
Original article

decodeRNA— predicting non-coding RNA

functions using guilt-by-association

Steve Lefever1,2, Jasper Anckaert1,2, Pieter-Jan Volders1,2,

Manuel Luypaert1,*, Jo Vandesompele1,2,3 and Pieter Mestdagh1,2,3

1Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent, Belgium, 2Cancer Research

Institute Ghent (CRIG), Ghent University, Ghent, Belgium and 3Biogazelle, Zwijnaarde, Belgium

*Corresponding author: Email: steve.lefever@ugent.be; Tel. : +3293321951; Fax : +3293326549

Present address Luypaert Manuel: Biogazelle, Technologiepark 3, Zwijnaarde, Belgium.

Citation details: Steve,L., Jasper,A., Pieter-Jan,V. et al. decodeRNA— predicting non-coding RNA functions using guilt-

by-association. Database (2017) Vol. 2017: article ID bax042; doi:10.1093/database/bax042

Received 10 October 2016; Revised 24 April 2017; Accepted 1 May 2017

Abstract

Although the long non-coding RNA (lncRNA) landscape is expanding rapidly, only a

small number of lncRNAs have been functionally annotated. Here, we present

decodeRNA (http://www.decoderna.org), a database providing functional contexts for

both human lncRNAs and microRNAs in 29 cancer and 12 normal tissue types. With

state-of-the-art data mining and visualization options, easy access to results and a

straightforward user interface, decodeRNA aims to be a powerful tool for researchers in

the ncRNA field.

Database URL: http://www.decoderna.org

Introduction

Recent technological advances have led to the notion that

over 80% of the human genome is pervasively transcribed,

dramatically increasing the complexity of the transcrip-

tome. In addition to miRNAs that have been the focus of

intense research over the last decade, a plethora of long

non-coding RNAs (lncRNAs) has been discovered. The lat-

est release of LNCipedia reports over 111 000 annotated

human lncRNA transcripts and that number is expected to

increase with future RNA sequencing efforts on various tis-

sue and cell types (1). However, whether all these RNA

molecules are truly non-coding and functional is still under

debate. Unlike miRNAs, lncRNAs primarily regulate gene

expression at the transcriptional level by binding and (re-

)positioning transcription factors or proteins involved in

the regulation of chromatin architecture. Although the

mechanisms of lncRNA function are starting to emerge,

the pathways and processes downstream of lncRNAs

largely remain elusive. This is further complicated by the

lack of lncRNA target prediction tools. Such tools are

available in the miRNA field and have dramatically accel-

erated our understanding of miRNA function.

Since functional validation has only been performed for

a handful of lncRNAs [184 human lncRNAs in lncrnadb

v2.0 (2)], several studies have successfully applied the

guilt-by-association principle to infer functions of

lncRNAs on a genome-wide scale (3–5). This approach is

based on a correlation analysis between matching non-

coding RNA and protein coding mRNA expression in com-

bination with enrichment strategies to project functional

VC The Author(s) 2017. Published by Oxford University Press. Page 1 of 8

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2017, 1–8

doi: 10.1093/database/bax042

Original article

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax042/3866795 by guest on 10 April 2024

http://www.decoderna.org
http://www.decoderna.org
Deleted Text: While 
Deleted Text: (
Deleted Text: )), 
http://www.oxfordjournals.org/


protein coding gene sets onto mRNAs correlated with the

ncRNA of interest (3,6). Previously, our lab published an

online database containing such inferred functions for

miRNAs called the miRNA body map (4). Similar web

tools utilizing enrichment strategies to predict miRNA

functions have been published following our original publi-

cation (7,8). To our knowledge, only two other web

tools—lncRNA2function (57 samples from 2 studies) and

co-LncRNA (29 012 samples from 241 independent data-

sets)—apply this method for lncRNAs. Both tools follow a

hypergeometric test-based approach—limited to co-

expressed genes—to identify lncRNA functionality. Other,

non-enrichment-based approaches to characterize lncRNA

functionality include e.g. transcription factor binding

(TF2LncRNA) (9), lncRNA/protein and lncRNA/DNA

binding (longTarget) (10), differential mRNA expression

upon lncRNA modulation (lncRNA2Target) (11) or a

combination of lncRNA expression, sequence conserva-

tion, coding potential and secondary structure formation

(lncRNAtor, lncRNA-MFDL) (12,13).

Here, we present decodeRNA, the successor of miRNA

body map. decodeRNA contains inferred functions both

for miRNAs and lncRNAs in over 29 cancer and 12 nor-

mal tissue types (10 489 samples in total) with novel visual-

ization, data analysis and data interpretation features.

Compared to other tools, decodeRNA enables users to

(i) retrieve ncRNA-pathway associations and miRNA-

target associations in individual datasets as well as across

all datasets, (ii) compare these associations between data-

sets and (iii) retrieve the individual genes contributing to

the ncRNA-pathway associations.

Results

Database content

Functional lncRNA and miRNA contexts in decodeRNA are

based on matching lncRNA, miRNA and mRNA expression

data from The Cancer Genome Atlas (TCGA). Processed

data are stored in a MySQL database optimized for conveni-

ent data retrieval. At the time of data retrieval, level 3 RNA-

seq and small RNA-seq data are available for 10 489 samples

representing 29 cancer and 12 normal tissue types. LncRNA

identifiers are associated with common gene names and

LNCipedia IDs, whereas miRNAs are linked to their official

miRBase entry. ncRNA functions are inferred using the

GSEA method as reported previously (4) with functional

gene set collections obtained from the Molecular Signatures

Database (14) including Chemical and Genetic Perturbations

(CGP), Pathway Interaction Database (PID) and the

BioCarta, KEGG and Reactome pathways. Currently, func-

tional contexts for miRNAs and lncRNAs are based on> 500

million datapoints for 3340 ncRNA genes (2320 lncRNAs

and 1020 miRNAs). In total, 98.81% of the lncRNAs and all

of the miRNAs present in the TCGA (small) RNA-seq data-

sets have at least one associated gene set, with an average of

60.41 and 58.15 ncRNA/geneset correlations per tissue type

for lncRNA and miRNA, respectively.

Workflow

Small RNA-seq datasets (level 3) were downloaded from

TCGA and miRNA read counts were normalized based on

total miRNA read counts as reported previously (15). For

RNA-seq data, normalized gene expression values (level 3)

were downloaded. Expression-correlation matrices

(Spearman’s rank) for each dataset were constructed by

combining lncRNA and miRNA expression data with

matching mRNA expression data. These matrices were

used as input for gene set enrichment analysis (in combin-

ation with the C2 curated gene set list obtained from

MSigDB) (14). For each highly confident ncRNA—gene

set association (GSEA FDR< 0.001), gene set FDR, gene

set enrichment score, leading-edge mRNAs (up to a max-

imum of 20 per gene set) and leading-edge mRNA correl-

ation values were stored in separate MySQL tables, based

on the type of gene set (CGP, KEGG, BioCarta, Reactome

or PID), and coupled to the relevant dataset. As we are

working with poly-A enriched RNA-seq data, decodeRNA

does not contain information for non-poly-adenylated

lncRNAs. For miRNA datasets, miRNA/mRNA target as-

sociations, retrieved from miRDB, are stored for inclusion

in downstream visualizations (Figure 1) (16).

Features

The interface allows easy retrieval of various information

layers. When using the lncRNA to tissue/gene set workflow

to identify potential lncRNA functions, users are guided to

the main ncRNA2function page upon the selection of the

desired RNA type (lncRNA or miRNA) and submission of

a ncRNA identifier. Here, depending on the molecule of

interest, two (for lncRNAs) or four (for miRNAs) types of

analysis are available. For both lncRNAs and miRNAs,

functional contexts (i.e. ncRNA—gene set associations) in

all or a selection of the registered datasets can be displayed.

The first option will display a form where the functional

context query can be customized. The gene set collection

and (up to five) datasets of interest can be selected and an

FDR cutoff can be set (relevant for further visualization

purposes). This enables users to further reduce the number

of resulting functional contexts to the most confident ones.

Output can be generated in the form of gene set lists with

associated FDR-values, a Circos plot displaying the gene
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sets and corresponding (up to 200) leading-edge genes

(defined as the core of a gene set that accounts for the en-

richment signal), or a customizable Circos plot enabling the

user to select the gene sets to be visualized (17). Edges con-

necting identical leading-edge genes in different gene sets

can be used to appreciate the degree of gene set overlap. All

data used to generate the list or Circos plots can be ex-

ported as tab-separated text files. Choosing the second op-

tion will show the user in what fraction of all available

datasets each gene set—correlated with the ncRNA of

interest—is present, ranked based on significance, with

link-outs to MsigDB for more information regarding the

corresponding gene set and the possibility to view FDR-

values and enrichment scores for a certain gene set in all of

the significant datasets. A second workflow allows users a

different entry into the decodeRNA data. Following the se-

lection of a tissue type of interest, lncRNAs associated with

at least one gene set (FDR¼ 0) in that tissue type are

retrieved. LncRNAs and their corresponding gene sets are

visualized in a list format, ranked according to the number

Figure 1. Schematic overview of the analysis workflow and the online repositories used (CGP¼ chemical and genetic perturbations, BRCA¼breast in-

vasive carcinoma, LUSC¼ lung squamous cell carcinoma).

Figure 2. Circos plot representing significant gene sets for the lncRNA HOTAIR in breast tumor tissue, focusing on the CGP gene set.
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of gene sets associated with each lncRNA. This allows users

to identify lncRNAs associated with specific cellular proc-

esses or lncRNAs having certain gene set association in

common, hinting at potential lncRNA functions.

For miRNAs, two additional analyses, related to the

targets of these miRNAs, are available. The first is across

all available datasets and displays a list of predicted

miRNA targets whose expression is negatively correlated

with the miRNA of interest (Spearman rho<�0.5, P-val-

ue< 0.05), along with the fraction of datasets in which a

significant negative expression correlation is observed. The

second analysis uses a form to filter miRNA target results

according to dataset selection and level of significance.

Results are shown in either a list form or by means of a

Circos plot, with similar layout as the pathway-option

described above.

Generating hypotheses using decodeRNA

predictions

When focusing on highly significant gene set associations

(FDR¼ 0), the lncRNAs present in decodeRNA have an

average of 26.30 associations per dataset. A distribution

plot for the number of gene sets associated with each

Figure 3. Gene set list across all available datasets for lncRNA HOTAIR, ranked according to the fraction of datasets in which a significant association

(positive or negative) can be found: (1) gene set name with linkout to MsigDB, (2) number and (3) fraction of datasets in which a correlation with the

associated gene set can be found, (4) tissue name, (5) tissue type, (6) data source, (7) gene set false discovery rate and (8) gene set normalized enrich-

ment score; (KIRC¼ kidney renal clear cell carcinoma, COAD¼ colon adenocarcinoma, LIHC¼ liver hepatocellular carcinoma, THCA¼ thyroid carcin-

oma, CHOL¼ cholangiocarcinoma, KICH¼ kidney chromophobe, LUSC¼ lung squamous cell carcinoma, DLBC¼ lymphoid neoplasm diffuse large

B-cell lymphoma, HNSC¼head and neck squamous cell carcinoma, KIRP¼ kidney renal papillary cell carcinoma, BRCA¼breast invasive carcinoma).
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ncRNA across all datasets can be observed in

Supplementary Figure S1. For 26 lncRNAs, identical gene

set associations can be observed in all available tissue

types. Most of these gene sets correspond to global cellular

processes such as translation regulation, oxidative phos-

phorylation, electron transport and ATP synthesis, suggest-

ing these lncRNAs are involved in housekeeping functions,

common across tissue types. For three of these lncRNAs

(SNHG5, GAS5 and ZFAS1), such functions have indeed

been identified (18–20). Alternatively, we can subset the

database for more specific gene sets. For instance, when

searching for lncRNAs with putative involvement in the

MYC pathway, 2190 lncRNAs were identified with high

correlation (abs(NES) >¼ 0.7) to MYC associated gene

sets, including SNHG16, DANCR, USP2-AS1, DLEU2,

SNHG15, PVT1, CASC11, SNHG6 and VPS9D1-AS1

(21–26). In a similar way, lncRNAs linked to cell prolifer-

ation (n¼1684, including TMPO-AS1, DEPDC1-AS1,

HMMR-AS1, UHRF1, FAM83A-AS1, KDM4A-AS1,

DDX11-AS1 and DLEU2) or migration (n¼ 1335, includ-

ing DEPDC1-AS1, C14orf34, FAM83A-AS1 and HMMR-

AS1) can be identified (27–35). A full list of the lncRNAs

with the number of associated migration/proliferation/

MYC gene sets can be found in Supplementary Table S1.

Novel lncRNA—gene set predictions including several

ones in Supplementary Table S1 (e.g. RP11-244M2.1 and

RP11-120D5.1 for proliferation, LINC00704 and RP5-

1158E12.3 for migration and RP11-132A1.4, RP11-

20B24.4 and FOXD2-AS1 for possible associations with

MYC) should be validated by means of wet lab experi-

ments. Ideally, these are based on lncRNA perturbation

combined with genotypic or phenotypic read-outs tailored

to the predicted function.

Case studies

To evaluate the performance of decodeRNA in making

highly confident ncRNA function predictions, case studies

for three different ncRNAs—1 miRNA and 2 lncRNAs—

were performed.

The results of the first evaluation are shown in Figure 2

and display the most significant positively correlated gene

sets for the lncRNA HOTAIR in breast cancer. Among

those are several gene sets related to H3K27 methylation

that is induced by HOTAIR through recruitment of PRC2.

In addition, a gene set containing genes down regulated in

non-metastasized breast cancer—and thus up regulated in

metastasized breast cancer—as well as a gene set related to

genes involved in epithelial to mesenchymal transition con-

firms the experimentally validated association between

Figure 4. Circos plot representing significant ESR1 associated gene sets for microRNA hsa-miR-18a-5p in breast and colon cancer (COAD¼ colon

adenocarcinoma, BRCA¼breast cancer).
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HOTAIR and breast cancer metastasis (36,37). When

looking at the list of correlated gene sets for lncRNA

HOTAIR across all datasets, we again observe various

H3K27me3 related gene sets and several gene sets corrobo-

rating the recently identified role of HOTAIR in adipogen-

esis (Figure 3) (38).

As a second example, we looked at the gene sets corre-

lated with miR-18a-5p in both breast and colon cancer.

Since several studies have identified this miRNA to be a

regulator of ESR1 in these cancer types (39–42), we eval-

uated miR-18a-5p functional contexts in the decodeRNA

output. This association was indeed confirmed with three

ESR1 associated gene sets in the resulting gene set

list, all of which ranked in the top 25 for both datasets

(Figure 4).

As a third and final test to evaluate the decodeRNA

functionality, we performed GSEA on a publically avail-

able RNA sequencing dataset obtained upon MALAT1

perturbation in lung cancer (GEO accession number

GSE43830) and determined the overlap of the resulting

gene sets (upon perturbation) with the ones obtained

through decodeRNA for MALAT1 in lung adenocarcin-

oma (LUAD) and lung squamous cell carcinoma (LUSC).

Both for the LUAD and LUSC datasets, gene sets identified

Figure 5. Gene set overlap between the MALAT1 perturbation experiment in lung cancer and decodeRNA output for MALAT1 in A) lung squamous

cell carcinoma (LUSC,) and B) lung adenocarcinoma (LUAD) datasets. The line-graph displays the cumulative distribution of the gene set overlap in

function of the FDR value, while the bars show the position of decodeRNA gene sets in the ranked list of gene sets obtained from the public MALAT1

perturbation dataset.
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by decodeRNA significantly overlapped with those identi-

fied from the MALAT1 perturbation experiment (Fischer

exact test, LUAD: P< 2.2e-16; LUSC: P¼ 0.003042). Of

note, a higher degree of overlap was seen for the most sig-

nificant decodeRNA gene sets, suggesting that the FDR-

values in decodeRNA can be applied to further prioritize

gene sets (Figure 5). In addition, the overrepresentation of

cell cycle-, cancer-, proliferation- and B-MYB-related gene

sets corresponds to the validated MALAT1 functionality

reported in the literature (43–45). This, together with the

results of the HOTAIR and miR-18a-5p case studies,

underscores the ability of decodeRNA in making accurate

predictions over a broad range of ncRNAs and tissues,

helping researchers in providing a functional context for

their ncRNA molecules of interest.

Discussion/conclusion

The current version (1.0) of decodeRNA contains 12 nor-

mal and 29 cancer tissue types representing a total of

10 489 samples. This vast amount of data for both

miRNAs and lncRNAs, with pre-computed functional con-

text information across a wide variety of tissue types, can

guide researchers in setting up wet lab experiments to fur-

ther elucidate the functions of their ncRNAs of interest. As

decodeRNA functional contexts are predictions, experi-

mental validation remains an essential step of the work-

flow. The aim of a functional context is to provide clues on

putative functions and, as such, guide the selection of a

relevant functional readout or model system. In future up-

dates, we plan to add additional datasets and expand cur-

rently available datasets by reanalysis of (raw) level 1

(small) RNA-seq data from TCGA in order to extend the

number ncRNAs. With functional context information for

>3300 ncRNAs in over 40 data sets, decodeRNA could be

a good starting point for future studies on ncRNA

function.

Supplementary data

Supplementary data are available at Database Online.
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