On the Modulus in Matching Vector Codes

Lin Zhu, Wen Ming Li and Liang Feng Zhang*
School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
*Corresponding author: zhanglf@shanghaitech.edu.cn

Abstract

A k-query locally decodable code (LDC) C allows one to encode any n-symbol message x as a codeword $C(x)$ of N symbols such that each symbol of x can be recovered by looking at k symbols of $C(x)$, even if a constant fraction of $C(x)$ has been corrupted. Currently, the best known LDCs are matching vector codes (MVCs). A modulus $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ may result in an MVC with $k \leq 2^{r}$ and $N=\exp \left(\exp \left(O\left((\log n)^{1-1 / r}(\log \log n)^{1 / r}\right)\right)\right)$. The m is good if it is possible to have $k<2^{r}$. The good numbers yield more efficient MVCs. Prior to this work, there are only finitely many good numbers. All of them were obtained via computer search and have the form $m=p_{1} p_{2}$. In this paper, we study good numbers of the form $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$. We show that if $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ is good, then any multiple of m of the form $p_{1}^{\beta_{1}} p_{2}^{\beta_{2}}$ must be good as well. Given a good number $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$, we show an explicit method of obtaining smaller good numbers that have the same prime divisors. Our approach yields infinitely many new good numbers.

Keywords: matching vector codes; locally decodable codes; private information retrieval
Received 2 October 2020; Revised 9 June 2021; Editorial Decision 20 July 2021 Handling editor: Dirk Sudholt

1. INTRODUCTION

Classical error-correcting codes allow one to encode any n bit message x as an N-bit codeword $C(x)$ such that x can still be recovered, even if a constant fraction of $C(x)$ has been corrupted. The disadvantage of such codes is that one has to read all or most of the codeword to recover any information about x. As a better solution for decoding particular bits of the message, a (k, δ, ϵ)-locally decodable code (LDC) [1] encodes any n-bit message x to an N-bit codeword, such that any message bit x_{i} can be recovered with probability $\geq 1-\epsilon$, by a randomized decoding procedure that makes at most k queries, even if δN bits of $C(x)$ have been corrupted. Such codes have interesting applications [2,3] in cryptography and complexity theory. For an efficient LDC, both the code length N and the query complexity k should be as small as possible, as functions of n.

Following [1, 4, 5], Gasarch [2] and Goldreich et al. [4] conjectured that for any constant k, the length N of a k-query LDC should be $\exp \left(n^{\Omega(1)}\right)$. Yekhanin [6] disproved this conjecture with a three-query LDC of length $\exp (\exp (O(\log n / \log \log n)))$, assuming that there are infinitely many Mersenne primes. For any $r \geq 2$, Efremenko [7] provided a construction of 2^{r}-query LDCs of length $N_{r}=$
$\exp \left(\exp \left(O\left((\log n)^{1-1 / r}(\log \log n)^{1 / r}\right)\right)\right)$ under no assumptions, and in particular a three-query LDC when $r=2$. Such codes have been reformulated and called matching vector codes (MVCs) in [8].

The MVCs in [7] are based on two ingredients: S-matching family and S-decoding polynomial. For $r \geq 2$, let \mathcal{M}_{r} be the set of integers of the form $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, where $p_{1}, p_{2}, \ldots, p_{r}>2$ are distinct primes and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}>$ 0 . The existence of both ingredients in MVCs depends on a modulus $m \in \mathcal{M}_{r}$. In particular, the query complexity k of the MVC is equal to the number of monomials in the S-decoding polynomial and is at most 2^{r} for all $m \in \mathcal{M}_{r}$. A number $m \in$ \mathcal{M}_{r} has been called good if an S-decoding polynomial with $k<2^{r}$ monomials exists when m is used to construct MVC. For example, the three-query LDC of [7] was constructed with the good number $m=7 \times 73$. Itoh and Suzuki [9] showed that one can reduce the query complexity of MVCs via a composition theorem. In particular, by using the good numbers 511 and 2047, they were able to obtain $9 \cdot 2^{r-4}$-query LDC of length N_{r} for all $r>5$. Chee et al. [10] showed that if there exist primes t, p_{1}, p_{2} such that $m=2^{t}-1=p_{1} p_{2}$, then m must be good. They determined 50 new good numbers of the above form and then significantly reduced the query complexity of MVCs.

Since [7, 9, 10], the work of finding good numbers has become interesting. However, the study of $[7,9,10]$ was limited to good numbers of the form $m=p_{1} p_{2} \in \mathcal{M}_{2}$. When $\max \left\{\alpha_{1}, \alpha_{2}\right\}>1$, it is not known how to decide a number of the form $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \in \mathcal{M}_{2}$ is good except using the very expensive computer search. In this paper, we shall provide two methods for obtaining new good numbers in \mathcal{M}_{2} :

- If $m_{1}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \in \mathcal{M}_{2}$ is good and $m_{2}=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \in \mathcal{M}_{2}$ is a multiple of m_{1}, then m_{2} must be good as well.
- If $m_{2}=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \in \mathcal{M}_{2}$ is good, and there is an S-decoding polynomial of the form $P(X)=X^{u}+a X^{v}+b$ for m_{2} such that $\operatorname{gcd}\left(u, v, m_{2}\right)=p_{1}^{\omega_{1}} p_{2}^{\omega_{2}}$, then $m_{1}=$ $m_{2} /\left(p_{1}^{\omega_{1}} p_{2}^{\omega_{2}}\right)$ must be good as well.

2. PRELIMINARIES

We denote by \mathbb{Z} and \mathbb{Z}^{+}the set of integers and positive integers, respectively. For any $n \in \mathbb{Z}^{+}$, we denote $[n]=\{1,2, \ldots, n\}$. For any $m \in \mathbb{Z}^{+}$, we denote by \mathbb{Z}_{m} the set of integers modulo m and denote by \mathbb{Z}_{m}^{*} the multiplicative group of integers modulo m. When m is odd, we have that $2 \in \mathbb{Z}_{m}^{*}$ and denote by $\operatorname{ord}_{m}(2)$ the multiplicative order of 2 in \mathbb{Z}_{m}^{*}. For a prime power q, we denote by \mathbb{F}_{q} the finite field of q elements and denote by \mathbb{F}_{q}^{*} the multiplicative group of \mathbb{F}_{q}. For any $z \in \mathbb{F}_{q}^{*}$, we denote by $\operatorname{ord}_{q}(z)$ the multiplicative order of z. For any two vectors $x=$ $\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$, we denote by $d_{H}(x, y)=\{i: i \in$ [n], $\left.x_{i} \neq y_{i}\right\}$ the Hamming distance between x and y. For any $x, y \in \mathbb{Z}_{m}^{h}$, we denote by $\langle x, y\rangle_{m}=\sum_{i=1}^{n} x_{i} y_{i} \bmod m$ the dot product of x and y. If the components of a vector y are labeled by a set V, then for every $v \in V$ we denote by $y[v]$ the v th component of y.

Definition 2.1. (locally decodable code) Let $k, n, N \in \mathbb{Z}^{+}$ and let $0 \leq \delta, \epsilon \leq 1$. A code $C: \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}^{N}$ is said to be (k, δ, ε)-locally decodable if there exist randomized decoding algorithms $D_{1}, D_{2}, \ldots, D_{n}$ such that:

- For any $x \in \mathbb{F}_{q}^{n}$, any $y \in \mathbb{F}_{q}^{N}$ such that $d_{H}(C(x), y) \leq \delta N$ and any $i \in[n], \operatorname{Pr}\left[D_{i}(y)=x_{i}\right] \geq 1-\epsilon$.
- The algorithm D_{i} makes at most k queries to y.

The numbers k and N are called the query complexity and the length of C, respectively. They are usually considered as functions of n, the message length, and measure the efficiency of C. Ideally, we would like k and N to be as small as possible.

Efremenko [7] proposed a construction of LDCs, which is based on two fundamental building blocks: S-matching family and S-decoding polynomial.

Definition 2.2. (S-matching family) Let $m, h, n \in \mathbb{Z}^{+}$and let $S \subseteq \mathbb{Z}_{m} \backslash\{0\}$. A set $\mathcal{U}=\left\{u_{i}\right\}_{i=1}^{n} \subseteq \mathbb{Z}_{m}^{h}$ is said to be an S-matching family if

Encoding: This algorithm encodes any message $x=$ $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{2^{t}}^{n}$ as a codeword $C(x) \in \mathbb{F}_{2^{t}}^{m^{h}}$ such that:

- the m^{h} components of $C(x)$ are labeled by the m^{h} elements of \mathbb{Z}_{m}^{h} respectively; and
- for every $v \in \mathbb{Z}_{m}^{h}$, the v th component is computed as $C(x)[v]=\sum_{j=1}^{n} x_{j} \cdot \gamma^{\left\langle u_{j}, v\right\rangle_{m}}$.

Decoding: This algorithm takes a word $y \in \mathbb{F}_{2^{t}}^{m^{h}}$ and an integer $i \in[n]$ as input. It recovers x_{i} as follows:

- choose a vector $v \in \mathbb{Z}_{m}^{h}$ uniformly and at random.
- output $\gamma^{-\left\langle u_{i}, v\right\rangle_{m}} \cdot\left(a_{0} \cdot y[v]+\sum_{\ell=1}^{k-1} a_{\ell} \cdot y\left[v+b_{\ell} u_{i}\right]\right)$.

FIGURE 1. Efremenko's construction.

- $\left\langle u_{i}, u_{i}\right\rangle_{m}=0$ for every $i \in[n]$,
- $\left\langle u_{i}, u_{j}\right\rangle_{m} \in S$ for all $i, j \in[n]$ such that $i \neq j$.

Definition 2.3. (S-decoding polynomial) Let $m \in \mathbb{Z}^{+}$be odd. Let $t=\operatorname{ord}_{m}(2)$ and let $\gamma \in \mathbb{F}_{2^{t}}^{*}$ be a primitive mth root of unity. A polynomial $P(X) \in \mathbb{F}_{2^{t}}[X]$ is said to be an S-decoding polynomial if

- $P\left(\gamma^{s}\right)=0$ for every $s \in S$,
- $P\left(\gamma^{0}\right)=1$.

Given an S-matching family $\mathcal{U}=\left\{u_{i}\right\}_{i=1}^{n} \subseteq \mathbb{Z}_{m}^{h}$ and an S decoding polynomial $P(X)=a_{0}+a_{1} X^{b_{1}}+\cdots+a_{k-1} X^{b_{k-1}} \in$ $\mathbb{F}_{2^{t}}[X]$, Efremenko's LDC can be described in Figure 1.

Efremenko's construction gives a linear $(k, \delta, k \delta)$-LDC that encodes messages of length n to codewords of length $N=m^{h}$. When N is fixed, the larger the n is, the more efficient the C is. Efremenko [7] and several later works [9,10] choose S as the canonical set in \mathbb{Z}_{m}. For any $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}} \in \mathcal{M}_{r}$, the canonical set in \mathbb{Z}_{m} is defined as

$$
S_{m}=\left\{s_{\sigma}: \sigma \in\{0,1\}^{r} \backslash\left\{0^{r}\right\}, s_{\sigma} \equiv \sigma_{i}\left(\bmod \sim p_{i}^{\alpha_{i}}\right), \forall i \in[r]\right\}
$$

For example, $S_{15}=\{1,6,10\}$. Efremenko [7] observed that Grolmusz's set system [11] gives a direct construction of $S_{m^{-}}$ matching families.

Lemma 2.1. ($[7,11])$ For any $m \in \mathcal{M}_{r}(r \geq 2)$ and integer $h>0$, there is an S_{m}-matching family $\mathcal{U}=\left\{u_{i}\right\}_{i=1}^{n} \subseteq \mathbb{Z}_{m}^{h}$ of size $n \geq \exp \left(c(\log h)^{r} /(\log \log h)^{r-1}\right)$, where c is a constant that only depends on m.

In particular, the n takes the form of ℓ^{ℓ} for an integer $\ell>0$ and h is determined by both m, ℓ, and the weak representation of the function OR_{ℓ} [11]. Efremenko [7] also observed that the
polynomial $P(X)=\prod_{s \in S_{m}}\left(X-\gamma^{s}\right) /\left(1-\gamma^{s}\right)$ is an S_{m}-decoding polynomial with $k \leq 2^{r}$ monomials.

Lemma 2.2. ([7]) For any $m \in \mathcal{M}_{r}(r \geq 2)$, there is an $S_{m^{-}}$ decoding polynomial with at most 2^{r} monomials.

Lemmas 2.1 and 2.2 yield LDCs of subexponential length.

Theorem 2.1. ([7]) For every integer $r \geq 2$, there is a $(k, \delta, k \delta)-L D C$ of query complexity $k \leq 2^{r}$ and length N_{r}.

For every integer $r \geq 2$, Theorem 2.1 gives an infinite family of LDCs, each based on a number $m \in \mathcal{M}_{r}$. Different $m \in \mathcal{M}_{r}$ may give LDCs of different query complexity. For example, $m=7 \times 73$ gives a code of query complexity 3 [7], while $m=3 \times 5$ is only able to give a code of query complexity 4 [9]. A number of the form $m=p_{1} p_{2}$ has been called good in $[9,10]$ if it is able to result in an LDC of query complexity <4. By using the good numbers 511 and 2047, Itoh and Suzuki [9] concluded that for any $r>5$, the query complexity 2^{r} of the LDCs in Theorem 2.1 can be reduced to $9 \cdot 2^{r-4}$. On the other hand, for $r=2,3,4$ and 5 , the best decoding algorithms to date for the LDCs in Theorem 2.1 have query complexity 3, 8, 9 and 24, respectively. Chee et al. [10] showed that Mersenne numbers of the form $p_{1} p_{2}$ are good. With infinitely many such good numbers, Chee et al. [10] can further reduce the query complexity to $3^{r / 2}$.

3. GOOD NUMBERS OF THE FORM $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$

Let $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \in \mathcal{M}_{2}$. Let $t=\operatorname{ord}_{m}(2)$ and let $\gamma \in \mathbb{F}_{2^{t}}^{*}$ be a primitive m th root of unity. Lemma 2.2 shows that there is an S_{m}-decoding polynomial $P(X)$ with $k \leq 4$ monomials. In this section, we will establish several sufficient and necessary conditions for a number m to be good.

Lemma 3.1. Let $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \in \mathcal{M}_{2}$. Then any S_{m}-decoding polynomial has ≥ 3 monomials.

Proof. If $P(X)=a X^{u} \in \mathbb{F}_{2^{t}}[X]$ is an S_{m}-decoding polynomial, then $a=P(1)=1$ and $a=\gamma^{-u} P(\gamma)=0$, which give a contradiction. If $P(X)=a X^{u}+b X^{v} \in \mathbb{F}_{2^{t}}[X]$ is an S_{m}-decoding polynomial with 2 monomials, then $a b \neq 0$ and

$$
\begin{gather*}
a \gamma^{u s_{01}}+b \gamma^{v s_{01}}=P\left(\gamma^{s_{01}}\right)=0 \tag{1}\\
a \gamma^{u s_{10}}+b \gamma^{v s_{10}}=P\left(\gamma^{s_{10}}\right)=0 \tag{2}\\
a+b=P(1)=1 \tag{3}
\end{gather*}
$$

Equations (1) and (2) imply that $b / a=\gamma^{(u-v) s_{01}}=\gamma^{(u-v) s_{10}}$. As $\operatorname{ord}_{2^{t}}(\gamma)=m$, we must have that

$$
\begin{equation*}
(u-v)\left(s_{01}-s_{10}\right) \equiv 0 \sim(\bmod \sim m) \tag{4}
\end{equation*}
$$

Note that $\operatorname{gcd}\left(s_{01}-s_{10}, m\right)=1$. Equation (4) implies $u \equiv$ $v \sim(\bmod \sim m)$. It follows that $b / a=\gamma^{(u-v) s_{01}}=1$ and thus $a+b=0$, which contradicts to (3).

Let \mathbb{M}_{2} be the set of good numbers in \mathcal{M}_{2}. The following lemmas characterize \mathbb{M}_{2}.

Lemma 3.2. Let $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \in \mathcal{M}_{2}$. Then $m \in \mathbb{M}_{2}$ if and only if there is a polynomial $Q(X)=X^{u}+a X^{v}+b \in \mathbb{F}_{2^{t}}[X]$ that satisfies the following properties
(1) $a b \neq 0$,
(2) $|\{(u \bmod \sim m),(v \bmod \sim m), 0\}|=3$, and
(3) $Q(\gamma)=Q\left(\gamma^{s_{01}}\right)=Q\left(\gamma^{s_{10}}\right)=0, Q(1) \neq 0$.

Proof. If $m \in \mathbb{M}_{2}$, then by Lemma 3.1 there exists an $S_{m^{-}}$ decoding polynomial

$$
\begin{equation*}
P(X)=c_{1} X^{d_{1}}+c_{2} X^{d_{2}}+c_{3} X^{d_{3}} \in \mathbb{F}_{2^{t}}[X] \tag{5}
\end{equation*}
$$

with exactly three monomials. In particular, we must have
(4) $c_{1} c_{2} c_{3} \neq 0$,
(5) $\mid\left\{\left(d_{1} \bmod \sim m\right),\left(d_{2} \sim \bmod \sim m\right),\left(d_{3} \sim \bmod \sim\right.\right.$ $m)\} \mid=3$, and
(6) $P\left(\gamma^{s_{01}}\right)=P\left(\gamma^{s_{10}}\right)=P(\gamma)=0, P(1)=1$.

While (4) and (6) are clear from the definition, we show that (5) is also true. Assume for contradiction that $d_{1} \equiv d_{2}(\bmod \sim$ m). Then $\left(\gamma^{s}\right)^{d_{1}}=\left(\gamma^{s}\right)^{d_{2}}$ for all $s \in\left\{s_{01}, s_{10}, 1\right\}$ and thus

$$
\begin{gather*}
\left(c_{1}+c_{2}\right) \gamma^{s_{01} d_{1}}+c_{3} \gamma^{s_{01} d_{3}}=P\left(\gamma^{s_{01}}\right)=0 \tag{6}\\
\left(c_{1}+c_{2}\right) \gamma^{s_{10} d_{1}}+c_{3} \gamma^{s_{10} d_{3}}=P\left(\gamma^{s_{10}}\right)=0 \tag{7}\\
c_{1}+c_{2}+c_{3}=P(1)=1 \tag{8}
\end{gather*}
$$

Due to (6) and (7), we have that $\gamma^{s_{01}\left(d_{3}-d_{1}\right)}=\gamma^{s_{10}\left(d_{3}-d_{1}\right)}$ and thus $d_{1} \equiv d_{3}(\bmod \sim m)$. Consequently, (6) implies that $c_{1}+$ $c_{2}+c_{3}=0$, which contradicts to (8).
W.l.o.g., we suppose that $d_{1}>d_{2}>d_{3}$. Let $u=d_{1}-d_{3}, v=$ $d_{2}-d_{3}, a=c_{2} / c_{1}$ and $b=c_{3} / c_{1}$. Then

$$
\begin{equation*}
Q(X):=X^{u}+a X^{v}+b=\frac{P(X)}{c_{1} X^{d_{3}}} \tag{9}
\end{equation*}
$$

The properties (1), (2) and (3) trivially follow from (4), (5) and (6), respectively.

Conversely, suppose that $Q(X)=X^{u}+a X^{v}+b$ is a polynomial that satisfies the properties (1), (2) and (3). Then $P(X)=Q(X) / Q(1)$ will be an S_{m}-decoding polynomial with exactly three monomials. Therefore, $m \in \mathbb{M}_{2}$.

Lemma 3.3. Let $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \in \mathcal{M}_{2}$. Then $m \in \mathbb{M}_{2}$ if and only if there exist $u, v \in E:=\left\{e: p_{1}^{\alpha_{1}} \nmid e, p_{2}^{\alpha_{2}} \nmid e, e \in \mathbb{Z}\right\}$ such that
$u \not \equiv v(\bmod \sim m)$ and $\operatorname{det}(A)=0$, where

$$
A=\left(\begin{array}{ccc}
\gamma^{s_{01} u} & \gamma^{s_{01} v} & 1 \tag{10}\\
\gamma^{s_{10} u} & \gamma^{s_{10} v} & 1 \\
\gamma^{u} & \gamma^{v} & 1
\end{array}\right)
$$

Proof. If $m \in \mathbb{M}_{2}$, then there is a polynomial $Q(X)=X^{u}+$ $a X^{v}+b \in \mathbb{F}_{2^{t}}[X]$ such that the (1), (2) and (3) in Lemma 3.2 are true. Due to (2), we have that $u \not \equiv v(\bmod \sim m)$. On the other hand, (3) is equivalent to

$$
\begin{gather*}
A\left(\begin{array}{l}
1 \\
a \\
b
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \tag{11}\\
1+a+b \neq 0 \tag{12}
\end{gather*}
$$

Equation (11) requires that $\operatorname{det}(A)=0$. It remains to show that $u, v \in E$. We show that $p_{1}^{\alpha_{1}} \nmid u$. The proofs for $p_{2}^{\alpha_{2}} \nmid u, p_{1}^{\alpha_{1}} \nmid v$ and $p_{2}^{\alpha_{2}} \nmid v$ will be similar and omitted. Note that

$$
\begin{align*}
& 0=\operatorname{det}(A)=\left(\gamma^{s_{01} u}+\gamma^{u}\right)\left(\gamma^{s_{10} v}+\gamma^{v}\right)+ \\
& \left(\gamma^{s_{01} v}+\gamma^{v}\right)\left(\gamma^{s_{10} u}+\gamma^{u}\right) \\
& =\left(\left(\gamma^{-s_{10} u}+1\right)\left(\gamma^{-s_{01} v}+1\right)+\right. \\
& \left.\quad\left(\gamma^{-s_{01} u}+1\right)\left(\gamma^{-s_{10} v}+1\right)\right) \gamma^{u+v} . \tag{13}
\end{align*}
$$

If $p_{1}^{\alpha_{1}} \mid u$, then $s_{10} u \equiv 0 \sim(\bmod \sim m)$ and $\gamma^{-s_{10} u}+1=0$. Equation (13) would imply $\gamma^{-s_{01} u}+1=0$ or $\gamma^{-s_{10} v}+1=$ 0 . If $\gamma^{-s_{01} u}+1=0$, then $p_{2}^{\alpha_{2}} \mid u$ and thus $m \mid u$, which would contradicts to (2). If $\gamma^{-s_{10} v}+1=0$, then $p_{1}^{\alpha_{1}} \mid v$ and thus $0=$ $Q\left(\gamma^{s_{10}}\right)=1+a+b$, which contradicts to (12).

Conversely, suppose that $u, v \in E$ are integers such that $u \not \equiv$ $v(\bmod \sim m)$ and $\operatorname{det}(A)=0$. To show that $m \in \mathbb{M}_{2}$, it suffices to construct an S_{m}-decoding polynomial $Q(X)=X^{u}+a X^{v}+$ $b \in \mathbb{F}_{2^{t}}[X]$ such that (1), (2) and (3) are satisfied. First of all, $\operatorname{det}(A)=0$ implies that $\operatorname{rank}(A) \leq 2$. If $\operatorname{rank}(A)=1$, then we must have that $\gamma^{s_{01} u}=\gamma^{s_{10} u}$. It follows that $u \equiv 0(\bmod \sim$ m), which contradicts to $u \in E$. As $\operatorname{rank}(A)=2$, the null space of A will be one-dimensional and spanned by a nonzero vector $c=\left(c_{1}, c_{2}, c_{3}\right)^{T}$. Below we shall see that $c_{i} \neq 0$ for all $i \in[3]$. If $c_{1}=0$, then

$$
\left(\begin{array}{cc}
\gamma^{s_{01} v} & 1 \tag{14}\\
\gamma^{s_{10} v} & 1 \\
\gamma^{v} & 1
\end{array}\right)\binom{c_{2}}{c_{3}}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Then $c_{2} c_{3}$ must be nonzero and thus $\gamma^{s_{01} v}=\gamma^{s_{10} v}$. The latter equality requires that $v \equiv 0(\bmod \sim m)$, which contradicts to the fact $v \in E$. Hence, $c_{1} \neq 0$. Similarly, we have $c_{2} \neq 0$ and $c_{3} \neq 0$. Let $R(X)=c_{1} X^{u}+c_{2} X^{v}+c_{3}$. Then $R(\gamma)=R\left(\gamma^{s_{01}}\right)=$ $R\left(\gamma^{s_{10}}\right)=0$. Furthermore, we must have $R(1) \neq 0$. Otherwise,
$c_{3}=c_{1}+c_{2}$ and

$$
\left(\begin{array}{cc}
\gamma^{s_{01} u}+1 & \gamma^{s_{01} v}+1 \tag{15}\\
\gamma^{s_{10} u}+1 & \gamma^{s_{10} v}+1 \\
\gamma^{u}+1 & \gamma^{v}+1
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

As $c_{1} c_{2} \neq 0$, this is possible only if

$$
\begin{equation*}
\frac{\gamma^{s_{01} u}+1}{\gamma^{s_{01} v}+1}=\frac{\gamma^{s_{10} u}+1}{\gamma^{s_{10} v}+1}=\frac{\gamma^{u}+1}{\gamma^{v}+1} \tag{16}
\end{equation*}
$$

Denote by λ the value of the fractions in (16). Then

$$
\begin{align*}
& \frac{\gamma^{s_{10} u}}{\gamma^{s_{10} v}} \cdot \underbrace{\sim}_{\lambda} \frac{\gamma^{s_{01} u}+1}{\gamma^{s_{01} v}+1} \sim=\frac{\gamma^{s_{10} u}+\gamma^{u}}{\gamma^{s_{10} v}+\gamma^{v}} \\
& =\frac{\gamma^{s_{10} u}+1+\gamma^{u}+1}{\gamma^{s_{10} v}+1+\gamma^{v}+1} \\
& =\frac{\lambda\left(\gamma^{s_{10} v}+1\right)+\lambda\left(\gamma^{v}+1\right)}{\gamma^{s_{10} v}+1+\gamma^{v}+1} \\
& =\lambda, \tag{17}
\end{align*}
$$

where the first equality is based on the fact that $s_{01}+s_{10} \equiv$ $1(\bmod \sim m)$ and the second equality is true because we are working over a finite field of characteristic 2 . It follows from (17) that $\gamma^{s_{10}(u-v)}=1$. Therefore, we must have that $u \equiv$ $v\left(\bmod \sim p_{1}^{\alpha_{1}}\right)$. Similarly, we have that $u \equiv v\left(\bmod \sim p_{2}^{\alpha_{2}}\right)$. Based on the two congruences, we have that $u \equiv v(\bmod \sim$ $m)$, which gives a contradiction. Hence, $R(1) \neq 0$ and $Q(X):=$ $R(X) / c_{1}$ is a polynomial satisfying (1), (2), and (3).

Lemma 3.4. Let $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \in \mathcal{M}_{2}$. Let $t=\operatorname{ord}_{m}(2)$ and let $\gamma \in \mathbb{F}_{2^{t}}^{*}$ be a primitive mth root of unity. Let

$$
\tau\left(z_{1}, z_{2}\right)=\frac{z_{1}+z_{2}}{z_{1} z_{2}+z_{2}}
$$

Then $m \in \mathbb{M}_{2}$ if and only if τ is not injective on $\mathcal{D}=\left\{\left(z_{1}, z_{2}\right) \in\right.$ $\left.\left(\mathbb{F}_{2^{t}}^{*} \backslash\{1\}\right)^{2}: \operatorname{ord}_{2^{t}}\left(z_{1}\right)\left|p_{1}^{\alpha_{1}}, \operatorname{ord}_{2^{t}}\left(z_{2}\right)\right| p_{2}^{\alpha_{2}}\right\}$.

Proof. If $m \in \mathbb{M}_{2}$, then by Lemma 3.3 there exist $u, v \in E$ such that $u \not \equiv v(\bmod \sim m)$ and $\operatorname{det}(A)=0$, where A is defined by (10). Note that $\operatorname{det}(A)=0$ requires that

$$
\frac{\gamma^{s_{10} u}+\gamma^{s_{01} u}}{\gamma^{u}+\gamma^{s_{01} u}}=\frac{\gamma^{s_{10} v}+\gamma^{s_{01} v}}{\gamma^{v}+\gamma^{s_{01} v}}
$$

Clearly, $\left(\gamma^{s_{10} u}, \gamma^{s_{01} u}\right)$ and ($\gamma^{s_{10} v}, \gamma^{s_{01} v}$) are two distinct elements of \mathcal{D} and $\tau\left(\gamma^{s_{10} u}, \gamma^{s_{01} u}\right)=\tau\left(\gamma^{s_{10} v}, \gamma^{s_{01} v}\right)$. Hence, τ is not injective on \mathcal{D}.

Conversely, suppose that $\tau\left(z_{1}, z_{2}\right)=\tau\left(z_{1}^{\prime}, z_{2}^{\prime}\right)$ for two distinct elements $\left(z_{1}, z_{2}\right),\left(z_{1}^{\prime}, z_{2}^{\prime}\right) \in \mathcal{D}$. To show that $m \in \mathbb{M}_{2}$, by

Lemma 3.3 it suffices to find $u, v \in E$ such that $u \not \equiv v(\bmod \sim$ $m)$ and $\operatorname{det}(A)=0$. Suppose that

$$
\begin{aligned}
& \operatorname{ord}_{2^{t}}\left(z_{1}\right)=p_{1}^{i_{1}}, \operatorname{ord}_{2^{t}}\left(z_{2}\right)=p_{2}^{j_{1}} \\
& \operatorname{ord}_{2^{t}}\left(z_{1}^{\prime}\right)=p_{1}^{i_{2}}, \operatorname{ord}_{2^{t}}\left(z_{2}^{\prime}\right)=p_{2}^{j_{2}}
\end{aligned}
$$

for $i_{1}, i_{2} \in\left[\alpha_{1}\right]$ and $j_{1}, j_{2} \in\left[\alpha_{2}\right]$. Then there exist integers $u_{1}, u_{2}, v_{1}, v_{2}$, where $p_{1} \nmid u_{1}, v_{1}$ and $p_{2} \nmid u_{2}, v_{2}$, such that

$$
\begin{aligned}
& z_{1}=\left(\gamma^{s_{10} p_{1}^{\alpha_{1}-i_{1}}}\right)^{u_{1}}, z_{2}=\left(\gamma^{s_{01} p_{2}^{\alpha_{2}-j_{1}}}\right)^{u_{2}}, \\
& z_{1}^{\prime}=\left(\gamma^{s_{10} p_{1}^{\alpha_{1}-i_{2}}}\right)^{v_{1}}, z_{2}^{\prime}=\left(\gamma^{s_{01} p_{2}^{\alpha_{2}-j_{2}}}\right)^{v_{2}} .
\end{aligned}
$$

By Chinese remainder theorem, there exist u, v such that:

$$
\left\{\begin{array} { l }
{ u \equiv p _ { 1 } ^ { \alpha _ { 1 } - i _ { 1 } } u _ { 1 } (\operatorname { m o d } \sim p _ { 1 } ^ { \alpha _ { 1 } }) , } \\
{ u \equiv p _ { 2 } ^ { \alpha _ { 2 } - j _ { 1 } } u _ { 2 } (\operatorname { m o d } \sim p _ { 2 } ^ { \alpha _ { 2 } }) , }
\end{array} \quad \left\{\begin{array}{l}
v \equiv p_{1}^{\alpha_{1}-i_{2}} v_{1}\left(\bmod \sim p_{1}^{\alpha_{1}}\right) \\
v \equiv p_{2}^{\alpha_{2}-j_{2}} v_{2}\left(\bmod \sim p_{2}^{\alpha_{2}}\right)
\end{array}\right.\right.
$$

In particular, $u, v \in E$ and $u \not \equiv v(\bmod \sim m)$ (o.w., we will have $\left.\left(z_{1}, z_{2}\right)=\left(z_{1}^{\prime}, z_{2}^{\prime}\right)\right)$. Furthermore, $z_{1}=\gamma^{s_{10} u}, z_{2}=$ $\gamma^{s_{01} u}, z_{1}^{\prime}=\gamma^{s_{10} v}$ and $z_{2}^{\prime}=\gamma^{s_{01} v}$. Since $\tau\left(z_{1}, z_{2}\right)=\tau\left(z_{1}^{\prime}, z_{2}^{\prime}\right)$, we must have that $\operatorname{det}(A)=0$ due to (13).

Let $\rho\left(z_{1}, z_{2}\right)=\tau\left(z_{1}, z_{2}\right)-1=\left(1+z_{2}^{-1}\right)\left(1+z_{1}^{-1}\right)^{-1}$. Then Lemma 3.4 gives the following theorem.

Theorem 3.1. Let $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \in \mathcal{M}_{2}$. Let $t=\operatorname{ord}_{m}(2)$ and let $\gamma \in \mathbb{F}_{2^{t}}^{*}$ be a primitive mth root of unity. Then $m \in \mathbb{M}_{2}$ if and only if ρ is not injective on \mathcal{D}.

Theorem 3.1 gives a characterization of the good numbers in \mathcal{M}_{2}. We say that $(u, v) \in E^{2}$ form a collision for m if

- $\rho\left(\gamma^{s_{10} u}, \gamma^{s_{01} u}\right)=\rho\left(\gamma^{s_{10} v}, \gamma^{s_{01} v}\right)$, and
- $u \not \equiv v(\bmod \sim m)$.

The proof of Lemma 3.4 shows that $m \in \mathbb{M}_{2}$ if and only if there is a collision $(u, v) \in E^{2}$ for m.

4. IMPLICATIONS BETWEEN GOOD NUMBERS

In this section, we show the implications between good numbers in \mathcal{M}_{2}, which allows us to construct new good numbers from old.

Lemma 4.1. Let $m_{1}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}, m_{2}=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \in \mathcal{M}_{2}$. Let $t_{i}=$ $\operatorname{ord}_{m_{i}}(2)$ and let $\gamma_{i} \in \mathbb{F}_{2^{t_{i}}}^{*}$ be a primitive m_{i} th root of unity for $i=1$, 2. If $m_{1} \mid m_{2}$, then there is an integer $\sigma \in \mathbb{Z}_{m_{1}}^{*}$ such that $\gamma_{1}=\gamma_{2}^{\sigma m_{2} / m_{1}}$.

Proof. As $m_{1} \mid m_{2}$ and $m_{2} \mid\left(2^{t_{2}}-1\right)$, we must have that $t_{1} \mid t_{2}$. Then $\mathbb{F}_{2^{t_{1}}}$ is a subfield of $\mathbb{F}_{2^{t_{2}}}$. Note that $\gamma_{1} \in \mathbb{F}_{2^{t_{1}}} \subseteq \mathbb{F}_{2^{t_{2}}}$ and
$\gamma_{2}^{m_{2} / m_{1}} \in \mathbb{F}_{2^{t_{2}}}$ are elements of the same finite field and have the same multiplicative order (i.e. m_{1}). Both $\left\langle\gamma_{1}\right\rangle$ and $\left\langle\gamma_{2}^{m_{2} / m_{1}}\right\rangle$ are subgroups of $\mathbb{F}_{2^{t_{2}}}^{*}$ of order m_{1}. As $\mathbb{F}_{2^{t_{2}}}^{*}$ has a unique subgroup of order m_{1}, it must be the case that $\left\langle\gamma_{1}\right\rangle=\left\langle\gamma_{2}^{m_{2} / m_{1}}\right\rangle$. Hence, there is an integer $\sigma \in \mathbb{Z}_{m_{1}}^{*}$ such that $\gamma_{1}=\gamma_{2}^{\sigma m_{2} / m_{1}}$.

THEOREM 4.1. Let $m_{1}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}, m_{2}=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \in \mathcal{M}_{2}$. If $m_{1} \in$ \mathbb{M}_{2} and $m_{1} \mid m_{2}$, then $m_{2} \in \mathbb{M}_{2}$.

Proof. For $i \in\{1,2\}$, let $S_{m_{i}}=\left\{s_{01}^{i}, s_{10}^{i}, 1\right\}$, let $t_{i}=\operatorname{ord}_{m_{i}}(2)$, and let $\gamma_{i} \in \mathbb{F}_{2^{t_{i}}}$ be of order m_{i}. Let $E_{1}=\left\{e: p_{1}^{\alpha_{1}} \nmid e, p_{2}^{\alpha_{2}} \nmid\right.$ $e, e \in \mathbb{Z}\}$ and $E_{2}=\left\{e: p_{1}^{\beta_{1}} \nmid e, p_{2}^{\beta_{2}} \nmid e, e \in \mathbb{Z}\right\}$.

If $m_{1} \in \mathbb{M}_{2}$, then there is a collision $\left(u_{1}, v_{1}\right) \in E^{2}$ such that $u_{1} \not \equiv v_{1}\left(\bmod \sim m_{1}\right)$ and

$$
\begin{equation*}
\frac{\gamma_{1}^{-s_{01}^{1} u_{1}}+1}{\gamma_{1}^{-s_{10}^{1} u_{1}}+1}=\frac{\gamma_{1}^{-s_{01}^{1} v_{1}}+1}{\gamma_{1}^{-s_{10}^{1} v_{1}}+1} \tag{18}
\end{equation*}
$$

As per Lemma 4.1, let $\sigma \in \mathbb{Z}_{m_{1}}^{*}$ be an integer such that $\gamma_{1}=$ $\gamma_{2}^{\sigma m_{2} / m_{1}}$. Then (18) is

$$
\begin{equation*}
\frac{\gamma_{2}^{-s_{01}^{1} u_{1} \sigma m_{2} / m_{1}}+1}{\gamma_{2}^{-s_{10}^{1} u_{1} \sigma m_{2} / m_{1}}+1}=\frac{\gamma_{2}^{-s_{01}^{1} v_{1} \sigma m_{2} / m_{1}}+1}{\gamma_{2}^{-s_{10}^{1} v_{1} \sigma m_{2} / m_{1}}+1} \tag{19}
\end{equation*}
$$

We claim that if there exist integers u_{2}, v_{2} such that
(i) $\left\{\begin{array}{l}s_{01}^{1} u_{1} \sigma m_{2} / m_{1} \equiv s_{0}^{2} u_{2}\left(\bmod \sim m_{2}\right), \\ s_{10}^{1} u_{1} \sigma m_{2} / m_{1} \equiv s_{10}^{2} u_{2}\left(\bmod \sim m_{2}\right),\end{array}\right.$
(ii) $\left\{\begin{array}{l}s_{0}^{1} v_{1} \sigma m_{2} / m_{1} \equiv s_{01}^{2} v_{2}\left(\bmod \sim m_{2}\right), \\ s_{10}^{1} v_{1} \sigma m_{2} / m_{1} \equiv s_{10}^{2} v_{2}\left(\bmod \sim m_{2}\right),\end{array}\right.$
then $u_{2}, v_{2} \in E_{2}, u_{2} \not \equiv v_{2}\left(\bmod \sim m_{2}\right)$ and

$$
\begin{equation*}
\frac{\gamma_{2}^{-s_{01}^{2} u_{2}}+1}{\gamma_{2}^{-s_{10}^{2} u_{2}}+1}=\frac{\gamma_{2}^{-s_{01}^{2} v_{2}}+1}{\gamma_{2}^{-s_{10}^{2} v_{2}}+1} \tag{20}
\end{equation*}
$$

i.e. $\left(u_{2}, v_{2}\right)$ form a collision for m_{2} (and thus $m_{2} \in \mathbb{M}_{2}$). Note that (20) is clear from (i), (ii) and (19). We need to show that $u_{2}, v_{2} \in E_{2}$ and $u_{2} \not \equiv v_{2}\left(\bmod \sim m_{2}\right)$. If $p_{1}^{\beta_{1}} \mid u_{2}$, then we will have that $m_{2} \mid s_{10}^{2} u_{2}$. The second congruence of (i) would imply that $p_{1}^{\alpha_{1}} \mid u_{1} \sigma$, which contradicts to $u_{1} \in E_{1}$ and $\sigma \in \mathbb{Z}_{m_{1}}^{*}$. Similarly, we have $p_{2}^{\beta_{2}} \nmid u_{2}, p_{1}^{\beta_{1}} \nmid v_{2}$ and $p_{2}^{\beta_{2}} \nmid v_{2}$. Hence, $u_{2}, v_{2} \in E_{2}$. If $u_{2} \equiv v_{2}\left(\bmod \sim m_{2}\right)$, then the first congruences of (i) and (ii) would imply that $s_{01}^{1} \sigma\left(u_{1}-v_{1}\right) \equiv$ $0\left(\bmod \sim m_{1}\right)$, which requires that $u_{1} \equiv \nu_{1}\left(\bmod \sim p_{2}^{\alpha_{2}}\right)$. Similarly, the second congruences of (i) and (ii) would imply
$u_{1} \equiv v_{1}\left(\bmod \sim p_{1}^{\alpha_{1}}\right)$. It follows that $u_{1} \equiv v_{1}\left(\bmod \sim m_{1}\right)$, which is a contradiction.

It remains to show the existence of integers u_{2} and v_{2} that satisfy (i) and (ii). We show that existence of u_{2}. The existence of v_{2} is similar. Due to Chinese remainder theorem, the first congruence of (i) is equivalent to

$$
\left\{\begin{array}{l}
s_{01}^{1} u_{1} \sigma m_{2} / m_{1} \equiv s_{01}^{2} u_{2}\left(\bmod \sim p_{1}^{\beta_{1}}\right) \tag{21}\\
s_{01}^{1} u_{1} \sigma m_{2} / m_{1} \equiv s_{01}^{2} u_{2}\left(\bmod \sim p_{2}^{\beta_{2}}\right)
\end{array}\right.
$$

Note that the first congruence of (21) is always true. On the other hand, as $s_{01}^{2} \equiv 1\left(\bmod \sim p_{2}^{\beta_{2}}\right)$, the first congruence of (i) must be equivalent to

$$
\begin{equation*}
u_{2} \equiv s_{01}^{1} u_{1} \sigma m_{2} / m_{1}\left(\bmod \sim p_{2}^{\beta_{2}}\right) \tag{22}
\end{equation*}
$$

Similarly, the second congruence of (i) is equivalent to

$$
\begin{equation*}
u_{2} \equiv s_{10}^{1} u_{1} \sigma m_{2} / m_{1}\left(\bmod \sim p_{1}^{\beta_{1}}\right) \tag{23}
\end{equation*}
$$

Therefore, (i) is equivalent to the system formed by (22) and (23). The existence of u_{2} is an easy consequence of the Chinese remainder theorem.

ThEOREM 4.2. Let $m_{2}=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \in \mathcal{M}_{2}$. Suppose that $m_{2} \in$ \mathbb{M}_{2} and $(u, v)=\left(p_{1}^{i_{1}} p_{2}^{i_{2}} \sigma_{1}, p_{1}^{j_{1}} p_{2}^{j_{2}} \sigma_{2}\right)$ is a collision for m_{2}, where $\sigma_{1}, \sigma_{2} \in \mathbb{Z}_{m_{2}}^{*}$. Let $\omega_{1}=\min \left\{i_{1}, j_{1}\right\}$ and $\omega_{2}=\min \left\{i_{2}, j_{2}\right\}$. Then $m_{1}:=m_{2} /\left(p_{1}^{\omega_{1}} p_{2}^{\omega_{2}}\right)$ belongs to \mathbb{M}_{2}.

Proof. For $i=1,2$, let $S_{m_{i}}=\left\{s_{01}^{i}, s_{10}^{i}, 1\right\}$, let $t_{i}=\operatorname{ord}_{m_{i}}(2)$ and let $\gamma_{i} \in \mathbb{F}_{2^{t_{i}}}^{*}$ be of order m_{i}. Let $E_{1}=\left\{e: p_{1}^{\beta_{1}-\omega_{1}} \nmid e, p_{2}^{\beta_{2}-\omega_{2}} \nmid\right.$ $e, e \in \mathbb{Z}\}$ and $E_{2}=\left\{e: p_{1}^{\beta_{1}} \nmid e, p_{2}^{\beta_{2}} \nmid e, e \in \mathbb{Z}\right\}$. To show that $m_{1} \in \mathbb{M}_{2}$, it suffices to find two integers $u_{1}, v_{1} \in E_{1}$ such that $u_{1} \not \equiv v_{1}\left(\bmod \sim m_{1}\right)$ and

$$
\begin{equation*}
\frac{\gamma_{1}^{-s_{01}^{1} u_{1}}+1}{\gamma_{1}^{-s_{10}^{1} u_{1}}+1}=\frac{\gamma_{1}^{-s_{01}^{1} v_{1}}+1}{\gamma_{1}^{-s_{10}^{1} v_{1}}+1} \tag{24}
\end{equation*}
$$

As per Lemma 4.1, there is an integer $\sigma \in \mathbb{Z}_{m_{2}}^{*}$ such that $\gamma_{1}=$ $\gamma_{2}^{p_{1}^{\omega_{1}} p_{2}^{\omega_{2}} \sigma}$. Then (24) is

$$
\begin{equation*}
\frac{\gamma_{2}^{-s_{01}^{1} u_{1} p_{1}^{\omega_{1}} p_{2}^{\omega_{2}} \sigma}+1}{\gamma_{2}^{-s_{10}^{1} u_{1} p_{1}^{\omega_{1}} p_{2}^{\omega_{2}} \sigma}+1}=\frac{\gamma_{2}^{-s_{01}^{1} v_{1} p_{1}^{\omega_{1}} p_{2}^{\omega_{2}} \sigma}+1}{\gamma_{2}^{-s_{10}^{1} v_{1} p_{1}^{\omega_{1}} p_{2}^{\omega_{2}} \sigma}+1} \tag{25}
\end{equation*}
$$

As $\left(p_{1}^{i_{1}} p_{2}^{i_{2}} \sigma_{1}, p_{1}^{j_{1}} p_{2}^{j_{2}} \sigma_{2}\right) \in E_{2}^{2}$ is a collision for m_{2}, we have

$$
\begin{equation*}
\frac{\gamma_{2}^{-s_{01}^{2} p_{1}^{i_{1}} p_{2}^{i_{2}} \sigma_{1}}+1}{\gamma_{2}^{-s_{10}^{2} p_{1}^{i_{1}} p_{2}^{i_{2}} \sigma_{1}}+1}=\frac{\gamma_{2}^{-s_{01}^{2} p_{1}^{j_{1}} p_{2}^{j_{2}} \sigma_{2}}+1}{\gamma_{2}^{-s_{10}^{2} p_{1}^{j_{1}} p_{2}^{j_{2}} \sigma_{2}}+1} \tag{26}
\end{equation*}
$$

We claim that if there exist integers u_{1}, v_{1} such that
(i) $\left\{\begin{array}{l}s_{01}^{1} u_{1} p_{1}^{\omega_{1}} p_{2}^{\omega_{2}} \sigma \equiv s_{01}^{2} p_{1}^{i_{1}} p_{2}^{i_{2}} \sigma_{1}\left(\bmod \sim m_{2}\right), \\ s_{10}^{1} u_{1} p_{1}^{\omega_{1}} p_{2}^{\omega_{2}} \sigma \equiv s_{10}^{2} p_{1}^{i_{1}} p_{2}^{i_{2}} \sigma_{1}\left(\bmod \sim m_{2}\right),\end{array}\right.$
(ii) $\left\{\begin{array}{l}s_{01}^{1} v_{1} p_{1}^{\omega_{1}} p_{2}^{\omega_{2}} \sigma \equiv s_{01}^{2} p_{1}^{j_{1}} p_{2}^{j_{2}} \sigma_{2}\left(\bmod \sim m_{2}\right), \\ s_{10}^{1} v_{1} p_{1}^{\omega_{1}} p_{2}^{\omega_{2}} \sigma \equiv s_{10}^{2} p_{1}^{j_{1}} p_{2}^{j_{2}} \sigma_{2}\left(\bmod \sim m_{2}\right),\end{array}\right.$
then $u_{1}, v_{1} \in E_{1}, u_{1} \not \equiv v_{1}\left(\bmod \sim m_{1}\right)$ and (25) holds. Note that (25) is clear from (i), (ii) and (26). If $p_{1}^{\beta_{1}-\omega_{1}} \mid u_{1}$, then the second congruence of (i) would imply that $p_{1}^{\beta_{1}} \mid p_{1}^{i_{1}} p_{2}^{i_{2}} \sigma_{1}$, which contradicts to the fact that $p_{1}^{i_{1}} p_{2}^{i_{2}} \sigma_{1} \in E_{2}$. Similarly, we can show that $p_{2}^{\beta_{2}-\omega_{2}} \nmid u_{1}, p_{1}^{\beta_{1}-\omega_{1}} \nmid v_{1}$ and $p_{2}^{\beta_{2}-\omega_{2}} \nmid v_{1}$. Therefore, $u_{1}, v_{1} \in E_{1}$. If $u_{1} \equiv v_{1}\left(\bmod \sim m_{1}\right)$, then the first congruences of (i) and (ii) would imply that $s_{01}^{2}\left(p_{1}^{i_{1}} p_{2}^{i_{2}} \sigma_{1}-\right.$ $\left.p_{1}^{j_{1}} p_{2}^{j_{2}} \sigma_{2}\right) \equiv 0\left(\bmod \sim m_{2}\right)$, which requires that $p_{1}^{i_{1}} p_{2}^{i_{2}} \sigma_{1} \equiv$ $p_{1}^{j_{1}} p_{2}^{j_{2}} \sigma_{2}\left(\bmod \sim p_{2}^{\beta_{2}}\right)$. Similarly, the second congruences of (i) and (ii) require that $p_{1}^{i_{1}} p_{2}^{i_{2}} \sigma_{1} \equiv p_{1}^{j_{1}} p_{2}^{j_{2}} \sigma_{2}\left(\bmod \sim p_{1}^{\beta_{1}}\right)$. It follows that $p_{1}^{i_{1}} p_{2}^{i_{2}} \sigma_{1} \equiv p_{1}^{j_{1}} p_{2}^{j_{2}} \sigma_{2}\left(\bmod \sim m_{2}\right)$, which is a contradiction.

It remains to show the existence of u_{1} and v_{1} that satisfy (i) and (ii). We show the existence of u_{1}. The existence of v_{1} is similar and omitted. As $\omega_{1} \leq i_{1} \leq \beta_{1}$ and $\omega_{2} \leq i_{2} \leq \beta_{2}$, the first congruence in (i) is equivalent to

$$
\left\{\begin{array}{l}
s_{01}^{1} u_{1} \sigma \equiv s_{01}^{2} p_{1}^{i_{1}-\omega_{1}} p_{2}^{i_{2}-\omega_{2}} \sigma_{1}\left(\bmod \sim p_{1}^{\beta_{1}-\omega_{1}}\right) \tag{27}\\
s_{01}^{1} u_{1} \sigma \equiv s_{01}^{2} p_{1}^{i_{1}-\omega_{1}} p_{2}^{i_{2}-w_{2}} \sigma_{1}\left(\bmod \sim p_{2}^{\beta_{2}-\omega_{2}}\right)
\end{array}\right.
$$

Note that the first congruence of (27) is always true. On the other hand, as $p_{2} \nmid s_{01}^{1} \sigma$, there is an integer t_{01}^{1} such that $s_{01}^{1} \sigma t_{01}^{1} \equiv 1\left(\bmod \sim p_{2}^{\beta_{2}-\omega_{2}}\right)$. Therefore, the first congruence of (i) will be equivalent to

$$
\begin{equation*}
u_{1} \equiv s_{01}^{2} t_{01}^{1} p_{1}^{i_{1}-\omega_{1}} p_{2}^{i_{2}-\omega_{2}} \sigma_{1}\left(\bmod \sim p_{2}^{\beta_{2}-\omega_{2}}\right) \tag{28}
\end{equation*}
$$

Similarly, we can show that the second congruence of (i) is equivalent to

$$
\begin{equation*}
u_{1} \equiv s_{10}^{2} t_{10}^{1} p_{1}^{i_{1}-\omega_{1}} p_{2}^{i_{2}-\omega_{2}} \sigma_{1}\left(\bmod \sim p_{1}^{\beta_{1}-\omega_{1}}\right) \tag{29}
\end{equation*}
$$

where t_{10}^{1} is an integer such that $s_{10}^{1} \sigma t_{10}^{1} \equiv 1\left(\bmod \sim p_{1}^{\beta_{1}-\omega_{1}}\right)$. The existence of u_{1} is an easy consequence of the Chinese remainder theorem on (28) and (29).

Example 1. Let $m_{2}=7^{2} \times 151$. Then $S_{m_{2}}=\left\{s_{01}=\right.$ 1813, $\left.s_{10}=5587, s_{11}=1\right\}$. Let $t_{2}=\operatorname{ord}_{m_{2}}(2)$ and let $\gamma_{2} \in \mathbb{F}_{2^{t_{2}}}^{*}$ be a primitive m_{2} th root of unity. Then $(238,455)$ is a collision for m_{2}. Clearly, $\omega_{1}=1$ and $\omega_{2}=0$. Then $m_{1}=m_{2} / 7=1057$ must be a good number, which is $<m_{2}$.

5. CONCLUSION

In this paper, we characterized the good numbers in \mathcal{M}_{2} and showed two implications between good numbers in \mathcal{M}_{2}. In particular, the second implication requires an additional condition. It is an interesting problem to remove the condition.

DATA AVAILABILITY STATEMENT

No new data were generated or analysed in support of this research.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers for their helpful suggestions.

FUNDING

Natural Science Foundation of Shanghai (21ZR1443000); Singapore Ministry of Education (RG12/19).

REFERENCES

[1] Katz, J. and Trevisan, L. (2000) On the Efficiency of Local Decoding Procedures for Error-Correcting Codes. In Yao, F.,

Luks, E.M. (eds) Proc. 32nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2000, Portland, OR, USA, May 21-23, 2000, pp. 80-86. ACM, New York.
[2] Gasarch, W. (2004) A survey on private information retrieval. Bulletin of the EATCS, 82, 72-107.
[3] Trevisan, L. (2004) Some Applications of Coding Theory in Computational Complexity. Electronic Colloquium on Computational Complexity, 11, No. 043.
[4] Goldreich, O., Karloff, H.J., Schulman, L.J. and Trevisan, L. (2006) Lower bounds for linear locally decodable codes and private information retrieval. Comput. Complex., 15, 263-296.
[5] Woodruff, D.P. (2007) New Lower Bounds for General Locally Decodable Codes. Electronic Colloquium on Computational Complexity, 14, No. 006.
[6] Yekhanin, S. (2008) Towards 3-query locally decodable codes of subexponential length. J. ACM, 55, 1:1-1:16.
[7] Efremenko, K. (2012) 3-query locally decodable codes of subexponential length. SIAM J. Comput., 41, 1694-1703.
[8] Dvir, Z., Gopalan, P. and Yekhanin, S. (2011) Matching vector codes. SIAM J. Comput., 40, 1154-1178.
[9] Itoh, T. and Suzuki, Y. (2010) Improved constructions for queryefficient locally decodable codes of subexponential length. IEICE Trans. Inf. Syst., E93-D, 263-270.
[10] Chee, Y.M., Feng, T., Ling, S., Wang, H. and Zhang, L.F. (2013) Query-efficient locally decodable codes of subexponential length. Comput. Complex., 22, 159-189.
[11] Grolmusz, V. (2000) Superpolynomial size set-systems with restricted intersections mod 6 and explicit Ramsey graphs. Combinatorica, 20, 71-86.

