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Summary: This paper presents a simple decision-theoretic economic approach for analysing
social experiments with compromised random assignment protocols that are only partially
documented. We model administratively constrained experimenters who satisfice in seeking
covariate balance. We develop design-based small-sample hypothesis tests that use worst-case
(least favourable) randomization null distributions. Our approach accommodates a variety
of compromised experiments, including imperfectly documented rerandomization designs. To
make our analysis concrete, we focus much of our discussion on the influential Perry Preschool
Project. We reexamine previous estimates of programme effectiveness using our methods. The
choice of how to model reassignment vitally affects inference.
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1. INTRODUCTION

This paper develops a finite-sample, design-based approach for analysing data from compromised
social experiments using a satisficing model of experimenter behaviour. Compromises can take
many forms, including exchanges or transfers of subjects across the experimental groups based
on post-randomization considerations that are not fully documented. For specificity, we motivate
our approach drawing on the Perry Preschool Project, an experimental high-quality preschool
programme targeted toward disadvantaged African American children in the 1960s.1

Previous studies of the Perry programme report substantial treatment effects on numerous
outcomes.2 These studies have greatly influenced discussions about the benefits of early childhood
programmes.3 However, critics of the Perry programme question the validity of these conclusions.
They point to the small sample size of the experiment—just over a hundred observations. They
also mention incomplete knowledge of, and compromises in, the randomization protocol used

1 See Schweinhart et al. (1985; 1993; 2005), Heckman et al. (2010a), and Appendix A for more background.
2 See, e.g., Heckman et al. (2010a) and Heckman et al. (2020).
3 See Obama (2013).
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C2 J. J. Heckman and G. Karapakula

to form control and treatment groups. Problems with attrition and nonresponse are also cited.
Previous research (Heckman et al., 2010a; Heckman et al., 2020) addresses some of these con-
cerns. We offer an alternative approach that models experimenter decision-making in conducting
the experiment. We compare our approach with that of Heckman et al. (2020) in Section 4.4.

The Perry randomization protocol was a multi-stage process. Its main compromised feature
is shared by many randomized controlled trials: undocumented rerandomization. This involves
reassignment of treatment status after initial random assignment in order to improve balance
between experimental groups with respect to baseline covariates, but without a pre-specified,
fully documented reassignment plan.

This practice occurs often. Bruhn and McKenzie (2009) survey 25 leading researchers using
randomized experiments and report a typical response:

“[Experimenters] regressed variables like education on assignment to treatment,
and then re-did the assignment if these coefficients were too big.”

Some 52% admit to “subjectively deciding whether to redraw” and 15% admit to “using a
statistical rule to decide whether to redraw” the treatment assignment vector in at least one of the
experiments they conducted.4 The authors conclude that

“this reveals common use of methods to improve baseline balance,
including several rerandomization methods not discussed in print.”

The approach developed in this paper applies to experiments conducted in such a subjective
and incompletely documented manner. If rerandomization criteria are specified and adhered to
before carrying out final treatment assignment, there exist simpler methods for conducting valid
inference.5 We supplement the literature by considering the case where the reassignment rule is
only partially documented. We build on and complement the analysis of Heckman et al. (2020)
with an explicit model of experimenter behaviour.

We model experimenters as decision-makers who satisfice in seeking to achieve covariate bal-
ance with a “suitable” metric. Implicit decision rules underlie all covariate balancing procedures.
The decision-makers forming the experimental groups do not necessarily have a precise rule in
mind but satisfice in the sense of Simon (1955). Even if experimenters have a specific rule in
mind, it may not be carefully documented.

This paper proceeds in the following way. Section 2 illustrates the class of problems ad-
dressed in this paper by reexamining the reassignment protocols of an influential compromised
small-sample social experiment. Section 3 presents a satisficing model of experimenter behaviour
consistent with the available information on it from published and informal accounts. We par-
tially identify the set of randomization protocols consistent with our model. We consider the
generality of our approach by discussing the class of experiments to which our model applies. In
Section 4, we first discuss hypotheses of interest and conventional testing procedures used in the
literature. We then construct worst-case randomization tests using stochastic approximations of

4 These percentages are calculated by weighting each survey respondent by the number of experiments in which the
respondent had participated.

5 See, e.g., Morgan and Rubin (2012; 2015) and Li et al. (2018). Morgan and Rubin (2012) state that they “only
advocate rerandomization if the decision to rerandomize or not is based on a pre-specified criterion.” Their inferential
methods require knowledge of such pre-specified criteria. Although rerandomization methods have the property that they
reduce variance of the null distribution asymptotically in certain settings (Morgan and Rubin, 2012; 2015; Li et al., 2018),
this property is not guaranteed in the finite-sample setting we consider.
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Using a satisficing model to guide finite-sample inference for compromised experiments C3

least favourable randomization null distributions. We also compare our approach with an existing
method for inference with imperfect randomization. Section 5 presents our test statistics and
uses our methodology to reexamine the inference reported by Heckman et al. (2020). Section 6
concludes.

2. THE MOTIVATING PROBLEM

To give specificity to our analysis we draw on the Perry Preschool Project, a prototypical social
experiment that was conducted in the early 1960s. The original sample for the experiment
consisted of 128 children. Five of these children were dropped from the study due to extraneous
reasons.6 Starting at age 3, treatment in the following two years included preschool for 2.5 hours
per day on weekdays during the academic year. The programme also offered 1.5-hour weekly
home visits by the Perry teachers to promote parental engagement with the child.7 For more
details on the background and eligibility criteria of the Perry programme, see Heckman et al.
(2010a) and Appendix A.

2.1. Randomization protocol

Understanding the randomization protocol is essential for constructing valid frequentist inference
for any experiment. As Bruhn and McKenzie (2009) emphasize, many experimental studies
in economics do not report the complete set of rules (e.g., balancing criteria) used to form
experimental samples. They conduct hypothesis tests that ignore the randomization protocols
actually used. In analysing the Perry data, this issue is salient. Reports vary about the procedure
used and the exact rules followed in creating experimental samples. We discuss the various
descriptions of the randomization protocols. While the core descriptions of the procedure followed
are broadly consistent across texts, some of the details provided are vague and inconsistent, even
those by the same authors. We account for this ambiguity in designing and interpreting our
hypothesis tests. While the details are Perry-specific, the general principles involved are not.

Before the initiation of the randomization procedure by the Perry staff in each of the last four
Perry cohorts, any younger siblings of participants enrolled in previous waves are separated from
children of freshly recruited families, whom we term “singletons” (Schweinhart et al., 1985;
Schweinhart, 2013). As Schweinhart et al. (1985) explain,

“[A]ny siblings [are] assigned to the same group [either treatment or control]
as their older siblings in order to maintain the independence of the groups.”

6 According to Schweinhart et al. (2005), “4 children did not complete the preschool programme because they moved
away and 1 child died [in a fire accident] shortly after the study began.” We are missing the following data (on some of
these children) that are necessary for inference procedures. We do not know the mother’s working status at baseline of a
subject in wave 0 (who has a sibling in wave 1) among the five children who dropped out of the original sample of 128 for
extraneous reasons. We also do not know the gender of a subject in wave 1. (We use the Perry convention that wave 0 is
the first wave and wave 4 is the last one.) The baseline information on these subjects is important in our formal model of
the randomization protocol. We do not make assumptions regarding the mother’s working status at baseline of the subject
in wave 0 and the gender of the other subject in wave 1. We run our testing procedures for each of the possible values of
the variables. While we use the data on the five dropped children in our simulations of the randomization protocol for our
worst-case tests, we treat the five participants as ignorable in our estimation of the treatment effects. Thus, our effective
sample for estimation and inference is the core sample of 123 children.

7 Those in the treatment group of the first entry cohort (wave 0) were provided with the intervention for only one year,
starting at age 4, and thus constitute an exception. Our estimates of treatment effects pool all five cohorts, even though
the lower programme intensity in the first cohort might in principle attenuate the magnitudes of the effects downward.
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By construction this does not apply to the very first cohort.
The singletons from new families are then randomized into the two experimental groups as

follows. Weikart et al. (1978) detail the second step of the randomization protocol:

“First, all [singletons] are rank-ordered according to Stanford–Binet [IQ]
scores. Next, they are sorted (odd / even) into two groups.”

Singletons are then divided into two groups, one comprising those with even IQ ranks and
another with odd IQ ranks. The latter group has one additional person if the singletons are odd in
number; otherwise, the sizes of the two groups are equal.

In the third step, children are exchanged between the two groups to balance the vector of
means of an index of socioeconomic status (SES), the proportions of boys and girls, and the
proportion of children with working mothers, in addition to mean IQ (Weikart et al., 1964;
Schweinhart et al., 1993). The exact balancing criteria and the number of exchanges are not
specified, and the exchanges are not necessarily restricted to those between consecutively ranked
IQ pairs,8 as is sometimes assumed, e.g., in Heckman et al. (2020). After the first three steps,
there are two undesignated groups that differ in number by at most one, and the two groups
are balanced with respect to mean IQ, mean SES, percentage of boys, and the proportion of
children with working mothers, in a manner acceptable to the staff, using balancing rules that are
undocumented.

All sources agree that in the fourth step a toss of a fair coin decides assignment of the two
groups to treatment and control conditions. The fifth step concerns children with working mothers
who are placed in the treatment group after the fourth step. In the fifth step, some of these children
are transferred to the control group.9 Although there is no consistent account of the number of
transfers, the sources describe the fifth step as involving one-way transfers of some children
of working mothers from the treatment group to the control group.10 Weikart et al. (1978)
provide reasons for the transfers: “no funds were available [to provide all working mothers
with logistical support, and] special arrangements could not always be made.” We interpret
this statement as implying that special arrangements could be made for at least some working
mothers to enable their children to attend preschool and participate in home visits if placed in the
treatment group. The constraints facing programme administrators in doing so likely vary across
cohorts. We assume that the Perry staff are impartial as to which working mothers get special
arrangements.

Table 1 summarizes the randomization protocol. The main sources of ambiguity are in bold-
face: (a) the undocumented balancing criteria and rules used to satisfactorily balance the two
undesignated groups with respect to the mean levels of baseline variables in the third step; and
(b) the nature of constraints on the provision of special home visitation arrangements for children
of working mothers in the fifth step.

8 See Appendix B. According to Schweinhart et al. (1993), “[The staff] exchanged several similarly ranked pair
members so the two groups would be matched on [the baseline variables].” Even though the phrase “similarly ranked pair
members” might suggest consecutively ranked members, this is not necessarily the case. In Appendix B, we use Perry
data from wave 4 to demonstrate that the exchanges were not necessarily between consecutively ranked pairs.

9 See Schweinhart and Weikart (1980); Schweinhart et al. (1985; 1993); Zigler and Weikart (1993).
10 This is also manifested in the observed data. For example, as explained later in Section 3.2, the number of singletons

in wave 2 is 22, with 12 in the control group and 10 in the treatment group. If there were exchanges between the initial
experimental groups instead of one-way transfers to the control group, there would have been 11 singletons in both the
control and treatment groups instead of 12 and 10, respectively.
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Using a satisficing model to guide finite-sample inference for compromised experiments C5

Table 1. Schematic of the actual randomization protocol.

(1) Recruit participants and separate any younger siblings of participants enrolled in previous waves
from singletons (children of freshly recruited families)

↓
(2) Rank singletons by IQ and split into two groups based on whether the rank is even or odd

↓
(3) Exchange singletons between the two groups to satisfactorily balance the mean levels of a vector

of IQ, SES, gender, and mother’s working status
↓

(4) Toss a fair coin to determine which of the two groups becomes the initial treatment group
↓

(5) Transfer some children of working mothers from the treatment group to the control group
impartially if special arrangements for home visits can be made for only a limited number

↓
(6) Assign any eligible younger siblings to the same group as their enrolled older siblings

3. MODELLING AND PARTIALLY IDENTIFYING THE RANDOMIZATION
PROTOCOL

Since no precise description of the full Perry randomization protocol exists, we do not know
who was exchanged in the third step and who was transferred in the fifth step, making a standard
bounding analysis intractable. To address this problem, we assume that experimenters satisfice11

in seeking “balance” in the baseline covariate means of treatment and control groups, while facing
capacity constraints on special home visits for children of working mothers.

Using this model, we bound the level of covariate balance deemed acceptable by the experi-
menters at the end of the first three stages of the protocol. We also bound the number of possible
transfers at the fifth stage of the assignment procedure. Our model and the identified bounds
are used to construct worst-case randomization tests using least favourable null distributions
for treatment effects. While the details differ, the approach readily generalizes to the class of
compromised rerandomization designs discussed by Bruhn and McKenzie (2009).

3.1. Formalizing the randomization protocol

We first model the Perry randomization protocol and later discuss its generalizability. Let Sc

be the set of unique identifiers of participants in cohort12 c ∈ {0, 1, 2, 3, 4} with no elder
siblings already enrolled in the Perry Preschool Project. The cardinality of the set of singletons
is |Sc|.13 The participants in the set Sc are ranked according to their IQs by the Perry staff, using
an undocumented method to break any ties. The participants with odd and even ranks are then

11 See Simon (1955), an early paper in behavioural economics that analyses satisficing behaviour.
12 Each of the cohorts corresponds to one of the five waves (labelled 0 to 4) of study participants recruited from the

autumn seasons of 1962 to 1965. Waves 0 and 1 were randomized in the autumn of 1962, while the waves 2, 3, and 4
were randomized in the autumn of 1963, 1964, and 1965, respectively. We follow the labelling convention for the cohorts
by the Perry analysts who designate the first cohort as “0.”

13 Note that the other participants in cohort c who are not singletons have older siblings already enrolled in the Perry
experiment in a previous wave. The nonsingletons are not randomized but, rather, assigned to the same treatment status
as their elder siblings already enrolled in the study.
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split into two undesignated groups, with �|Sc|/2� and �|Sc|/2� members, respectively.14 Staff
exchange participants between the two groups until the mean levels of four variables (Stanford–
Binet IQ, index of SES, gender, and mother’s working status) are balanced to their satisfaction.15

The exact metric the staff used to determine satisfactory covariate balance is not documented.
We assume that they use Hotelling’s two-sample t-squared statistic τ 2

c , which is closely related
to the Mahalanobis distance metric often used in matching.16 However, for each cohort’s initial
groups (partially identified in Section 3.2), the Hotelling statistic and raw mean differences do
not correspond to their possible minimum values and are sometimes far away from them.17 Thus,
it appears in terms of this model that programme officials were satisficing rather than optimizing
(minimizing covariate imbalance) in constructing the two groups.

This process results in a partition (A∗
c ,B∗

c ) of the set Sc chosen uniformly from

Uc(δc) = {(A,B) : A ⊂ Sc, B = Sc \ A, |A| = �|Sc|/2�, τ 2
c (A,B) ≤ δc}, (3.1)

where δc is a satisficing threshold that captures how stringent or lax the Perry staff were in trying
to balance the mean levels of the two groups.18 Note that the above set is invariant to the choice of
any strictly increasing transformation of the Hotelling statistic and the corresponding satisficing
threshold. Define D

(0)
i,c as an indicator of whether participant i ∈ Sc belongs to A∗

c . In other words,

D
(0)
i,c = I{i ∈ A∗

c}.
In the next stage, the Perry staff flip a fair coin to determine whether A∗

c or B∗
c becomes the

preliminary treatment group. Let Qc be an indicator of whether the coin flip results in a head. If
Qc = 1, then B∗

c becomes the treatment group. If Qc = 0, then A∗
c becomes the treatment group.

Let D
(1)
i,c denote membership in the preliminary treatment group. Thus

D
(1)
i,c = Qc (1 − D

(0)
i,c ) + (1 − Qc) D

(0)
i,c . (3.2)

14 Note that � · � ≡ ceil( · ) is the ceiling function and � · � ≡ floor( · ) is the floor function. They assign the least upper
integer bound and greatest lower integer bound to the argument in the function, respectively.

15 An exchange means a swap between two participants belonging to different undesignated groups. Since the Perry
experiment did not use a matched pair design, an exchange or swap is not restricted to occur between participants with
consecutive IQ ranks. Exchanges between participants with nonconsecutive IQ ranks can occur. See Appendix B.

16 The Hotelling’s multivariate two-sample t-squared statistic τ 2
c maps a partition (A,B) ofSc (such that |A| = �|Sc|/2�

and B = Sc \ A) to R≥0 and is given by τ 2
c (A,B) = (

Z̄A − Z̄B
)′

(|A|−1�̂A + |B|−1�̂B)−1
(
Z̄A − Z̄B

)
, where Z̄A =

|A|−1 ∑
i∈A Zi , with Zi as the pre-programme covariate vector containing the i-th participant’s IQ, SES index, gender,

and mother’s working status, Z̄B = |B|−1 ∑
i∈B Zi , and �̂A = (|A| − 1)−1 ∑

i∈A(Zi − Z̄A)(Zi − Z̄A)′, while �̂B =
(|B| − 1)−1 ∑

i∈B(Zi − Z̄B)(Zi − Z̄B)′. We use this metric for dimensionality reduction and computational feasibility.
Chung and Romano (2016) show, without assuming normality, that the permutation distribution of τ 2

c is asymptotically
chi-squared. If adequate computational power were available, we could also incorporate into our model the raw mean
differences in the four variables, their studentized versions, or other measures of mean differences between two groups.
Of course, it is possible that the Perry staff were just looking at mean differences and did not use any formal metric.

17 For cohort 0, the proportion of possible group formations with a lower Hotelling statistic is at least 29.24%. The
corresponding numbers for cohorts 1, 2, 3, and 4 are 64.51%, 14.79%, 9.76%, and 75.56%, respectively. Similarly, the
raw mean differences in baseline covariates for the initial groups also do not correspond to their minimum possible values.

18 The satisficing threshold δc is the maximum level of covariate imbalance that satisficed Perry staff. The threshold δc

is unknown to the analyst but can be partially identified, as explained later. We assume a uniform probability over Uc for
the choice of the partition (A∗

c ,B∗
c ) for the purpose of keeping the model simple and computationally feasible. In general,

we might suspect the following: given two partitions of Sc with the same level of Hotelling’s statistic, there might have
been a higher probability mass on the partition closer to the initial grouping based on odd and even IQ ranks. In addition,
the staff might have also preferred not to make additional exchanges if they expected relatively insignificant reductions in
covariate imbalance. In other words, the probability that the Perry staff chose a particular partition (A∗

c ,B∗
c ) could have

depended on their preferences over substitution between two things: similarity of (A∗
c ,B∗

c ) to the initial IQ rank-based
grouping; and the level of covariate imbalance (as measured by Hotelling’s statistic) resulting from the partition (A∗

c ,B∗
c ).

However, there is no unique way to formalize this notion. Such a general model may not even be computationally feasible.
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Using a satisficing model to guide finite-sample inference for compromised experiments C7

In the next step, some children of working mothers initially placed in the treatment group are
transferred to the control group.19 To model this process, we introduce additional notation. Define
Mi as an indicator of whether participant i’s mother was working at baseline. Cohorts 0 and 1 were
both randomized in the autumn of 1962, while each of the remaining cohorts were randomized in
successive years from 1963 to 1965. For cohorts c ∈ {2, 3, 4}, let mc be the number of children
of working mothers initially placed in the treatment group: mc = ∑

i∈Sc
Mi D

(1)
i,c . For the entry

cohorts, let m0,1 be the number of children of working mothers initially placed in the treatment
group for cohorts 0 and 1, that is, m0,1 = ∑

c∈{0,1}
∑

i∈Sc
Mi D

(1)
i,c .

Define ηc as a parameter indicating the maximum number of children of working mothers
in cohort c ∈ {2, 3, 4} for whom special arrangements could be made to enable special home
visits.20 We define η0,1 to be the parameter indicating the maximum number of children of working
mothers in the pooled cohorts 0 and 1 for whom special home visitation arrangements could be
made, averting their transfer to the control group if placed in the initial treatment group.21

Special arrangements are made for min(η0,1, m0,1) children of working mothers in the entry
cohorts and for min(ηc, mc) such children in each cohort c ∈ {2, 3, 4} to enable special home
visits, as opposed to weekday home visits for children of nonworking mothers. If there are any
remaining children with working mothers in the initial treatment group, they are transferred to
the control group, potentially increasing covariate imbalance.22 We assume that the Perry staff
impartially choose (with equal probability) the children for whom the special accommodations
are made.23 To formalize this assumption, let Vi,c be a binary indicator for whether the participant
i ∈ Sc was placed the initial treatment group, had a working mother, and remained in the treatment
group through special accommodations for home visits. The vector (Vi,c : i ∈ Sc, Mi D

(1)
i,c = 1)

is assumed to be drawn uniformly from the set {v ∈ {0, 1}mc : ||v||1 = min(ηc,mc)} for last three
cohorts c ∈ {2, 3, 4}. Since the two entry cohorts face a common capacity constraint with respect to
special home visitation accommodations, the vector (Vi,c : i ∈ S0 ∪ S1, Mi D

(1)
i,c = 1) is assumed

to be drawn uniformly from the set {v ∈ {0, 1}m0,1 : ||v||1 = min(η0,1,m0,1)}. In addition, Vi,c = 0
for a participant i ∈ Sc if Mi D

(1)
i,c = 0 for all c ∈ {0, 1, 2, 3, 4}.24 In this notation, the participant’s

final treatment status D
(2)
i,c is given by

D
(2)
i,c = Mi D

(1)
i,c Vi,c + (1 − Mi D

(1)
i,c ) D

(1)
i,c . (3.3)

19 The Perry teachers conducted special home visits for working mothers at times other than weekday afternoons,
when they visited the homes of nonworking mothers. Because of logistical and financial constraints, the teachers were
able to visit the homes of only a limited number of working mothers at times other than weekday afternoons. Thus, the
children of working mothers in the preliminary treatment group for whom these special arrangements could not be made
were transferred to the control group.

20 Thus, ηc can be thought of as slots available for special visits to the homes of working mothers. Equivalently, it is
the number of children of working mothers who would remain in the final treatment group if all of them were placed in
the preliminary treatment group.

21 Since cohorts 0 and 1 had a common set of teachers, they share the number of slots available for the special home
visits. Thus, we pool these two cohorts while defining m0,1 and η0,1. However, cohorts 2 to 5 have separate parameters
for the slots available for special home visits.

22 It is possible that the Perry staff engaged in another round of satisficing at this step. In principle, this could be
incorporated into our model but would increase its dimensionality. Since the published accounts do not mention another
round of balancing, we do not add this feature to our model to keep it computationally feasible.

23 We are implicitly assuming that all working mothers would be able to send their children to preschool and participate
in weekly home visits if special arrangements could be made for them. A model allowing for heterogeneity in availability
of working mothers (for special arrangements) does not appear to be computationally feasible.

24 In other words, Vi,c = 0 for the participants who were either initially placed in the control group or placed in the
initial treatment group but have nonworking mothers.
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C8 J. J. Heckman and G. Karapakula

Any Perry subjects with identifiers not in
⋃4

c=0 Sc receive the same treatment status as their
elder siblings already enrolled in the Perry study. Thus, the final treatment status Di of the i-th
subject is given by Di = D

(2)
i,c if i ∈ ⋃

c Sc. Otherwise, if participant i is not from a freshly
recruited family, the assignment is given by Di = Dh, where the h-th subject is the i-th subject’s
eldest sibling enrolled in the Perry study, if i ∈ I \ ⋃

c Sc, where I is the set of all Perry subjects.

3.2. Partially identifying satisficing thresholds and capacity constraints

Using the Perry data, we now demonstrate how we can partially identify the satisficing thresholds
δc and the special home visitation capacity constraints ηc using the last three cohorts as examples.
We then present a general framework for partially identifying these parameters.

Example 1: Wave 2 (A case with 1 transfer in the last stage).

Wave 2 Di = 0 Di = 1 Total
Mi = 0 9 7 16
Mi = 1 3 3 6
Total 12 10 22

Example 1 discusses the steps for bounding the parameters δ2 and η2 in wave 2. Shown is a
contingency table of mother’s working status Mi and final treatment status Di for participants
i ∈ S2 in cohort 2 with no elder siblings already enrolled in the Perry study. There are 22 such
participants in total. Since there are an even number of participants, each of the initial two
undesignated groups (as well as the initial treatment and control groups in the next stage) would
have been �|S2|/2� = �|S2|/2� = 11 in size. However, we observe only 10 members in the final
treatment group but 12 members in the final control group. This implies that there must have been
one transfer from the initial treatment group to the control group. Thus, one of the 3 children of
working mothers in the final control group was in the initial treatment group. However, we do not
know exactly which one of these children was transferred, so there are 3 possibilities for the initial
treatment group. Let τ 2

2,1, τ
2
2,2, τ

2
2,3 be the Hotelling two-sample statistics for these 3 possibilities.

One of these Hotelling statistics was the actual level of covariate imbalance between the initial
treatment and control groups, and this level of imbalance is assumed to be within the satisficing
threshold δ2 of the Perry staff (by construction). Thus, δ2 ≥ min{τ 2

2,1, τ
2
2,2, τ

2
2,3}. In addition, m2

= 4, since there must have been 4 children of working mothers in the initial treatment group,
consisting of the 3 participants who remain in the final treatment group and the 1 participant who
was transferred to the control group. Since 3 of the initial 4 participants remained in the final
treatment group, min (η2, m2) = min (η2, 4) = 3, implying that η2 = 3, the only solution that
satisfies the equality. We next present two other examples.

Example 2: Wave 3 (A case with 1 or 2 transfers in the last stage).

Wave 3 Di = 0 Di = 1 Total
Mi = 0 7 9 16
Mi = 1 5 0 5
Total 12 9 21

In Example 2 we show a contingency table of Mi and Di for the 21 participants i ∈ S3 in
cohort 3. The sizes of the larger and smaller undesignated groups would have been �|S3|/2� = 11
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Using a satisficing model to guide finite-sample inference for compromised experiments C9

and �|S3|/2� = 10, respectively. However, either of these two groups could have been the initial
treatment group. Since there are 12 members in the final control group and 9 in the final treatment
group, there are 2 possible cases: if the initial treatment group had 10 members, there would have
been 10 − 9 = 1 transfer; but if it had 11 members, there would have been 11 − 9 = 2 transfers.
Since the number of transfers involving children of working mothers is either 1 or 2, the number
of possibilities for the initial treatment group is

(5
1

) + (5
2

) = 5 + 10 = 15, as all the 5 children
of working mothers in this cohort are in the control group. Let τ 2

3,1, . . . , τ
2
3,15 be the Hotelling

statistics for those 15 possibilities. Then, δ3 ≥ min{τ 2
3,1, . . . , τ

2
3,15}. In addition, m3 ∈ {1, 2}, since

m3 is the sum of the number of transfers (either 1 or 2) and the number of remaining children
in the final treatment group (0 in this cohort). As no working mother remained in the treatment
group, min (η3, m3) = 0, implying that η3 = 0, which is the only number consistent with this
equality. Thus, the Perry staff were unable to provide special home visitation accommodations
for any of the participants in this cohort.

Example 3: Wave 4 (A case with no transfers in the last stage).

Wave 4 Di = 0 Di = 1 Total
Mi = 0 5 10 15
Mi = 1 4 0 4
Total 9 10 19

In Example 3 we show a contingency table of Mi and Di for the 19 participants i ∈ S4 in cohort
4. The sizes of the larger and smaller undesignated groups would have been �|S3|/2� = 10 and
�|S3|/2� = 9. These coincide with the final sizes of the treatment and control groups, respectively.
Accordingly, we can conclude that the observed final treatment group was indeed the initial
treatment group for this cohort. Otherwise, the control group would have had at least 10 members.
Let τ 2

4,1 be the Hotelling statistic for the observed partition of S4 based on the final treatment
status. Then, δ4 ≥ τ 2

4,1. In addition, note that there are no children of working mothers in the final
treatment group, which was also the initial treatment group, and so m4 = 0. Since min (η4, m4) =
min (η4, 0) = 0 and there are 4 members with working mothers in total, it follows that the capacity
constraint could be any of the numbers from 0 through 4, i.e., η4 ∈ {0, 1, 2, 3, 4}, because any of
these values satisfies the equality. Thus, the observed data for cohort 4 is not helpful in bounding
η4.

Partial identification of the satisficing thresholds and capacity constraints in general. We now
present a general characterization of how to partially identify the satisficing thresholds and
capacity constraints on special home visits.

Wave c Di = 0 Di = 1 Total
Mi = 0 ω0,0 ω0,1 ω0,∗
Mi = 1 ω1,0 ω1,1 ω1,∗
Total ω∗,0 ω∗,1 |Sc|

In the above contingency table, there are ωm,d participants with (Mi, Di) = (m, d) ∈ {0, 1}2

among the set of participants Sc in cohort c.25 The total number of children with nonworking
25 Note that ωm,d ≡ ωm, d, c for all (m, d) ∈ {0, 1}2 but we suppress the subscript c for simplicity.
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C10 J. J. Heckman and G. Karapakula

mothers is ω0,∗ = ω0,0 + ω0,1 and that of working mothers is ω1,∗ = ω1,0 + ω1,1. The total number
of participants in the final control group is ω∗,0 = ω0,0 + ω1,0 and that in the final treatment
group is ω∗,1 = ω0,1 + ω1,1. The partial identification of the satisficing thresholds and capacity
constraints would vary depending on whether |Sc| is even or odd and also depending on whether
ω∗,1 = �|Sc|/2� or ω∗,1 < �|Sc|/2�. We discuss each of these cases separately.

First, consider the case where |Sc| is even or odd and ω∗,1 = �|Sc|/2�. In this case, since
the size of the final treatment group remains the same as that of the initial treatment group,
there must have been no transfers of children with working mothers from the treatment group
to the control group. Since the final treatment group is the same as the initial one, we can
bound the satisficing threshold as follows: δc ≥ τ 2

c,1, where τ 2
c,1 is the Hotelling statistic for the

partition of Sc based on the final treatment status. In addition, since there are no transfers, the
number of children of working mothers in the initial treatment group mc equals ω1,1. Since
min(ηc, ω1,1) = ω1,1, it follows that ηc ∈ {ω1,1, . . . , ω1,∗}, i.e., the number of slots available for
special home visits must be at least the number ω1,1 observed in the data.

Second, consider the case where |Sc| is even and ω∗,1 < �|Sc|/2�. As in Example 1, in this case
it is clear that the number of transfers in the final stage must have been χc = �|Sc|/2� − ω∗,1,
which is a positive number. The χc transferred children must be among the ω1,0 members with
working mothers in the final control group. Thus, there are

(
ω1,0

χc

)
possibilities for the initial

treatment group. Let ϑδ
c be the set containing the Hotelling statistics for those possibilities. Then,

δc ≥ min ϑδ
c . In addition, there must have been mc = ω1,1 + χc children with working mothers

in the initial treatment group. It remains to determine which values of ηc are consistent with the
equality min(ηc, ω1,1 + χc) = ω1,1. Since χc > 0, it follows that ηc = ω1,1.

Third, consider the case where |Sc| is odd and ω∗,1 < �|Sc|/2�. As in Example 2, in
this case there are two possibilities for the number χc of transfers in the final stage.
Specifically, χc ∈ {�|Sc|/2� − ω∗,1, �|Sc|/2� − ω∗,1}. These χc transferred children must be
among the ω1,0 members with working mothers in the final control group. Thus, there are(

ω1,0

�|Sc|/2�−ω∗,1

) + (
ω1,0

�|Sc|/2�−ω∗,1

)
possibilities for the initial treatment group. Let ϑδ

c be the set contain-

ing the Hotelling statistics for those possibilities. Then, δc ≥ min ϑδ
c . The number mc of children

with working mothers initially assigned treatment is either equal to ω1,1 + �|Sc|/2� − ω∗,1 or
equal to ω1,1 + �|Sc|/2� − ω∗,1. Let ϑ

η
c be the set of values of ηc consistent with the equality

min(ηc,mc) = ω1,1. If mc = ω1,1 + �|Sc|/2� − ω∗,1, then ηc = ω1,1, since �|Sc|/2� > ω∗,1. How-
ever, if mc = ω1,1 + �|Sc|/2� − ω∗,1, there are two sub-cases: if �|Sc|/2� > ω∗,1, then ηc = ω1,1;
but if �|Sc|/2� = ω∗,1, then ηc ∈ {ω1,1 . . . , ω1,∗}. Therefore, the special home visiting slots can
be partially identified as follows: ηc ∈ ϑ

η
c , where ϑ

η
c = {ω1,1 . . . , ω1,∗} if �|Sc|/2� = ω∗,1, and

ϑ
η
c = {ω1,1} if �|Sc|/2� > ω∗,1.
This general characterization of the partial identification of satisficing thresholds δc applies to

all cohorts c ∈ {0, 1, 2, 3, 4} but that of the special home visiting capacity constraints ηc applies
only to cohorts c ∈ {2, 3, 4}. However, similar reasoning can be used to partially identify the
capacity constraint η0,1 for pooled cohorts 0 and 1.26

26 Specifically, η0,1 ∈ {η ∈ {0, . . . ,
∑

i∈S0∪S1
Mi} : min(η, χ0 + χ1 + ω

0,1
1,1) = ω

0,1
1,1, χ0 ∈ C0, χ1 ∈ C1}, where ω

0,1
1,1 =∑

i∈S0∪S1
Mi Di and Cc = {�|Sc|/2� − ω∗,1,c, max{0, �|Sc|/2� − ω∗,1,c}} for c ∈ {0, 1}. In our application, η0,1 ∈ {3}.

Since we do not make assumptions on the missing mother’s working status at baseline for a subject in wave 0 and the
missing gender of another subject in wave 1 (among the five who dropped out of the initial sample of 128 for extraneous
reasons), our partial identification of δ0 and δ1 depends on the values in the partially identified set for the missing
variables. Since we do not make assumptions on the two missing binary variables, this is a strength of our analysis,
despite quadrupling the computational cost. We also use known information that there was at least one transfer in wave
0 (Weikart et al., 1964) to narrow the partially identified set for that cohort.
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Using a satisficing model to guide finite-sample inference for compromised experiments C11

3.3. Applicability of our approach to other compromised experiments

Our approach can be applied to many of the studies that Bruhn and McKenzie (2009) criticize,
especially experiments using undocumented rerandomization. All of these experiments have the
feature that some criterion determines “satisfactory balance.” For example, Bruhn and McKenzie
(2009) quote a survey response that says, “[experimenters] regressed variables like education on
assignment to treatment, and then re-did the assignment if these coefficients were too big.” With
appropriate modifications, our model of satisficing thresholds directly applies to experiments con-
ducted in such a subjective and incompletely documented manner. Suitable adjustments include
replacing Hotelling’s statistic in our model with studentized regression coefficients (selected by
pretesting or otherwise) or other metrics actually used to measure covariate imbalance between
the treatment and control groups. Our methods for partially identifying the underlying random-
ization rules can be used when the subjective satisficing thresholds are not documented. Even
though we only use one balancing criterion (Hotelling’s statistic) for dimensionality reduction in
our definition of Uc(·), it can be trivially modified to accommodate multiple balancing criteria.
In addition, if the experiment has strata instead of cohorts, the cs in our model would correspond
to strata.

If an experiment does not have transfers after forming the intermediate treatment and control
groups, then there are no capacity constraints, i.e., the ηcs play no role. However, in some social
experiments, post-randomization transfer of some participants from the control to the treatment
group can occur if additional funding for the intervention becomes available. For example, wait-
list control groups are used in some clinical studies. While this is the reverse of what occurred in
the Perry experiment, our model (with appropriate modifications) can be readily applied. Overall,
our approach can be adapted to analyse a variety of compromised experiments across multiple
disciplines.

4. HYPOTHESES OF INTEREST AND INFERENCE

The conventional way to analyse randomized experiments is to posit a null hypothesis that
the average effect of treatment is zero and to proceed in testing it with large-sample methods
using asymptotic or bootstrap distributions. Given the relatively small size of many experimental
samples, reliance on large-sample methods can be problematic.27

In some settings, permutation tests can be used to test the null hypothesis that the outcomes in
the control group have the same distribution as those in the treatment group without relying on
large-sample theory. Permutation tests exploit the property that treatment and control labels within
the same strata are exchangeable under the null hypothesis of a common outcome distribution. If
randomization of the treatment status did not involve explicit stratification on baseline covariates,
permutation tests need to make restrictive assumptions on the strata within which treatment and
control labels are exchangeable. This approach is used by Heckman et al. (2010a).28 They assume

27 In a set of 53 studies of randomized controlled trials published in some leading economics journals, Young (2019) also
finds that experimental results obtained using asymptotic theory are misleading, relative to results based on randomization
tests.

28 However, unless the permutation method reflects the method used for random assignment of the treatment, per-
mutation tests do not in general allow us to test hypotheses about counterfactual outcomes of the individual Perry
participants.
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C12 J. J. Heckman and G. Karapakula

that conditioning on covariates solves the problem of post-random assignment reallocation but
without any explicit model for why it is effective in doing so.29

This paper uses knowledge of the randomization protocol to draw inferences about treatment
effects. Once a precise null hypothesis is specified, we can determine the distribution of estimates
generated by the randomization scheme and assess the statistical significance of the observed
treatment effects.

In this section, we first formulate our hypotheses of interest. We then discuss conventional
inferential procedures. Finally, we introduce worst-case (least favourable) randomization tests
and discuss how to conduct them using stochastic approximations, and then we compare our
methods with alternative approaches for inference with imperfect randomization.

4.1. Hypotheses of interest

Let Y1 be the treated outcome, Y0 be the untreated outcome, Z represent background variables,
and F be their joint distribution at the population level. The conventional approach tests the
hypothesis HC of equality of means, i.e.,

HC : EF [Y 1 − Y 0] = 0, (4.1)

assuming that the corresponding versions (Y 1
i , Y 0

i , Zi) of those variables for individual i are
distributed according to F for all i ∈ P , where P is the set of experimental subjects. Because
each participant in our sample is assigned to either the treatment group or the control group,
we only observe either Y 1

i or Y 0
i for each i ∈ P . The hypothesis HC is traditionally tested by

applying large-sample methods to the observed data (Yi,Di, Zi)i∈P , where Di is the treatment
status, Yi = Di Y

1
i + (1 − Di) Y 0

i , and Zi is the vector of pre-programme covariates.
Instead of appealing to some hypothetical large-sample experiment to conduct inference, we

seek knowledge of the small sample in hand. One hypothesis of interest is whether the average
treatment effect within the sample is zero, i.e.,

HN :
1

NP

∑
i∈P

(
Y 1

i − Y 0
i

) = 0, (4.2)

whereNP = |P|.30A special case of HN is the sharp null hypothesis of no treatment effects
whatsoever for each participant:

HF : τi ≡ Y 1
i − Y 0

i = 0, (4.3)

for all i ∈ P ,31 Fisher’s (1925; 1935) null hypothesis. It involves a joint test of zero individual
treatment effects and is trivially equivalent to HN if there is no heterogeneity in the treatment
effects. The advantage of Fisher’s hypothesis HF is that it provides a testable model in which all
the counterfactual outcomes are specified.32 Such hypothesis testing can be conducted using our

29 In practice, their approach relies on large-sample methods in using regression analysis to condition on covariates.
30 This is attributed to Neyman (1923).
31 While this formulation states that each individual treatment effect τ i is zero, the analyst may fix each τ i at a desired

value for hypothesis testing. Such a hypothesis is often called sharp because it specifies one set of counterfactual outcomes
for the participants.

32 Note that we observe either Y 1
i or Y 0

i for each participant i ∈ P . Thus, under the null model (4.3), the other
counterfactual outcome can be imputed according to the fact that Y 1

i = Y 0
i . In general, if τ i is hypothesized to be equal

to a number τ ◦
i , the counterfactual outcomes (Y 1

i , Y 0
i ) under the null model are equal to (Yi + τ ◦

i , Yi ) if Di = 0 and is
equal to (Yi, Yi − τ ◦

i ) if Di = 1 for all i ∈ P .
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Using a satisficing model to guide finite-sample inference for compromised experiments C13

knowledge of the randomization protocol without relying on large-sample theory. With all the
counterfactual outcomes specified, we can learn about the randomization distribution of treatment
effects, and we can gauge the extent to which the observed data can be rationalized using the
specified null model.33

Hypothesis HN nests the sharp null hypothesis HF . In general there are many configurations
of the individual treatment effects that are all consistent with HN . Thus, to test HN using
only limited knowledge of the randomization protocol, we would need to test each one of all
the sharp null hypotheses like HF that imply HN .34 However, a nonrejection of HF implies
nonrejection of HN , and so testing other sharp null hypotheses may not be necessary if we
are unable to reject HF . Of course, a rejection of HF would not imply a rejection of HN .
The latter is a very conservative criterion. We next discuss conventional hypothesis testing
procedures.

4.2. Conventional hypothesis testing procedures

For tests of population-level parameters such as HC in equation (4.1), the most commonly
reported measure of statistical significance is the asymptotic p-value. For completely randomized
experiments, it can be interpreted as the p-value based on a large-sample approximation of the
distribution of an estimator, say difference-in-means, over all possible randomizations under the
null hypothesisHN (Neyman, 1923). Li et al. (2018) derive an asymptotic theory of the difference-
in-means estimator in experiments involving rerandomization with a pre-specified balancing rule
using the Mahalanobis distance, for which the asymptotic distribution of the estimator is a linear
combination of normal and truncated normal variables. Resampling methods are also widely used
to quantify statistical uncertainty. For example, the bootstrap standard error is reported in many
research papers with an associated bootstrap p-value.

Permutation tests are often used when researchers are interested in testing whether treatment
and control groups have a common outcome distribution without relying on large-sample theory.
Such tests rely on the property that the treatment and control labels are exchangable within
each stratum of the experiment under the null hypothesis of a common distribution. In their
permutation tests, Heckman et al. (2010a) use strata defined by wave, gender, and indicator
for above-median socioeconomic status, assuming that experimental labels within each stratum
are exchangeable. To compare their permutation procedures with the methods developed in this
paper, we use a simplified version of their permutation tests using block permutations within
cohorts of eldest participant-siblings (whose treatment statuses determine that of their younger
participant-siblings).

In the Perry context, Heckman et al. (2020) develop an extension of permutation tests to
account for imperfect randomization. In this paper, we offer an alternative design-based approach
to conduct inference for a broader class of compromised experiments. We first present our
approach and then compare it with theirs.

33 See Athey and Imbens (2017) and Abadie et al. (2020) for background on this topic. Also, note that our randomization
tests are conditional tests that exploit random variation in the treatment status but fix the other observed data. See Lehmann
(1993).

34 When the outcomes under consideration are binary and the experiment involves a completely randomized design,
there are strategies to test the weak null hypothesis in a computationally feasible way (see, e.g., Li and Ding, 2016;
Rigdon and Hudgens, 2015).
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C14 J. J. Heckman and G. Karapakula

4.3. Worst-case randomization tests

This paper advocates and uses worst-case approximate randomization tests to analyse the Perry
data. Fisher’s sharp null hypothesis HF specifies all the counterfactual outcomes, which are
imputed according to the hypothesis using the observed data. If we knew the exact randomization
protocol of the Perry experiment, we could measure where the observed test statistic falls along
its exact randomization distribution, i.e., the distribution of the test statistic over all possible
treatment status vectors that could have been hypothetically generated by the randomization
protocol. The more extreme the observed test statistic falls along the null distribution, the more
incompatible the observed data would be with the sharp null hypothesis. However, for Perry and
many other social experiments, the exact randomization protocol is unknown: even in our stylized
model of the randomization protocol, the satisficing thresholds and capacity constraints are only
partially identified. To account for this ambiguity, we could in theory conduct randomization
tests35 over the set of all possible randomization protocols. Thus, we could conduct the worst-
case randomization test, conditional on the observed outcomes and baseline covariates,36 using
the least favourable distribution among all the possible randomization distributions. This results
in the following worst-case p-value that serves as an upper bound for the true randomization
p-value:

pw(D) = sup
γ ∗∈


P�γ ∗ {T (D̃γ ∗) ≥ T (D)}, (4.4)

where 
 is the partially identified set37 for γ = (δ0, . . . , δ4, η0,1, η2, η3, η4), the vector of true
values of parameters (satisficing thresholds and capacity constraints), P�γ ∗ represents probability
(conditional on the observed outcomes and pre-programme covariates) under the probability
space �γ ∗ of randomizations generated by the protocol parameterized by γ *, D̃γ ∗ represents a
random treatment status vector defined on the probability space �γ ∗ , D denotes the observed
treatment status vector, and T( · ) is the chosen test statistic such that T( · ) maps a treatment
status vector to a real number measuring the magnitude of the outcome difference between the
treatment and control groups. Since the sharp null hypothesis specifies counterfactual outcomes,
the data (Y 0

i , Y 1
i , Zi)i∈P are fixed according to HF , and the only random variation in the above

construction comes from the randomization protocol. The sample space �γ ∗ of the uniform
probability space �γ ∗ , on which the random treatment status vector D̃γ ∗ is defined, is given by

�γ ∗ =
(

4
ą

c=0

Uc(δ∗
c )

)
× �Q,Vγ ∗ , (4.5)

where U(δ∗
0 , . . . , δ

∗
4 ) ≡ Ś4

c=0 Uc(δ∗
c ) is the Cartesian product of the sets of admissible partitions

of Sc (in the initial step of the protocol) across all cohorts c ∈ {0, . . . , 4}, and �Q,Vγ ∗ is the
Cartesian product of the sample spaces for all other random variables, characterizing the outcomes
Qc of the coin flips and vectors of variables Vi,c used for determining which children of working
mothers are transferred from the treatment to control group in the last step across all cohorts c

35 These tests are not strictly exact because our model simplifies the actual randomization procedure and can at best
be considered a useful approximation of the true model of the protocol.

36 Since our randomization tests follow the standard Fisherian framework, they are conditional tests that exploit random
variation in the treatment status but fix the other observed data. See Lehmann (1993).

37 Note that 
 is a sharp identified set because we follow the Fisherian framework where the observed outcomes and
baseline covariates in our sample are treated as fixed.
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Using a satisficing model to guide finite-sample inference for compromised experiments C15

∈ {0, . . . , 4}, used in the randomization protocol parameterized by γ ∗.38 Using this notation we
establish the following proposition:

PROPOSITION 4.1. Under the model of the randomization protocol in Section 3, the hypothesis
test that rejects the sharp null hypothesis whenever pw(D) ≤ α controls the Type I error rate at
level α for any α ∈ (0, 1).

Proof. Let pγ ∗ (D) ≡ P�γ ∗ {T (D̃γ ∗) ≥ T (D)} for all γ ∗ ∈ 
, let pw(D) ≡ supγ ∗∈
 pγ ∗ (D) rep-
resent the worst-case p-value, and let ψα(D) ≡ I{pw(D) ≤ α} be the test for a given D, a re-
alization of the random treatment status vector defined on the probability space �γ , where
γ is the true value of the model parameter. Since pγ (D) ≤ pw(D) by construction, it follows
that E�γ

[ψα(D)] = E�γ
[I{pw(D) ≤ α}] ≤ E�γ

[I{pγ (D) ≤ α}] = P�γ
{pγ (D) ≤ α} ≤ α under

HF for any α ∈ (0, 1). �
This proof is an extension of the simple standard argument used to show the finite-sample

validity of randomization tests (see Lehmann and Romano, 2005). The above proposition can be
equivalently stated in terms of a critical value for the test statistic, as in Heckman et al. (2020).

Although it would be ideal to compute the exact value of pw(D), it is computationally not feasi-
ble. As is common practice in computing permutation and randomization p-values (see Lehmann
and Romano, 2005), we resort to stochastic approximations. Even so, there are two challenges
in estimating the worst-case p-value. First, approximating the probability P�γ ∗ {T (D̃γ ∗) ≥ T (D)}
for a given value γ ∗ ∈ 
 is computationally demanding. Second, estimating pw(D) based on such
tail probability estimates for a finite number of points on 
 is also challenging. We tackle these
two challenges sequentially and discuss how we handle some forms of stochastic approximation
errors.

4.3.1. Approximating tail probabilities of randomization distributions. The first challenge is
to approximate P�γ ∗ {T (D̃γ ∗ ) ≥ T (D)} for a given value γ ∗ in the partially identified set, i.e.,
for γ ∗ = (δ∗

0 , . . . , δ
∗
4 , η

∗
0,1, η

∗
2, η

∗
3, η

∗
4) ∈ 
. Our approach is to break up the sample space of �γ ∗

into two parts, compute the tail probability (measuring how extreme the observed test statistic
is in its randomization null distribution) for each of these two parts, and then use the law of
total probability and Monte Carlo methods to get the desired final result. To do so, we introduce
additional notation. Let δ

†
c be the lower bound of the partially identified set for the true value of

the satisficing threshold δc for c ∈ {0, . . . , 4}. Then, for any given value δ∗
c ≥ δ

†
c , observe that

Uc(δ∗
c ) = Xc ∪ Yc(δ∗

c ), (4.6)

where

Xc = {(A,B) ∈ Uc(∞) : τ 2
c (A,B) ≤ δ†c}, (4.7)

and

Yc(δ∗
c ) = {(A,B) ∈ Uc(∞) : δ†c < τ 2

c (A,B) ≤ δ∗
c }, (4.8)

for all c ∈ {0, . . . , 4}. Thus, we can use Uc(∞), which is the set with an infinite satisficing
threshold such that all allowed partitions of Sc are satisfactory, to construct Xc, Yc(δ∗

c ), and
Uc(δ∗

c ). The set Xc has elements with Hotelling statistics below the lower bound δ
†
c of the partially

38 Specifically, �Q,Vγ ∗ = {0, 1}5 ×
(

Ś

c∈{(0,1),2,3,4}
ŚMc

m=1{v ∈ {0, 1}m : ||v||1 = min(η∗
c , m)}

)
, where M0,1 =∑

i∈S0
⋃

S1
Mi and Mc = ∑

i∈Sc
Mi for all c ∈ {2, 3, 4}.
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identified set for the satisficing threshold. The other set Yc(δ∗
c ) = Uc(δ∗

c ) \ Xc has elements with
Hotelling statistics between δ

†
c and δ∗

c . Let �̃X = Ś4
c=0 Xc be the Cartesian product of the sets

Xc across cohorts, and let �̃Y
γ ∗ = U(δ∗

0 , . . . , δ
∗
4 ) \ �̃X = {Ś4

c=0 Uc(δ∗
c )} \ �̃X . Both �̃X and �̃Y

γ ∗

can be constructed using U(∞, . . . ,∞) by discarding elements in their respective complements.
Since the sets Xc do not depend on the values δ∗

c , the set �̃X remains constant. Notice that

�γ ∗ = (�̃X ∪ �̃Y
γ ∗ ) × �Q,Vγ ∗ = (�̃X × �Q,Vγ ∗ ) ∪ (�̃Y

γ ∗ × �Q,Vγ ∗ ). (4.9)

Let �X
γ ∗ and �Y

γ ∗ be the uniform probability spaces over the sample spaces �X
γ ∗ ≡ �̃X × �Q,Vγ ∗

and �Y
γ ∗ ≡ �̃Y

γ ∗ × �Q,Vγ ∗ , respectively. In addition, let

x(γ ∗) ≡ | �X
γ ∗ |

| �γ ∗ | = | �̃X × �Q,Vγ ∗ |
| �γ ∗ | = | �̃X | · | �Q,Vγ ∗ |

| �̃X ∪ �̃Y
γ ∗ | · | �Q,Vγ ∗ | = | �̃X |

| �̃X ∪ �̃Y
γ ∗ | , (4.10)

which is the proportion of elements in the sample space �γ ∗ belonging to �X
γ ∗ . Note that the last

equality above implies that x(γ ∗) can be simply computed with the sets �̃X and �̃Y
γ ∗ constructed

using U(∞, . . . ,∞).39 Then, by the law of total probability, we have that

P�γ ∗ {T (D̃γ ∗ ) ≥ T (D)} = x(γ ∗) · P�X
γ ∗ {T (D̃X

γ ∗ ) ≥ T (D)}

+ y(γ ∗) · P�Y
γ ∗ {T (D̃Y

γ ∗ ) ≥ T (D)}, (4.11)

where D̃X
γ ∗ and D̃Y

γ ∗ represent random treatment status vectors defined on the probability spaces

�X
γ ∗ and �Y

γ ∗ , respectively, and y(γ ∗) = 1 − x(γ ∗). Since the sample spaces in the model are large,
we use Monte Carlo draws from the probability spaces through rejection sampling to stochastically
approximate the tail probability P�γ ∗ {T (D̃γ ∗) ≥ T (D)}.40,41 Our approach provides a feasible
way to estimate P�γ ∗ {T (D̃γ ∗) ≥ T (D)} for points γ ∗ in 
 efficiently using rejection sampling.

4.3.2. Estimating and bounding the worst-case tail probability. The second challenge is to
estimate or bound the worst-case tail probability. Taking the supremum of tail probabilities over
points in the set 
 may seem intractable, since 
 is the Cartesian product of a finite set and
a noncompact set.42 However, we exploit the fact that Uc(ν) = Uc(∞) for all ν ≥ �c, where
�c = max{τ 2

c (A,B) : (A,B) ∈ Uc(∞)}, since Uc(∞) is a finite set, for all c ∈ {0, ···, 4}. Let 
◦

39 We use 500,000 Monte Carlo draws from U(∞, . . . , ∞) = Ś4
c=0 Uc(∞), a very large set, to approximate x(γ ∗).

40 We use 400 Monte Carlo draws from �X
γ ∗ to approximate P�X

γ ∗ {T (D̃X
γ ∗ ) ≥ T (D)}. This is effectively importance

sampling. In addition, we use 2,600 Monte Carlo draws from �Y
γ ∞ , where γ ∞ = (∞, . . . , ∞, η∗

0,1, η
∗
2, η∗

3, η∗
4), and use

rejection sampling to draw random samples from �Y
γ ∗ for approximating P

�
Y
γ ∗

{T (D̃Y
γ ∗ ) ≥ T (D)}. It takes much longer

to compute these tail probabilities than to compute x(γ ∗). Limited computational power restricted the number of Monte
Carlo draws.

41 Since the randomly sampled treatment status vectors are i.i.d. and uniformly distributed on corresponding sample
spaces, for a given γ ∗ the associated p-value stochastic approximations can be used to construct valid tests. For details,
see section 4 of Romano (1989), section 3.2 of Romano and Wolf (2005), or section 15.2.1 of Lehmann and Romano
(2005). Although this holds when γ ∗ is taken as given, our main object of interest is the worst-case p-value in equation
(4.4). Since it is infeasible to compute a p-value for each γ ∗ ∈ 
, we also resort to stochastic approximations of the
supremum in equation (4.4). In Section 4.3.2, we discuss how we account for uncertainty in the stochastic approximation
of the worst-case p-value.

42 Specifically, 
 = Ś4
c=0[δ†c , ∞)

Ś

ϑ
η
0,1 × ×4

c=2ϑ
η
c , where δ

†
c is the lower bound for the satisficing threshold δc, and

ϑ
η
c is the finite partially identified set for the capacity constraint ηc.
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Using a satisficing model to guide finite-sample inference for compromised experiments C17

be the compact subset of 
 given by


◦ = {γ̃ ≡ (δ̃0, . . . , δ̃4, η̃0,1, η̃2, η̃3, η̃4) ∈ 
 : δ†c ≤ δ̃c ≤ �c ∀c}. (4.12)

It then follows that

pw(D) ≡ sup
γ ∗∈


P�γ ∗ {T (D̃γ ∗) ≥ T (D)} = max
γ ∗∈
◦

P�γ ∗ {T (D̃γ ∗) ≥ T (D)}. (4.13)

Thus, it suffices to estimate the worst-case tail probability over the set 
◦, which is compact.43

We use stochastic approximations for this purpose as well. It is computationally infeasible to
compute a p-value for each of the points in the set 
◦ and take the maximum of those p-values.
To deal with this challenge, we first write 
◦ = ⋃L

l=1 
◦
l , where 
◦

1, . . . , 

◦
L are disjoint hyper-

rectangles that form a partition of the set 
◦. In our application, L = 20, and each hyper-rectangle
represents the partially identified set for (δ0, . . . , δ4) at fixed values of (η0,1, η2, η3, η4).44 Then,
note that

pw(D) = max{p1
w(D), . . . , pL

w(D)}, (4.14)

where

pl
w(D) = max

γ ∗∈
◦
l

P�γ ∗ {T (D̃γ ∗ ) ≥ T (D)}, (4.15)

for l ∈ {1, . . . , L}. We approximate pl
w(D) for each l ∈ {1, . . . , L} using the p-values pl

(1), . . . , p
l
(S)

arranged in descending order for S = 900 uniformly sampled random points on the set 
◦
l .45

We estimate pl
w(D) for each l ∈ {1, . . . , L} using the maximum order statistic p̃l

M :

p̃l
M = max

1 ≤ s ≤ S
pl

(s) = pl
(1), (4.16)

which converges almost surely to pl
w(D) as S → ∞. However, this estimate may have stochastic

approximation error. One way to deal with stochastic approximation-related uncertainty in p̃l
M is

by constructing a confidence band for pl
w(D). To do so, we construct an upper bound based on

de Haan’s (1981) 90% asymptotic confidence band for the true maximum using the S randomly
sampled p-values. The upper confidence bound p̃l

dH is given by

p̃l
dH = pl

(1) + (pl
(1) − pl

(2)) · Kl
dH , (4.17)

43 In fact, we can further simplify the worst-case tail probability. Let �c = {τ 2
c (A,B) : (A,B) ∈ Uc(∞)}, which is

a finite set, for all c ∈ {0, . . . , 4}, and let 
� = {γ̃ ≡ (δ̃0, . . . , δ̃4, η̃0,1, η̃2, η̃3, η̃4) ∈ 
◦ : δ̃c ∈ �c ∀c}, which is also a
finite set. Then, we have that pw(D) = maxγ ∗∈
� P�γ ∗ {T (D̃γ ∗ ) ≥ T (D)}. However, even though the set 
� is finite,
its size is too large in practice, making stochastic approximations still necessary.

44 Note that in our application, η0,1, η2, and η3 are point-identified while η4 is partially identified to be in the set
{0, . . . , 4}. Thus, (η0,1, η2, η3, η4) has 5 possible values. In addition, since we do not know the mother’s working status
at baseline for a subject in wave 0 and the gender of a subject in wave 1 (both of whom are among the 5 participants who
dropped out of the study for extraneous reasons), there are 4 possible configurations of the two missing binary variables.
Thus, in total there are L = 5 × 4 = 20 hyper-rectangles that make up 
◦.

45 To ensure that we are covering 
◦ and its edges well when sampling the random points, we use a normalization. We
use the distribution Fτ2

c
of Hotelling statistics on Uc(∞) to normalize δc so that Fτ2

c
(δc) ∈ [Fτ2

c
(δ†c ), 1], a compact set,

for all c ∈ {0, . . . , 4}. Thus, γ and 
◦
l are monotonically transformed accordingly in practice. We can do this because

Uc(∞) is a finite set and Uc(δc) ≡ {(A,B) : A ⊂ Sc, B = Sc \ A, |A| = �|Sc|/2�, τ 2
c (A,B) ≤ δc} is equivalent to

the set {(A,B) : A ⊂ Sc, B = Sc \ A, |A| = �|Sc|/2�, Fτ2
c

(τ 2
c (A,B)) ≤ Fτ2

c
(δc)}.
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C18 J. J. Heckman and G. Karapakula

where Kl
dH is a factor provided by de Haan (1981) for the 90% asymptotic confidence bound.46

Thus, the 90% confidence interval for pl
w(D) is given by [p̃l

M, p̃l
dH ]. Finally, the true worst-case

p-value pw(D) can be approximated by the worst-case maximum (max.) p-value p̃M given by

p̃M = max{p̃1
M, . . . , p̃L

M}, (4.18)

and its upper confidence bound is given by the worst-case de Haan p-value p̃dH as follows:

p̃dH = max{p̃1
dH , . . . , p̃L

dH }, (4.19)

which provides at least 90% coverage as S → ∞. Of course, these stochastic approximations
affect the exact finite-sample validity of the resulting hypothesis tests, but the validity of these
approximations can be arbitrarily increased with adequate additional computational power. This
is an issue common to most resampling methods in statistics (see Lehmann and Romano, 2005).

In the previous discussion, the test statistic T( · ) used to compute the worst-case tail probability
is left general. There is reason to suspect that the choice of the test statistic matters, as shown
for permutation tests by Chung and Romano (2013; 2016). Wu and Ding (2020) show that using
studentized test statistics in certain randomization tests can control type I error asymptotically
under certain weak null hypotheses while preserving finite-sample validity under sharp null
hypotheses. Their theory ignores covariates and is limited to completely randomized factorial
experiments and stratified or clustered experiments. However, they conjecture that “the strategy
[of using studentized test statistics to make randomization tests asymptotically robust under weak
null hypotheses while retaining their finite-sample validity under sharp null hypotheses may also
be] applicable for experiments with general treatment assignment mechanisms” (Wu and Ding,
2020). While we do not attempt to prove or disprove their conjecture in the Perry experimental
setting, we take it seriously given their results for certain randomization tests along with Chung
and Romano’s (2013; 2016) results for permutation tests. Thus, we provide worst-case p-values
using both the nonstudentized and studentized test statistics.

4.3.3. Multiple testing. Since P�γ
{pw(D) ≤ α} ≤ α under HF for any α ∈ (0, 1) by Propo-

sition 4.1, Holm (1979) tests of multiple hypotheses based on the worst-case p-values would
also have finite-sample validity. Multiplicity-adjusted p-values can be computed as follows.
Let ρ(1), . . . , ρ(K) be the associated single worst-case p-values arranged in ascending or-
der. Then, the Holm stepdown p-values adjusted for multiple testing are given by �(k) =
maxj≤k min(1, (K − j + 1) ρ(j )) for k ∈ {1, . . . , K}. However, these adjusted p-values can be
even more conservative because they assume least favourable dependence structure between the
single worst-case p-values (Romano et al., 2010), making this the “worst-case” of the “worst-
case.” However, slightly less conservative multiple hypothesis tests are available in the literature
(see Romano and Wolf, 2005; Romano and Shaikh, 2010). Since it is unclear how much improve-
ment in terms of power they provide relative to Holm tests in our context, we do not discuss the
more computationally involved stepdown procedures in this paper.

46 Specifically, Kl
dH =

[
0.9υl

dH − 1
]−1

, where υl
dH = − ln[(pl

(3) − pl

(
√

S)
)/(pl

(2) − pl
(3))]/ ln(

√
S), based on de Haan’s

(1981) result. In the context of estimating the minimum of a function over a compact set using order statistics, de Haan
(1981) proposes construction of a confidence band for the minimum. We apply this result without loss of generality in
our context (estimation of the maximum rather than the minimum).
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Using a satisficing model to guide finite-sample inference for compromised experiments C19

4.4. Comparing methods for inference with imperfect randomization

Our approach complements that of Heckman et al. (2020), who improve on the methodology
of Heckman et al. (2010a) by (i) exploiting a symmetry generated by the Perry randomization
protocol, (ii) using finite-sample inference that accounts for imperfect randomization, and (iii)
making transfers in the fifth step of the randomization protocol depend on a binary variable47

indicating whether the mother is available for home visits, assuming programme infrastructure is
available to support it. We also exploit the symmetry: Qc represents the result of a fair coin flip to
determine which of the two initially undesignated groups becomes the intended treatment group.
However, we model other features of the protocol differently.

Heckman et al. (2020) model the reassignment of children of some working women by intro-
ducing a partially observed binary variable Ui that equals 1 if the mother of participant i was
unavailable for home visits and 0 otherwise. It is known only for children of nonworking mothers,
for whom Ui = 0, and for the children of working mothers in the final treatment group, who also
have Ui = 0. For children of working mothers in the control group, Ui is not known and could
be either 0 or 1. To deal with this difficulty, Heckman et al. (2020) construct two permutation
tests. The first test sets Ui to 0 for all children of working mothers in the final control group
and conducts a generalized permutation test accordingly. The second test: (i) samples a vector of
Ui from the space of possibilities for Ui; (ii) conducts a generalized permutation test given the
sampled vector of Ui and obtains the corresponding permutation p-value; and (iii) repeats steps
(i) and (ii) until the space of possibilities is exhausted. It then takes the maximum p-value among
the computed p-values. Our worst-case inferential methods are similar in spirit. However, there
are three key differences between our approach and theirs.

First, Heckman et al. (2020) interpret Ui as a fixed trait of mothers regardless of the (random)
circumstances facing programme administrators. However, whether or not a working mother and
her child are visited at home (through special arrangements, e.g., on a weekend) depends, at least
in part, on the availability and capacity constraints of the Perry staff. While Ui = 0 for nonworking
mothers in both papers, we do not view Ui as a fixed binary trait of working mothers. Consistent
with our review of the randomization protocol, we assume that children of working mothers are
able to participate in the programme if special arrangements, such as weekend home visits, are
made for them. In our model, there are capacity constraints for making special arrangements, so
only a limited number of slots are available.48 In their model, if Ui = 1 for a working mother,
her child would always be placed in the control group, because she would not accept any special
accommodations even if provided by the Perry staff. Unlike the Vi,c variable that determines
post-randomization transfers in our model, the Ui characteristic in their model is allowed to be
related to potential outcomes, but this is a consequence of its interpretation as a fixed trait of
mothers independent of the capacities of programme administrators.

Second, their procedure assumes that “some participants were exchanged between the treatment
and control groups in order to balance gender and socioeconomic status score while keeping
Stanford–Binet IQ score roughly constant.”49 However, as shown in Appendix B, Perry data
from wave 4 reveal that the exchanges were not necessarily between consecutively ranked IQ

47 It is only partially observed in their model.
48 Our model is limited in the sense that it does not allow for heterogeneity among working mothers in their availability

for special arrangements. We assume that the Perry administrators choose with equal probability which working mothers
get special arrangements.

49 This is Step 4′ in their paper. Accordingly, their tests involve “permuting treatment status among those families with
the same observed and unobserved characteristics (defined by the characteristics of the eldest child in the case of families
with multiple children).” In practice, they discretize SES into a binary indicator of above-median SES.
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C20 J. J. Heckman and G. Karapakula

pairs. Our approach accommodates this feature while also making more explicit the notion of
balance.

Third, on a more minor note, we incorporate the five children (out of the original 128) who
dropped out of the study due to extraneous reasons, since those five children were also a part of
the initial randomization protocol. Our approach can also more readily be applied than that of
Heckman et al. (2020) to a variety of compromised experiments, including many discussed by
Bruhn and McKenzie (2009). We next demonstrate that there are important differences between
inferences obtained from our procedure and theirs.

5. REANALYSIS OF HECKMAN ET AL. (2020)

This section uses the methods developed in this paper to reconsider the conclusions reached by
Heckman et al. (2020) on the Perry participants through to age 40. We first list our estimators of
treatment effects. Using the corresponding test statistics, we then apply our worst-case inferential
methods to reanalyse the results in Heckman et al. (2020).

5.1. Estimators and test statistics for hypothesis testing

A variety of test statistics and estimators can be used in our approach and that of Heckman et al.
(2020). Our empirical work focuses conventional ones often used in practice. Let Di represent the
treatment status of participant i, and let Zi be the vector of baseline variables.50 In addition, let
Yi denote the observed outcome of interest of participant i in a relevant subsample P containing
NP = |P| participants, and let Y d

i be the counterfactual outcome of participant i when his or her
treatment status Di is fixed at d ∈ {0, 1}. In switching regression notation (Quandt, 1958; 1972),

Yi = Di Y
1
i + (1 − Di) Y 0

i . (5.1)

The average treatment effect τ̄ in the subsample P is given by

τ̄ = 1

NP

∑
i∈P

(
Y 1

i − Y 0
i

)
, (5.2)

and is conventionally estimated by a difference-in-means (DIM) estimator that takes raw mean
differences between nonattrited treated and control observations. However, the randomization
procedures used in Perry and other similar experiments only justify conditional independence:
(Y 1

i , Y 0
i ) ⊥⊥ Di | Zi . Exploiting this property and controlling for Zi in a regression of Yi on Di and

Zi using complete case observations, we obtain the ordinary least squares (OLS) estimator.51 It
would be desirable to relax linearity, but the Perry sample size makes this impractical.

All of these estimators assume that nonresponse is determined at random or at random condi-
tional on observed covariates. Let Ri be an indicator of whether Yi is missing. It could depend on
the treatment status Di and the pre-programme covariates Zi. The augmented inverse probability
weighting (AIPW) estimator allows for this possibility by using the weaker assumption that

50 In the Perry context, it consists of the four pre-programme covariates used during the randomization phase, i.e.,
Stanford–Binet IQ, index of SES, gender, and mother’s working status.

51 Both OLS and DIM estimators can be studentized using their cluster-robust asymptotic standard errors, allowing
for correlation between error terms of the participant-siblings in the Perry experiment.
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Yi ⊥⊥ Ri | Di, Zi . The AIPW estimator of the treatment effect is

�̂AIPW = 1

NP

∑
i∈P

(
π̂1

i − π̂0
i

)
, (5.3)

where

π̂ d
i = Ŷ d

i + I{Ri = 1, Di = d}
λ̂d

i φ̂d
i

(
Y d

i − Ŷ d
i

)
. (5.4)

In this expression, Ŷ d
i is the OLS (projection) estimator of the conditional expectation

E[Yi | Zi,Di = d,Ri = 1] for d ∈ {0, 1}, φ̂d
i is an estimator of Pr(Di = d | Zi), the i-th subject’s

propensity of being in experimental state d, and λ̂d
i is an estimator of Pr(Ri = 1 | Zi,Di = d),

which is the propensity of having a nonmissing outcome after fixing the treatment status Di, for
d ∈ {0, 1}. Propensity scores are often estimated using logits.52 The AIPW estimator adjusts the
outcome based on pre-programme covariates and corrects for covariate imbalance and various
forms of nonresponse.53 It has a double robustness property: the estimator is robust to misspec-
ification of either the propensity score models or the models for counterfactual outcomes, but
not both.54 For this reason, the AIPW estimator is sometimes preferred over the DIM and OLS
estimators.55 We use the studentized version of the AIPW estimate as our main test statistic in
our empirical analysis.56

We could use a local average treatment effect (LATE) estimator, and other standard estimation
methods dealing with imperfect compliance, if we knew each observation’s initial treatment
status. However, in the Perry example, we do not know which members were transferred from the

52 We estimate the propensity scores using a logit specification and the penalized maximum likelihood method of
Greenland and Mansournia (2015), which circumvents the issue of separation in small samples.

53 The AIPW estimator also assumes conditional independence of the counterfactual outcomes and the treatment
status, i.e., (Y 1

i , Y 0
i ) ⊥⊥Di | Zi , which is valid because of the random assignment of the treatment status conditional on

pre-programme variables. Note that the propensity score model used in the AIPW estimator is a direct consequence of
the law of conditional probability: Pr(Ri = 1, Di = d |Zi ) = Pr(Ri = 1 | Zi, Di = d) Pr(Di = d | Zi ) for d ∈ {0, 1}. In
the econometrics literature, the AIPW estimator is better known as a type of efficient influence function (EIF) estimator
(Cattaneo, 2010). The estimator given by equation (5.3) can be studentized using the empirical sandwich standard error
(Lunceford and Davidian, 2004). For studentization, we use a cluster-robust version of this asymptotic standard error,
given by the following formula: 1

NP
[
∑

j∈J (
∑

i∈Fj
π̂1

i − π̂0
i − �̂AIPW)2]1/2[|J |/(|J | − 1)]1/2, where Fj represents a

cluster of participant-siblings in the set J of clusters. Our studentized test statistics are based on the asymptotic standard
error mainly for computational ease, but studentization based on the bootstrap standard error would be superior in theory.

54 See Robins et al. (1994), Lunceford and Davidian (2004), and Kang and Schafer (2007). The double robustness
property (consistency despite certain forms of misspecification) is easier to understand by rewriting equation (5.4) as
follows: π̂d

i = Yd
i + (λ̂d

i φ̂d
i )−1(I{Ri = 1, Di = d} − λ̂d

i φ̂d
i )(Yd

i − Ŷ d
i ) for d ∈ {0, 1}. If the propensity score models or

the the counterfactual outcome model are correctly specified, sample average of the whole second term (in the rewritten
expression for π̂d

i ) converges in probability to zero. Thus, the AIPW estimator remains consistent for the average treatment
effect even if either the propensity score models or the counterfactual outcome models are misspecified.

55 However, we present estimates from all of these procedures in the online appendices as a form of sensitivity analysis.
The AIPW estimator can become unstable if both the propensity score models and the counterfactual outcome models
are misspecified (Kang and Schafer, 2007). Thus, we do not solely rely on the AIPW estimator but use it in conjunction
with the DIM and OLS estimators.

56 Since AIPW clearly has an asymptotic justification, it is not strictly a small-sample procedure from an estimation
perspective. Nevertheless, we can conduct inference using its finite-sample worst-case randomization null distribution
using our design-based methods.
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C22 J. J. Heckman and G. Karapakula

initial treatment group to the control group in the last step of the randomization protocol. Given
this problem, we do not present LATE estimates.57

5.2. Empirical analysis

We first conduct a head-to-head comparison of Heckman et al.’s (2020) methods and ours using
the same outcomes they analyse. Additionally, to compare the impact of using mean differences
versus AIPW test statistics in the conventional inferential approaches and our design-based
worst-case inference, we extend the outcomes they study and analyse data on violent crime.

Tables 2 and 3 report our reanalyses of Heckman et al. (2020), analysing each outcome one
at a time using the doubly robust attrition-adjusted AIPW estimator. Tables 4 and 5 provide
stepdown p-values for the outcomes based on multiple testing. Extended versions of these tables
are presented in Online Appendices S3 to S9 using alternative test statistics for inference.58

In Tables 6 and 7, we reproduce Heckman et al.’s (2020) results and provide a side-by-side
comparison of their inferences with our own. The most stringent (max-U) single p-values they
report for the effects on the California Achievement Test (CAT) reading, arithmetic, language,
mechanics, and spelling scores at age 14 in the male sample using the studentized DIM test statistic
are 0.036, 0.086, 0.012, 0.023, and 0.012, respectively, which are lower than the asymptotic p-
values we report in Table 2. After adjusting for multiple testing, their adjusted max-U p-values are
no more than 0.086, based on which they conclude that these effects are statistically significant. In
contrast, using our approach, the worst-case maximum (single) p-values using studentized DIM
test statistic are 0.144, 0.119, 0.069, 0.046, and 0.114, respectively. As shown in our Table 2,
using the studentized AIPW test statistic, our worst-case maximum p-values are 0.325, 0.272,
0.176, 0.123, and 0.274, respectively,59 implying that the effects on the CAT scores for males are
not statistically significant. Of course, the stepdown p-values for these outcomes shown in Table 4
are also insignificant. Our inference for the female sample is qualitatively similar to theirs. As
shown in Table 3, most of the block related to CAT scores for females is statistically significant
at the 10% level. However, the multiplicity-adjusted stepdown worst-case de Haan p-values in
Table 5 are 0.13 or larger.

Table 4 reports stepdown p-values for male outcomes. No estimated effect (after age 5) remains
statistically significant at the 10% level after adjusting for multiple hypothesis testing using the
worst-case maximum or worst-case de Haan p-values. However, in Table 5, which presents step-
down analysis of female outcomes, the treatment effects on post-programme outcomes (related
to some CAT scores and educational outcomes) are statistically significant at the 10% level using
our worst-case maximum p-value. Nevertheless, all of these effects on female outcomes, except
for two (high school graduation and grade point average), disappear when worst-case de Haan
p-values are used.

Tables 2 to 5 use the studentized AIPW test statistic for inference. Heckman et al. (2020) use
the studentized DIM test statistic instead. Tables 6 and 7 compare their inferences with ours using

57 In theory, we could bound the LATE estimate by considering all possible values for each observation’s initial
treatment status, and then we could use the LATE bound as a test statistic for inference. However, this is very demanding
computationally and thus not feasible in practice.

58 In these online appendices, for each outcome we include the conventional p-values (i.e., asymptotic, bootstrap, and
permutation p-values) and design-based p-values (i.e., worst-case maximum and worst-case de Haan p-values) associated
with each of the DIM, OLS, and AIPW estimators of treatment effects. We also include permutation and worst-case
p-values based on both nonstudentized and studentized test statistics. In addition, we include stepdown versions of the
worst-case p-values.

59 The corresponding worst-case de Haan (single) p-values are 0.427, 0.343, 0.348, 0.236, and 0.459, respectively.
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the same test statistic. The effects for males on post-programme outcomes remain statistically
insignificant at the 10% level using stepdown worst-case de Haan p-values, whereas treatment
effects on CAT scores are statistically significant in Heckman et al.’s (2020) analysis.

Heckman et al. (2020) do not analyse the Perry treatment effects on convictions for violent
crime, which are substantial and play an important role in cost–benefit analyses of early childhood
programmes (see Heckman et al., 2010b). Using administrative data on the criminal activity of
participants, we illustrate their importance and, at the same time, the importance of long-term
follow-up. Tables 8, 9, and 10 provide estimates and measures of statistical significance of
treatments effects in the pooled sample (of all participants) on cumulative convictions for violent
misdemeanors and felonies at various ages. Online Appendix S2 presents the expanded versions
of these tables reporting inference for various estimators and test statistics for the pooled sample
as well as the male and female subsamples. As shown in Table 9, the AIPW estimates of the
treatment effect on cumulative violent misdemeanor convictions are below −0.5 at ages 30 and
40. These estimates of treatment effects on violent misdemeanor convictions are statistically
significant at the 5% and 10% levels before and after multiple hypothesis testing, respectively.

The choice of inferential method becomes more important in analysing treatment effects on
cumulative convictions for felonies. At age 30, there are no statistically significant treatment
effects. At age 40, as shown in Table 9, the magnitude of the treatment effect is higher at
about −0.21, which represents more than a four-tenths reduction in the control mean. However,
using simple difference-in-means estimates and conventional p-values can be misleading. Using
conventional p-values, the effect at age 40 appears to be statistically significant at the 10% level,
as shown in Table 8. However, the design-based worst-case p-values, especially those associated
with the AIPW estimate, are much higher. The worst-case de Haan p-values for the studentized
DIM and AIPW estimates are about 0.136 and 0.241, respectively.

The four variables at ages 30 and 40 considered in Tables 8 and 9 are conceptually related, since
they are cumulative crime outcomes measured at different ages. To account for this, we treat these
outcomes as a single block of variables and conduct multiple hypothesis testing using the more
conservative Holm stepdown procedure, producing results in Table 10. After multiple testing, the
effects on cumulative convictions for violent misdemeanors remain statistically significant at the
10% level at both ages 30 and 40, whereas the the effects on violent felonies are insignificant at
both ages. These analyses show that use of small-sample inference and the method used to account
for compromised randomization matter in analysing the data. Failure to account for either can give
a very positive spin to the Perry programme. Accounting for them qualifies such conclusions. We
have not, however, established the superiority of our approach. We have established that a very
cautious design-based approach produces conservative inference, which by itself is not surprising.
Our reanalysis of Heckman et al. (2020) is very conservative. Nonetheless, a few conclusions
survive. We test Fisher’s sharp null hypothesis HF of no treatment effect for each participant. It
may in fact be the case that there are treatment effects for many participants and yet we do not
reject the sharp null hypothesis because of our worst-case approach.

6. CONCLUSION

In this paper, we develop and apply a design-based finite-sample inferential method for analysing
social experiments with compromised randomization. Compromises come in many forms. They
include incompletely documented rerandomization procedures used to improve baseline covariate
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balance between treatment and control groups. They also include reassignment of treatment status
due to administrative constraints.

We build a behavioural model of satisficing experimenters who seek balance in baseline
covariates across treatments and controls and who provide readers of their reports qualitative,
and sometimes conflicting, summaries of the actual experimental protocols used. We model the
randomization protocol as only partially known to the user of experimental data. The empirical
researcher recognizes and tries to account for the guiding principles experimenters used in
the reassignment of treatment status for balancing baseline covariates while operating under
administrative constraints. We show how to partially identify model parameters and construct
worst-case (least favourable) randomization tests over a set of possibilities for the actual treatment
assignment mechanism.

Our analysis of the Perry programme serves as a proof-of-concept of the usefulness of our worst-
case finite-sample testing approaches, which are applicable to other compromised experiments,
such as those discussed by Bruhn and McKenzie (2009). Our approach is more portable than
that of Heckman et al. (2020), which utilizes very specific features of the Perry randomization
protocol. Application of our procedures result in conservative finite-sample inferences.
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APPENDIX A: BACKGROUND AND ELIGIBILITY CRITERIA OF PERRY
PROGRAMME

The Perry Preschool Project was carried out in five waves between autumn 1962 and autumn 1965 near
a public school—the Perry Elementary School in Ypsilanti, a small city near Detroit in Michigan. Data
collection took place at the baseline age of 3 years and through surveys that were administered annually
until age 15. The participants were additionally followed up around ages 19, 27, 40, and 55. Various
measures were obtained over the years, including information on education, crime, and other economic
outcomes.

Intensity of the programme was low relative to several later early education programmes.60

Starting at age 3, treatment in the following two years included preschool for 2.5 hours per
day on weekdays during the academic year. Another major component of the programme con-
sisted of 1.5-hour weekly home visits by the Perry teachers to promote parental engagement with
the child.61 The Perry curriculum fostered active child-centered learning through intensive inter-
actions between the children and programme teachers (Weikart et al., 1978; Schweinhart et al.,
1993).

Door-to-door canvassing and referrals were used to survey and identify disadvantaged families among
those of the Perry Elementary School students. To be eligible for participation in the Perry Preschool
Project, the children had to: (i) be African American; (ii) have low Stanford–Binet IQ scores at
baseline;62 and (iii) be socioeconomically disadvantaged according to an index of socioeconomic sta-
tus based on employment and education levels of the parents as well as the number of persons per
room at home. The Perry families were more disadvantaged relative to a majority of African Ameri-
can families at that time in the United States. However, the Perry families were, by and large, repre-
sentative of a substantial fraction of the underprivileged African American population (Heckman et al.,
2010a).

Even when compared with the children living in the area surrounding the Perry Elementary School, the
Perry participants were especially disadvantaged (Heckman et al., 2010a). Since the parents of all children
eligible for the programme participated in the study (Weikart et al., 1978), issues of noncompliance are not
a concern. As there were no substitutes to the Perry programme, such as Head Start, available when the
Perry experiment was implemented, control group contamination is also not a problem in our experimental
setting.

APPENDIX B: EXCHANGES WERE NOT BASED ON CONSECUTIVE IQ
SCORES

We use Perry data from wave 4 as an example to conclude that the exchanges were not necessarily between
consecutively ranked pairs. In wave 4, there were 19 participants, excluding any younger siblings in the
programme. The IQs of these 19 people were: 61, 71, 75, 76, 76, 76, 78, 78, 79, 79, 80, 80, 81, 82, 83, 83,
83, 85, 88, involving many ties. Regardless of which method was used to break the ties, from a pure ranking
procedure the staff would have obtained two initial groups: one with IQs {61, 75, 76, 78, 79, 80, 81, 83, 83,
88} and another group with IQs {71, 76, 76, 78, 79, 80, 82, 83, 85}. The final observed treatment group
has IQs in the set: {61, 75, 76, 78, 80, 81, 83, 83, 83, 88}. Note that the person with IQ 79 is replaced by

60 An example is the Carolina Abecedarian Project (see, e.g., Campbell et al., 2002). For a discussion and comparison
of the intensity of several such programmes, see Cunha et al. (2006) and Elango et al. (2015).

61 Those in the treatment group of the first entry cohort (wave 0) were provided with the intervention for only one year,
starting at age 4, and thus were an exception. In our estimation of treatment effects, we pool all five cohorts, even though
the lower programme intensity in the first cohort might in principle attenuate the magnitudes of the effects downward.

62 The initial eligibility criteria specified that the IQs, as measured by the Stanford–Binet IQ test according to 1960’s
norming, be between 70 and 85, which was one standard deviation below the population average. However, in practice,
the IQ range was 61 to 88. Only about two-thirds of the participants had IQs in the range specified initially.
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a person with IQ 83. The final observed control group has IQs in the set: {71, 76, 76, 78, 79, 79, 80, 82,
85}. Note that the person with IQ 83 is replaced by a person with IQ 79. These are the same as the initial
treatment and control groups, since there were no transfers in the fifth step of the protocol, as explained in
Example 3 of the paper. Thus, we can conclude that an exchange happened between participants with IQs
79 and 83, who do not comprise a consecutively ranked pair. Thus, after the IQ rank ordering, the exchanges
between the two initial groups were not always between consecutively ranked IQ pairs. Thus, the Perry staff
did not strictly implement a matched pair design.
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