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Abstract

Background and aims: Intestinal fibrosis is a common complication of IBD that can become seriously
symptomatic and may require surgical intervention if stricture formation ensues. This review
discusses existing and developing knowledge of intestinal fibrosis and its implications for therapy.
Methods: Review of the literature, personal communications, unpublished observations.
Results: Known mechanisms of intestinal fibrosis include fibroblast proliferation and migration,
activation of stellate cells, and extraintestinal fibroblast recruitment. However, novel
mechanisms are being uncovered, including epithelial-to-mesenchymal transition, endothelial-
to-mesenchymal transition, pericyte differentiation, and fibrocyte recruitment. Most of the
traditional and novel mechanisms underlying intestinal fibrosis are associated to the presence of
chronic inflammation, but is also possible that fibrosis develops independently of persistent
immune activation in the gut. At the moment, the development of preventive, non-
interventional, and more effective management of intestinal fibrosis is hampered by the lack
of a greater knowledge of its basic pathophysiology and predisposing factors.
Conclusions: It is reasonable to expect that therapy of IBD-associated fibrosis will radically
improve once the underlying mechanisms are better understood, and therapeutic modalities will
emerge that prevent or reverse this complication of IBD.
© 2008 European Crohn’s and Colitis Organisation. Published by Elsevier B.V. All rights reserved.
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1. Intestinal fibrosis — an overview of the
clinical problem

Intestinal fibrosis, commonly defined as an excessive de-
position of extracellular matrix (ECM) resulting from chronic
inflammation and impairment of intestinal wound healing,
represents a serious complication of IBD and has important
clinical implications. This is true for both ulcerative colitis
(UC) and Crohn's disease (CD). In UC the involvement of the
mucosal and submucosal layers causes a thickening of the
muscularis mucosae with accumulation of ECM that may
contribute to shortening or stiffening of the colon, whereas
in CD the transmural nature of the inflammatory process is
followed by bowel wall thickening, and eventually formation
of stricture and stenosis.1

More than one-third of the patients with CD develop a
distinct fibrostenosing phenotype, manifested by progressive
narrowing of the intestinal lumen and potential obstruction.2

Together with fistulae, intestinal stenosis represents the
main indication for surgery in CD, whereas in UC indication of
surgery because of bowel stenosis is a far more sporadic
event .3,4 Up to 80% of all patients suffering from CD undergo
surgery at least once during the course of their disease.5 In
approximately half of these patients stricture formation and
obstruction secondary to bowel wall fibrosis are the main
reason for surgery, denoting that excessive scar tissue for-
mation is underlying the need for an operation in approxi-
mately one-third of all CD patients.6,7 Recurrence of disease
at the site of anastomosis is common, and recurrent stricture
formation may also occur.8,9 It is well established that CD is a
dynamic disorder whose phenotype may evolve with time.
While location of inflammation is a relatively stable clinical
feature, changes in disease behavior occur in approximately
one-third of patients who progressively switch from a pure
inflammatory to a stricturing or penetrating phenotype over
a period of 10 years or longer.10 The time-dependent pheno-
typic change of the disease suggests that, as long as in-
testinal inflammation endures, fibrosis may follow, although
this is not always the case, as patients may display a chronic
inflammatory pattern without ever developing significant
intestinal fibrosis or stricture. Despite substantial advances
in its management, IBD still displays a chronic inflammatory
course, and the incidence of stricture formation and stenosis
secondary to inflammation has not significantly changed
during the last 25 years.11
In contrast to the remarkable success of new pathophysiol-
ogy-based anti-inflammatory therapies in IBD,12 relatively
minor progress has occurred with respect to the therapeutic
approach to intestinal fibrosis.13 Bowel resection and stric-
tureplasty remain the basic interventions for complications
secondary to intestinal fibrosis.14 Less invasive procedures for
treatment of strictures are increasingly used, such as balloon
dilatation,15,16 polyvinyl over-the-guidewire dilatation17 and
injection of glucocorticoids into the strictures after dilata-
tion.18 However, the long-term efficacy of these measures is
limited by the frequent recurrence of the problem. In order to
develop better therapeutic approaches a much greater un-
derstanding of the mechanism of intestinal fibrosis is needed,
which underscores the need of more studies of the cellular and
molecular events underlying its pathophysiology.

Currently fibrosis is seen as the irreversible end stage
result of chronic inflammation. Applying this view to the gut,
recurrent inflammation is regarded to be an absolutely
necessary process for the development of intestinal fibrosis.7

However, novel concepts emerging from in vivo and in vitro
experimental models suggest that fibrogenic mechanisms
can be distinct and, to some degree, independent of those
regulating inflammation.19 In the case of IBD related fibrosis,
however, it is practically impossible to separate the inflam-
matory from the fibrotic response as the cells responsible for
each type of response are intimately associated and in-
fluencing each other in the mucosa microenvironment. Of
note, the cells that are primarily responsible for ECM depo-
sition, such as myofibroblasts, do so under the influence of
signals derived from surrounding inflammatory cells.13 Myo-
fibroblasts are defined as an activated or differentiated form
of fibroblasts.20 In reality, at any site of inflammation, local
mesenchymal cells are in a constant state of de- and trans-
differentiation among fibroblast, myofibroblast and smooth
muscle cell phenotypes.21 For sake of simplicity and the
specific goals of this review only the term “fibroblast”will be
used when referring to these interrelated cell types (Fig. 1).

Fibroblasts are found in the interstitium of all normal
tissues and organs where they are crucial contributors to
local homeostasis.22 Morphologic, phenotypic, molecular
and functional differences among fibroblast from different
locations have been described.20,23 In case of persistent
stimulus, injury or inflammation, fibroblasts become acti-
vated and express receptors for pro-inflammatory cytokines,
such as TNF-α, becoming primary targets of the immune



Figure 1 Transdifferentiation among mesenchymal cells. Intestinal mesenchymal cells are in a constant state of trans- and de-
differentiation among fibroblast, myofibroblast and smooth muscle cell phenotypes. This process is driven by a variety of mediators
present under both physiological and pathophysiological conditions of the intestinal mucosa. Therefore, all mesenchymal cell types
can directly or indirectly contribute to intestinal fibrosis.
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response.24 They expand in number and secrete increased
amounts of a large variety of molecules, including mediators
that foster local inflammation and ECM proteins that
contribute to local tissue remodeling and fibrosis.13,25 This
review will present some of the recent progress made in the
understanding of intestinal fibroblast origin, differentiation,
and function, and discuss the relevance of these processes to
the pathophysiology of and potential new therapeutic
approaches to intestinal fibrosis.

2. Known mechanisms of intestinal fibrosis

2.1. Fibroblast proliferation

To date the core mechanism responsible for the development
of intestinal fibrosis is believed to be the growth and nu-
merical increase of the resident fibroblast population. In
support of this concept there are reports showing that fibro-
blasts isolated from IBD mucosa spontaneously display a
faster rate of proliferation compared to that of fibroblast
derived from non-IBD normal mucosa.26,27 This difference
was observed regardless of the type of IBD, increased pro-
liferation being observed with fibroblasts from inflamed or
fibrosed CD tissue, as well as inflamed UC mucosa. In addi-
tion to spontaneous proliferation, intestinal fibroblasts can
increase their growth rate when exposed to various in vitro
conditions, like those found in the inflamed gut. These
include activation by several growth factors such as insulin-
like growth factor I (IGF-I), basic fibroblast growth factor
(bFGF), epithelial growth factor (EGF), connective tissue
growth factor (CTGF), platelet-derived growth factor
(PDGF), but also pro-inflammatory cytokines like interleu-
kin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α.7,26,28–30

Although multiple mediators stimulate intestinal fibroblast
proliferation, most reports show no differences in regard
to in vitro growth rates of IBD and normal mucosa-derived
cells.

Transforming growth factor (TGF)-β1 is generally con-
sidered as the chief mediator of fibrosis in essentially all
organs, including the gut. Surprisingly, this factor has not
been shown to have a definitive role in promoting prolifera-
tion of intestinal fibroblasts, despite doing so for fibroblasts
from other tissues and organs.26,31,32 However, TGF-β1 may
indirectly impact on intestinal fibroblast proliferation
through its capacity to upregulate the PDGF receptor,
increase synthesis of CTGF, and promote expression of IGF-
1, all of which could directly affect proliferation.20,28 Thus,
the function of TGF-β1 may be more directed at modulating
differentiation and secretion rather than proliferation, in
addition to playing critical role in pro-fibrotic pathways as
discussed below.

In addition to soluble factors, other mechanisms and
events may induce growth of fibroblasts. Direct cell-to-cell
contact with inflammatory cells, such as mast cells or
eosinophils, which are present in increased numbers in active
IBD mucosa, can stimulate proliferation in vitro.33–35 Most
likely, Tcells can also induce fibroblast proliferation through
a direct cell-to-cell contact mechanism36,37 (Fig. 2).

2.2. Fibroblast migration

Migration, defined as the active movement of fibroblasts into
and through the surrounding ECM, likely represents another
component of intestinal fibrosis.7 During inflammation a
chemotactic gradient is created due to the secretion of
various molecules that induce cell migration into the
affected area. Depending on the location of the inflamma-
tory focus in the bowel wall, migration can probably arise
from all surrounding tissue layers, including the mucosa,
submucosa or muscle. As inflammation abates, the chemo-
tactic gradient subsides and eventually disappears, resulting
the cessation of fibroblast migration. How much fibrosis
results as a consequence of migration largely depends on the
intensity and duration of inflammation. A large number of
soluble molecules with the potential for triggering fibroblast
migration are found in essentially all tissues.38,39 In the gut,
fibroblasts can stimulate their own migration through
autocrine or paracrine processes.40,41 Fibronectin, which is
synthesized by fibroblasts in large quantities, is considered



Figure 2 Different cellular sources in intestinal fibrosis. Fibroblasts contributing to intestinal fibrosis can derive frommigration into
the inflamed area, proliferation of local fibroblasts, differentiation from intestinal stellate cells, and influx from bone marrow-
derived fibroblast precursors.
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one of the most potent inducers of autocrine migration.40

PDGF-A, PDGF-B, IGF-I and EGF also enhance migration, but
their effect appears to be fibronectin-dependent.40 The
migratory response of fibroblasts has two components: an
increase in chemokinesis (random movement) and chemo-
taxis (gradient-directed movement).

Once fibroblasts have been recruited to the inflammatory
focus they must be locally retained, an action mediated by
additional pro-inflammatory mediators, such as TNF-α and
IFN-γ, both of which can reduce intestinal fibroblast
migration in vitro.42 This reduction persists as long as the
cells are maintained in culture, and is more pronounced
when fibroblasts isolated from CD mucosa are used, under
spontaneous as well as cytokine-mediated conditions.42 This
behavior makes the intestinal fibroblast a cell highly reactive
to the surrounding inflammatory milieu. This reactivity,
however, may not to be generalizable to all fibroblasts, as
studies show inconsistent results when fibroblasts isolated
from different organs are tested.43–45 How much a reduced
migratory capacity contributes to fibrosis in IBD in vivo is still
unclear. In fact, this mechanism remains speculative because
growth factor-induced fibroblast migration occurs in the
context of other biological responses and complex interac-
tions with local immune and epithelial cells, and there are
still not enough experimental data to meaningfully integrate
these intricate responses (Fig. 2).

2.3. Intestinal stellate cells

It is well established that stellate cells are major contribu-
tors to fibrosis, a notion primarily based on a vast literature
of studies of liver (where they are also termed fat- or vitamin
A-storing cell, or Ito cell)46 and pancreatic fibrosis.47 Stellate
cells are mesenchymal cells precursors that display low
mitogenic activity and contribute to retinoic acid metabo-
lism.48 Upon activation, stellate cells differentiate into
fibroblasts at sites of inflammation and become responsible
for ECM accumulation by secreting a variety of matrix com-
ponents and influencing their turnover.49

In contrast to the wealth of data on the role of stellate
cells in liver and pancreatic fibrosis, very limited information
is available on intestinal stellate cells. Cells with cytoplasmic
projections compatible with stellate morphology and con-
taining retinoid-rich lipid droplets have been described in
the intestinal submucosa,50 but their paucity and lack of
specific markers make the definitive identification only
tentative. Recently, our laboratory has started the func-
tionally characterization of primary stellate cells directly
isolated from the human intestine (Leite A., unpublished
observations). Particularly interesting is the observation that
stellate cells from CD and UC mucosa differentiate into
fibroblasts at a much faster pace than those from normal
non-IBD mucosa, as demonstrated by the quick acquisition
of α-smooth muscle actin, a typical marker of mature
mesenchymal cells. In addition, IBD stellate cells show an
increased proliferation rate and produce collagen earlier in
the differentiation process and at higher amounts compared
to control cells. The differential behavior of IBD vs control
cells suggest that stellate cells can be conditioned in vivo to
acquire a pro-fibrotic behavior by their exposure to the
chronic inflammatory milieu of the IBD mucosa (Fig. 2).

2.4. Extraintestinal fibroblast recruitment

In recent years it has become evident that adult bone
marrow stem cells are not restricted to generation of cells of
hematopoietic lineage as previously thought. Stem cells
actually show a remarkable degree of plasticity, can engraft
non-hematopoietic tissues, and can differentiate into an
assortment of adult lineages found in those tissues, including
fibroblasts, hepatocytes, endothelial cells, myocytes and
epithelial cells.51–54 The capacity to engraft is intensified in
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damaged or diseased tissues. In both humans and animals
stem cells have been shown to differentiate into intestinal
pericryptal fibroblasts.55 In addition, transplanted bone
marrow cells contribute to intestinal tissue repair by gene-
rating activated fibroblasts. For instance, in TNBS-induced
colitis transplanted bone marrow cells give rise to intestinal
fibroblasts whose number increases with worsening disease
severity.56 In the IL-10−/− model of colitis a dramatic number
(of up to 45%) of colonic subepithelial myofibroblasts can be
of bone marrow origin.57

Fibroblasts derived from the bonemarrow are as functional
as native resident fibroblasts.58 As an example, systemic
administration of CD34-negative cells derived from the bone
marrow or peripheral blood can enhance tissue repair in
IBD even without ablation of the recipient original immune
system.59 In addition, in various conditions including tumor
angiogenesis, tissue ischemia and corneal neovascularization,
pericytes and mesenchymal cells enveloping small vessels can
be bone marrow-derived. This is relevant to fibrosis because
pericytes represent another cell type with the capacity to
transdifferentiate into activated fibroblasts60 (Fig. 2).

3. New mechanisms of intestinal fibrosis

In addition to the above cells and means contributing to
intestinal fibrosis, evidence has recently emerged indicating
that fibrosis can also result from entirely different mechan-
isms involving previously unknown cell differentiation,
transformation and recruitment processes. It is also abun-
dantly clear now that a number of mature non-mesenchymal
Figure 3 Epithelial-to-mesenchymal transition. Epithelial cells can
factors produced under intestinal inflammatory conditions. This tran
cell markers (cytokeratins, E-cadherin) and the acquisition of typical
process can be reverted by the administration of BMP-7 or HGF.
cells are far more plastic than traditionally thought, and that
mature fibroblasts are not necessarily directly derived from
cells of mesenchymal origin.

3.1. Epithelial-to-mesenchymal transition

Throughout the body a sizeable amount of fibroblasts is gen-
erated through a process called epithelial-to-mesenchymal
transition (EMT), a process that contributes to tissue fibrosis.
EMT occurs in a variety of physiological and pathological sit-
uations, being initiated under the influence of embryonal,
inflammatory or neoplastic events and characterized by dra-
matic changes in epithelial cell phenotype and function.61,62

Epithelial cells lose classical epithelial markers like E-
cadherin, catenins and cytokeratins, and acquire a spindle
shape morphology, fibroblast proteins like fibroblast-specific
protein (FSP)-1, α-SMA, and vimentin, and the capacity to
produce interstitial collagens and fibronectin. In addition,
changes in migratory and infiltrating ability also occur.
Finally, cells that underwent EMT are more resistant to
apoptosis and show a reduced rate of mitosis.61,62 Among
several molecules involved in EMT, TGF-β1 is the best es-
tablished inducer. Various cytokines and growth factors may
foster or accelerate transition, including IGF-1 and -2, EGF,
FGF-2 and TNF-α, but also ECM molecules may promote
EMT, like fibronectin and fibrin, as well as disruption of the
basement membrane.61,63,64 Interestingly, reactive oxygen
species have also been shown to induce EMT65 (Fig. 3).

There is convincing evidence that EMT occurs in multiple
organs. The strongest evidence derives from studies of renal
transdifferentiate into fibroblasts under the influence of several
sition is accompanied by the progressive loss of typical epithelial
mesenchymal cell markers (FSP-1, α-SMA, ECM production). This
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fibrosis. Some studies indicate that, under chronic injury con-
dition, more than 30% of renal fibroblasts arise from trans-
formation of tubular epithelial cells.66 EMT also contributes
to pulmonary and liver fibrosis.67,68 There is preliminary
evidence that EMT occurs in the gut in the setting of IBD,
suggesting a possible role for EMT in the process of fistula
formation in patients with CD (Bataille F., unpublished obser-
vations). These reports open the door to the development of
specific antifibrotic therapy. Bone-morphogenetic protein-7
(BMP-7) and hepatocyte growth factor (HGF) are able to anta-
gonize EMT not only in vitro, but also in vivo. In animal models
of kidney and liver fibrosis BMP-7 shows not only preventive
but also therapeutic efficacy in reversing EMT,66,67 and HGF
overexpression also prevents fibrosis in these organs.69–71

3.2. Endothelial-to-mesenchymal transition

Endothelial-to-mesenchymal transition (EndoMT) is another
form of cellular transformation relevant to fibrosis. In a
murine system it can be shown that endothelial cells can
derive from a common embryonic stem cell precursor which
also gives rise to smooth muscle cells (SMC).72 Of particular
interest is the observation that during their differentiation
such endothelial cells can switch their phenotype to a
mesenchymal lineage, demonstrating a high degree of
plasticity before they reach a final stage of differentiation.
However, even after reaching their “final” differentiation
stage, endothelial cells still retain the capacity to trans-
differentiate, as they have been shown to transform into
mesenchymal cells. Frid et al.73 demonstrated that adult
endothelial cells of bovine aortic or pulmonary artery origin
can differentiate into SMCs in vitro . Transdifferentiation of
endothelial cells into mesenchymal cells is also supported
by findings in experimental wound repair systems where
capillary endothelial cells converted into connective granu-
Figure 4 Endothelial-to-mesenchymal transition. Endothelial cel
several factors produced under intestinal inflammatory conditions.
endothelial cell markers (VE-cadherin, vWF, CD31) and the transcrip
vimentin, α-SMA, collagen I). This process can be reverted by the ad
lation tissue cells, and by the transition of microvascular
endothelial cells into spindle-shaped mesenchymal cells
under the influence of chronic inflammatory stimuli.74–76 In
a mouse model for cardiac fibrosis it has been calculated that
endothelial cells contribute up to one-third of the total pool
of tissue-infiltrating fibroblasts.77

Far less is known of the factors and events involved in the
process of EndoMTwhen compared to existing knowledge on
EMT. However, there are mechanistic similarities between
the two processes, as TGF-β1also plays a central role as an
inducer of EndoMT.77,78 Insulin-like-growth factor-II, which is
considered essential to embryonic development, can also
induce EndoMT,79 and a pro-inflammatory environment (IL-
1β or TNF-α) can induce cutaneous endothelial cells to un-
dergo EndoMT in vitro.76 As for EMT, BMP-7 has the capability
to not only prevent but also reverse EndoMT77 (Fig. 4).
Information on EndoMT in the gut microvasculature has yet to
be reported. In this regard, it is intriguing that the cardiac
and intestinal vascular systems bear some striking develop-
mental, functional and morphological similarities.80 This
observation and the presence of key inducers of EndoMT in
gut chronic inflammation make it likely that EndoMT also
contributes to the pool of fibroblasts in chronic intestinal
inflammatory processes like IBD.

3.3. Pericyte differentiation

In the mature vascular system arteries and veins are sur-
rounded by single or multiple layers of vascular smooth
muscle cells (vSMC), whereas capillaries are partially lined
by single cells called pericytes.81 Both cell types derive from
Flk1-positive angioblasts, and share common cytoskeletal
components such as α-SMA and desmin.72 Several additional
pericyte markers have been described: high molecular
weight melanoma-associated antigen (HMW-MMA), platelet-
ls can transdifferentiate into fibroblasts under the influence of
This transition is accompanied by the progressive loss of typical
tion of typical mesenchymal cell markers (FSP-1, MMP-2, MMP-9,
ministration of BMP-7 or HGF.
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derived growth factor β-receptor (PDGFR-β), aminopepti-
dase N, the promotor trap transgene XlacZ4, the regulator of
G-protein signaling-5 (RGS5) and 3G5.60,82,83 Their expres-
sion level is variable and none of these markers detects all
types of pericytes.

Pericytes reside at the interface between the endothe-
lium and the interstitium and, because of this peculiar
location, exert multiple functions during inflammation,
including sensing of endothelial signals, contributing to
angiogenesis, controlling endothelial cell differentiation,
and mediating of ECM degradation.84 In addition, pericytes
display an intermediate phenotype between vSMC and
fibroblasts, and represent a cellular reservoir for fibroblasts
during tissue repair.84 Thus, pericytes also contribute to
inflammation-associated tissue fibrosis. It has been proposed
that, in cutaneous wound healing, pericytes detach from
vessels and differentiate into a collagen type-I-producing
fibroblast-like cell.85 This may explain why in the initial
phase of organ fibrosis there is marked ECM deposition in
close proximity to the blood vessels, whereas in later stages
fibrosis is more diffuse86,87 (Fig. 5).

Little is known so far about the role of pericytes in
intestinal inflammation and fibrosis, and investigation into
this field is limited by the lack of adequate in vitro culture
systems.88 Using a mouse model of intestinal inflammation,
Brittan et al. nicely demonstrated that both vSMCs and
pericytes can be recruited from the bone marrow. Their
contribution to intestinal fibrosis is still uncertain,56 but
because of their well defined involvement in both inflamma-
tion and fibrosis, pericytes may also be considered as
potential new targets for controlling intestinal fibrosis.89,90

3.4. Fibrocyte recruitment

Fibrocytes are bone marrow-derived circulating mesenchy-
mal progenitors that co-express hematopoietic and mesen-
chymal markers, including the stem cell antigen CD34,
the leukocyte common antigen CD45, the monocytic cell
marker CD14, and produce typical fibroblast proteins like
collagens and α-SMA.91,92 It is estimated that fibrocytes
Figure 5 Pericyte-to-mesenchymal cell transition. Pericytes repre
inflammation, tissue repair and fibrosis. They are attached to cap
markers Pal-E and CD34) and differentiate into fibroblasts by losing p
fibroblast markers and functions.
comprise up to 0.5% of all non-erythrocytic circulating
cells.93 They constitutively express ECM components as well
as ECM-modifying enzymes, and differentiate into fibro-
blasts both in vitro and in vivo. Under normal conditions
these cells likely contribute to the tissue-resident macro-
phage and dendritic cell population through a maturation
process that takes place in the blood stream before en-
tering the tissue.94 In contrast, during inflammatory con-
ditions, fibrocytes are released in high numbers from the
bone marrow and migrate directly to inflamed tissue sites
through a CCR2-mediated pathway. Once localized, in addi-
tion to macrophages and dendritic cells, they may differ-
entiate into several other cell types, including epithelial,
endothelial, neuronal cells and mesenchymal cells.94–96

Fibrocytes can be distinguished from circulating or tissue-
resident mesenchymal stem cells because these are CD90-
positive and fail to express CD34, CD45, and monocyte
markers. The combination of expression of CD34, CD45 or
myeloid antigens, like CD11b and CD13, and collagen pro-
duction, is considered a sufficient criterion to discriminate
fibrocytes from resident leukocytes, dendritic cells, endo-
thelial cells and tissue-resident fibroblasts.91 When fibro-
cytes mature into fibroblasts at the site of tissue injury
the expression of CD14 and CD34 is downregulated while
that of α-SMA and collagen increase91,97 (Fig. 6). TGF-β1,
PDGF, IL-4, IL-13 and co-culture with T cells promote the
differentiation of CD14-positive percursors into fibro-
cytes,91,98 while activation of CD32 or CD64, or exposure
to IFN-γ, IL-12 or serum amyloid P (SAP) inhibits their dif-
ferentiation.99 Interestingly, SAP is upregulated in the early
stages of inflammation,100 as IL-12 and IFN-γ also are, and
this could in part explain the lack of fibrosis in acute
inflammation.

Evidence of a causal link between the accumulation of
fibrocytes at sites of injury and ensuing tissue fibrosis has
been demonstrated in animal models of pulmonary,
cardiac, renal and vascular diseases.97,101–103 In these
models, inhibition of fibrocyte accumulation results in
reduced collagen deposition and decreased number of
myofibroblasts. In humans fibrocytes have been detected
sent an additional cellular reservoir for fibroblasts in states of
illaries (indicated by the blood-vessel endothelial cell specific
ericyte markers (3G5, HMW-MAA, PDGF-Rβ) and acquiring typical
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Figure 6 Fibrocyte recruitment. Fibrocytes are circulating mesenchymal precursor cells that are recruited to sites of inflammation,
tissue repair and fibrosis. They differentiate into fibroblasts by losing fibrocyte markers (CD14, CD34, CD45) and acquiring typical
fibroblast markers and functions (ECM production, α-SMA).
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in tissues affected by post-burn hypertrophic scars and
keloids, asthma, nephrogenic fibrosis, systemic sclerosis,
atherosclerosis, chronic pancreatitis, chronic cystitis, and
tumor-associated stromal reaction.97,104–109 In all these
conditions there are persistent inflammatory infiltrates
concurrently with recruitment of inflammatory cells and
fibrocytes. Similar events do occur in IBD and, therefore, a
contribution of fibrocytes to the development of intestinal
fibrosis is likely.

4. Conclusions and implications for therapy

4.1. Intestinal fibrosis: is it all
inflammation-dependent?

Due to the characteristically chronic nature of the disease
process, development of intestinal fibrosis is probably a
fairly common event in IBD, at least at the tissue level. On
the other hand, only a relative minority of patients will seek
medical attention because of complaints primarily related to
intestinal fibrosis, and the vast majority of them will do so
because of symptoms secondary to difficulties created by
the existence of a narrowed intestinal segment. By the time
this series of events has fully unfolded most of the pathophy-
siological processes described in the preceding sections,
including fibroblast proliferation, migration and recruit-
ment, activation and differentiation of stellate cells, EMT
and EndoMT, pericyte differentiation and fibrocyte recruit-
ment, have already taken place. This obviously implies that
whatever anti-inflammatory measures have been adopted
at the bedside they have failed to prevent, block or reverse
inflammation-driven intestinal fibrosis. In addition, concerns
have been raised that some anti-inflammatory therapies,
notably the use of infliximab, might even induce or worsen
intestinal strictures due the scarring accompanying the
healing process. In reality, this assumption is not supported
by recent reports describing the safe administration of in-
fliximab to CD patients with known fibrotic strictures,110,111

and a lack of association between infliximab use and the
development of strictures.112 Even the injection of inflix-
imab directly into a CD stricture appears safe and effective
and not followed by stricture formation.113 Some triggers,
signals or patient-intrinsic predisposition may result in
fibrosis regardless of whether anti-inflammatory measures
are effective, and it has been proposed that fibrosis may
develop independently of inflammation.19 Current manage-
ment of symptoms due to intestinal fibrosis is primarily
invasive, more so as in the case of segmental resections or
strictureplasty, or less so, as for balloon dilatation or local
injections.114

4.2. Managing intestinal fibrosis in IBD:
future perspectives

Taking all this evidence into consideration, it is clear that
more effective management of intestinal fibrosis in IBD is
badly needed. To this end, it may be worthwhile to
establish a parallel between gut inflammation and fibrosis
as far as the progress achieved in these two areas based on
knowledge of the underlying mechanisms. In doing so a
striking contrast becomes apparent: the impressive
advances in IBD medical therapy experienced in the last
decade can be ascribed to the development of new drugs –
most of them biologicals – that are directly derived from
knowledge acquired from investigation of the cellular and
molecular mechanisms of mucosal immunity and inflam-
mation; on the other hand, during the same period of time,
progress in the management of intestinal fibrosis has been
trivial, and this is so because negligible progress has been
achieved in trying to understand why and how fibrosis
develops in the setting of gut inflammation. Thus, the
answer to how to better handle the problem of fibrosis in
IBD obviously depends on a better understanding of its
predisposing and pathogenic factors, and this can be done
at different levels.

At a clinical level, tools should be developed to screen
for individuals particularly susceptible to the development
intestinal fibrosis. It could be argued that is the case when
genetic testing detects NOD2/CARD15 mutations in young
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CD patients that go on developing ileal strictures associated
with an increased risk of surgery.115 A family history may
help, but the identification of mutations in genes specifically
encoding molecules involved in stimulating or modulating
mesenchymal cell function or ECM protein production may
help even more in screening for individuals at risk. Still at
a clinical level, measurement of markers for mesenchymal
cell or ECM turnover products in the circulation could also
be valuable, such as anti-glycan antibodies (Rieder F.,
unpublished observations). Detection of fibrosis with new
imaging modalities, some of which are currently under
investigation, such as magnetization transfer MRI, MR
elastography, US elastography, PET-MRI and PET-CT may
help in identifying the very early stages of fibrosis and
intervening accordingly.

At a more basic research level, studies should be carried
out to understand whether gut fibrosis is developing as an
event inherently linked to mucosal inflammation, or
whether fibrosis can develop independently, totally or in
part, from inflammation based on an entirely separate set
of triggering and signaling pathways. This, of course,
would help in deciding if a therapeutic anti-inflammatory
intervention targeting the immune system would be the
best choice, or whether cells and products of the
mesenchymal lineage would be a better alternative target.
In regard to the latter possibility, although we do not fully
understand the mechanisms that regulate activation of
fibroblasts and their accumulation during tissue fibrosis, it
is reasonable to believe that the fibroblasts themselves
might serve as a novel target in intestinal fibrosis.
Similarly, targeting stellate cells, fibrocytes, pericytes,
and EMT and EndoMT, as done in some in vivo mod-
els,66,77,90,116 represents novel approaches to the preven-
tion and therapy of IBD-associated fibrosis and its
complications.

How to specifically target cells or events directly
linked to development of intestinal fibrosis is at the
moment rather challenging given the multiplicity of cells,
factors and mechanisms involved in this process. Trying to
block TGF-ββ1 makes theoretical sense based on current
knowledge of IBD pathophysiology, but the potential
dangers of blocking this critical immunosuppressive
factor may overshadow its benefits. The administration
of BMP-7 also makes sense considering its ability to
antagonize EMT and EndoMT,66,77 but safety and clinical
efficacy would have to be very carefully evaluated. Trying
to block recruitment and migration of fibrocytes, stellate
cells and fibroblasts with antibodies to cell surface
receptors would represent an alternative approach,
with the potential risk of reducing the ability of repairing
and healing an injured mucosa. N-(3′,4′-dimethoxycinna-
moyl) anthranilic acid (Tranilast), a substance that
inhibits TGF-β1-related functions, decreases fibrosis in
experimental models,117,118 and a report claims that its
administration to CD patients with asymptomatic stenosis
increases the symptom-free time and the diameter of the
stricture lumen compared to placebo.119 The significance
of this observation is unclear at the moment. Thus, it is
evident that additional studies and more progress must
be accomplished before we can transfer a greater
knowledge on the pathogenesis of intestinal fibrosis to
the bedside.
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