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Abstract

Scale remains a foundational concept in ecology. Spatial scale, for instance, has become a central

consideration in the way we understand landscape ecology and animal space use. Meanwhile,

scale-dependent social processes can range from fine-scale interactions to co-occurrence and over-

lapping home ranges. Furthermore, sociality can vary within and across seasons. Multilayer

networks promise the explicit integration of the social, spatial, and temporal contexts. Given the

complex interplay of sociality and animal space use in heterogeneous landscapes, there remains

an important gap in our understanding of the influence of scale on animal social networks. Using

an empirical case study, we discuss ways of considering social, spatial, and temporal scale in the

context of multilayer caribou social networks. Effective integration of social and spatial processes,

including biologically meaningful scales, within the context of animal social networks is an emerg-

ing area of research. We incorporate perspectives that link the social environment to spatial

processes across scales in a multilayer context.
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Our inferences regarding the processes underlying ecological pat-

terns are directly linked to the scale at which they are observed

(Levin 1992; Allen and Hoekstra 2015). Animals are influenced

across scales by ecological processes such as resource availability,

trophic interactions (Legendre 1993; Chave 2013), and global cli-

mate (Field et al. 2009). Multiscale ecology has been integrated into

species distribution modeling (Elith and Leathwick 2009), habitat

selection (Mayor et al. 2007), and food webs (Sugihara et al. 1989).

We posit that it is important to consider the scale dependence of ani-

mal behavior within the social environment to effectively under-

stand complex social systems (Whitehead 2008; Webber and

Vander Wal 2018).

Social interactions exist across both temporal and spatial scales

(Figure 1; Whitehead 2008). For example, conspecific grooming

requires close spatial proximity and occurs over brief time periods

(e.g., Carter et al. 2015), social associations represent shared space

use by members of the same social group over relatively longer time

periods (Franks et al. 2009), and home range overlap occurs over

coarser spatial and temporal scales (e.g., Piza-Roca et al. 2018).

Although the social environment scales spatially and temporally, it

remains unclear whether coarser scales of social behavior, such as

social association and home range overlap, vary predictably (Castles

et al. 2014; Farine 2015; Evans and Morand-Ferron 2019). Thus,

social scale is defined by the temporal and spatial scales across

which different forms of sociality are measured (Farine 2015).

Social network analysis is a well-developed tool used to measure

the relationships of individuals and organization of social systems

(Wey et al. 2008; Krause et al. 2009; Croft et al. 2011). It provides

insight into the structure of social communities, which can influence

population dynamics and evolutionary processes (Pinter-Wollman
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et al. 2013; Kurvers et al. 2014). Despite the widespread use and in-

novation of traditional social network analysis (Webber and Vander

Wal 2019), it typically considers sociality in a singular context, dras-

tically simplifying the complexity of animal social systems (Finn

et al. 2019). Extending traditional monolayer social networks,

multilayer networks explicitly consider social systems across scale-

dependent contexts (Pilosof et al. 2017). Multilayer networks are

composed of multiple layers, that can represent (1) different classes

of individuals, for example, male or female, (2) types of behaviors,

for example, grooming, traveling, or foraging, (3) spatial areas, for

example, local or regional, (4) or temporal windows, for example,

daily or seasonal (Kivela et al. 2014; Porter 2018). Multilayer net-

works are relatively novel to studies of animal behavior (Silk et al.

2018; Finn et al. 2019) and integrating scale within multilayer net-

works remains an unexplored opportunity to develop novel under-

standing of animal social systems.

We examined scale-dependent multilayer networks of behavior-

al, landscape, and spatial ecology and applied this framework to

Figure 1. Space-time diagram representing variation the relative spatial and temporal extent required for different types of social and communication processes

for 4 species, including spotted hyenas, passerine birds, sleepy lizards, and elephants. Spatial and temporal extent for social interactions, for example, mating,

grooming, or aggression, are similar for most species because physical contact between 2 individuals is required for many social interactions. The logical exten-

sion is that spatial and temporal extent for social interaction is hierarchically nested within the spatial and temporal extent for social association because individu-

als must share space to interact. In contrast, different species have potential for greater spatial and temporal extents, for example, temporal extent for vocal

communication is similar for most species because most vocal calls only persist in the environment for seconds, but spatial extent for vocal communication is

highly variable with elephant calls extending the great distance and passerine calls extending the shortest distance.
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caribou, Rangifer tarandus. First, we test to what degree the social

scale of relationships, spatial scale of landscapes, and temporal scale

of analysis influences our ability to interpret complex social systems.

Second, we address how variation in social, spatial, and temporal

scales improves our understanding of the relationship between social

association and seasonal resource availability. We conclude with po-

tential future developments and applications of scale in multilayer

networks.

Materials and Methods

Caribou socioecology
Caribou are gregarious ungulates with fission–fusion dynamics

(Lesmerises et al. 2018) that display temporal and spatial variation

in social networks (Peignier et al. 2019). Caribou dig holes, termed

craters, in winter to access forage beneath the snow (Bergerud

1974). Cratering is presumed to be a costly behavior (Boertje 1985),

and as a result, caribou tend to occupy and re-use craters once they

are established. Importantly, craters exist on the landscape at mul-

tiple scales: the crater scale (a single crater), the feeding area scale

(multiple craters in close proximity), and the winter range scale (all

craters within an individual’s range) (Mayor et al. 2009). Access to

forage is therefore heterogeneous in winter and depends on snow

cover and distribution of craters on the landscape.

Caribou location data

We used global positioning system (GPS) location data collected

from 21 adult female caribou on Fogo Island, Newfoundland,

Canada between April 2017 and March 2019. Caribou were immo-

bilized and fitted with GPS collars (Lotek Wireless Inc., Newmarket,

ON, Canada, GPS4400M collars, 1,250 g) as described by Schaefer

and Mahoney (2013). Collars were programmed to collect location

fixes every 2 h. Prior to analyses, we subset GPS fixes to remove all

erroneous and outlier GPS fixes following (Bjørneraas et al. 2010).

We did not collar all caribou in the herd; however, the proportion of

marked adult females was �10% of all adult females and �5% of

all individuals in the herd. We assumed these individuals were ran-

domly distributed throughout the population. Home range sizes for

caribou on Fogo Island are on average 50.1 km2 in winter and

17.5 km2 in summer (Peignier et al. 2019).

Landscape data and habitat classification

Land cover data were provided by the Newfoundland and Labrador

Wildlife Division (Integrated Informatics Inc. 2013). Available land

cover classification included 9 habitat types at 30 m resolution. We

reclassified the land cover types into 3 categories using the R pack-

age raster (Hijmans 2019): foraging, forest, and open habitats.

Foraging habitat consisted of lichen, forest habitat consisted of con-

iferous forest, conifer scrub, broad leaf forest, and mixed-wood for-

est, whereas open habitat consisted of wetland, rocky barrens, and

anthropogenic areas. Water was excluded from all subsequent

analyses.

Caribou multilayer social networks
Network layer construction

We generated proximity-based social networks using the R package

spatsoc (Robitaille et al. 2019) in R version 4.0.2 (R Core Team

2020). Typically for ungulates and other gregarious mammals, the

“chain rule” is used for group assignment (Croft et al. 2008; Kasozi

and Montgomery 2020). The chain rule is applied by assigning a

group identifier to the union of buffered GPS fixes collected at each

2-h time step. As such, individuals in a group are within the social

distance threshold of at least 1 other individual, though not neces-

sarily all other individuals (Robitaille et al. 2019). Group assign-

ment is defined using a temporal threshold of 5 min and a social

distance threshold of 50 m (Lesmerises et al. 2018; Peignier et al.

2019). In all networks, individual caribou were represented as nodes

and associations between individuals were represented as edges. We

weighted edges by the strength of association between individuals

using the simple ratio index (Cairns and Schwager 1987).

Network metrics

We used a series of metrics to characterize the multilayer networks,

focusing on the role of individuals within layers and the similarity of

edges across layers. Within each layer, we calculated degree central-

ity, the number of direct connections an individual has, and graph

strength, the degree weighted by the strength of association. We cal-

culated multidegree, the sum of degree centrality of individuals

across layers, an extension of degree centrality to multiple layers

(Berlingerio et al. 2012; Kivela et al. 2014). Finally, we measured

the similarity of layers by calculating edge overlap. Edge overlap is

defined as the proportion of edges present in each network layer out

of all observed edges (Battiston et al. 2014). Network metrics were

calculated using the R packages igraph (Csardi and Nepusz 2006),

asnipe (Farine 2019), spatsoc (Robitaille et al. 2019), and data.table

(Dowle and Srinivasan 2019).

Varying scale in multilayer networks
Social scale

We generated multilayer networks across a series of social distance

thresholds for group assignment. Social distance thresholds (5, 25,

50, 75, 100, 250, and 500 m) represent a range of sensory modalities

of caribou from visual to olfactory and auditory. Multilayer net-

works consisted of the social association between 21 individuals

across 3 habitat layers (foraging, forest, and open) for the entire

study period. At the finest scale, individuals within 5 m of one an-

other were considered in the same group, whereas at the coarsest

scale, individuals within 500 m of one another were considered in

the same group. Increasing social distance threshold is a proxy for

potential behavioral interactions that occur across these distances

(e.g., grooming through vocal communication). For every social dis-

tance threshold, we calculated individual graph strength within

habitat layers, and edge overlap and multidegree across habitat

layers.

Spatial scale

To assess the influence of land cover spatial scale, we aggregated the

land cover raster using the R package grainchanger (Graham 2019)

across a series of scales (100–1,000 m by steps of 100 m) using a

modal moving window method (Graham et al. 2019). We assume

30 and 100 m represents fine-scale decision making for caribou

(Mayor et al. 2007), while 500–1,000 m represents the scale at

which caribou tend to select and avoid habitat (Bastille-Rousseau

et al. 2018). Multilayer networks consisted of the social associations

between 21 individuals across 3 habitat layers (foraging, forest, and

open) for the entire study period. For each land cover scale, we cal-

culated individual graph strength within habitat layers, and edge

overlap and multidegree across habitat layers.
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Temporal scale

Time windows. We used a temporal multilayer network to assess

the seasonality of caribou sociality. Multilayer networks consisted

of the social associations between 21 individuals across 20 ordinal

sample periods from the entire study period. For each time window,

we calculated individual graph strength within time windows, edge

overlap, and multidegree across time windows.

Number of observations. Studies of social network analysis vary

in the number and frequency of observations as well as the data col-

lection technique used to generate networks, ranging from directly

observed to remotely sensed (Davis et al. 2018; Webber and Vander

Wal 2019). Remotely sensed GPS data are commonly collected at a

fixed rate, for example, every x minutes or hours, continuously

throughout the study period. Fix rate is a reflection of the number of

observations an individual would have been observed and recorded

in traditional ethological studies. To investigate the influence of

number of observations, we generated multilayer networks of social

association between 21 individuals across 3 habitat layers (foraging,

forest, and open) using n randomly selected observations. We first

selected a maximum of 1,000 timesteps and iteratively used n of

these (n¼10–1,000 observations by steps of 10), to ensure previous-

ly included timesteps, and resulting associations, were accumulated

with subsequent observations to mimic collection of observational

data. Within each multilayer network with n observations, we calcu-

lated individual graph strength and multidegree. We calculated edge

overlap across the entire series of networks to determine proportion

of total edges as number of observations increased.

Results

Individuals in multilayer networks became more connected as the

social distance threshold increased. Mean graph strength was higher

in foraging and open layers compared with forest layers (Figure 2).

Individual graph strength increased when the social distance thresh-

old increased from 5 and 100 m in all 3 habitat layers followed by a

plateau in the rate of increase after 100 m (Figure 2). These results

suggest the optimal social scale at which groups should be assigned

is between �20 and 100 m based on the rate at which variance in

graph strength decreased. GPS data allowed us to confirm the use of

50 m buffer (e.g., from this study and Peignier et al. 2019;

Lesmerises et al. 2018) that has long been used for studies of ungu-

late social behavior in the field (Clutton-Brock et al. 1982; Lingle

2003; Kasozi and Montgomery 2020).

Increasing land cover resolution resulted in decreased availability

of foraging habitat and corresponding low connectivity of individu-

als in foraging layers at higher land cover resolutions. Edge overlap

decreased sharply between 30 and 600 m in foraging layers, after-

ward remaining stable to 1,000 m (Figure 3D). In contrast, edge

overlap was relatively consistent in forest and open layers as land

cover resolution increased (Figure 3D). Graph strength was more

variable within foraging habitat layers across land cover resolutions

than open and forest habitat layers (Figure 3E). The proportion of

relocations in forest (38.7% at 30 m to 50.3% at 1,000 m) and open

(37.4% at 30 m to 48.2% at 1,000 m) habitats increased with

increasing spatial resolution, whereas decreasing in foraging habitat

(23.9% at 30 m to 1.6% at 1,000 m). These results highlight the im-

portance of matching land cover resolution to scale of habitat selec-

tion and choosing a land cover product with a resolution sufficient

to detect less common habitats.

The temporal multilayer network indicated within-year time

windows where social network metrics increased. Edge overlap was

higher in between approximately November and May (time win-

dows 1, 6–11, and 15–20) than between approximately June and

October (time windows 2–5 and 12–15 (Figure 4A)). Time windows

of higher edge overlap also had higher graph strength compared

with time windows of lower edge overlap, between approximately

June and October (Figure 4C). Graph strength peaked across the

time series throughout winter 2018 (January to April). These results

highlight the importance of carefully selecting the temporal scale of

analysis to effectively capture within- and across-year variation in

sociality.

Figure 2. Varying scale in social distance threshold. For each social distance threshold (5, 25, 50, 75, 100, 250, 500 m), multilayer networks based on caribou social

associations between April 2017 and March 2019 within 3 habitat layers (foraging, forest, and open). Each line represents a single individual and graph strength

(mean of individuals in bold) showed a sharp increase between 5 and 100 m for all habitat classes. After 100 m, graph strength continued to increase at a slower

rate. Foraging and open layers showed higher variation in graph strength between individuals although forest layers had less variation and lower mean graph

strength.
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As the number of observations used to generate multilayer net-

works increased, individuals became more connected and variance

in metrics decreased. Graph strength across individuals in all 3 habi-

tat layers was highly variable at low number of observations and

variance decreased after �100 observations (Figure 5A). Edge over-

lap increased across all 3 habitat layers with an increasing number

of observations (Figure 5B). Similarly, multidegree for all individuals

increased quickly between 10 and 100 observations and continued

to increase until 1,000 observations (Figure 5C). Because the

variance in these multilayer metrics decreases after a certain number

of observations, this sensitivity method could be useful for determin-

ing the number of observations necessary for sufficiently describing

social dynamics across contexts.

An illustrative multilayer network was generated, informed by

previous social, spatial, and temporal scale results (Figure 6).

Relocations were predominantly in open (37.4%) and forest

(38.7%) habitats compared with foraging habitats (23.9%). Despite

lower proportion of relocations in foraging habitat, individuals were

Figure 3. Varying spatial scale of land cover raster. For each land cover resolution (100–500 m by steps of 100 m), multilayer networks based on caribou social

associations between April 2017 and March 2019 within 3 habitat layers (foraging, forest, and open). (A–C) 3 land cover rasters: the original resolution (30 m) and

2 aggregated rasters (500 and 1,000 m). (D) Edge overlap of habitat layers across spatial resolutions. Open and forest layers show consistent edge overlap with

increasing spatial resolution although foraging shows a sharp decline in edge overlap between 30 and 600 m. Above 600 m, edge overlap in foraging layers is sta-

ble. (E) Graph strength within habitat layers across spatial resolutions showing individuals as a separate line and the mean of individuals in bold. Foraging layers

showed high variation in graph strength with many individuals dropping to 0 after 500 m and others increasing with spatial resolution. Open layers and forest

layers were relatively stable across spatial resolutions, with higher mean graph strength in open compared with forest layers.
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more strongly connected in foraging and open habitats than in forest

(mean graph strength in habitat layers [SD]; foraging: 0.21 [0.23],

forest: 0.11 [0.13], open: 0.23 [0.24]). There was a seasonal differ-

ence in association with individuals more connected between ap-

proximately October to June (mean graph strength in time

windows; 2: 0.37 [0.23], 4: 0.18 [0.11]) than between approximate-

ly June to October (mean graph strength in time windows; 1: 0.04

[0.04], 3: 0.03 [0.07]). The time windows were aggregated from the

finer scale time windows presented above (time window 1: 2–5,

time window 2: 6–11, time window 3: 12–15, time window 4:

16–20).

Discussion

Animal social systems are characterized and influenced by scale

(Figure 6). Three types of scale particularly relevant to animals are

social, spatial, and temporal. Social scale defines the type and meas-

urement of social relationships and directly impacts observed social

connectivity between individuals. Spatial scale can reflect the reso-

lution of the habitat within which social interactions occur. Finally,

the temporal scale relates to both study design and seasonal differen-

ces in social processes. By partitioning social associations into dis-

crete contexts using multilayer networks, we highlight the influence

of social, spatial, and temporal scales on animal social systems, dem-

onstrating the importance of considering biologically relevant and

robust scales.

Social scale is an essential consideration for social network ana-

lysis (Castles et al. 2014; Carter et al. 2015; Farine 2015). For ex-

ample, networks can be constructed based on fine-scale social

interactions (e.g., grooming or aggression), social associations (e.g.,

group membership or proximity), or spatial or home range overlap.

Here, we define social associations using a series of social distance

thresholds to generate proximity-based social networks. Across

habitat layers, increasing the social distance threshold resulted in an

increase in graph strength (Figure 2). Specifically, open and foraging

layers had higher graph strength as well as greater variation across

individuals with larger social distance thresholds. Although our

understanding of patterns of ungulate grouping across habitat types

is relatively well-established (Lingle 2003; Kasozi and Montgomery

2020), the ability to generate habitat-specific social networks

Figure 4. Varying temporal scale in multilayer networks. Multilayer networks based on caribou social associations within time windows (20 ordinal sample peri-

ods) between April 2017 and March 2019. (A) Edge overlap was high between approximately November and May (time windows 1, 6–11, and 15–20) and low be-

tween approximately June and October (time windows 2–5 and 12–15). (B) Ordinal network layers showing unweighted edges between individuals within time

windows. Like edge overlap, individuals were more connected between November and May, compared with between June and October. (C) Graph strength with-

in time windows showing individuals as thin gray lines and mean across individuals as thick black lines. Graph strength peaked in time window 9, with noticeable

higher strength than the following year.
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provides novel inference given the ability to estimate inter- and

intra-layer metrics. Furthermore, generating socially variable layers

within a multilayer framework emphasize that social scale directly

influence multilayer network metrics. An extension of this analysis

could incorporate behavioral states to explore the influence of social

scale on patterns of association or interaction across habitat and be-

havioral layers, for example, using focal observations or hidden

Markov Models (see Muller et al. 2018; Jones et al. 2020).

Habitat selection, the use of available resources or landscape fea-

tures by animals (Manly et al. 1993; Boyce and McDonald 1999), is

a scale-dependent process (Mayor et al. 2009) that we can observe

in multilayer networks. Social structure and habitat selection are in-

timately related and individuals must share space to interact

(Webber and Vander Wal 2018). We found edge overlap was stable

in open and forest layers but decreased in foraging layers as spatial

scale increased (Figure 3D). Graph strength had greater individual

variation in open and foraging layers than in forest layers

(Figure 3E). On average, graph strength was highest in foraging

habitat, compared with forest and open habitat, despite the fact that

foraging habitat was the least common. Furthermore, we observed a

decrease in the proportion of relocations in foraging habitat with an

increasing spatial resolution (23.9% at 30 m to 1.6% at 1,000 m).

As the foraging layer had similar edge overlap and graph strength as

the open layer at 30 m spatial resolution, spatial scale, therefore

played a key role in our multilayer social networks. Johnson (1980)

identified 4 orders, or scales, of habitat selection: (1) the geographic-

al range of a species; (2) the home range of an individual; the (3)

habitat patches within the home range; and (4) specific resources

within a habitat patch. Scales of habitat selection could be relevant

for multilayer networks and our integration of habitat within a

multilayer context could be an important first step. Specifically, if

individuals select habitats at the home range scale—for example, at

coarser resolution, it may be relevant to assess social structure using

home range overlap. In contrast, in cases where individuals select

habitats at the patch-scale, fine-scale measures of sociality may be

more relevant. Moving past this hierarchical perspective, Mayor

et al. (2007) emphasized the importance of considering a broad con-

tinuum of scales to reveal scale-dependent selection and avoid the

bias of predefined scales assumed to associate with certain behav-

iors. We highlight the concept of scale in multilayer networks should

be approached based on explicit and precise definitions to ensure ro-

bust measurements.

The emergent relationship between habitat and sociality has

been explored by the temporal distribution and phenology of resour-

ces and use of social information in multilayer networks (e.g., Evans

et al. 2020). We observed seasonal variation in edge overlap.

Figure 5. Varying scale in number of observations. Multilayer networks based on a subset of observations (10–1,000 observations by steps of 10) of caribou social

associations between April 2017 and March 2019 within 3 habitat layers (foraging, forest, and open). (A) Edge overlap increased for all habitat layers with increas-

ing number of observations. Foraging and open layers had higher edge overlap than forest layers. (B) Graph strength within habitat layers with increasing num-

ber of observations showing individuals as a separate line and the mean of individuals in bold. Graph strength was highly variable at low number of

observations (<100) for all habitat layers and relatively stable after approximately 200 observations. (C) Multidegree for all individuals increased with increasing

number of observations. Individuals showed high variability (2–51) at the maximal number of observations (1,000).
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Specifically, we found increased edge overlap and graph strength in

autumn, winter and spring than in summer (Figure 4A and C).

These periods of increased sociality correspond to seasons of hetero-

geneous resource availability for caribou (Peignier et al. 2019). This

analysis could be extended using time-aggregated networks and a

moving-window approach for informing time window size and sam-

pling effort (Farine 2017; Bonnell and Vilette 2020). By explicitly

considering the temporal context of social interactions in separate

layers, multilayer networks provide a detailed and dynamic perspec-

tive of animal social systems. For example, female mandrill

(Mandrillus sphinx) sociality is more completely represented by tem-

poral multilayer networks than aggregated networks (Pereira et al.

2020). Evans et al. (2020) observed seasonal differences in how the

multilayer social structure of mice (Mus musculus domesticus)

related to genetic structure. Finally, it is crucial to include sufficient

data within sampling periods or time windows to construct robust

networks (Proskurnikov and Tempo 2017; Farine 2017). With

increasing number of observations, we found variance decreased in

edge overlap and multidegree across habitat layers and in graph

strength within habitat layers (Figure 5). As one might expect, dyads

that only occasionally associated were more likely to be recorded

with increasing number of observations, demonstrating the value of

this form of sensitivity analysis to social networks in general and

multilayer networks in particular.

Multilayer networks remain a nascent but powerful tool in ani-

mal behavioral ecology. Silk et al. (2018) summarized some key

multilayer questions in animal behavior research and, based on our

study of scale, we conclude by posing an additional set of questions

centered on scale in behavioral, landscape, and spatial ecology:

1. how do multilayer social network metrics vary across social,

spatial, and temporal scales, and at which scale might these

Figure 6. Multilayer network representing social association of caribou across 4 time windows (approximately June 2017 to October 2017, November 2017 to

May 2018, June 2018 to October 2018, November 2017 to March 2019) and 3 habitat classes (foraging, forest, and open) informed by previous social, spatial, and

temporal scale analyses. Individual caribou are represented as nodes in a constant position across network layers they were observed in. Intralayer edges repre-

sent association between individuals and line thickness is scaled by strength of association (simple ratio index).

120 Current Zoology, 2021, Vol. 67, No. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/cz/article/67/1/113/5902450 by guest on 20 April 2024



influence fitness (Box 1)? Are some scales better predictors for

different fitness components, for example, reproductive success

or survival?;

2. why do individuals associate more strongly with certain conspe-

cifics in some habitats? What is the role of movement in the con-

text of habitat-specific social networks? and

3. how, and why, does the spatial scale of perception influence, for

example, auditory, visual, or chemotaxis, influence the social en-

vironment? What is the role of memory, and by extension social

and spatial cognition, as animals navigate their environment and

make decisions about where to move next?

We show that multilayer social networks are (1) scale-dependent

and (2) useful for identifying spatially or temporally specific social

associations. When employing multilayer networks, it is critical to

consider a broad continuum of social, spatial, and temporal scales

to capture fully ecological processes and to establish a clear link be-

tween biologically relevant scales of observation.

Acknowledgments

We respectfully acknowledge the territory in which data were collected and

analyzed as the ancestral homelands of the Beothuk and the Island of

Newfoundland as the ancestral homelands of the Mi’kmaq and Beothuk. We

thank members of the Newfoundland and Labrador Wildlife Division, includ-

ing S. Moores, B. Adams, W. Barney, and J. Neville for facilitating animal

captures and for logistical support in the field. We also thank all members of

the Wildlife Evolutionary Ecology Lab, including J. Hendrix, K. Kingdon, S.

Boyle, J. Balluffi-Fry, C. Prokopenko, I. Richmond, J. Hogg, and L.

Newediuk for their comments on previous versions of this manuscript as well

as D. C. Schneider for inspiration and helpful discussions about scale.

Funding

Funding for this study was provided by a Vanier Canada Graduate

Scholarship to Q.M.R.W. (acronym of author Quinn M.R. Webber) and a

Natural Sciences and Engineering Research Council of Canada Discovery

Grant to E.V.W.

Code Availability

Code for performing all multilayer social network analyses and generating

the figures is available at https://github.com/robitalec/scale-in-multilayer-net

works (Robitaille et al. 2020) and released under the GNU General Public

License version 3.0. We depend on numerous R packages notably for the

analysis: igraph (Csardi and Nepusz 2006), data.table (Dowle and

Srinivasan 2019), spatsoc (Robitaille et al. 2019), asnipe (Farine 2019),

and grainchanger (Graham 2019), for the figures: ggplot2 (Wickham

2016) and patchwork (Pedersen 2019), and for reproducibility and work-

flow management: drake (Landau 2018), renv (Ushey 2020), and knitr

(Xie 2015).

References

Allen TFH, Hoekstra TW, 2015. Toward a Unified Ecology. New York (NY):

Columbia University Press.

Almeling L, Hammerschmidt K, Sennhenn-Reulen H, Freund AM, Fischer J,

2016. Motivational shifts in aging monkeys and the origins of social select-

ivity. Curr Biol 26:1744–1749.

Bastille-Rousseau G, Murray DL, Schaefer JA, Lewis MA, Mahoney SP et al.,

2018. Spatial scales of habitat selection decisions: implications for

telemetry-based movement modelling. Ecography 41: 437–443.

Battiston F, Nicosia V, Latora V, 2014. Structural measures for multiplex net-

works. Phys Rev E 89:032804.
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Tarka M, Guenther A, Niemelä PT, Nakagawa S, Noble DWA, 2018. Sex dif-

ferences in life history, behavior, and physiology along a slow-fast con-

tinuum: a meta-analysis. Behav Ecol Sociobiol 72:132.

Thompson NA, 2019. Understanding the links between social ties and fitness

over the life cycle in primates. Behaviour 156:859–908.

Turner JW, Robitaille AL, Bills PS, Holekamp KE, 2020. Early life relation-

ships matter: social position during early life predicts fitness among female

spotted hyenas. J Anim Ecol 1–14. doi: 10.1111/1365-2656.13282.

Ushey K, 2020. Renv: Project Environments. R package version 0.10.0.

https://CRAN.R-project.org/package¼renv.

Webber QMR, Vander Wal E, 2018. An evolutionary framework outlining

the integration of individual social and spatial ecology. J Anim Ecol 87:

113–127.

Webber QMR, Vander Wal E, 2019. Trends and perspectives on the use of

animal social network analysis in behavioural ecology: a bibliometric ap-

proach. Anim Behav 149:77–87.

Wey T, Blumstein DT, Shen WJF, 2008. Social network analysis of animal be-

haviour: a promising tool for the study of sociality. Anim Behav 75:

333–344.

Whitehead H, 2008. Analyzing Animal Societies: Quantitative Methods for

Vertebrate Social Analysis. Chicago (IL): University of Chicago Press.

Wickham H, 2016. Ggplot2: Elegant Graphics for Data Analysis. New York

(NY): Springer-Verlag.

Xie Y, 2015. Dynamic Documents with R and Knitr. Boca Raton (FL):

Chapman; Hall/CRC.

Robitaille et al. � Scale in animal social multilayer networks 123

D
ow

nloaded from
 https://academ

ic.oup.com
/cz/article/67/1/113/5902450 by guest on 20 April 2024

https://CRAN.R-project.org/package=renv
https://CRAN.R-project.org/package=renv



