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Summary: This paper provides an orthogonal extension of the semiparametric difference-in-
differences estimator proposed in earlier literature. The proposed estimator enjoys the so-called
Neyman orthogonality (Chernozhukov et al., 2018), and thus it allows researchers to flexibly
use a rich set of machine learning methods in the first-step estimation. It is particularly useful
when researchers confront a high-dimensional data set in which the number of potential
control variables is larger than the sample size and the conventional nonparametric estimation
methods, such as kernel and sieve estimators, do not apply. I apply this orthogonal difference-
in-differences estimator to evaluate the effect of tariff reduction on corruption. The empirical
results show that tariff reduction decreases corruption in large magnitude.

Keywords: Difference-in-differences, high-dimensional data, causal inference, machine learn-
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1. INTRODUCTION

The difference-in-differences (DiD) estimator has been used widely in empirical economics to
evaluate causal effects when there exists a natural experiment with a treated group and an untreated
group. By comparing the variation over time in an outcome variable between the treated group
and the untreated group, the DiD estimator can be used to calculate the effect of treatment on
the outcome variable. Applications of DiD include but are not limited to studies of the effects of
immigration on laboru markets (Card, 1990), the effects of minimum wage law on wages (Card
and Krueger, 1994), the effect of tariff liberalisation on corruption (Sequeira, 2016), the effect of
household income on children’s personalities (Akee et al., 2018), and the effect of corporate tax
on wages (Fuest, Peichl, and Siegloch, 2018).

The traditional linear DiD estimator depends on a parallel-trend assumption that in the absence
of treatment, the difference in outcomes between treated and untreated groups remains constant
over time. In many situations, however, this assumption may not hold because there are other in-
dividual characteristics that may be associated with the variations of the outcomes. The treatment
may be taken as exogenous only after controlling for these characteristics. However, as noted by
Meyer, Viscusi, and Durbin (1995), including control variables in the linear specification of the
traditional DiD estimator imposes strong constraints on the heterogeneous effect of treatment.
To address this problem, Abadie (2005) proposed the semiparametric DiD estimator. Compared
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178 N.-C. Chang

Figure 1. Comparison of Abadie’s DiD and DMLDiD with the first-step Logit Lasso estimation. The true
value is θ 0 = 3. The results for other ML methods can be found in Section 4.

to the traditional linear DiD estimator, the advantages of Abadie’s estimator are threefold. First,
the characteristics are treated nonparametrically so that any estimation error caused by functional
specification is avoided. Second, the effect of treatment is allowed to vary among individuals,
whereas the traditional linear DiD estimator does not allow this heterogeneity. Third, the estima-
tion framework proposed in Abadie (2005) will enable researchers to estimate how the effect of
treatment varies with changes in the characteristics.

The present paper provides an orthogonal extension of Abadie’s semiparametric DiD estimator
(DMLDiD hereafter).1 Abadie’s semiparametric DiD estimator behaves well when researchers
use conventional nonparametric methods, such as kernel and sieve estimators, to estimate the
propensity score in the first-step estimation. As shown in the classical semiparametric estimation
literature, Abadie’s DiD estimator is

√
N -consistent and asymptotically normal when kernel or

sieve is used in the first-step estimation. However, according to the general theory of inference
developed in Chernozhukov et al. (2018), these desirable properties may fail if researchers use a
rich set of newly developed nonparametric estimation methods, the so-called machine learning
(ML) methods, such as Lasso, Logit Lasso, random forests, boosting, neural network, and their
hybrids, in the first-step estimation. This is especially a problem when researchers confront a
high-dimensional data set in which the number of potential control variables is more than the
sample size, and thus the conventional nonparametric estimation methods do not apply.

In this paper, I propose DMLDiD for three different data structures: repeated outcomes,
repeated cross sections, and multilevel treatment, which are all based on the original paper by
Abadie (2005), as well as on the papers on the general inference theory of ML methods by
Chernozhukov et al. (2018) and Chernozhukov et al. (2019). DMLDiD will allow researchers
to apply a broad set of ML methods and still obtain valid inferences. The key difference is that
DMLDiD, in contrast to Abadie’s original DiD estimator, is constructed on the basis of a score
function that satisfies the so-called Neyman orthogonality (Chernozhukov et al. 2018), which
is an important property for obtaining valid inferences when applying ML methods. With this
property, DMLDiD can overcome the bias caused by the first-step ML estimation and achieve√

N -consistency and asymptotic normality as long as the ML estimator converges to its true
value at a rate faster than N−1/4. Figure 1 shows the Monte Carlo simulation that illustrates the
negative effect of directly combining ML methods on Abadie’s estimator and the benefit of using

1 The R codes can be found on my Github: https://github.com/NengChiehChang/Diff-in-Diff
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Double/debiased machine learning for DiD models 179

DMLDiD. The histogram in the left panel shows that the simulated distribution of Abadie’s
estimator is biased, whereas the simulated distribution of DMLDiD in the right panel is centred
at the true value.

As an empirical example, I study the effect of tariff reduction on corruption by using the trade
data between South Africa and Mozambique during 2006 and 2014. The source of exogenous
variation is the large tariff reduction on certain commodities occurring in 2008. This natural
experiment was studied previously by Sequeira (2016) using the traditional linear DiD estimator.
On the basis of Sequeira’s linear specification, I include the interaction terms between the
treatment and a vector of control variables. After controlling for the interaction terms, I find that
the traditional linear DiD estimate becomes insignificantly different from zero. This suggests
the existence of heterogeneous treatment effects, and Sequeira’s result can be interpreted as a
weighted average of these heterogeneous effects. As pointed out by Abadie (2005), it is ideal to
treat the control variables nonparametrically when there exists heterogeneity in treatment effects,
to avoid any inconsistency caused by functional form misspecification. I apply both Abadie’s
semiparametric DiD and DMLDiD on the same data set (Table 9 of Sequeira, 2016). In comparison
with Sequeira’s result, though with the same sign, Abadie’s estimator is at least twice as large
as previously reported by Sequeira (2016). This large effect, however, may be due to the lack of
robustness of this estimation method and the finite-sample bias in the first-step nonparametric
estimation. DMLDiD removes the first-order bias and suggests a smaller effect that is closer to
Sequeira’s estimate. The value becomes only 60% higher than Sequeira’s result. This extra effect
can be explained by the misspecification of the traditional linear DiD estimator. Therefore, I
obtain the same conclusion as Sequeira (2016) that tariff reduction decreases corruption, but my
estimate suggests an even larger magnitude.

The DMLDiD proposed in the present paper relies heavily on the recent high-dimensional and
ML literature: Belloni et al. (2012), Belloni, Chernozhukov, and Hansen (2014), Chernozhukov
et al. (2015), Belloni et al. (2017), and Chernozhukov et al. (2018). The present paper is also
closely related to the robustness of average treatment effect estimation discussed in Robins and
Rotnitzky (1995) and the general discussion in Chernozhukov et al. (2019). The asymptotic
properties of the robust estimators discussed in those papers remain unaffected if only one of
the first-step estimation with classical nonparametric method is inconsistent. In independent and
contemporaneous works, Zimmert (2019), Sant’Anna and Zhao (2019), Li (2019), and Lu, Nie,
and Wager (2019) also considered the orthogonal property of Abadie’s DiD estimator. Zimmert
(2019) further discussed its efficiency, whereas Sant’Anna and Zhao (2019) and Li (2019) focused
on classical first-step estimation. Lu, Nie, and Wager (2019) discussed the situation in which
control variables are correlated with time.

1.1. Plan of the paper

Section 2 reviews both the traditional linear DiD estimator and Abadie’s semiparametric DiD
estimator and discusses their limitations. Section 3 presents DMLDiD and discusses its theoretical
properties. Section 4 conducts the Monte Carlo simulation to shed some light on the finite-sample
performance of the proposed DiD estimator. Section 5 provides the empirical application, and
Section 6 concludes the paper.
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2. THE SEMIPARAMETRIC DID ESTIMATOR

In this section, I review the traditional linear DiD estimator and Abadie’s semiparametric DiD
estimator. Let Yi(t) be the outcome of interest for individual i at time t and Di(t) ∈ {0, 1}
the treatment status. The population is observed in a pre-treatment period, t = 0, and in a
post-treatment period, t = 1. With potential outcome notations (Rubin, 1974), we have Yi (t) =
Y 0

i (t) + (
Y 1

i (t) − Y 0
i (t)

)
Di (t), where Y 0

i (t) is the outcome that individual i would attain at time
t in the absence of the treatment, and Y 1

i (t) represents the outcome that individual i would attain
at time t if exposed to the treatment. Because individuals are exposed to treatment only at t = 1,
we have Di(0) = 0 for all i. To reduce notation, I define Di ≡ Di(1). Then, the specification for
the traditional linear DiD without control variables is

Yi (t) = μ + τ · Di + δ · t + α · Di (t) + εi (t) ,

where α is the parameter of interest, εi(t) is an exogenous shock that has mean zero, and (μ,
τ , δ) are constant parameters. If the common trend assumption holds unconditionally, then the
parameter α captures the effect of treatment. When the treated and untreated groups are thought to
be unbalanced with some characteristics, researchers often include a vector of control variables,
Xi ∈ Rd , in the above linear specification:

Yi (t) = μ + X′
iπ (t) + τ · Di + δ · t + α · Di (t) + εi (t) .

As noted by Meyer, Viscusi, and Durbin (1995), including control variables in this linear spec-
ification may not be appropriate if the treatment has different effects for different groups in the
population. One may also need to include the interaction terms between Xi and Di(t) to capture
the heterogeneous effect of treatment. Hence, it is ideal to treat the control variables nonparamet-
rically, as suggested by Abadie (2005). In the following, I review Abadie’s semiparametric DiD
estimator.

Let the parameter of interest be the average treatment effect on the treated (ATT):

θ0 ≡ E
[
Y 1

i (1) − Y 0
i (1) | Di = 1

]
.

Abadie (2005) discussed three data types: repeated outcomes, repeated cross sections, and mul-
tilevel treatment. To avoid repetition, I focus only on the first two cases. The discussion for
multilevel treatments is provided in the appendix.

2.1. Case 1 (repeated outcomes)

Suppose that researchers observe both pre-treatment and post-treatment outcomes for the indi-
vidual of interest. That is, researchers observe {Yi (0) , Yi (1) ,Di,Xi}Ni=1. In this case, we can
identify the ATT under the following assumptions (Abadie, 2005):

ASSUMPTION 2.1. E
[
Y 0

i (1) − Y 0
i (0) | Xi,Di = 1

] = E
[
Y 0

i (1) − Y 0
i (0) | Xi,Di = 0

]
.

ASSUMPTION 2.2. P(Di = 1) > 0 and P(Di = 1|Xi) < 1, with probability one.

Assumption 2.1 is the conditional parallel-trend assumption. It states that conditional on the
individual’s characteristics, Xi, the average outcomes for treated and untreated groups would have
followed parallel paths in the absence of treatment. Assumption 2.2 states that the support of the
propensity score of the treated group is a subset of the support for the untreated. With these two
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assumptions, Abadie (2005) identified the ATT:

θ0 = E

[
Yi (1) − Yi (0)

P (Di = 1)

Di − P (Di = 1 | Xi)

1 − P (Di = 1 | Xi)

]
. (2.1)

2.2. Case 2 (repeated cross sections)

Suppose what researchers observe is repeated cross-sectional data. That is, researchers observe
{Yi,Di, Ti, Xi}Ni=1, where Yi = Yi(0) + Ti(Yi(1) − Yi(0)), and Ti is a time indicator that takes
value one if the observation belongs to the post-treatment sample.

ASSUMPTION 2.3. Conditional on T = 0, the data are independent and identically distributed
from the distribution of (Y(0), D, X), and conditional on T = 1, the data are independent and
identically distributed from the distribution of (Y(1), D, X).

Supposing Assumptions 2.1 through 2.3 hold, the ATT is identified (Abadie, 2005) as

θ0 = E

[
Ti − λ0

λ0 (1 − λ0)

Yi

P (Di = 1)

Di − P (Di = 1 | Xi)

1 − P (Di = 1 | Xi)

]
, (2.2)

where λ0 ≡ P(Ti = 1).
Then, the semiparametric DiD estimator would be the sample analog of (2.1) and (2.2). For

example, in Case 1, in which researchers confront repeated outcomes data, the sample analog of
(2.1) is

θ̂ = 1

N

N∑
i=1

Yi (1) − Yi (0)

p̂

Di − ĝ (Xi)

1 − ĝ (Xi)
,

where p̂ is the estimator of p0 ≡ P(D = 1), and ĝ(Xi) is the estimator of the propensity score
g0(X) ≡ P(D = 1|X). When ĝ is estimated by using classical nonparametric methods, such as
the kernel or series estimators, the estimator θ̂ is able to achieve

√
N -consistency and asymptotic

normality under certain conditions, as shown in the semiparametric estimation literature (Newey,
1994; Newey and McFadden, 1994).

When ĝ is an ML estimator, however, the estimator θ̂ is not necessarily
√

N -consistent in
general. According to the general theory of inference of ML methods developed in Cher-
nozhukov et al. (2018), the reason is twofold. First, the score function based on (2.1),
ϕ (W, θ0, p0, g0) ≡ Y (1)−Y (0)

P (D=1)
D−g0(X)
1−g0(X) − θ0, has a non-zero directional (Gateaux) derivative with

respect to the propensity score g0:

∂gE [ϕ (W, θ0, p0, g0)] [g − g0] �= 0,

where the directional (Gateaux) derivative is defined in Section 3. Second, ML estimators usually
have a convergence rate slower than N−1/2 because of regularisation bias. Similarly, the estimators
obtained by directly plugging ML estimators into (2.2) will not be

√
N -consistent in general.

The Monte Carlo simulation in Section 4 supports this theoretical insight and reveals significant
bias on the estimators based on (2.1) and (2.2) when ML estimators are used in the first-step
nonparametric estimation.

The next section proposes DMLDiD based on (2.1) and (2.2). A distinctive feature of DMLDiD
is that the Gateaux derivatives of the score functions are zero with respect to their infinite-
dimensional nuisance parameters. This property helps us remove the first-order bias of the
first-step ML estimation.
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3. THE DMLDID ESTIMATOR

In this section, I propose DMLDiD on the basis of Abadie’s results (2.1) and (2.2). In Section
3.1, I present the new score functions derived from (2.1) and (2.2) and propose an algorithm to
construct DMLDiD. In Section 3.2, I show the theoretical properties of the proposed estimator.

3.1. The Neyman-orthogonal score

Suppose Assumptions 2.1 through 2.3 hold, and consider the following new score functions.
Case 1 (repeated outcomes): The new score function for repeated outcomes is

ψ1 (W, θ0, p0, η10) = Y (1) − Y (0)

P (D = 1)

D − P (D = 1 | X)

1 − P (D = 1 | X)
− θ0

− D − P (D = 1 | X)

P (D = 1) (1 − P (D = 1 | X))
E [Y (1) − Y (0) | X,D = 0]︸ ︷︷ ︸

c1

(3.1)

with the unknown constant p0 = P(D = 1) and the infinite-dimensional nuisance parameter

η10 = (P (D = 1 | X) , E [Y (1) − Y (0) | X,D = 0]) ≡ (g0, 
10) .

Case 2 (repeated cross sections): The new score function for repeated cross sections is

ψ2 (W, θ0, p0, λ0, η20) = T − λ0

λ0 (1 − λ0)

Y

P (D = 1)

D − P (D = 1 | X)

1 − P (D = 1 | X)
− θ0 − c2, (3.2)

where the adjustment term c2 is

c2 = D − P (D = 1 | X)

λ0 (1 − λ0) · P (D = 1) · (1 − P (D = 1 | X))
× E [(T − λ0) Y | X,D = 0] .

The nuisance parameters are the unknown constants p0 = P(D = 1) and λ0 = P(T = 1) and the
unknown function

η20 = (P (D = 1 | X) , E [(T − λ) Y | X,D = 0]) ≡ (g0, 
20) .

Notice that the above new functions are equal to the original score functions (2.1) and (2.2) plus
the adjustment terms, (c1, c2), which have zero expectations. Thus, the new score functions (3.1)
and (3.2) still identify the ATT in each case. The purpose of the adjustment terms is to make the
Gateaux derivative of the new score functions zero with respect to infinite-dimensional nuisance
parameters, which is the so-called Neyman-orthogonal property in Chernozhukov et al. (2018).
I combine the new scores (3.1) and (3.2) with the cross-fitting algorithm of Chernozhukov et al.
(2018) to propose DMLDiD.

DEFINITION 3.1. (a) Take a K-fold random partition (Ik)Kk=1 of observation indices [N] = {1,
..., N}. For simplicity, assume that each fold Ik has the same size n = N/K. For each k ∈ [K] = {1,
..., K}, define the auxiliary sample I c

k ≡ {1, ..., N} \ Ik . (b) For each k, construct the intermediate
ATT estimators,

θ̃k = 1

n

∑
i∈Ik

Di − ĝk (Xi)

p̂k (1 − ĝk (Xi))
× (

Yi (1) − Yi (0) − 
̂1k (Xi)
)

(rep − outcomes)

C© 2020 Royal Economic Society.
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θ̃k = 1

n

∑
i∈Ik

Di − ĝk (Xi)

p̂kλ̂k

(
1 − λ̂k

)
(1 − ĝk (Xi))

× ((
Ti − λ̂k

)
Yi − 
̂2k (Xi)

)
(rep − cross − sections)

,

where p̂k = 1
n

∑
i∈I c

k
Di , λ̂k = 1

n

∑
i∈I c

k
Ti , and

(
ĝk, 
̂1k, 
̂2k

)
are the estimators of (g0, 
10,


20) constructed by using the auxiliary sample I c
k . (c) Construct the final ATT estimator

θ̃ = 1
K

∑K
k=1 θ̃k.

The estimators
(
ĝk, 
̂1k, 
̂2k

)
can be constructed by using any ML methods or classical estima-

tors, such as kernel or series estimators. For completeness, I present the Logit Lasso and Lasso
estimators here.

Consider a class of approximating functions of Xi,

qi ≡ (
q1 (Xi) , ..., qp (Xi)

)′
.

For example, qi can be polynomials or B-splines. Let �(u) ≡ 1/(1 + exp ( − u)) be the cumulative
distribution function of the standard logistic distribution. Construct the estimator of the propensity
score g0 by

ĝk (xi) ≡ �
(
q ′

i β̂k

)
, (3.3)

where

β̂k ≡ arg min
β∈Rp

1

M

∑
i∈I c

k

{−Di(q
′
iβ) + log

(
1 + exp

(
q ′

iβ
))}+ λk ‖ β ‖1

is the Logit Lasso estimator, and M = N − n is the sample size of the auxiliary sample I c
k . Next,

define Mk as the sample size of I c
k ∩ {i : Di = 0}. Construct the estimators of 
10 and 
20 by


̂1k (xi) ≡ q ′
i β̂1k,


̂2k (xi) ≡ q ′
i β̂2k,

where

β̂1k ∈ arg min
β∈Rp

⎡
⎣ 1

Mk

∑
i∈I c

k

(1 − Di)
(
Yi (1) − Yi (0) − q ′

iβ
)2

⎤
⎦+ λ1k

Mk

‖ ϒ̂1kβ ‖1

and

β̂2k ∈ arg min
β∈Rp

⎡
⎣ 1

Mk

∑
i∈I c

k

(1 − Di)
((

Ti − λ̂k

)
Yi − q ′

iβ
)2

⎤
⎦+ λ2k

Mk

‖ ϒ̂2kβ ‖1

are the modified Lasso estimators proposed in Belloni et al. (2012). The choices of the penalty
levels and loadings

(
λ1k, λ2k, ϒ̂1k, ϒ̂2k

)
suggested by Belloni et al. (2012) are provided in the

appendix.

3.2. Asymptotic properties

In this section, I show the theoretical properties of the DMLDiD estimator θ̃ . In particular, I will
show that the estimator θ̃ can achieve

√
N -consistency and asymptotic normality as long as the
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first-step estimators converge at rates faster than N−1/4. This rate of convergence can be achieved
by many ML methods, including Lasso and Logit Lasso.

The critical difference between DMLDiD and Abadie’s DiD estimator is the score functions
on which they are based. The new score functions (3.1) and (3.2) have the directional (or the
Gateaux) derivatives equal to zero with respect to their infinite-dimensional nuisance parameters,
whereas the scores based on (2.1) and (2.2) do not have this property. This property is the so-called
Neyman orthogonality in Chernozhukov et al. (2018).

The definition of the Neyman-orthogonal score provided here is slightly different from the defi-
nition in Chernozhukov et al. (2018). Instead of being orthogonal against all nuisance parameters,
the Neyman-orthogonal score defined here is orthogonal against only those infinite-dimensional
nuisance parameters. Formally, let θ0 ∈ � be the low-dimensional parameter of interest, ρ0

be the true value of the finite-dimensional nuisance parameter ρ, and η0 the true value of the
infinite-dimensional nuisance parameter η ∈ T . Suppose that W is a random element taking
values in a measurable space (W,AW ), with probability measure P. Define the directional (or
the Gateaux) derivative against the infinite-dimensional nuisance parameter Dr : T̃ → R, where
T̃ = {η − η0 : η ∈ T },

Dr [η − η0] ≡ ∂r {EP [ψ (W, θ0, ρ0, η0 + r (η − η0))]} , η ∈ T ,

for all r ∈ [0, 1). For convenience, denote

∂ηEP ψ (W, θ0, ρ0, η0) [η − η0] ≡ D0 [η − η0] , η ∈ T .

In addition, let TN ⊂ T be a nuisance realisation set such that the estimator of η0 takes values in
this set with high probability.

DEFINITION 2. The score ψ obeys the Neyman orthogonality condition at (θ0, ρ0, η0) with
respect to the nuisance parameter realisation set TN ⊂ T if the directional derivative map Dr[η
− η0] exists for all r ∈ [0, 1) and η ∈ TN and vanishes at r = 0:

∂ηEP ψ (W, θ0, ρ0, η0) [η − η0] = 0, for all η ∈ TN .

LEMMA 3.1. The new score functions (3.1) and (3.2) obey the Neyman orthogonality.

The proof of this lemma can be found in the online appendix. In fact, it is also possible
to derive the Neyman-orthogonal scores with respect to both finite- and infinite-dimensional
nuisance parameters. However, the functional forms are much more complicated than the score
functions (3.1) and (3.2), and this will make the corresponding estimator not as neat as the
estimators proposed here. Because they will enjoy the same asymptotic properties, here I focus
only on the estimators based on (3.1) and (3.2).

In the following, I will discuss the theoretical properties of the new estimator θ̃ when data
belong to repeated outcomes and repeated cross sections. The results of multilevel treatment can
be proved by using the same arguments. Let κ and C be strictly positive constants, K ≥ 2 be a fixed
integer, and εN be a sequence of positive constants approaching zero. Denote by � · �P, q the Lq

norm of some probability measure P: �f�P, q ≡ (
∫ |f(w)|qdP(w))1/q and ‖ f ‖P,∞≡ supw | f (w) |.

ASSUMPTION 3.1 (REGULARITY CONDITIONS FOR REPEATED OUTCOMES). Let P be the
probability law for (Y(0), Y(1), D, X). Let D = g0(X) + U and Y(1) − Y(0) = 
10(X) + V1, with
EP[U|X] = 0 and EP[V1|X, D = 0] = 0. Define G1p0 ≡ EP[∂pψ1(W, θ0, p0, η10)] and �10 ≡
EP[(ψ1(W, θ0, p0, η10) + G1p0(D − p0))2]. For the above definition, the following conditions hold:
(a) Pr(κ ≤ g0(X) ≤ 1 − κ) = 1; (b) �UV1�P, 4 ≤ C; (c) E[U2|X] ≤ C; (d) E

[
V 2

1 | X
] ≤ C; (e)
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Double/debiased machine learning for DiD models 185

�10 > 0; and (f) given the auxiliary sample I c
k , the estimator η̂1k = (

ĝk, 
̂1k

)
obeys the following

conditions. With probability 1 − o(1), ‖ η̂1k − η10 ‖P,2≤ εN , ‖ ĝk − 1/2 ‖P,∞≤ 1/2 − κ , and
‖ ĝk − g0 ‖2

P,2 + ‖ ĝk − g0 ‖P,2 × ‖ 
̂1k − 
10 ‖P,2≤ (εN )2.

ASSUMPTION 3.2 (REGULARITY CONDITIONS FOR REPEATED CROSS SECTIONS). Let P
be the probability law for (Y, T, D, X). Let D = g0(X) + U and (T − λ0)Y = 
20(X) + V2, with
Ep[U|X] = 0 and Ep[V2|X, D = 0] = 0. Define G2p0 ≡ EP[∂pψ2(W, θ0, p0, λ0, η20)], G2λ0 ≡
EP[∂λψ2(W, θ0, p0, λ0, η20)], and �20 ≡ EP[(ψ1(W, θ0, p0, η10) + G2p0(D − p0) + G2λ0(T −
λ0))2]. For the above definition, the following conditions hold: (a) Pr(κ ≤ g0(X) ≤ 1 − κ) = 1; (b)
�UV2�P, 4 ≤ C; (c) E[U2|X] ≤ C; (d) E

[
V 2

2 | X
] ≤ C; (e) EP[Y2|X] ≤ C; (f) |EP[YU]| ≤ C; (g)

�20 > 0; and (h) given the auxiliary sample I c
k , the estimator η̂2k = (

ĝk, 
̂2k

)
obeys the following

conditions. With probability 1 − o(1), ‖ η̂2k − η20 ‖P,2≤ εN , ‖ ĝk − 1/2 ‖P,∞≤ 1/2 − κ , and
‖ ĝk − g0 ‖2

P,2 + ‖ ĝk − g0 ‖P,2 × ‖ 
̂2k − 
20 ‖P,2≤ (εN )2.

THEOREM 3.1. For repeated outcomes, suppose Assumptions 2.1, 2.2, and 3.1 hold. For repeated
cross sections, suppose Assumptions 2.1 through 2.3 and 3.2 hold. If εN = o(N−1/4), the new ATT
estimator θ̃ obeys

√
N
(
θ̃ − θ0

) → N (0, �)

,with � = �10 for repeated outcomes and � = �20 for repeated cross sections.

THEOREM 3.2. Construct the estimators of the asymptotic variances as

�̂1 = 1

K

K∑
k=1

En,k

[(
ψ1
(
W, θ̃, p̂k, η̂1k

)+ Ĝ1p (D − p̂k)
)2
]

(repeated outcomes)

�̂2 = 1

K

K∑
k=1

En,k

[(
ψ2
(
W, θ̃, p̂k, λ̂k, η̂2k

)+ Ĝ2p (D − p̂k) + Ĝ2λ

(
T − λ̂k

))2
]

(repeated cross sections)
,

where En,k [f (W )] = n−1 ∑
i∈Ik

f (Wi), Ĝ1p = Ĝ2p = −θ̃/p̂k , and Ĝ2λ is a consistent estimator

of G2λ0. If the assumptions of Theorem 1 hold, �̂1 = �10 + oP (1) and �̂2 = �20 + oP (1) .

Theorem 3.1 shows that DMLDiD θ̃ can achieve
√

N -consistency and asymptotic normality if
the first-step estimators of the infinite-dimensional nuisance parameters converge at a rate faster
than N−1/4. This rate of convergence can be achieved by many ML methods. In particular, Van
de Geer (2008) and Belloni et al. (2012) provided detailed conditions for Logit Lasso and the
modified Lasso estimators to satisfy this rate of convergence. Theorem 3.2 provides consistent
estimators for the asymptotic variance of θ̃ . The proofs of Theorem 3.1 and Theorem 3.2 can be
found in the online appendix.

4. SIMULATION

In the online appendix, I conduct Monte Carlo simulations to shed some light on the finite-
sample properties of the DiD estimator of Abadie (2005) and the DMLDiD estimator θ̃ in all
three data structures: repeated outcomes, repeated cross sections, and multilevel treatment. For
the first-step ML estimation, I generate high-dimensional data and estimate the propensity score
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Figure 2. The simulation for repeated outcomes with the true value θ 0 = 3.
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by Logit Lasso, Support vector machine (SVM), regression tree, random forests, boosting, and
neural nets. I use random forests with 500 regression trees to estimate the remaining infinite-
dimensional nuisance parameters. I find that although Abadie’s DiD estimator suffers from the
bias of a variety of ML methods, the DMLDiD estimator θ̃ can successfully correct the bias and
is centred at the true value. Figure 2 shows the Monte Carlo simulation and the data-generating
process for repeated outcomes. Other cases and details are provided in the online appendix.

The data-generating process for repeated outcomes: Let N = 200 be the sample size
and p = 100 the dimension of control variables, Xi ∼ N(0, Ip × p). Let γ 0 = (1, 1/2, 1/3, 1/4,
1/5, 0, ..., 0) ∈ Rp, and Di is generated by the propensity score P (D = 1 | X) = 1

1+exp(−X′γ0) .

Also, let the potential outcomes be Y 0
i (0) = X′

iβ0 + ε1,Y
0
i (1) = Y 0

i (0) + 1 + ε2, and Y 1
i (1) =

θ0 + Y 0
i (1) + ε3, where β0 = γ 0 + 0.5 and θ0 = 3, and all error terms follow N(0, 0.1).

Researchers observe {Yi(0), Yi(1), Di, Xi} for i = 1, ..., N, where Yi (0) = Y 0
i (0) and Yi (1) =

Y 0
i (1) (1 − Di) + Y 1

i (1) Di .

5. EMPIRICAL EXAMPLE

In this example, I analyse the effect of tariff reduction on corruption behaviors by using the
bribe payment data collected by Sequeira (2016) between South Africa and Mozambique. There
have been theoretical and empirical debates on whether higher tariff rates increase incentives
for corruption (Clotfelter, 1983; Sequeira and Djankov, 2014) or lower tariffs encourage agents
to pay higher bribes through an income effect (Feinstein, 1991; Slemrod and Yitzhaki, 2002).
The former argues that an increase in the tariff rate makes it more profitable to evade taxes
on the margin, whereas the latter asserts that an increased tariff rate makes the taxpayers less
wealthy, and this, under the decreasing risk aversion of being penalised, tends to reduce evasion
(Allingham and Sandmo, 1972).

Sequeira (2016) collected primary data on the bribe payments between the ports in Mozambique
and South Africa from 2007 to 2013. In exchange for tariff evasion, the cargo owners bribed the
border officials who were in charge of validating clearance documentation and collecting all tariff
payments. The exogenous variation used in Sequeira (2016) to study the effect of tariff reduction
on corruption was the significant reduction in the average nominal tariff rate (of 5 percent) on
certain products occurring in 2008. Because not all products were on the tariff reduction list,
a credible control group of products is available. This credible control group allows for a DiD
estimation. Sequeira (2016) pooled together the cross-section data between 2007 and 2013 and
estimated the effect of treatment through the traditional linear DiD with many control variables.
Table 9 of Sequeira (2016) presented the result of the following specification:

yit = γ1T ariff ChangeCategoryi × POST

+ μPOST + β1T ariff ChangeCategoryi

+ β2BaselineT ariff i + �i + pi + wt + δi + εit , (5.1)

where yit is the natural log of the amount of bribe paid for shipment i in period t, conditional
on paying a bribe. TariffChangeCategory ∈ {0, 1} denotes the treatment status of commodities,
POST ∈ {0, 1} is an indicator for the years following 2008, and BaselineTariff is the tariff
rate before the tariff reduction. The specification also includes a vector of characteristics �i,
and time and individual fixed effects pi, wt, and δi. The parameter γ 1 is the parameter of
interest in Equation (5.1). Sequeira (2016) found that the amount of bribe paid dropped after

C© 2020 Royal Economic Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/article/23/2/177/5722119 by guest on 20 April 2024



188 N.-C. Chang

Table 1. Estimation results for (5.1) and (5.2).

Equation (5.1) Equation (5.2)

γ̂1 − 2.928** 0.934
(0.944) (2.690)

TP × diff − 0.986
(0.959)

TP × agri − 1.170**

(0.580)
TP × lvalue − 0.098

(0.129)
TP × perishable 0.859

(1.213)
TP × largefirm − 0.576

(0.988)
T P × day arri − 0.002

(0.106)
TP × inspection − 0.525

(0.911)
TP × monitor − 0.482

(0.713)
TP × 2007tariff 0.009

(0.048)
TP × SouthAfrica − 2.706***

(0.912)

the tariff reduction (γ̂1 = −2.928∗∗). However, as noted by Meyer et al. (1995), this result of
Equation (5.1) excludes the heterogeneous treatment effects. The estimate might be different
if we take into account the heterogeneity. To shed some light on the heterogeneous treatment
effect, I incorporate the interaction terms between TariffChangeCategory × POST (TP) and the
characteristics �i into (5.1). The specification becomes

yit = γ1T ariff ChangeCategoryi × POST + γ2T Pi × �i

+ μPOST + β1T ariff ChangeCategoryi

+ β2BaselineT ariff i + �i + pi + wt + δi + εit , (5.2)

where γ 2 is a 10 × 1 vector. Table 1 shows the comparison of the estimates of (5.1) and (5.2).
Column 2 of Table 1 shows that (a) after controlling for the interaction terms, the estimate for

γ 1 becomes insignificantly different from zero, and (b) most of the coefficients of the interaction
terms are negative. This suggests that there exists a large set of negative heterogeneous treatment
effects and that Sequeira’s estimate may be a weighted average of these heterogeneous treatment
effects. The negative coefficients of the interaction terms justify the sign of Sequeira’s estimate.
However, it is ideal to treat the covariates nonparametrically when there exists heterogeneity in
treatment effects, to avoid any potential inconsistency created by functional form misspecification
(Abadie, 2005).
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Table 2. The results of semiparametric DiD estimation.

Sequeira (2016) Abadie (kernel)
DMLDiD
(kernel) Abadie (Lasso)

DMLDiD
(Lasso)

ATT −2.928** −8.168** −6.998* −6.432** −5.222*

(0.944) (3.072) (3.752) (2.737) (2.647)

I estimate the ATT using both Abadie’s DiD estimator and DMLDiD. Because the data are
repeated cross sections, I construct the estimators on the basis of (2.2) and (3.2), respectively.
The estimators with first-step kernel estimation contain one individual characteristic (the natural
log of shipment value per ton), which is the only significant and continuous control variable
in Table 9 of Sequeira (2016). The estimators with first-step Lasso estimation contain a list of
the covariates included in Table 9 of Sequeira (2016), which consists of the characteristics of
product, shipment, firm, and border officials. I choose both the bandwidth kernel and penalty
level of Lasso by 10-fold cross validations. Table 2 shows the estimation result. First, we can
observe that the estimates with first-step kernel are much larger than the estimates with first-step
Lasso. The reason may be that more control variables are included in the latter estimates. Second,
though with the same sign, Abadie’s estimator (−8.168 or −6.432) is at least twice as large
as previously reported by Sequeira (2016). This large effect, however, may be due to not only
the robustness of semiparametric estimation on the functional form but also the finite-sample
bias in the first-step nonparametric estimation. The DMLDiD estimator (−5.222) removes the
first-order bias and suggests a smaller effect that is closer to Sequeira’s estimate. Its value is only
60% higher than Sequeira’s result. This extra effect can be explained by the misspecification of
the traditional linear DiD estimator. Therefore, I obtain the same conclusion as Sequeira (2016)
that tariff reduction decreases corruption, but my estimate suggests an even larger magnitude.

6. CONCLUSION

The DiD estimator survives as one of the most popular methods in the causal inference literature.
A practical problem that empirical researchers face is the selection of important control variables
when they confront a large number of candidate variables. Researchers may want to use ML
methods to handle a rich set of control variables while taking the strength of the DiD estimator.
I improve its original versions by proposing DMLDiD to allow researchers to use ML methods
while still obtaining valid inferences. This additional benefit will make DiD more flexible for
empirical researchers to explore a broader set of popular estimation methods and analyse more
types of data sets.
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APPENDIX A: MORE ON ESTIMATION

Multilevel treatments: Individuals can also be exposed to different levels of treatment. Let W ∈ {0, w1,
..., wJ} be the level of treatment, where W = 0 denotes the untreated individuals. Researchers observe
{Yi (0) , Yi (1) , Wi, Xi}N

i=1. For w ∈ {0, w1, ..., wJ} and t ∈ {0, 1}, let Yw(t) be the potential outcome for
treatment level w at period t. Denote the ATT for each level of treatment w by

θw
0 ≡ E

[
Y w (1) − Y 0 (1) | W = w

]
.

Suppose that Assumptions (2.1) and (2.2) hold for each w ∈ {w1, ..., wJ}:

E
[
Y 0

i (1) − Y 0
i (0) | Xi, Wi = w

] = E
[
Y 0

i (1) − Y 0
i (0) | Xi, Wi = 0

]
,

P(Wi = w) > 0, and with probability one, P(Wi = w|Xi) < 1. Then, we have (Abadie, 2005),

θw
0 = E

[
Y (1) − Y (0)

P (W = w)

I (W = w) · P (W = 0 | X) − I (W = 0) · P (W = w | X)

P (W = 0 | X)

]
,

where I( · ) is an indicator function. The Neyman-orthogonal score function for multilevel treatments is

ψw (W, θw0, pw0, ηw0) = Y (1) − Y (0)

P (W = w)

I (W = w)P (W = 0 | X) − I (W = 0)P (W = w | X)

P (W = 0 | X)

− θw0 − cw.

The adjustment term cw is

cw =
(

I (W = w) · P (W = 0 | X) − I (W = 0) · P (W = w | X)

P (W = w) · P (W = 0 | X)

)
×

E [Y (1) − Y (0) | X, I (W = 0) = 1] .

The nuisance parameters are the unknown constant pw0 ≡ P(W = w) and the infinite-dimensional parameter
ηw0 = (gw0, gz0, 
30), where gw0 = P(W = w|X), gz0 = P(W = 0|X), and 
30 = E[Y(1) − Y(0)|X, I(W = 0) =
1].

Multilevel treatments algorithm:

(1) Take a K-fold random partition (Ik)Kk=1 of observation indices [N] = {1, ..., N}, such that the size of
each fold Ik is n = N/K. For each k ∈ [K] = {1, ..., K}, define the auxiliary sample I c

k ≡ {1, ..., N} \ Ik .
(2) For each k ∈ [K], construct the estimator of p0 and λ0 by p̂w = 1

n

∑
i∈I c

k
Di . Also, construct the esti-

mators of gw, gz, and 
30 by using the auxiliary sample I c
k : ĝwk = ĝw

(
(Wi)i∈I c

k

)
, ĝzk = ĝz

(
(Wi)i∈I c

k

)
,

and 
̂3k = 
̂3

(
(Wi)i∈I c

k

)
.

(3) For each k, construct the intermediate ATT estimators:

θ̃wk = 1

n

∑
i∈Ik

I (Wi = w) · ĝzk (Xi) − I (Wi = 0) · ĝwk (Xi)

p̂wĝzk (Xi)

× (
Y (1) − Y (0) − 
̂3k (Xi)

)
.

(4) Construct the final ATT estimators: θ̃ = 1
K

∑K

k=1 θ̃k .

Lasso penalty. The following is suggested by Belloni et al. (2012). Let yi denote Yi(1) − Yi(0) or(
Ti − λ̂k

)
, λk denote λ1k or λ2k, and ϒ̂k denote ϒ̂1k or ϒ̂2k . For k ∈ [K], the loading ϒ̂k is a diagonal matrix

with entries γ̂kj , j = 1, ..., p, constructed by the following steps:
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Initial γ̂kj =
√√√√ 1

Mk

∑
i∈I c

k

(1 − Di) q2
ij (yi − ȳk)2, λk = 2c

√
Mk�

−1 (1 − γ /2p) ,

Refined γ̂kj =
√√√√ 1

Mk

∑
i∈I c

k

(1 − Di) q2
ij ε̂

2
i , λk = 2c

√
Mk�

−1 (1 − γ /2p) ,

where ȳk = M−1
∑

i∈I c
k
yi , c > 1 and γ → 0. The empirical residual ε̂i is calculated by the modified Lasso

estimator β∗
k in the previous step: ε̂i = yi − q ′

iβ
∗
k . Repeat the second step B > 0 times to obtain the final

loading.
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