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Summary We consider a graphical approach to comparing multiple treatments that allows
users to easily infer differences between any treatment effect and zero, and between any pair
of treatment effects. This approach makes use of a flexible, resampling-based procedure that
asymptotically controls the familywise error rate (the probability of making one or more
spurious inferences). We demonstrate the usefulness of this approach with three empirical
examples.
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1. INTRODUCTION

When an experiment involves more than one treatment (e.g., several different drugs designed
to treat a particular disease), there is often interest in comparing each treatment not only to a
control, but also to the other treatment(s). With k treatments under consideration, this can be seen
to involve testing a total of

(
k+1

2

)
hypotheses. For example, with k = 2 treatments, there are 3

hypotheses of interest: (i) that the effect of the first treatment is equal to zero; (ii) that the effect
of the second treatment is equal to zero; and (iii) that the effects of the first and second treatments
are equal to each other. With k = 3 treatments, there are 6 hypotheses of interest, and so on.

Of course, when testing more than one hypothesis at a given nominal level, the probability of
rejecting at least one true hypothesis, i.e., the familywise error rate (FWER), is typically well
in excess of that given nominal level.1 In recognition of this issue, a wide variety of multiple-
testing procedures, ranging from the simple Bonferroni correction to resampling-based stepwise
procedures (Romano and Wolf, 2005a, 2005b), have been developed to control the FWER and
other generalized error rates such as the false discovery rate (the expected proportion of true
hypotheses rejected; Benjamini and Hochberg, 1995). While such procedures are often used

1 In general, the FWER is bounded from above by mα0, where m is the number of hypotheses under consideration
(here, m = (

k+1
2

)
), and α0 is the nominal level that each hypothesis is tested at. More specifically, the FWER is equal to

αm ≡ 1 − (1 − α0)m < mα0 if the tests are mutually independent. However, if the tests are mutually dependent, as is the
case here, the FWER may be greater or less than αm.
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Comparing multiple treatments 189

when multiple treatments are examined in biostatistics (Dunnett, 1955; Dunnett and Tamhane,
1991), the econometrics literature has, with the exception of the forthcoming paper by List,
Shaikh and Xu (2019), hereafter LSX, ignored the problem of multiple testing whenever multiple
treatments are considered.2 Nonetheless, as LSX note, this issue is pervasive in many areas of
economics, as multiple treatments are considered ’in nearly every experiment that is published
today’ (p. 3).

In this paper, we consider a graphical approach to comparing multiple treatments that uses the
resampling-based procedure of Bennett and Thompson (2016), hereafter BT, to asymptotically
control the FWER. Our main contribution here is simply to demonstrate how this (very general)
procedure can be adapted to a regression framework to compare treatment effects while controlling
for other sources of heterogeneity. We are hopeful that the approach we consider here will be
both illuminating and easy to implement for practitioners.

The advantage of the graphical approach we adapt is that it allows users to easily visualize
both statistical and practical significance in the (signed) differences between each treatment effect
and zero, and between each pair of treatment effects. That is, unlike standard multiple-testing
procedures, such as that utilized by LSX, it offers users more than a ’Yes–No’ decision on all of
the hypotheses of interest. Ultimately, the user is provided with a single, easy to interpret figure
that clearly suggests an ordering of the treatment effects rather than a cumbersome (k + 1)-by-(k
+ 1) table of test statistics (or p-values). In our own practice, we have found that such a figure is
particularly useful in summarizing the results of an analysis for a live audience.

The following section describes our approach in more detail and provides a very simple
illustration using data from a field experiment in which k = 2 types of performance pay for
teachers are compared. Two additional empirical examples are provided in Section 3. The first
of these examples is of interest because it involves a large number of treatments (k = 36). In the
second, we consider a case where treatment effects are estimated using an instrumental variables
approach. In both examples, controlling for multiple comparisons meaningfully changes the
statistical inferences. Section 4 concludes.

2. METHODOLOGY

2.1. Setup

In order to make the discussion of our problem more concrete, consider the following regression
model:

Yi = β0 +
k∑

s=1

δsDs,i + X′
iη + Vi, (2.1)

where Ds,i equals one if individual i ∈ {1, . . . , n} participates in treatment s ∈ {1, . . . , k} and zero
otherwise; Xi is a vector of control variables (e.g., age, gender, etc.); and Vi is an idiosyncratic

2 Recently, some researchers have used multiple-testing procedures when examining heterogeneous treatment effects,
in which different types of individuals (say, men and women) may respond differently to the same treatment; see Anderson
(2008), Fink et al. (2014), Lee and Shaikh (2014), Lehrer, Pohl, and Song (2018), and Gu and Shen (2018). Young (2019)
"Young on the other hand, jointly tests the (single) hypothesis that all of the treatment effects—which may differ not only
across different treatments, but also across different types of individuals—are zero.
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error term.3 We assume that each individual receives only one of the k treatments or is in a control
group; if there are individuals receiving a combination of treatments, such individuals would be
included in a distinct treatment group (see Section 3.2 for an example). In what follows, we define
the treatment effect of the sth treatment as δs .

The first part of our problem involves comparing each treatment to the control, i.e., testing the
following k hypotheses:

δs = 0, for each s ∈ {1, . . . , k}. (2.2)

The second part of our problem involves comparing each treatment to the other treatment(s), i.e.,
testing the following

(
k

2

)
hypotheses:

δs = δt , for each unique (s, t) ∈ {1, . . . , k}2. (2.3)

Hence, as pointed out in the previous section, our problem involves testing a total of
(
k+1

2

)
hypotheses (in contrast to the problem of jointly testing the single hypothesis δ1 = . . . = δk

= 0).4 Note that we have not introduced any alternatives to these hypotheses at this point; our
proposed approach is designed to allow one to infer the ordering of any two treatment effects (or
of a particular treatment effect and zero), i.e., to infer, for example, that δs > δt, for some (s, t) ∈
{1, . . . , k}2 (the analogue of a one-sided alternative).

2.2. The Overlap Procedure

The procedure of BT is designed to facilitate all pairwise comparisons within a set of parameters
that have been

√
n-consistently estimated; their framework is quite general and they do not

explicitly consider any regression models (indeed, in their simulations, the parameters of interest
are simply the means of a collection of random variables with varying degrees of correlation).

In order to set up our problem in their general framework, we begin by rewriting model (2.1)
as follows:

Yi =
k∑

s=0

βsDs,i + X′
iη + Vi, (2.4)

where D0, i equals one if individual i belongs to the control group and zero otherwise (so that∑k
s=0 Ds,i = 1 for all i); and βs ≡ β0 + δs, for s ∈ {1, . . . , k} (note the absence of a constant term

in this model). In what follows, we denote the parameter vector (β0, . . . , βk)
′

by β, and assume
that it can be estimated

√
n-consistently.

The reason that we rewrite our model in this way is that, since δs = 0 is equivalent to βs =
β0, and δs = δt is equivalent to βs = β t, , our problem boils down to testing the following

(
k+1

2

)
hypotheses:

βs = βt , for each unique (s, t) ∈ K2,

3 In cases where selection issues are a concern, one might, for example, treat participation in a treatment as endogenous
and use assignment to that treatment as an instrument (see Section 3.2 for an example). The crucial assumption we make
is that the parameters of interest can be

√
n-consistently estimated, whether using OLS, 2SLS, or some other method.

4 In Online Supplement Section S1, we consider the k = 1 case. Although there is only a single hypothesis of interest
(δ1 = 0) in this case, it does provide some important insight into our proposed approach. In Section 2.5, we simplify
our problem by ignoring the hypotheses in (2.3). Interestingly, in the work on testing for heterogeneous treatment effects
cited in footnote 3 above, each treatment effect is compared only to zero (and not to any of the other treatment effects).
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where K = {0, . . . , k}. That is, we wish to consider all pairwise comparisons between the k + 1
parameters β0, . . . , βk. However, since interest ultimately lies in the k treatment effects, δ1, . . . ,
δk, we show how users can make inferences about the hypotheses in (2.2) and (2.3) more directly
later in this section.

The procedure of BT, which can be seen as a resampling-based generalization of Tukey’s
(1953) procedure, involves presenting each of the parameter estimates β̂n,s , s ∈ K, together with
a corresponding uncertainty interval,

Cn,s(γ ) = [
β̂n,s ± γ × se

(
β̂n,s

)]
,

whose length is determined by the parameter γ > 0 (discussed below) and se
(
β̂n,s

)
, the standard

error of β̂n,s (high-level assumptions on the large-sample behaviour of these objects are given
at the end of this section). We denote the lower and upper endpoints of Cn,s(γ ) by Ln,s(γ ) and
Un,s(γ ), respectively.

These uncertainty intervals are used to make inferences about the ordering of the parameters of
interest as follows. We infer that βs > β t if the uncertainty interval for βs lies entirely above the
uncertainty interval for β t (i.e., if Ln,s > Un,t). If the uncertainty intervals for βs and β t overlap
one another (i.e., if Cn,s ∩ Cn,t �= ∅), we can make no such inference. For this reason, BT refer to
their procedure as the overlap procedure; it allows users to easily make comparisons between a
pair of parameters by visually checking to see whether or not their uncertainty intervals overlap.

It must be emphasized that using confidence intervals to make inferences in this manner
would be completely inappropriate. Specifically, when k = 1, such inferences would be overly
conservative (cf. Online Supplement Section S1); as k grows, the FWER would quickly become
larger than one minus the nominal confidence level.

The choice of γ is motivated as follows. If all k + 1 parameters are equal, then the ’ideal’
choice of γ would ensure that the probability that at least one pair of uncertainty intervals is
non-overlapping is as close to, but no higher than, the nominal FWER α. That is, the ’ideal’
choice of γ is the smallest value satisfying

P

(
max
s∈K

Ln,s(γ ) > min
s∈K

Un,s(γ )

)
≤ α,

when all k + 1 parameters are equal (notice that the probability above is weakly decreasing in
γ ; values of γ larger than the ideal value—but still satisfying the above condition—will result in
a FWER that is weakly further below α). Since this choice is infeasible, we choose γ using the
bootstrap analogue of the above.5

Towards this end, for b ∈ {1, . . . , B }, let β̂∗b
n,s be the bth replicate of β̂∗

n,s , the bootstrap
counterpart of β̂n,s . Then, a feasible choice of γ is the smallest value satisfying

1

B

B∑
b=1

I

(
max
s∈K

L∗b
n,s(γ ) > min

s∈K
U ∗b

n,s(γ )

)
≤ α, (2.5)

where I( · ) is an indicator function, and L∗b
n,s and U ∗b

n,s are, respectively, the lower and upper
endpoints of

C∗b
n,s(γ ) = [(

β̂∗b
n,s − β̂n,s

) ± γ × se
(
β̂∗b

n,s

)]
.

5 In Online Supplement Section S1, we show that, when k = 1 and the limiting distribution of
√

n(β̂n − β) is known,
we can easily choose γ without resorting to the bootstrap.
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192 B. S. Thompson and M. D. Webb

Only the following high-level assumptions are made:

ASSUMPTION 2.1. (a)
√

n(β̂n − β) and
√

n(β̂∗
n − β̂n) both have the same (continuous and

strictly increasing) (k + 1)-variate limiting distribution; (b)
√

n × se
(
β̂n,s

)
and

√
n × se

(
β̂∗

n,s

)
both converge in probability to the same (positive) constant, for each s ∈ K.

These assumptions are very mild, and hold if, say, our (OLS, 2SLS, etc.) estimates are asymp-
totically normal and our resampling procedure is appropriately chosen (i.e., is compatible with
the data generating process).

Our main result follows directly from Theorem 3.1 in BT:

THEOREM 2.1. Let Assumption 2.1 hold. Then the overlap procedure (a) bounds the FWER
from above by α asymptotically, (b) is consistent, in the sense that any true differences between
parameter pairs are inferred with probability one asymptotically, and (c) infers a correct ordering
of the parameters (when they are unequal) with probability one asymptotically.

Simulation evidence presented both in BT and in our Online Supplement Section S2 suggests
that the overlap procedure provides satisfactory control of the FWER and has good (average)
power properties in finite samples.

We conclude this section by showing how the overlap procedure can be used to allow users to
make inferences about the treatment effects, δ1, . . . , δk, more directly.

First, we subtract β̂n,0 from the endpoints of the uncertainty intervals for β0, . . . , βk (leaving
their lengths unchanged). That is, for each s ∈ K, we compute the interval

C̃n,s(γ ) = [(
β̂n,s − β̂n,0

) ± γ × se
(
β̂n,s

)]
.

Note that, for s = 0, this interval is simply

C̃n,0(γ ) = [
0 ± γ × se

(
β̂n,0

)]
,

while, for s ∈ {1, . . . , k}, this interval is

C̃n,s(γ ) = [
δ̂n,s ± γ × se

(
β̂n,s

)]
, (2.6)

where δ̂n,s ≡ β̂n,s− β̂n,0. It is important to emphasize that (2.6) is not an uncertainty interval for
δs itself, i.e., its width is proportional to se

(
β̂n,s

)
rather than to se

(
δ̂n,s

)
.6

Denoting the lower and upper endpoints of C̃n,s by L̃n,s and Ũn,s , respectively, we can then
infer that δs > 0 if L̃n,s > Ũn,0, that δs < 0 if Ũn,s < L̃n,0, and that δs > δt if L̃n,s > Ũn,t .

2.3. Stepwise Refinement

BT also propose an iterative stepwise refinement for the overlap procedure that (weakly) increases
its power without sacrificing asymptotic control of the FWER. The idea behind this refinement is
to iterate the overlap procedure while eliminating any pairwise parameter comparisons that are
’resolved’ at a previous step. In this sense, it is analogous to Holm’s (1979) stepwise refinement
of the Bonferroni correction, which eliminates from consideration any null hypotheses that are
rejected at a previous step.

6 In Section 2.5, where we focus only on comparisons between the treatment effects and zero (i.e., where we ignore the
comparisons between the different treatment effects), we utilize uncertainty intervals for the treatment effects themselves.
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We begin by defining, for each s ∈ K,

An,s(γ ) = {
t ∈ K : Cn,s(γ ) ∩ Cn,t (γ ) �= ∅}

,

so that t ∈ An, s whenever the uncertainty intervals for βs and β t overlap one another (i.e., whenever
the pairwise comparison between βs and β t is ’unresolved’). Note that, if An, s = {s} for all s ∈
K, all pairwise comparisons have been resolved.

Next, let γ n, 1 be the value of γ obtained via the basic (i.e., unrefined) overlap procedure. Then,
for j ∈ {2, . . . , k}, the j th iteration of the procedure involves choosing γ as the smallest value
satisfying

1

B

B∑
b=1

I

(
max
s∈K

{
max

t∈An,s (γn,j−1)
L∗b

n,t (γ ) − min
t∈An,s (γn,j−1)

U ∗b
n,t (γ )

}
> 0

)
≤ α.

Notice that, here, we are concerned only with the non-overlap of (re-centred) uncertainty intervals
that correspond to comparisons that were unresolved at the previous iteration. Of course, if
An,s(γ n,j) = An,s(γ n,j − 1) for all s ∈ K, or if An,s(γ n,j) = {s} for all s ∈ K, then no further
refinement is possible (i.e., no further pairwise comparisons can possibly be resolved), and the
iterations are halted. More generally, An,s(γ n, j) ⊆ An, s(γ n, j − 1) for all s ∈ K, meaning that γ n, j ≤
γ n, j − 1. Thus, the stepwise refinement can resolve at least as many pairwise comparisons as the
basic procedure. Moreover, BT (Theorem 4.1) show that, so long as at least one pair of parameters
is equal, the stepwise refinement results in an FWER exactly equal to α asymptotically; this is
true of the basic procedure only if all of the parameters are equal.

2.4. A Small-Scale Empirical Example

In order to provide an extremely simple illustration of our proposed approach, we utilize data
from Muralidharan and Sundararaman (2011), hereafter MS (Section 3 presents the results of two
additional empirical examples). This paper describes the results of a field experiment designed
to examine the effects of offering teachers performance pay conditional upon students’ academic
performance.7 Specifically, MS analyse outcomes from three separate groups of schools: a control
group, a group in which teachers were paid based on the scores of their own students, and a group
in which teachers were paid based on the performance of all students at their school. In other
words, there are k = 2 treatments.

Among many other things, MS compare the impact of the group incentive to the impact of the
individual incentive on combined math and language scores over the two years that the experiment
ran. To make these comparisons, they first estimate the following model:

Scorei = β0 + δ1Groupi + δ2Individuali + X′
iη + Vi, (2.7)

where Score is the combined math and language score in year 2; Group and Individual are
indicator variables indicating membership in the group-incentive treatment group and individual-
incentive treatment group, respectively; and X contains the combined math and language score in
year 0, as well as a set of indicator variables for subdistricts. There are n = 29,760 observations
(approximately one-third of these observations correspond to the control group and one-third to
each of the two treatment groups), and the model is estimated using OLS. Standard errors are

7 The data used in this example are available from: https://www.journals.uchicago.edu/doi/suppl/10.1086/659655
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194 B. S. Thompson and M. D. Webb

Table 1. Performance pay example: parameter estimates.

Model (2.7) Model (2.8)

β0 0.132 0.132
(0.168) (0.168)

δ1 0.154
(0.057)

δ2 0.283
(0.058)

δ2 − δ1 0.129
(0.068)

β1 0.286
(0.172)

β2 0.415
(0.168)

β1 − β0 0.154
(0.057)

β2 − β0 0.283
(0.058)

β2 − β1 0.129
(0.068)

Note. Clustered standard errors are in brackets.

clustered by school. Results are shown in the first column of Table 1 (cf. the fourth column of
Table 8 in MS).

Next, MS test the following three hypotheses:

MS1: δ1 = 0
MS2: δ2 = 0
MS3: δ2 = δ1.

T-statistics corresponding to tests of these three hypotheses are 2.702, 4.879, and 1.897,
respectively. Thus, MS conclude that both treatment effects are statistically different from zero,
and from one another (even MS3 could be rejected in favour of a two-sided alternative at a nominal
level of slightly less than 6% if the tests were conducted separately, i.e., without controlling the
FWER).

In order to apply the overlap procedure, we first need to rewrite the model above in the form
of model (2.4), i.e.,

Scorei = β0Controli + β1Groupi + β2Individuali + X′
iη + Vi, (2.8)

where Control is an indicator variable for membership in the control group. Notice that MS1
(δ1 = 0), MS2 (δ2 = 0), and MS3 (δ2 = δ1) are equivalent to β1 = β0, β2 = β0, and β2 = β1,
respectively. Indeed, Table 1 shows that the estimates of δ1, δ2, and δ2 − δ1 arising from model
(2.7) are identical to the estimates of β1 − β0, β2 − β0, and β2 − β1, respectively, arising from
model (2.8).

Given a nominal FWER of α = 0.05 and 9,999 replications of the wild cluster bootstrap
(Cameron et al., 2008), we obtain a value of 0.497 for γ (this is the value obtained after the first
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Figure 1. Performance pay example.

iteration; no further refinement was possible).8 The resulting uncertainty intervals are shown in
Figure 1(a), and can be interpreted as follows:

� Since the uncertainty intervals for β1 and β0 overlap, we cannot infer anything about their
ordering (or, equivalently, anything about the sign of δ1).

� Since the uncertainty interval for β2 lies entirely above the uncertainty interval for β0, we
infer that β2 > β0 (or, equivalently, that δ2 > 0).

� Since the uncertainty intervals for β2 and β1 overlap, we cannot infer anything about their
ordering (or, equivalently, anything about the ordering of δ2 and δ1).

Thus, while our results are consistent with rejecting MS2, they are not consistent with rejecting
either MS1 or MS3.9

Figure 1(b) displays the same uncertainty intervals centred around the treatment effects, δ1

≡ β1 − β0 and δ2 ≡ β2 − β0. That is, we subtract β̂n,0 = 0.132 from the endpoints of the
uncertainty intervals for β1 and β2 (leaving their lengths unchanged). Moreover, we include a
dotted horizontal line at Ũn,0 (if the vertical axis extended far enough below zero, we would
include another dotted horizontal line at L̃n,0). Given that L̃n,2 lies above this dotted horizontal
line, for example, one can quickly infer that δ2 > 0. We find that such a figure makes it much easier

8 Online Supplement Section S3 provides computational details for this example. Moreover, code for the procedure
can be found at: https://sites.google.com/site/matthewdwebb/code

9 We also applied the overlap procedure at a nominal FWER of α = 0.06 (obtaining a value of 0.476 for γ ), and found
that the uncertainty intervals for β2 and β1 were still overlapping (recall that the absolute value of the T-statistic for the
test of MS3 was 1.897, which corresponds to a non-multiplicity-adjusted p-value of just under 0.06). In fact, the smallest
nominal FWER at which the uncertainty intervals for β2 and β1 are non-overlapping is α = 0.149 (see BT, Section 3.3,
for a discussion of multiplicity-adjusted p-values).
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to distinguish the comparisons of each treatment to a control while simultaneously comparing
each treatment to all the others.

2.5. Ignoring Treatment Effect Comparisons

We now consider narrowing our problem to focus solely on whether or not any of the treatment
effects is different from zero. That is, we ignore all pairwise comparisons of the treatment effects
(i.e., the

(
k

2

)
hypotheses in (2.3)), and focus on the so-called problem of ’multiple comparisons

with a control’ (Hsu, 1996) that was first explored by Dunnett (1955).
BT do not consider such a problem, but the procedure we outline here follows their general

approach of constructing a set of uncertainty intervals for the parameters of interest. Unlike what
was done above, however, it will be much more convenient to proceed directly from model (2.1).10

That is, we construct uncertainty intervals for each δs, s ∈ {1, . . . , k}, as

Dn,s(λ) = [
δ̂n,s ± λ × se

(
δ̂n,s

)]
.

Note that this differs from (2.6) in that its width is proportional to se
(
δ̂n,s

)
rather than to se

(
β̂n,s

)
,

i.e., Dn, s is actually an uncertainty interval for δs, unlike C̄n,s , which is just a re-centred uncertainty
interval for βs.

These uncertainty intervals can be used to make inferences as follows. We infer that δs > 0 if
the lower endpoint of Dn, s is greater than zero, i.e., if

δ̂n,s − λ × se
(
δ̂n,s

)
> 0.

Similarly, we infer that δs < 0 if the upper endpoint of Dn, s is less than zero, i.e., if

δ̂n,s + λ × se
(
δ̂n,s

)
< 0.

Accordingly, a feasible choice of λ at the nominal FWER α is the smallest value satisfying

1

B

B∑
b=1

I

(
max

s∈{1,...,k}
{∣∣δ̂∗b

n,s − δ̂n,s

∣∣ − λ × se
(
δ̂∗b
n,s

)}
> 0

)
≤ α,

where, for b ∈ {1, . . . , B}, δ̂∗b
n,s is the bth replicate of δ̂∗

n,s , the bootstrap counterpart of δ̂n,s .
To illustrate this approach, we return to the performance pay example introduced in the previous

section. Following the procedure described above, we obtain a value of 2.53 for λ (recall that the
estimates of δ1 and δ2 and their standard errors have already been provided in Table 1). Figure 2
displays Dn, 1 and Dn, 2, the uncertainty intervals for δ1 and δ2, respectively.

Here, we are able to infer that both treatment effects are positive (i.e., δ1 > 0 and δ2 > 0), since
the uncertainty for each lies entirely above zero (recall that in the previous section, we were not
able to infer anything about the sign of δ1). This example can thus be seen to nicely illustrate the
trade-off that is inherent with any multiple-testing procedure: by controlling for a greater number
of comparisons (in this case the comparisons between the treatment effects), one may have to
sacrifice some power.

10 Notice that, for s ∈ {1, . . . , k}, comparing δs to zero is equivalent to comparing βs ≡ β0 + δs to β0. Hence, if we
were to proceed from model (2.4), we would need to construct uncertainty intervals for each βs, s ∈ K, and then determine
whether or not any of the uncertainty intervals for β1, . . . , βk overlap the uncertainty interval for β0. The uncertainty
intervals that we construct here for δ1, . . . , δk can be viewed as ’absorbing’ the uncertainty around β0.
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Figure 2. Performance pay example: overlap procedure modified to ignore treatment effect comparisons.

2.6. A Modification for Multiple Comparisons with the Best

Thus far, we have primarily been concerned with controlling the FWER across all pairwise
parameter comparisons. This approach allows for a (potentially complete) ranking of all the
treatments under consideration. For example, assuming that a larger value of the outcome variable
is ’better’, one could infer that treatment s ∈ {1, . . . , k} is the ’best’, i.e., βs > β t for all t ∈
K\{s}, if Ln, s > Un, t for all t ∈ K\{s}.11 Similarly, one may be able to identify a ’second best’
treatment, a ’third best’ treatment, and so on.

While such a complete ranking may occasionally be of value, interest often centres on iden-
tifying only the (first) best treatment. That is, we may only want to know whether or not the
treatment effect that is estimated to be the largest is actually statistically distinguishable from
the other treatment effect(s) and from zero. Such a problem is the focus of so-called ’multiple
comparisons with the best’ procedures (Hsu 1981, 1984; Horrace and Schmidt, 2000).

Here, we follow BT in developing a modification of the overlap procedure to focus on this
problem.12 The basic idea behind this modification is that, by eliminating ’irrelevant’ pairwise
comparisons (i.e., those in which neither of the parameters is estimated to be largest), the power

11 Note that βs > β t for all t ∈ K\{s} is equivalent to δs > 0 and δs > δt for all t ∈ {1, . . . , k}\{s}. That is, a treatment
is declared the ’best’ if its treatment effect is both positive and larger than all of the k − 1 other treatment effects. Of
course, such a ranking is not possible when using the procedure discussed in Section 2.5

12 In fact, BT introduce a generalization of the ’multiple comparisons with the best’ approach that allows for compar-
isons within the ’r best’ (r being some integer smaller than the total number of parameters under consideration). Such
an approach may be of use when the number of parameters under consideration is very large (perhaps in the hundreds
or thousands), and one is willing to abandon pursuit of a complete ranking in return for the ability to resolve more
comparisons within the top r.
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of the procedure is substantially increased (effectively, the number of comparisons is reduced
from

(
k+1

2

)
to k).

We begin by introducing some further notation. Let [1], [2], ..., [k + 1] be random indices such
that β̂n,[1] > β̂n,[2] > · · · > β̂n,[k+1]. This means that β[1] is the true value of the parameter that is
estimated to be largest, and not necessarily the largest parameter value. Moreover,

Ln,[1](γ ) = β̂n,[1] − γ × se
(
β̂n,[1]

)
is the lower endpoint of the uncertainty interval for β[1]. Interestingly, Ln, [1] may not be the highest
lower endpoint; if the standard error of β̂n,[1] is relatively large, it could be the case that the lower
endpoint associated with this point estimate extends below the lower endpoint associated with
some smaller point estimate.

Similar to what is done in the unmodified overlap procedure, we infer that β[1] is the largest
parameter value in the collection if Ln, [1] > Un, [s] for all s ∈ {2, . . . , k + 1}. Thus, a feasible
choice of γ here is the smallest value satisfying

1

B

B∑
b=1

I

(
L∗b

n,[1∗](γ ) > max
s∗∈{2,...,k+1}

U ∗b
n,[s∗](γ )

)
≤ α,

where [1∗], [2∗], ..., [(k + 1)∗] are random indices such that(
β̂∗b

n,[1∗] − β̂n,[1∗]
)

>
(
β̂∗b

n,[2∗] − β̂n,[2∗]
)

> · · · >
(
β̂∗b

n,[(k+1)∗] − β̂n,[(k+1)∗]
)
.

That is, L∗b
n,[1] is the lower endpoint of the uncertainty interval for the parameter that is estimated

to be largest in the bth bootstrap sample after re-centring.
Simulation evidence presented both in BT and in our Online Supplement Section S2 suggests

that the choice of γ resulting from this modification may be substantially smaller than the choice
resulting from the unmodified overlap procedure, resulting in greatly increased power.

Before moving on, we illustrate the modified overlap procedure using the performance pay
example introduced in Section 2.4. That is, we seek to determine only whether or not the treatment
effect for the individual incentive (the treatment effect estimated to be the largest) is statistically
distinguishable from the treatment effect for the group incentive and from zero.

Here, we obtain a value of 0.316 for γ , which is less than two-thirds as large as the value we
obtained using the unmodified procedure (0.497). Figure 3 displays the lower half of C̃n,[1] = C̃n,2

and the upper halves of C̃n,[2] = C̃n,1 and C̃n,[3] = C̃n,0. We explicitly include the upper half of
C̃n,0 here (rather than a dotted horizontal line corresponding to its upper endpoint, as in Figure 1b)
since the modified overlap procedure cannot be used to make inferences about the sign of any
treatment effect that is not estimated to be largest (i.e., we cannot compare the group incentive to
the control here).

Our inferences here are much more in line with MS. Specifically, we infer that δ2 > 0 and that
δ2 > δ1, decisions that are consistent with rejecting MS2 and MS3. However, since the modified
overlap procedure focuses solely on comparisons with the ’best’, it does not allow us to infer
anything about the significance of δ1. That is, we cannot say anything about MS1. The increased
power of the modified overlap procedure comes entirely at the cost of remaining silent on such
comparisons.

Ultimately, one must decide which procedure to use based on which comparisons are actually
of interest: if identifying ’second best’, ’third best’, etc. (or even having the ability to infer whether
or not any of the treatment effects that are not estimated to be largest are different from zero) is of
no concern, the modified overlap procedure can be recommended on the grounds of potentially
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Figure 3. Performance pay example: overlap procedure modified to identify the ’best’ treatment.

much higher power. Of course, this choice should be made a priori so as to avoid the temptation
to ’cherry pick’ results. With this caveat in mind, we use only the unmodified procedure in the
empirical example in Section 3.1, and only the modified procedure in the empirical example in
Section 3.2.

3. ADDITIONAL EMPIRICAL EXAMPLES

3.1. Matching Grants in Charitable Giving

Karlan and List (2007), hereafter KL, conducted a large-scale field experiment to examine
the effect of matching grants on charitable giving.13 Matching grants are schemes in which
an individual’s donation to a charity is amplified by a third party (the ’matching donor’). For
example, with a 2:1 matching ratio, the matching donor donates $2 for every $1 donated by the
individual.

The experiment involved sending letters to 50,083 previous donors of a politically oriented
charity asking them to donate again. Approximately one-third of these donors were randomly
assigned to a control group, and received letters that made no mention of a matching grant. The
remaining (’treated’) donors received letters that varied along three dimensions: the matching
ratio (either 1:1, 2:1, or 3:1), the maximum size of the matching grant (either $25,000, $50,000,
$100,000, or none), and the donation amount used to illustrate how the matching grant worked
(either 1, 1.25, or 1.50 times the donor’s maximum previous donation). That is, there are k = 3 ×
4 × 3 = 36 different treatments (the experiment was designed so that ’treated’ donors received
one of these treatments with probability 1/36).

13 Data for this paper are available for download from:
http://www.aeaweb.org/aer/data/dec07/20060421 data.zip
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Although KL consider two outcomes, response (a binary variable) and amount given, we focus
here solely on the latter.14 Moreover, our model differs from that of KL in two important ways.
First, KL utilize a more restrictive (but also more parsimonious) model in which the different
treatments interact, while our model—which conforms to the specification in (2.1)—includes a
distinct treatment effect for each of the k = 36 treatments. Second, unlike KL, we include the
following individual-level explanatory variables in our model: the number of months since the
last donation, the highest previous donation, the number of previous donations, the number of
years since the initial donation, an indicator for having previously donated in the same year, an
indicator for being female, and an indicator for being a couple. Because data on some of these
explanatory variables are missing for some individuals, we are left with n = 48,934 observations.

We estimate our model using OLS and obtain heteroskedasticity-consistent standard errors
(specifically, the HC0 variant of MacKinnon and White, 1985). Given a nominal FWER of
α = 0.05 and 999 replications of the wild bootstrap, we obtain a value of 2.406 for γ using
the unmodified overlap procedure (this is the value obtained after the first iteration; no further
refinement was possible).

Figure 4 displays our uncertainty intervals centred around the treatment effects (the dotted
horizontal lines correspond to the endpoints of C̃n,0). From this figure, it is immediately obvious
that we cannot infer anything about the ordering of the treatment effects or any of their signs.

As a point of comparison, we also compute T-statistics for each of the
(36+1

2

) = 666 relevant
pairwise parameter comparisons. A histogram of these T-statistics is shown in Figure 5 (a complete
listing of these T-statistics is given in Online Supplement Section S4). It is interesting to note
that 17 of these T-statistics fall outside of the interval [ − 1.960, 1.960].15 In other words, had
we separately tested the equality of each pair of parameters at the 5% nominal level (i.e., without
any consideration of the FWER), we would have rejected 17 out of 666 hypotheses.

3.2. Student Achievement Programmes

Angrist, Lang, and Oreopoulos (2009), hereafter ALO, conducted a field experiment at a large
university in Canada in order to examine programmes aimed at improving students’ academic
performance.16 The experiment involved sorting students into a control group and k = 3 treat-
ment groups. Students in the first treatment group were offered support services (supplemental
instruction and peer advising), while students in the second treatment group were offered financial
incentives (cash awards depending on their performance). Students in the third treatment group
were offered both support services and financial incentives.

Although ALO present results for several different outcome variables, we focus solely on
GPA (grade point average), which was measured at the end of first-year and again at the end of
second-year. In order to examine the effects of the different treatments in this case, ALO estimate

14 In their recent multiple-testing-based analysis of the same data, LSX use four different approaches: one in which
just different outcomes are considered, one in which just different treatments are considered, one in which just different
’types’ of donors are considered, and one in which all the different outcomes, treatments, and ’types’ are simultaneously
considered. Note that LSX group the 36 different treatments that we consider into just 3 treatments, which vary only on
the basis of the matching ratio.

15 It is important to emphasize that these test statistics will, in general, be correlated. Thus, even if all of the treatment
effects were equal to zero, we would expect that less than 5% of the T-statistics (obtained from a single sample) would
fall outside of the interval [−1.960, 1.960]. However, the probability that at least one of the T-statistics would fall outside
of this interval is well in excess of 0.05.

16 This dataset is publicly available from: https://www.aeaweb.org/aej-applied/data/2007-0062 data.zip
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Figure 4. Charitable giving example
Note. Treatment labels are formed as follows: matching ratio / maximum matching grant in thousands of
dollars (NM = no maximum) / size of illustrative contribution relative to the donor’s maximum previous

donation.

the following model:

GPAi = β0 + δ1PFi + δ2PSi + δ3PFSi + X′
iη + Vi, (3.9)

where PF, PS, PFS are indicator variables indicating participation in the financial incentives-only
treatment, the support services-only treatment, and the combined treatment, respectively; and X
contains sets of indicator variables for mother tongue, high school group, number of courses in
fall term, self-reports on how often the student procrastinates, mother’s education, and father’s
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Figure 5. Histogram of T-statistics in charitable giving example.

education. ALO treat participation in the three treatments as endogenous, and use assignment to
these groups as instruments.17

There are n = 1,542 observations, and the model is estimated using 2SLS. Standard errors are
clustered by student. The first column of Table 8 in ALO provides detailed results.

Our focus here is solely on determining whether or not there is a single ’best’ treatment (i.e.,
we use the modified overlap procedure). In doing so, we first rewrite the above model in the form
of model (2.4), where β0 is multiplied by an indicator variable for membership in the control
group (in the first stage of obtaining 2SLS estimates, the indicator variable for membership in
the control group and the indicator variables for each of the treatments are regressed on the
instruments). For simplicity, however, we centre our uncertainty intervals around the treatment
effects (and zero).

Given a nominal FWER of α = 0.05, we obtain a value of 0.504 for γ using 999 replications
of the wild cluster bootstrap (which we modified for 2SLS following the approach of Davidson
and MacKinnon, 2010). Figure 6 displays the lower half of C̃n,[1] = C̃n,3 and the upper halves of
C̃n,[2] = C̃n,2, C̃n,[3] = C̃n,1, and C̃n,[4] = C̃n,0.

Since L̃n,[1] > Ũn,[s], for t ∈ {2, 3, 4}, we can infer that the combined treatment is the ’best’.
Note, however, that the modified overlap procedure does not allow us to compare the other
treatments to one another (or to the control). ALO, on the other hand, simply test that each of the

17 ALO also examine ’intention-to-treat’ effects, where the treatment effects are the coefficients on indicator variables
for assignment to the treatments. These effects are estimated for both men and women (both separately and together),
while the treatment effects we focus on here are estimated only for women.
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Figure 6. Student achievement example.

treatment effects is zero, and conclude that only δ3 is positive (each test is conducted at the 5%
nominal level, without any consideration of the FWER).18

4. CONCLUSION

In this paper, we have shown how multiple treatments can be compared using a simple, graphical
procedure which (asymptotically) controls the FWER. Our proposed approach complements
the growing literature within econometrics that focuses on testing for heterogeneous treatment
effects (i.e., situations where different types of individuals may respond differently to the same
treatment). A natural extension of our approach would be to incorporate such heterogeneous
treatment effects. We leave this to future work.
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