. Let n be the number of vertices. While
the maximum possible shortest path length in a graph is

n − 1, for real-world networks it is much smaller and it is
nlog . This means the range of all possible values of distance

is narrow and as a result, a vertex may have the same distance
from many other vertices. This yields that many vertices may
have the same closeness/eccentricity scores. However, the
range of all possible values of the number of shortest paths
between two vertices is much wider and it varies between 1
and an exponential function of n. For example, on the one
hand, in the graph of Figure 2, there are 2(n/2)−1 shortest
paths between s and t and on the other hand, in a tree there is
only one shortest path between any two vertices. This wider
range yields that when the number of shortest paths is
involved, the probability that two vertices have exactly the
same score drastically decreases.

4.2. Intuitions

In several cases, the distance between two vertices in the
graph not only depends on their shortest path length, but also
(inversely) on the number of shortest paths they have. In the
following, we discuss some of them.

4.2.1. Time and reliability of traveling
A key issue in transportation and logistics [36, 37] and in
vehicular social networks (VSNs) [38] is to estimate the
traveling time and route reliability between two points A and B.
The time and the reliability of traveling from A to B depend
on the structure of the road network and also on the stochastic
factors such as weather and traffic incidents. One of the fac-
tors that depends on the network structure is the number of
ways that someone can travel from A to B. Having several
ways to travel from A to B, on the one hand, increases the
reliability of traveling. On the other hand, it deceases traffic
between A and B and as a result, the traveling time.
Therefore, taking into account both the length and the number
of shortest paths between A and B (in other words, defining
the distance between A and B in terms of both the length and
the number of shortest paths) can help to better estimate the
time and the reliability of traveling between A and B.

(a) (b)

FIGURE 1. In (a), we have: dd(v,u) < dd(v,w) + dd(w,u) and, in
(b), we have: dd(v,u) = dd(v,w) + dd(w,u).

FIGURE 2. There are 2(n/2)−1 shortest paths between s and t.
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4.2.2. Spread of infections
It is known that infection and contact rates in a network
depend on the community structure of the network and the
spread of infections inside a community is faster [39–41].
Consider vertices v1, v2 and v3 such that d(v1,v2) = d(v1,v3),
v1 and v2 are in the same community but v1 and v3 are not.
An infection from v1 usually spreads to v2 faster than v3, or
the probability that (after some time steps) v2 becomes
infected by v1 is higher than the probability that v3 becomes
infected. Here, to describe the distances between the vertices,
our discriminative distance measure is a better notion than the
shortest path length. Vertices v1 and v2 that are inside a com-
munity are heavily connected and as a result, they usually
have many shortest paths between themselves. In contrast, v1
and v3 do not belong to the same community and are not
heavily connected, hence, they usually have less shortest
paths between themselves. This means dd(v1,v2) is smaller
than dd(v1,v3), which is consistent with the infection rate.

5. ALGORITHMS

In this section, we discuss how discriminative indices can be
computed. First in Section 5.1, we present the exact algo-
rithms and then in Section 5.2, we present the approximate
algorithms.

5.1. Exact algorithms

In this section, we present the DCC4 algorithm for computing
discriminative closeness centrality of all vertices of the net-
work and show how it can be revised to compute the other
discriminative indices.

Algorithm 1 High-level pseudo code of the algorithm of
computing discriminative closeness scores.

1: DCC
2: Input. A network G.
3: Output. Discriminative closeness centrality of vertices

of G.
4: for all vertex v ∈ V(G) do
5: I[v] ← 0.
6: end for
7: for all vertex v ∈ V(G) do
8: D,N ← SHORTESTPATHDAG(G,v).
9: for all vertex u ∈ V(G)\{v} do

10: I v I v
n

D u

N u

1

1
[ ] ¬ [ ] + ´

-
[ ]
[ ]
.

11: end for
12: end for
13: return I.

Algorithm 1 shows the high-level pseudo code of the algo-
rithm. DCC is an iterative algorithm where at each iteration,
discriminative closeness of a vertex v is computed. This is
done by calling the ShortestPathDAG method for v. Inside
ShortestPathDAG, the distances and the number of shortest
paths between v and all other vertices in the graph are com-
puted. If G is unweighted, this is done by a breadth-first
search starting from v. Otherwise, if G is weighted with posi-
tive weights, this is done using Dijkstra’s algorithm [42]. A
detailed description of ShortestPathDAG can be found in sev-
eral graph theory books, including [43], hence, we here
ignore it.

5.1.1. Computing the other indices
Algorithm 1 can be revised to compute average discrimina-
tive path length of G, discriminative eccentricity of vertices
of G and average discriminative eccentricity of G.

• ADPL(G): After Line 12 of Algorithm 1 (where the I[v]

values are already computed), ADPL(G) can be com-

puted as
I v

n

v V Gå [ ]Î ( ) .

• DE(v): If Line 10 of Algorithm 1 is replaced by the
following lines:

if I v
n

D u

N u

1

1
´ > [ ]

-
[ ]
[ ]

then

I v
n

D u

N u

1

1
[ ] ¬ ´

-
[ ]
[ ]
.

end if

then, the algorithm will compute discriminative eccen-
tricity of the vertices of G and will store them in I.

• ADE(G): After computing discriminative eccentricity

of all vertices of G and storing them in I, ADE(G) can

be computed as
I v

n

v V Gå [ ]Î ( ) .

In a similar way, Algorithm 1 can be revised to compute
discriminative diameter and discriminative radius of G.

5.1.2. Complexity analysis
For unweighted graphs, each iteration of the loop in Lines
7–12 of method DCC takes O(m) time. For weighted graphs
with positive weights, using a Fibonnaci heap, it takes
O m n nlog( + ) time [43]. This means discriminative close-
ness centrality and discriminative eccentricity of a given ver-
tex can be computed, respectively, in O(m) time and
O m n nlog( + ) time for unweighted and weighted graphs
with positive weights. However, computing average discrim-
inative path length and/or average eccentricity of the graph
requires, respectively, O(nm) time and O nm n nlog2( + )
time for unweighted graphs and weighted graphs with posi-
tive weights. Space complexity of each iteration (and the
whole algorithm), for both unweighted graphs and weighted4DCC is an abbreviation for Discriminative Closeness Calculator.
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graphs with positive weights, is O(n + m) [43]. Note that
these complexities are the same as complexities of computing
traditional distance-based indices. The reason is that in add-
ition to computing the distances between v and all other verti-
ces of the graph, ShortestPathDAG can also compute the
number of shortest paths, without having any increase in the
complexity [43].

5.2. Randomized algorithms

While discriminative closeness and discriminative eccentricity
of a given vertex can be computed efficiently, the algorithms of
computing average discriminative path length and average dis-
criminative eccentricity of the graph are expensive in practice,
even for mid-size networks. This motivates us to present rando-
mized algorithms for ADPL and ADE that can be performed
much faster, at the expense of having approximate results.

Algorithm 2 High-level pseudo code of the algorithm of esti-
mating average discriminative path length.

1: RandomADPL
2: Input. A network G and the number of samples T.
3: Output. Estimated average discriminative path length

of G.
4: β ← 0.
5: for all t = 1 to T do
6: Select a vertex v ∈ V(G) uniformly at random.
7: D,N ← SHORTESTPATHDAG(G,v).

8: t n u V G v
D u

N u

1

1
b ¬ ´ å- Î ( ) { }

[ ]
[ ]\ .

9: β ← β + βt.
10: end for
11:

T
b ¬ b

12: return β.

Algorithm 2 shows the high-level pseudo code of the
RandomADPL algorithm, proposed to estimate average dis-
criminative path length. The inputs of the algorithm are the
graph G and the number of samples (iterations) T. In each
iteration t, the algorithm first chooses a vertex v uniformly at
random and calls the ShortestPathDAG method for v and G,
to compute distances and the number of shortest paths
between v and any other vertex in G. Then, it estimates
average discriminative path length of G at iteration t as

n u V G v
d v u

v u

1

1

,

,
´ å s- Î ( ) { }

( )
( )\ and stores it in βt. The average of

all βt values computed during different iterations gives the
final estimation β of average discriminative path length.
Clearly, for unweighted graphs, time complexity of
Algorithm 2 is O(T × m) and for weighted graphs with posi-
tive weights, it is O T m T n nlog( ´ + ´ ). In a way similar
to Algorithm 1, Algorithm 2 can be modified to estimate dis-
criminative eccentricity of graph G, where the details are
omitted.

In the rest of this section, we provide an error bound for
our estimation of average discriminative path length. First in
Proposition 5.1, we prove that in Algorithm 2 the expected
value of β is ADPL(G). Then in Proposition 5.2, we provide
an error bound for β.

PROPOSITION 5.1. In Algorithm 2, expected value of βt’s
(1 ≤ t ≤ T) and β is ADPL(G).

Proof. We have

n n
ADPL GE

1

1
,t

v V G

u V G v
d v u

v u

,

,åb[ ] =
æ

è

ççççççç
´

å

-

ö

ø

÷÷÷÷÷÷÷
= ( )s

Î ( )

Î ( ) { }
( )
( )\

where
n

1 comes from the uniform distribution used to choose

vertices of G. Then, we have: E
T

T

T

E Et
T

t t1b[ ] = = =b bå [ ] ´ [ ]=

ADPL G .( ) □

PROPOSITION 5.2. In Algorithm 2, let G be a connected and
undirected graph. For a given e Î +, we have

ADPL G T
G

P 2 exp 2 .

12

2

b e
e

D
[| ( ) - | > ] £

æ

è

ççççç
- ´ ´

æ

è
çççç ( )

ö

ø
÷÷÷÷

ö

ø

÷÷÷÷÷

( )

Proof. The proof is done using Hoeffding’s inequality [44].
Let X1,…,Xn be independent random variables bounded by
the interval [a,b], i.e. a ≤ Xi ≤ b (1 ≤ i ≤ n). Let also
X X X

n n
1

1= ( + + )¯ . Hoeffding [44] showed that

X X n
b a

P E 2 exp 2 . 13
2

e
e

[| [ ] - | > ] £
æ

è
çççç
-

æ
è
ççç -

ö
ø
÷÷÷
ö

ø
÷÷÷÷

( )¯ ¯

On the one hand, for any two distinct vertices v,u ∈ V(G), we

have d(v,u) ≤ Δ(G) and σ(v,u) ≥ 1. Therefore, Gd v u

v u

,

,
D£ ( )

s
( )
( )

and as a result, βt ≤ Δ(G) (1 ≤ t ≤ T). On the other hand, for

any two distinct vertices v,u ∈ V(G), we have 0d v u

v u

,

,
>

s
( )
( )

.

Therefore, βt > 0, for 1 ≤ t ≤ T. Note that in Algorithm 2 verti-

ces u are chosen independently and, therefore, variables βt are
independent. Hence, we can use Hoeffding’s inequality, where
Xi’s are βt’s, X̄ is β, n is T, a is 0 and b is Δ(G). Putting these
values into Inequality 13 yields Inequality 12. □
Real-world networks have a small diameter, bounded by

the logarithm of the number of vertices in the network [35].
This, along with Inequality 12, yields5

5Note that in Inequality 14, both β and ε are in + and since β and its
expected value are not bounded by (0,1) and they are considerably larger
than 0 (and they can be larger than 1), ε is usually set to a value much larger
than 0 (and even larger than 1, such as nlog ).
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ADPL G T
n

P 2 exp 2
log

.

14
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e

[| ( ) - | > ] £
æ

è

çççç
- ´ ´

æ

è
ççç

ö

ø
÷÷÷÷

ö

ø
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Inequality 14 says that for given values e Î + and δ ∈

(0,1), if T is chosen such that T ,
nln log

2

2 2

2

( )
³

e

( )
d Algorithm 2

estimates average discriminative path length of G within an
additive error ε with a probability at least 1−δ. Our extensive
experiments reported in Table 1 of Section 6 (the rightmost
column) show that many real-world networks have a very
small discriminative diameter, much smaller than the loga-
rithm of the number of vertices they have. So, we may
assume that their discriminative diameter is bounded by a

constant c. For such networks, using only
c ln

2

2 2

2

( )
e

´
d samples,

Algorithm 2 can estimate average discriminative path length
within an additive error ε with a probability at least 1−δ.

6. EXPERIMENTAL RESULTS

We perform extensive experiments on real-world networks
to assess the quantitative and qualitative behavior of our pro-
posed algorithms. The programs are compiled by the GNU C++
compiler 5.4.0 using optimization level 3. We do our tests over
(largest connected components of) several real-world datasets
from different domains, including the dblp0305, dblp0507
and dblp9202 co-authorship networks [45], the facebook-
uniform social network [46], the flickr network [47], the
gottron-reuters network [48], the petster-friendships network
[49], the pics_ut network [49], the web-Stanford network
[50], the web-NotreDame network [51], the citeulike-ut net-
work [52], the epinions network [53] and the wordnet net-
work [54]. All the networks are treated as undirected graphs.
When a graph is disconnected, we consider only its largest
component. Table 1 summarizes specifications of the largest
components of our real-world networks.

6.1. Empirical evaluation of discriminability

We measure discriminability of a centrality notion in terms of
its power in assigning distinguished values to the vertices.
Hence, for each centrality notion and over each network G,
we define discriminability as

G

distinct centrality scores

vertices of
100.

#
#

´

Among different distance-based notions studied in this
paper, we investigate discriminability of discriminative close-
ness centrality. The reason is that on the one hand, notions
such as average discriminative path length and average dis-
criminative eccentricity are graph characteristics, rather than

vertex properties. Hence, it does not make sense to measure
their discriminability. On the other hand, closeness centrality
is a much more common distance-based notion to rank verti-
ces than the other distance-based notions such eccentricity.
We compare discriminative closeness centrality against close-
ness centrality, as well as a number of centrality notions that
are not based on distance, including betweenness centrality
[28], length-scaled betweenness centrality [32] linearly scaled
betweenness centrality [32] and Katz centrality [33].6 Katz cen-
trality has three parameters to adjust: the damping factor α, the
bias constant β and the convergence tolerance tol. Similar to
e.g. [55], we set β to 1. In order to guarantee convergence, α
must be less than the inverse of the largest eigenvalue of the
graph. Here we set it to 0.001, which is one of the values used
in the experiments of [55]. We set tol to 1e − 10.
Table 2 reports the discriminability results. In the table, a

‘higher percentage’ means a ‘higher discriminability’ of the cen-
trality notion. The followings can be seen in the table. First, dis-
criminative closeness centrality is always more discriminative
than the other indices. Second, over datasets such as dblp0305,
dblp0507, dblp9202, facebook-uniform and web-Stanford, dis-
criminability of discriminative closeness centrality is signifi-
cantly larger than discriminability of the other indices. In fact,
when over a network discriminability of the other indices is
very low, discriminative closeness centrality becomes signifi-
cantly more discriminative than them. However, when the other
indices are discriminative enough, the difference between dis-
criminability of the indices is less considerable. Third, Katz cen-
trality is usually more discriminative than closeness centrality,
betweenness centrality, length-scaled betweenness centrality
and linearly scaled betweenness centrality. The only exception
is web-NotreDame, where length-scaled betweenness centrality
and linearly scaled betweenness centrality are more discrimina-
tive than Katz centrality. However, unlike the other indices,
Katz centrality uses all paths, which makes it improper for the
applications where the concept of shortest paths is essential.
Fourth, while in most cases, betweenness centrality and its var-
iations are more discriminative than closeness centrality, in a
few cases, e.g. over pics_ut, epinions and wordnet, closeness
centrality is more discriminative than betweenness centrality
and its variations. Fifth, while length scaled and linearly scaled
betweenness centrality always show the same discriminability,
they slightly improve discriminability of betweenness centrality.
However, this improvement is not considerable.
Figure 3 compares running times of computing different

indices. Since betweenness centrality, length scaled between-
ness centrality and linearly scaled betweenness centrality fol-
low exactly the same procedure and differ only in the way of
aggregating the computed scores, we report only one time for

6To compute betweenness centrality and its variations, we use boost graph
library (http://www.boost.org/doc/libs/1_66_0/libs/graph/doc/index.html) and
to compute Katz centrality, we use NetworKit (https://networkit.iti.kit.edu/),
where all these algorithms are implemented in C++.
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all of them. As can be seen in the figure, since Katz centrality
does not find shortest paths and at each vertex, simply fol-
lows all its neighbors, it is computed much faster than the
other indices. Closeness centrality is computed faster than
discriminative closeness and discriminative closeness is com-
puted faster betweenness centrality and its variations. Note
that the algorithms of computing closeness centrality and dis-
criminative closeness centrality have the same time complex-
ity. However, to compute discriminative closeness centrality,
compared to closeness centrality we require to perform extra
operations (e.g. counting the number of shortest paths). This
makes it in practice slower than closeness centrality.

6.2. Empirical evaluation of randomized algorithms

Table 3 presents the results of the empirical evaluation of our
proposed randomized algorithm for estimating average

discriminative path length. When estimating average discrim-
inative path length or average discriminative eccentricity, we
define relative error of the approximation algorithm as

exact score approximate score

exact score
100,

| - |
´

where exact score and approximate score are, respectively,
the values computed by the exact and approximate algo-
rithms. Sample sizes are expressed in terms of the percentages
of the number of vertices of the graph. We examine the algo-
rithm for three sample sizes: 10% of the number of vertices,
1% of the number of vertices and 0.1% of the number of ver-
tices. As can be seen in the table, only a very small sample
size, e.g. 0.1% of the number of vertices, is sufficient to have
an accurate estimation of average discriminative path length.
Over all the datasets, except gottron-reuters, this sample size
gives a relative error less than 3%. In particular, relative error

TABLE 1. Specifications of the largest component of the real-world datasets.

Dataset Link # vertices # edges Discriminative diameter

dblp0305 http://www-kdd.isti.cnr.it/GERM/ 109 045 233 962 2
dblp0507 http://www-kdd.isti.cnr.it/GERM/ 135 116 290 364 2
dblp9202 http://www-kdd.isti.cnr.it/GERM/ 129 074 277 082 2
facebook-uniform http://odysseas.calit2.uci.edu/doku.php/public:online_social_networks 134 304 135 532 2
flickr http://konect.uni-koblenz.de/networks/flickrEdges 73 342 2 619 711 5
gottron-reuters http://konect.uni-koblenz.de/networks/gottron-reuters 38 677 978 461 5
petster-friendships http://konect.uni-koblenz.de/networks/petster-friendships-cat 148 826 5 449 508 8
pics_ut http://konect.uni-koblenz.de/networks/pics_ut 82 035 2 300 296 5
web-Stanford http://snap.stanford.edu/data/web-Stanford.html 255 265 2 234 572 16
web-NotreDame http://snap.stanford.edu/data/web-NotreDame.html 325 729 1 524 589 28
citeulike-ut http://konect.uni-koblenz.de/networks/citeulike-ut 153 277 2 411 940 7
epinions http://konect.uni-koblenz.de/networks/epinions 119 130 834 000 15
wordnet http://konect.uni-koblenz.de/networks/wordnet-words 145 145 656 230 15

TABLE 2. Comparison of discriminability of the centrality notions over different real-world networks. For each dataset, the most discriminative
index is highlighted in bold.

Database Discriminative closeness Closeness Betweenness Length scaled betweenness Linearly scaled betweenness Katz

dblp0305 2.7805 0.0201 0.0403 0.0403 0.0403 0.4447
dblp0507 2.7013 0.0155 0.0325 0.0325 0.0325 0.3804
dblp9202 3.2973 0.0147 0.0263 0.0263 0.0263 0.3091
facebook-uniform 5.6178 0.0446 0.0528 0.0528 0.0528 0.9039
flickr 92.7694 4.4435 84.8381 85.0835 85.0835 90.4365
gottron-reuters 88.9934 25.8810 74.3956 74.3956 74.3956 88.9753
petster-friendships 70.0764 39.2176 65.7049 65.7317 65.7317 70.0260
pics_ut 50.5113 36.3552 33.4028 33.5210 33.5210 42.6196
web-Stanford 97.3376 18.9258 26.6542 27.2861 27.2861 31.6122
web-NotreDame 29.9819 18.5230 18.1245 19.2402 19.2402 19.0277
citeulike-ut 45.2540 30.4546 28.6135 28.7185 28.7185 34.3032
epinions 70.0218 57.0679 42.1220 45.5745 45.5745 60.1922
wordnet 58.8907 51.8770 38.8838 40.5187 40.5187 52.8340
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in the datasets dblp0305, dblp0507, dblp9202 and facebook-
uniform is very low. This is consistent with our analysis pre-
sented in Section 5.2 and is due to very small discriminative
diameter of these networks.
Table 3 also compares average discriminative path length

of the networks with their average path length. For all the
datasets, except dblp0305, dblp0507, dblp9202 and facebook-
uniform, average discriminative path length is considerably
smaller than average path length. It may seem surprising that
despite very high discriminability of discriminative closeness
compared to closeness over dblp0305, dblp0507, dblp9202
and facebook-uniform, the differences between average dis-
criminative path length and average path length are tiny. The
reason is that over these datasets, on the one hand, between a
huge number of pairs of vertices there is only one shortest
path; a few pairs have two shortest paths and only a very tiny
percentage of pairs have three or more shortest paths.
Therefore, those pairs that have more than one shortest paths
do not have a considerable contribution to ADPL, hence,
ADPL and APL find very close values. However, on the other
hand, for each vertex v there are a different number of verti-
ces to which v is connected by two or more shortest paths.
This is sufficient to distinguish its discriminative closeness
from the other vertices.
Table 4 reports the results of the empirical evaluation of our

randomized algorithm for estimating average discriminative
eccentricity. Similar to the case of average discriminative path
length, we test the algorithm for three different sample sizes
and our experiments show that only a small sample size, e.g.

0.1% of the number of vertices, can yield a very accurate esti-
mation of average discriminative eccentricity. In our experi-
ments, for the sample size 0.1%, relative error is always less
than 5%. This high accuracy is due to very small discrimina-
tive diameter of the networks. Similar to the case of average
eccentricity where a simple randomized algorithm significantly
outperforms advanced techniques [9], our simple algorithms
show very good efficiency and accuracy for estimating aver-
age discriminative path length and average discriminative
eccentricity. Table 4 also shows that similar to ADPL, while
the datasets dblp0305, dblp0507, dblp9202 and facebook-
uniform have (almost) the same values for AE and ADE, over
the rest of the datasets ADE is less than AE.

6.3. The tiny-world property

It is well known that in real-world networks, average path
length is proportional to the logarithm of the number of vertices
in the graph and it is considerably smaller than the largest dis-
tance that two vertices may have in a graph [35]. Our extensive
experiments presented in Table 3 reveal that in real-world net-
works average discriminative path length is much more smaller
than the largest discriminative distance7 that two vertices may
have in a graph and it is bounded by a constant (i.e. 2). This also

FIGURE 3. Running time of computing discriminative closeness centrality, closeness centrality and betweenness centrality (and its variations).
The vertical axis is in logarithmic scale.

7Both the largest distance and the largest discriminative distance that two
vertices may have in a graph are equal to the number of vertices in the graph
minus 1.
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implies that average discriminative path length of a network is
usually considerably smaller than its average path length.
This property means that in real-world networks, not only

most vertices can be reached from every other vertex by a
small number of steps, but also there are many different ways
to do so. We call this property the tiny-world property. A
consequence of this property is that removing several vertices
from a real-world network does not have a considerable effect
on its average path length. Note that this property does not
contradict the high discriminability of discriminative close-
ness; while this property implies that vertices in average have
a tiny discriminative distance from each other, the high dis-
criminability of discriminative closeness implies that the dis-
criminative closeness scores of different vertices are less
identical than their closeness scores. In Table 3, it can be
seen that networks such as flickr, petster-friendships, pics_ut
and citeulike-ut have an average discriminative path length
considerably smaller than the others. This is due to the high
density of these networks, which yields that any two vertices
may have a shorter distance or more shortest paths.

7. LINK PREDICTION

In order to better motivate the applicability and usefulness of
our proposed distance measure, in this section, we present a
novel link prediction method, which is based on our new dis-
tance measure. We empirically evaluate our method and
show that it outperforms the well-known existing link predic-
tion methods.
In the link prediction problem studied in this paper, we are

given an unweighted and undirected graph G in which each
edge e = {u,v} has a timestamp. For a time t, let G[t] denote
the subgraph of G consisting of all edges with a timestamp less
than or equal to t. Then the link prediction task is defined as
follows. Given network G[t] and a time t′ > t, (partially) sort
the list of all pairs of vertices that are not connected in G[t],
according to their probability (likelihood) of being connected
during the interval (t,t′]. We refer to the intervals [0,t] and (t,t′]
as the training interval and the test interval, respectively.
To generate this (decreasingly) sorted list, existing methods

during the training interval compute a similarity matrix S
whose entry Suv is the score (probability/likelihood) of hav-
ing an edge between vertices u and v. Generally, S is symmet-
ric, i.e. Suv = Svu. The pairs of the vertices that are at the top
of the ordered list are most likely to be connected during the
test interval [56]. To compute Su,v, several methods have
been proposed in the literature, including the number of com-
mon neighbors [57], negative of shortest path length [58] and
its variations [59], the Jaccard’s coefficient [60], the preferen-
tial attachment index [61], hitting time [58], SimRank [62],
Katz index [33], the Adamic/Adar index [63] and resource
allocation based on common neighbor interactions [64]. In

the literature, there are also many algorithms that exploit a
classification algorithm, with these indices as the features,
and try to predict whether a pair of unconnected vertices will
be connected during the test interval or not [56, 65, 66].

TABLE 3. Relative error of our randomized average discriminative
path length estimation algorithm.

Database

Exact values
Approximate
algorithm

APL ADPL
Sample
size (%)

Relative
error (%)

dblp0305 1.99997 1.99995 10 0.0016
1 0.0016
0.1 0.0016

dblp0507 1.99997 1.99996 10 0.0008
1 0.0008
0.1 0.0008

dblp9202 1.99997 1.99996 10 0.0015
1 0.0015
0.1 0.0012

facebook-uniform 1.99998 1.99997 10 0.0097
1 0.0099
0.1 0.0102

flickr 2.3078 0.2787 10 2.5639
1 0.2887
0.1 2.7859

gottron-reuters 2.9555 0.6860 10 0.5827
1 3.6259
0.1 19.3603

petster-friendships 2.7028 0.2220 10 0.8221
1 0.4389
0.1 2.4948

pics_ut 3.6961 0.2953 10 0.4478
1 1.8667
0.1 2.9500

web-Stanford 6.8152 0.9509 10 0.6261
1 1.4910
0.1 2.7938

web-NotreDame 7.1731 1.5856 10 0.0618
1 0.6948
0.1 2.9328

citeulike-ut 3.9376 0.2361 10 0.0355
1 1.6612
0.1 2.3498

epinions 4.1814 0.9098 10 0.0240
1 0.7403
0.1 0.7527

wordnet 5.5320 1.1141 10 0.1610
1 0.6710
0.1 2.7228
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In this section, we propose a new method, called LIDIN,8

for sorting the list of pairs of unconnected vertices, which is a
combination of shortest path length and discriminative distance.
For two pairs of unconnected vertices {u1,v1} and {u2,v2}, using

LIDIN we say vertices u2 and v2 are more likely to form a link
during the test interval than vertices u1 and v1 if

• d(u1,v1) > d(u2,v2), or
• d(u1,v1) = d(u2,v2) and dd(u1,v1) > dd(u2,v2).

The rationale behind LIDIN is that when comparing a pair
of vertices u1,v1 with another pair u2,v2, if d(u1,v1) = d(u2,v2)

TABLE 4. Relative error of our randomized average discriminative eccentricity estimation algorithm.

Exact values Approximate algorithm

Database AE (× 1000) ADE (× 1000) Sample size (%) Relative error (%)

dblp0305 0.0183 0.0183 10 0.0013
1 0.0013
0.1 0.0013

dblp0507 0.0148 0.0148 10 0.0007
1 0.0007
0.1 0.0007

dblp9202 0.0154 0.0154 10 0.0015
1 0.0015
0.1 0.0015

facebook-uniform 0.0148 0.0148 10 0.0096
1 0.0096
0.1 0.0096

flickr 0.0566 0.0323 10 0.2627
1 1.1411
0.1 1.6568

gottron-reuters 0.1159 0.0898 10 0.2327
1 0.4596
0.1 4.4685

petster-friendships 0.0432 0.0293 10 0.0749
1 0.04465
0.1 2.3459

pics_ut 0.0636 0.0450 10 0.0604
1 0.7933
0.1 0.8762

web-Stanford 0.4171 0.0314 10 0.3697
1 1.0153
0.1 2.4259

web-NotreDame 0.0852 0.0399 10 0.0235
1 0.4150
0.1 0.4150

citeulike-ut 0.0406 0.0262 10 0.3076
1 0.2016
0.1 3.2315

epinions 0.0894 0.0676 10 0.0780
1 0.2170
0.1 0.3784

wordnet 0.0780 0.0589 10 0.0724
1 0.4879
0.1 0.5011

8LIDIN is an abbreviation for LInk prediction based on DIstance and the
Number of shortest paths.
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but u2 and v2 are connected to each other by more shortest
paths than u1 and v1, then they are more likely to form a link
during the test interval. As a special case, for a fixed k, con-
sider the list L(k) consisting of all pairs of unconnected verti-
ces u and v such that d(u,v) = k. A network may have many
such pairs. It is known that compared to the pairs of uncon-
nected vertices that have distance k + 1, members of L(k) are
more likely to form a link during the test interval [67, 68].
However, the question remaining open is what elements of
L(k) are more likely to be connected than the other members?
Using LIDIN, we argue that by increasing the number of
shortest paths between the two vertices, the probability of
forming a link increases, too.
In order to empirically evaluate this argument, we perform

tests over several temporal real-world networks, including sx-
stackoverflow [69], sx-mathoverflow [69], sx-superuser [69],
sx-askubuntu [69], wiki-talk-temporal [69, 70] and CollegeMsg
[71]. Table 5 summarizes the specifications of the used tem-
poral real-world datasets. We consider all these networks as
simple and undirected graphs, where multi-edges and self-
loops are ignored. Since the networks sx-stackoverflow, sx-
superuser, sx-askubuntu and wiki-talk-temporal are too large to
load their unconnected pairs of vertices in the memory, after
sorting their edges based on timestamp, we only consider the
subgraphs generated by their first 300 000 edges.
We compare LIDIN with negative of shortest path length

[58] and the Adamic/Adar index [63], denoted, respectively,
by -SPL and AA. We choose -SPL because LIDIN is inher-
ently an improvement of -SPL, furthermore, the experiments
reported in [66] show that this index outperforms the other
topological (global) indices studied in that paper. We choose
AA because the experiments reported in [58] show that among
11 studied indices, the Adamic/Adar index has the best rela-
tive performance ratio versus random predictions, the best
relative performance ratio versus negative of shortest path
length predictor and the best relative performance ratio versus
common neighbors predictor.9

For the graph formed during training interval, we sort
(increasingly when LIDIN is used and decreasingly when
-SPL and AA are used) the list L of all pairs of unconnected
vertices, based on each of the indices.10 Then, during the test
interval, for each edge that connects a pair in L, we examine
its rank in L. In order to evaluate the accuracy of a link pre-
diction method, we use two measures area under the ROC
curve (AUC) and ranking error (Q). In AUC, we measure the
probability that a randomly chosen pair of vertices that find a
link during the test interval have a higher score than a
randomly chosen pair of vertices that do not find a link
during the test interval. Formally, AUC of a method ind is
defined as [72]

AUC ind
n n

n

0.5
,

g e

t
( ) =

+

where nt is the number of times that we randomly choose two
pairs of vertices; one from those that form a link during the
test interval and the other from those that do not; ng is the
number of times that the one that forms a link gets a higher
score than the other, and ne is the number of times that the
scores of the two chosen pairs are equal. A higher value of
AUC implies a better link prediction method. In our experi-
ments, we set nt to the number of edges in the test interval
divided by 10. However, similar results can be seen for other
values of nt.
We define the ranking error of a method ind as

Q ind
rank u v L

TE

, ,
,

u v TE

ind

,
å( ) =

({ } )
| |{ }Î

where Lind is the list L sorted according to ind, TE contains
those edges of the test interval that connect a pair in L and
rank({u,v},Lind) returns the rank of {u,v} in Lind. For two
given indices ind1 and ind2, Q(ind1) < Q(ind2) means that
compared to ind2, ind1 gives more priority (i.e. a better rank)
to the pairs that form a link during the test interval, hence,
ind1 is a better method than ind2.

TABLE 5. Specifications of the temporal real-world datasets used in our experiments for link prediction.

Dataset Link #vertices #temporal edges Time span

sx-stackoverflow https://snap.stanford.edu/data/sx-stackoverflow.html 2 601 977 63 497 050 2774 days
sx-mathoverflow http://snap.stanford.edu/data/sx-mathoverflow.html 24 818 506 550 2350 days
sx-superuser https://snap.stanford.edu/data/sx-superuser.html 194 085 1 443 339 2773 days
sx-askubuntu http://snap.stanford.edu/data/sx-askubuntu.html 159 316 964 437 2613 days
wiki-talk-temporal https://snap.stanford.edu/data/wiki-talk-temporal.html 1 140 149 7 833 140 2320 days
CollegeMsg http://snap.stanford.edu/data/CollegeMsg.html 1 899 20 296 193 days

9We can use these indices either as the features of a classification algorithm
(like e.g. [66]), or as the criteria of sorting the list of unconnected pairs of
vertices (like e.g. [58]). Here, since we want to omit the effect of the classifi-
cation algorithm and study only the effect of our new notion, we follow the
second option.

10When any of these indices is used, there might exist two or more pairs
that are not sorted by the index. In this case, these pairs are sorted according
to the identifiers of the end-points of the edges.
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We sort the edges of each network according to their time-
stamps and form the training and test intervals based on the
timestamps, i.e. for some given value τ, training interval con-
tains those edges that have a timestamp at most τ and test

interval contains those edges that have a timestamp larger
than τ. A factor that may affect the empirical behavior of the
indices is the value of τ. Therefore and to examine this, we
consider four different settings for each network, and choose

(a) (b) (c)

(d) (e) (f)

FIGURE 4. AUC of different link prediction algorithms. Ratio shows the percentage of the edges that form the training interval. (a) sx-stacko-
verow, (b) sx-mathoverow, (c) sx-superuser, (d) sx-askubuntu, (e) wiki-talk-temporal and (f) CollegeMsg.

(a) (b) (c)

(d) (e) (f)

FIGURE 5. The value of Q for different link prediction algorithms. Ratio shows the percentage of the edges that form the training interval.
(a) sx-stackoverow, (b) sx-mathoverow, (c) sx-superuser, (d) sx-askubuntu, (e) wiki-talk-temporal and (f) CollegeMsg.
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the values of τ in such a way that training interval includes
60%, 70%, 80% and 90% of the edges. In each case, the rest
of the edges which are between a pair of vertices unconnected
in the training interval belong to the test interval.
Figure 4 compares AUC of different methods. Over all the

datasets and in all the settings, LIDIN has the highest AUC,
therefore, it has the best performance. Figure 5 reports the Q
of the studied methods over different datasets. As can be seen
in the figure, in all the cases, LIDIN has the lowest Q and
hence, the best performance. These tests empirically verify
our above-mentioned argument that among all the pairs of
unconnected vertices in L(k), those that have a smaller dis-
criminative distance (and hence, are closer!), are more likely
to form a link. While in most cases -SPL outperforms AA,
over sx-mathoverflow and for all values of ratio, AA has a
higher AUC and a lower Q than -SPL. The superior perform-
ance of our proposed link prediction method suggests that the
inverse of discriminative distance might be useful in deter-
mining similarity between vertices of a network. This means,
for example, more than using the fixed criteria for determin-
ing the similarity of objects in a Social Internet of Vehicle
(SIoV) [73] or friendship of User Equipments [74], someone
may also use the inverse of discriminative distance.

8. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new distance measure between
vertices of a graph, which is proportional to the length of
shortest paths and inversely proportional to the number of
shortest paths. We presented exact and randomized algo-
rithms for computation of the proposed discriminative indices
and analyzed them. Then, by performing extensive experi-
ments over several real-world networks, we first showed that
compared with the traditional indices, discriminative indices
have usually much more discriminability. We then showed
that our randomized algorithms can very precisely estimate
average discriminative path length and average discriminative
eccentricity, using only a few samples. In the end, we pre-
sented a novel link prediction method, that uses discrimina-
tive distance to decide which vertices are more likely to form
a link in future, and showed its superior performance com-
pared to the well-known existing measures.
The current work can be extended in several directions. An

interesting direction is to investigate distribution of discrim-
inative closeness and discriminative vertex eccentricity in
large networks. In particular, it is useful to see whether there
exist correlations among discriminative indices on the one
hand and other centrality indices such as betweenness and
degree on the other hand. The other direction for future work
is to develop efficient randomized algorithms for estimating
discriminative closeness and discriminative eccentricity of
one vertex or a set of vertices and discriminative diameter of
the graph. For example, it is interesting to develop algorithms

similar to [12] that estimate k highest discriminative closeness
scores in the graph. The other extension of the current work
is the empirical evaluation of the generalizations of the dis-
criminative indices presented in Section 4. Finally, another
extension of the current work is to study discriminative indi-
ces of different network models [75].
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