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Summary: We provide adaptive inference methods, based on �1 regularization, for regular
(semiparametric) and nonregular (nonparametric) linear functionals of the conditional expecta-
tion function. Examples of regular functionals include average treatment effects, policy effects,
and derivatives. Examples of nonregular functionals include average treatment effects, policy
effects, and derivatives conditional on a covariate subvector fixed at a point. We construct a
Neyman orthogonal equation for the target parameter that is approximately invariant to small
perturbations of the nuisance parameters. To achieve this property, we include the Riesz repre-
senter for the functional as an additional nuisance parameter. Our analysis yields weak ‘double
sparsity robustness’: either the approximation to the regression or the approximation to the
representer can be ‘completely dense’ as long as the other is sufficiently ‘sparse’. Our main
results are nonasymptotic and imply asymptotic uniform validity over large classes of models,
translating into honest confidence bands for both global and local parameters.
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1. INTRODUCTION

Many statistical objects of interest can be expressed as a linear functional of a regression function
(or projection, more generally). Examples include global parameters: average treatment effects,
policy effects from changing the distribution of or transporting regressors, and average directional
derivatives, as well as their local versions defined by taking averages over regions of shrinking
volume. This variety of important examples motivates the problem of learning linear functionals of
regressions. Global parameters are typically regular (estimable at 1/

√
n rate), and local parameters

are nonregular (estimable at slower than 1/
√

n rates). Global parameters can also be nonregular
under weak identification (for example, in average treatment effects, when propensity scores
accumulate mass near zero or one, along a given sequence of models).

Often the regression is high dimensional, depending on many variables such as covariates in a
treatment effect model. Plugging a machine learner into a functional of interest can give a badly
biased estimator. To avoid such bias, we use debiased/‘double’ machine learning (DML) based
on Neyman orthogonal scores that have zero derivative with respect to each first step learner
(e.g., Neyman, 1959; Belloni et al., 2014, 2015; Chernozhukov et al., 2016, 2018a; Foster and
Syrgkanis, 2019). Note that the word ‘double’ emphasizes the connection to double robustness,
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DML with Riesz representers 577

a property that orthogonal scores have in this case. Such scores are constructed by adding a bias
correction term: the average product of the regression residual with a learner of the functional’s
Riesz representer (RR). This construction builds upon and is directly inspired by Newey (1994),
where such scores arise in the computation of the semiparametric efficiency bound for regular
functionals. We also remove overfitting bias (high entropy bias) by using cross-fitting, an efficient
form of sample splitting, where we average over data observations different from those used by
the nonparametric learners. See, for example, Schick (1986) for early use and Chernozhukov
et al. (2018a) for more recent use in the context of debiased machine learning.

Using closed-form solutions for RRs in several examples, Chernozhukov et al. (2016, 2018a)
defined DML estimators in high-dimensional settings and established their good properties. In
comparison, the new approach proposed in this paper has the following advantages and some
limitations:

(1) We provide a novel algorithm based on �1 regularization to automatically estimate the RR
from the empirical analog of equations that implicitly characterize it.

(2) Even when a closed-form solution for the RR is available, the method avoids estimating
each of its components. For example, the method avoids explicit density derivative esti-
mation for the average derivative, and it avoids inverting estimated propensity scores for
average treatment effects.

(3) The adaptive inference theory covers both regular objects (estimable at the 1/
√

n rate)
and nonregular ones (with rates L/

√
n, where L → ∞ is the operator norm of the linear

functional).
(4) As far as we know, the adaptive inference theory given here is the first nonasymptotic

Gaussian approximation analysis of debiased machine learning.
(5) Our approach remains interpretable under misspecification, estimating a linear functional

of the projection rather than regression. (This point is made explicit in Section 4).
(6) We provide a nonasymptotic analysis when using the �1-penalized method to learn the re-

gression, and an asymptotic analysis when using other modern machine learning estimators
to learn the regression.

(7) The current analysis focuses on linear functionals. In follow-up work, Chernozhukov et al.
(2018) extend the approach to nonlinear functionals through a linearization.

This paper is a revised version of Chernozhukov et al. (2018d) that gave an algorithm based
on �1 regularization for automatically estimating the RR. This version is distinguished from
Chernozhukov et al. (2018d), Chernozhukov et al. (2018a), Chernozhukov et al. (2016), and
Chernozhukov et al. (2018c) in covering local objects that are estimated at a rate slower than
1/

√
n. Providing debiased machine learning for such local objects is an important contribution

of this paper.
Sections 2 and 3 present the main ideas for a general audience. In Section 2, we define

global, local, and perfectly localized linear functionals of the regression, and provide orthogonal
representations for these functionals. In Section 3, we present two empirical examples: local and
global average treatment effects, and local and global average derivatives.

Sections 4 and 5 are theoretical. In Section 4, we provide estimation theory, demonstrating
concentration and approximate Gaussianity of the DML estimator with regression and RR esti-
mated via regularized moment conditions. We provide rates of convergence for estimating the
RR, giving both fast rates under approximate sparsity. In Section 5, we demonstrate asymptotic
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consistency and Gaussianity of the DML estimator with regression estimated via general machine
learning.

The Online Appendix provides supporting material. In Section S1, we give a detailed account
of how our work relates to previous and contemporary work. In Section S2, we review prelimaries
of functional analysis. In Section S3, we analyse the structure of the leading examples, providing
bounds on operator norm, variance of the score, and kurtosis. Finally, we provide proofs for each
section.

2. OVERVIEW OF TARGET FUNCTIONALS, ORTHOGONAL
REPRESENTATION, ESTIMATION, AND INFERENCE

2.1. Target functionals

We consider a random element W with distribution P taking values w in its supportW . Denote the
Lq(P ) norm of a measurable function f : W → R and also the Lq(P ) norm of random variable
f (W ) by ‖f ‖P,q = ‖f (W )‖P,q . For a differentiable map x �→ g(x), from Rd to Rk , we use ∂x ′g

to abbreviate the partial derivatives (∂/∂x ′)g(x), and we use ∂x ′g(x0) to mean ∂x ′g(x) |x=x0 , etc.
We use x ′ to denote the transpose of a column vector x.

Let (Y,X) denote a random subvector of W taking values in their support sets, y ∈ Y ⊂ R and
x ∈ X ⊂ Rdx , where dx = ∞ is allowed. Let F denote the law of X. We define

x �→ γ �
0 (x) := E[Y | X = x],

as the unknown regression function of Y on X. We consider the convex parameter space �0 for
γ �

0 with elements γ . (Later, in the theoretical sections, we generalize and replace the regression
function by a projection).

Our goal is to construct high-quality inference methods for real-valued linear functionals of γ �
0 .

To present examples below we need to endow γ �
0 with a causal interpretation, which requires us to

assume that it is a structural function, invariant to the changes in the distribution of X under policies
described below. This property is not guaranteed for an arbitrary regression problem. For the reader
who is unfamiliar with these concepts, we note that a simple sufficient condition for invariance is
follows: given a stochastic process x �→ Y (x), called potential outcomes or structural function,
vector X is generated to follow distribution F independently of x �→ Y (x) and Y is generated as
Y = Y (X). In this case we have γ �

0 (x) = EY (x) for any F . This condition is conventionally called
exogeneity in econometrics and random assignment in statistics. The measurability requirement
here is that (x, ω) �→ Y (x, ω) is a measurable map. We refer to Imbens and Rubin (2015), Hernan
and Robins (2020), and Peters et al. (2017) for the relevant formalizations that enable causal
interpretation.

EXAMPLE 2.1 (AVERAGE TREATMENT EFFECT). Let X = (D,Z) and γ �
0 (X) = γ �

0 (D,Z),
where D ∈ {0, 1} is the indicator of the receipt of the treatment. Define

θ�
0 =

∫
(γ �

0 (1, z) − γ �
0 (0, z))�(x)dF (x),

where x �→ �(x) is a weighting function. This statistical parameter is a weighted average treat-
ment effect under the standard conditional exogeneity assumption, which guarantees that γ �

0 is
invariant to changes in the distributions of D conditional on Z. The assumption requires D to
be independent of the potential outcome process d �→ Y (d,Z) and outcome to be generated
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as Y = Y (D,Z), so that γ �
0 (d, z) = E[Y (d,Z) | Z = z]. Here γ �

0 is invariant to changes in the
conditional distributions of D, but not to the changes in the distribution of Z.

Here and below, a weighting function is a measurable function x �→ �(x) such that
∫

�dF = 1
and

∫
�2dF < ∞. In this example, setting

(i) �(x) = 1 gives average treatment effect in the entire population,
(ii) �(x) = 1(d = 1)/P (D = 1) gives the average treatment effect for the treated population,

(iii) �(x) = 1(z ∈ N )/P (Z ∈ N ) the average treatment effect conditional on the covariates Z

being in the group or neighborhood N ,

and so on. We can model small neighbourhoods N as shrinking in volume with the sample size.
The local weighting and kernel weighting discussed below are applicable to all key examples.
Moreover, they are combinable with other weighting functions so that, for example, we can target
inference on local average treatment effects for the treated.

EXAMPLE 2.2 (POLICY EFFECT FROM CHANGING DISTRIBUTION OF X). The average causal
effect of the policy that shifts the distribution of covariates from F0 to F1 with the support contained
in X , when γ �

0 is invariant over {F,F0, F1}, for the weighting function x �→ �(x), is given by:

θ�
0 =

∫
γ �

0 (x)�(x)dG(x); G(x) = F1(x) − F0(x).

Exogeneity is a sufficient condition for the stated invariance of γ �
0 .

EXAMPLE 2.3 (POLICY EFFECT FROM TRANSPORTING X). A weighted average effect of
changing covariates X according to a transport map X �→ T (X), where T is deterministic mea-
surable map from X to X , with the weighting function x �→ �(x), is given by:

θ�
0 =

∫
[γ �

0 (T (x)) − γ �
0 (x)]�(x)dF (x).

This has a causal interpretation if the policy induces the equivariant change in the regression
function, namely the outcome Ỹ under the policy obeys E[Ỹ |X] = γ �

0 (T (X)). Exogeneity is a
sufficient condition.

EXAMPLE 2.4 (AVERAGE DIRECTIONAL DERIVATIVE). In the same settings as the previous
example, a weighted average derivative of a continuously differentiable γ0 with respect to com-
ponent vector d in the direction d �→ t(x) and weighed by x �→ �(x) is the linear functional of
the form:

θ�
0 =

∫
�(x)t(x)′∂dγ

�
0 (d, z)dF (x).

In causal analysis, θ�
0 is an approximation to 1/r times the average causal effect of the policy

that shifts the distribution of covariates via the map X = (D,Z) �→ T (X) = (D + rt(X), Z) for
small r, weighted by �(X). Here we require that (d, x) �→ ∂dγ

�
0 (x) exists and is continuous on X .

In this example, consider the case when X = (D,Z) consists of continuous treatment variable
D and covariates Z. Further suppose �(x) = �(d) and t(x) = 1. Then the parameter of interest
is θ∗

0 = E[�(D)T (D)], where T (d) = E[∂dγ
∗
0 (D,Z)|D = d]. When Y = Y (D) for a potential

outcome process Y (d) that is independent of treatment D conditional on the covariates Z and
differentiable in d, it was shown by Altonji and Matzkin (2005) and Florens et al. (2008)
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that T (d) = E[∂dY (D)|D = d], which is an average treatment effect on the treated. Thus θ∗
0

is a weighted average of the effect of treatment on the treated and would be equal to T (d)
for the perfectly localized �(d) = 1(D = d)/fD(d), where fD(d) is the pdf of D. Also for
�(d) ≡ 1, Imbens and Newey (2009) showed that θ∗

0 = E[T (D)] = E[∂dY (D)], which is an
average treatment effect. See also Rothenhäusler and Yu (2019).

In Example 2.4, we consider the case where the variable of differentiation is also the variable
of localization. As explained above, this case corresponds to effects of continuous treatments,
and it turns out to require extra care in Section S3. The other possible case is where the variable
of differentiation is different from the variable of localization. Such a case turns out to be simpler
and is handled by similar arguments as Examples 2.1, 2.2, and 2.3 in Section S3.

All of these statistical parameters play an important role in causal inference, counterfactual
decompositions, and predictive analyses. Introduction of the weighting function �(X) allows us to
study subgroup effects and local effects, and these will be covered by our nonasymptotic results
and asymptotic results. All of the above examples can be viewed as real-valued linear functionals
of the regression function.

DEFINITION 2.1 (TARGET PARAMETER). Our target is the real-valued linear functional of
γ �

0 :

θ�
0 = θ (γ �

0 ), where γ �→ θ (γ ) := Em(W, γ ), (2.1)

γ �→ m(w, γ ) is a linear operator for each w ∈ W , defined on � = span(�0), and the map
w �→ m(w, γ ) is measurable with finite second moment under P for each γ ∈ �.

The linear operator γ �→ θ (γ ) has the following generating function m in these examples:

2.1 m(w, γ ) = (γ (1, z) − γ (0, z))�(x);
2.2 m(w, γ ) = m(γ ) = ∫

γ (x)�(x)dG(x); G(x) = F1(x) − F0(x);
2.3 m(w, γ ) = �(x)(γ (T (x)) − γ (x));
2.4 m(w, γ ) = �(x)t(x)′∂dγ (x).

In these examples, we can recognize the dependency on the weighting function by writing
m(w, γ ; �). In Examples 2.1, 2.3, and 2.4 we can decompose m(w, γ ; �) = m0(w, γ )�(x).

Estimation of some parameters of the form in Definition 2.1 is very straightforward, such
as E[w(X)γ0(X)] for a known function w(x). These can be estimated as the sample mean
of w(X)Y . Such simple estimation is not possible for the causal, counterfactual parameters
in Examples 2.1, 2.2, 2.3, and 2.4. The approach of this paper provides estimators for these
counterfactual parameters and can be used for many others.

Our local functionals are defined by using the weight function that localizes the function-
als around value d0 of a low-dimensional vector component D. Here D is a p1-dimensional
component of vector X. We consider the weighting function

�h(D) = 1

hp1
K

(
d0 − D

h

)
/ω, ω = E

[
1

hp1
K

(
d0 − D

h

)]
, h ∈ R+, (2.2)

where K : Rp1 → R in (2.2) is a kernel function of order o such that
∫

K = 1 and
∫

(⊗mu)K(u)du = 0, for m = 1, . . . , o − 1,
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with its support contained in the cube [−1, 1]p1 . The simplest example is the box kernel with
K(u) = ×p1

j=11(−1 < uj < 1)/2, which is of order o = 2. To present the main results in the most
clear way, we assume that �h is known, i.e., ω is known. Our main results also hold for one sided
kernels. We leave to future work the application of this theory to settings with one sided limits,
e.g., regression discontinuity design.

DEFINITION 2.2 (LOCAL AND LOCALIZED FUNCTIONALS). We consider the local functional

θ (γ �
0 ; �h) := Em(W, γ �

0 ; �h),

as well as the (perfectly) localized functional

θ (γ �
0 ; �0) := lim

h→0
θ (γ �

0 ; �h).

The difficulty in targeting localized functionals is that they are not pathwise differentiable. A
key quantity in the analysis is the operator norm (the modulus of continuity) of γ �→ θ (γ ) on �,
defined as

L := sup
γ∈�\{0}

|θ (γ )|/‖γ ‖P,2. (2.3)

We consider L = ∞ in (2.3) as nonregular cases, e.g., perfectly localized functionals. We also
consider cases where L → ∞ as n → ∞ as nonregular. Indeed, the latter case arises from
approximating the functional with L = ∞ by functionals where L → ∞, e.g., local functionals
with h → 0. The L → ∞ case also arises in triangular array asymptotics where P changes with n.
The asymptotic thought experiment, where L → ∞, approximates nonasymptotic cases where L

is high. We emphasize that we derive both nonasymptotic results and their asymptotic corollaries
(which lead to simplified statements conveying key qualitative features of nonasymptotic results).

2.2. Building an orthogonal representation of the target functional

Equation (2.1) can be thought of as a direct formulation of the target parameter. Next we introduce
a dual formulation and finally an orthogonal formulation. Towards this end, we define the RR α0.

DEFINITION 2.3 (LINEAR AND MINIMAL LINEAR REPRESENTER). A linear representer (also
called a Riesz representer) for the linear functional γ �→ θ (γ ) is α0 ∈ L2(F ) such that

θ (γ ) = Eγ (X)α0(X), for all γ ∈ �. (2.4)

If α0 ∈ �̄ := closure(�) in L2(F ), we call it the minimal representer and denote it by α�
0; if not,

we call it a representer. Any representer can be reduced to the minimal representer by projecting
it onto �̄.

A minimal linear representer exists if and only if L < ∞, as a consequence of the Riesz–
Frechet theorem; see Lemma 2.1 below. Therefore, when L < ∞, we define the following dual
linear representation for the target parameter

θ�
0 = θ (α�

0); θ (α) := E[α(X)Y ]. (2.5)

To motivate the upcoming orthogonal representation, we note that either the direct (2.1) or the
dual (2.5) identification strategies can be used for direct plug-in estimation, but this does not give
good estimators, as explained in the following technical remark.
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REMARK 2.1 (NON-ORTHOGONALITY OF DIRECT AND DUAL FORMULATIONS). Even if we
knew expectation operator E and use θ (γ̂ ) or θ (α̂) as the estimator for θ�

0 , this estimator would
have high biases. Indeed, neither γ �→ θ (γ ) nor α �→ θ (α) are orthogonal to local perturbations
h ∈ � of γ �

0 or h̄ ∈ � of α�
0, namely

∂tθ (γ �
0 + th)

∣∣∣
t=0

= Em(W,h) �= 0, ∂t θ (α�
0 + t h̄)

∣∣∣
t=0

= Eγ �
0 (X)h̄(X) �= 0.

Consequently, the quantities Em(W, γ̂ − γ �
0 ) and Eγ �

0 (α̂ − α�
0) are first order biases for θ (γ̂ ) and

θ (α̂). The regularized estimators γ̂ or α̂ exploit structure of γ �
0 and α�

0 to estimate them well in
high-dimensional problems, but they exhibit biases that vanish at rates slower than 1/

√
n, which

makes θ (γ̂ ) and θ (α̂) converge at the same slow rate.

Therefore we proceed to construct another representation for θ�
0 that has the required Neyman

orthogonality structure.

DEFINITION 2.4 (ORTHOGONAL REPRESENTATION FOR THE TARGET FUNCTIONAL). We
have

θ�
0 = θ (α�

0, γ
�
0 ); θ (α, γ ) := E[m(W, γ ) + α(X)(Y − γ (X))], (2.6)

where (α, γ ) are the nuisance parameters with the true value (α�
0, γ

�
0 ).

Unlike the direct or dual representations for the functional, this representation is Neyman
orthogonal to perturbations (h̄, h) ∈ �2 of (α�

0, γ
�
0 ) such that

∂

∂t
θ (α�

0 + t h̄, γ �
0 + th)

∣∣∣
t=0

= Em(W,h) − Eα�
0(X)h(X) + E[(Y − γ �

0 (X))h̄(X)] = 0. (2.7)

In fact, a stronger property holds

θ (α, γ ) − θ (α�
0, γ

�
0 ) = −

∫
(γ − γ �

0 )(α − α�
0)dF, (2.8)

which implies (2.7) as well as double robustness. The quantity in (2.8) is also known as the
remainder of the von Mises expansion of the functional.

The Neyman orthogonality property states that the representation of the target parameter θ0 in
terms of the nuisance parameters (α, γ ) is invariant to the local perturbations of the values of the
nuisance parameters. This property makes the orthogonal representation an excellent basis for
constructing high-quality point and interval estimators of θ�

0 in modern high-dimensional settings
when we will be plugging-in biased estimators in lieu of γ �

0 and α�
0, where the bias occurs because

of the regularization (see, e.g., Chernozhukov et al., 2016, 2018a).
Both γ ∗

0 and α∗
0 are identified, γ ∗

0 as E[Y |X] and α∗
0 by virtue of the consistent estimator we

give in Section 2.5. Identification allows us to use the orthogonal representation to estimate target
parameters.

2.3. The case of finite-dimensional linear regression

It is instructive to consider the case of linear finite-dimensional regression. Consider x �→
b(x) = {bj (x)}pj=1 as a p-dimensional dictionary of basis functions with bj ∈ L2(F ) for each
j = 1, . . . , p. The regression function is assumed to obey the linear functional form γ �

0 = b′β0

for some β0. Also define

G = Eb(X)b(X)′, M = Em(W, b).

C© The Author(s) 2022.
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DML with Riesz representers 583

First, observe that for γ = b′β,

θ (γ ) = Em(W, b′β) = Em(W, b)′β = Mβ.

For instance, in Examples 2.1, 2.2, 2.3, and 2.4:

2.1 M = E(b(1, Z) − b(0, Z))�(X) 2.2 M = ∫
b�(dF1 − dF0),

2.3 M = E(b(T (X)) − b(X))�(X) 2.4 M = E∂db(D,Z)t(X)�(X).

Second, we make a guess that the linear representer α�
0 to be of the form α�

0(x) = b(x)′ρ0, for
ρ0 defined below. We can define the parameters β0 and ρ0 as any minimal �1-norm solutions to
the system of equations:

min ‖β‖1 + ‖ρ‖1 : Gβ = EYb(X), Gρ = M. (2.9)

In particular, if G in (2.9) is full rank, the solutions are β0 = G−1Eb(X)Y and ρ0 = G−1M .
We now verify the representation property for our guess:

Eγ (X)α�
0(X) = Eβ ′b(X)b(X)′ρ0 = β ′Gρ0 = β ′M = θ (γ ),

for all β’s and hence all γ ’s. The operator norm of θ (γ ) = M ′β is given by

L = sup
β∈Rp\{0}

|M ′β|√
β ′Gβ

= sup
β∈Rp\{0}

|β ′Gρ0|√
β ′Gβ

=
√

ρ ′
0Gρ0 < ∞.

We conclude that direct, dual, and orthogonal representations are given by

θ (γ ) = M ′β; θ (α) = ρ ′Eb(X)Y ; θ (γ, α) = M ′β + ρ ′Eb(X)Y − ρ ′Gβ,

where β is γ ’s parameter and ρ is α’s parameter. These representations appear to be both novel
and useful.

2.4. The case of infinite-dimensional regression

In the infinite-dimensional case, we can employ the Riesz–Frechet representation theorem and
Hahn–Banach extension theorem to establish existence of the linear RR.

LEMMA 2.1 (EXTENDED RIESZ REPRESENTATION). (i) If L < ∞, there exists a unique
minimal representer α�

0 ∈ �̄ and L = ‖α�
0‖P,2. (ii) If there exists a linear representer α0 on �

with ‖α0‖P,2 < ∞, then L = ‖α�
0‖P,2 ≤ ‖α0‖P,2 < ∞, where α�

0, obtained by projecting α0 onto
�̄, is the unique minimal representer. In both cases γ �→ θ (γ ) can be extended to �̄ or to the
entire L2(F ) with the modulus of continuity L.

The first part of the lemma shows (implicit) existence of a linear representer when L < ∞.
Our estimation results will rely only on the existence of minimal representers. In some cases,
however, we may utilize the closed-form solutions for linear representers (see, e.g., Section S3 for
the key examples), to improve the basis functions for estimating the minimal representers. There
is also an efficiency reason to work with minimal representers rather than any linear representer,
as highlighted in Section 4 analysing semiparametric efficiency.

C© The Author(s) 2022.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/article/25/3/576/6572833 by guest on 20 April 2024



584 V. Chernozhukov et al.

2.5. Informal preview of estimation and inference results

Our estimation and inference will exploit empirical analogs of both the orthogonal representation
of the parameter (2.6) and the equation defining the RR property (2.4).

To approximate the regression function and the RR, we consider the p-vector of dictionary
functions b, where the dimension p of the dictionary can be large, potentially much larger than
n. We approximate α�

0 by a linear form b′ρ0, and we approximate γ �
0 by a linear form b′β0, and

estimate the parameters using the algorithms below.

(1) Let (Wi)ni=1 = (Yi,Xi)ni=1 denote i.i.d. copies of data vector W . We use cross-fitting to
avoid biases from overfitting that can arise in high-dimensional settings. To this end, let
(I1, . . . , IK ) be a partition of the observation index set {1, . . . , n} into K distinct subsets
of about equal size. Let EAf = EAf (W ) denote the empirical average of f (W ) over
i ∈ A ⊂ {1, . . . , n}: EAf := EAf (W ) = |A|−1 ∑

i∈A f (Wi).
(2) For each block k = 1, . . . , K , we obtain generalized Dantzig selector (GDS) estimates

α̂k = b′ρ̂k and γ̂k = b′β̂k , where

ρ̂k = arg minρ∈Rp ‖ρ‖1 : ‖D̂−1
{
EI c

k
m(W, b) − EI c

k
b(X)b(X)′ρ

} ‖∞ ≤ λρ,

β̂k = arg minβ∈Rp ‖β‖1 : ‖D̂−1
{
EI c

k
(Y − b(X)′β)b(X))

} ‖∞ ≤ λβ,
(2.10)

where I c
k = {1, . . . , n} \ Ik is the set of observation indices leaving Ik out, λ’s are tuning pa-

rameters, and D̂ is a scaling detailed in Section S5. Typically λ’s scale like
√

log(p ∨ n)/n;
Section 3 provides concrete choices.

(3) The DML estimator is an average of estimated orthogonal representations over k:

θ̂ = 1

n

K∑
k=1

∑
i∈Ik

{m(Wi, γ̂k) + α̂k(Xi)[Yi − γ̂k(Xi)]}. (2.11)

The estimator of its asymptotic variance is

σ̂ 2 = 1

n

K∑
k=1

∑
i∈Ik

{m(Wi, γ̂k) + α̂k(Xi)[Yi − γ̂k(Xi)] − θ̂}2. (2.12)

We remark that the RR estimator in step 2 (2.10) is of Dantzig selector type, but is not exactly
the Dantzig selector, requiring some new analysis. We use the GDS rather than series or spline
estimation to accommodate high dimensional specifications for the regression and RR.

The dictionary b(x) is very important for the GDS estimator. This dictionary should be chosen
so that linear combinations of b(x) can approximate in mean square any element of �. For
example if � is the set of linear combinations of an infinite sequence of regressors, as for a high
dimensional regression, then b(x) could be chosen as the first p elements of that sequence. Also p

can be chosen flexibly, because p will be allowed to grow faster than the sample size, as specified
in the asymptotic theory to follow. In practice multiple choices of p could be tried.

Next, we state the key concentration and approximate Gaussianity results informally. Key
quantities in the analysis are the ‘true’ score and its moments:

ψ�
0 (W ) := θ�

0 − m(W, γ �
0 ) − α�

0(X)(Y − γ �
0 (X)), σ 2 := Eψ2

0 (W ), κ3 := E|ψ3
0 (W )|.
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We establish conditions under which

‖γ̂k − γ �
0 ‖P,2 + ‖α̂k − α�

0‖P,2/σ → 0,
√

n

∫
(γ̂k − γ �

0 )(α̂k − α�
0)dF/σ → 0. (2.13)

These include a bound on the �1 norm of coefficients and that either the regression function or
the RR is approximately sparse with the effective dimension s less than

√
n.

Given that (2.13) holds, we establish that the resulting debiased (or ‘double’) machine learning
(DML) estimator θ̂ in (2.11) and (2.12) is adaptive, namely it is approximated up to the error
o(σ/

√
n) by the oracle estimator

θ̄ := θ�
0 − n−1

n∑
i=1

ψ0(Wi),

where the oracle knows the scores ψ0. Hence the approximate deviation of θ̂ from θ�
0 is determined

by ‖ψ0‖P,2/
√

n, which is the standard deviation of the oracle estimator.
Consequently, θ̂ concentrates in a σ/

√
n neighbourhood of the target with deviations controlled

by the normal laws,

sup
t∈R

∣∣∣P(
√

n(θ̂ − θ�
0 )/σ ≤ t) − P(N (0, 1) ≤ t)

∣∣∣ ≤ A(κ/σ )3/
√

n + errorn → 0,

where the errorn bound is nonasymptotic and tends to zero as n → ∞. Of course, σ/
√

n → 0 is
required for concentration. The nonasymptotic bound automatically implies the uniform validity
of results over large classes of probability laws P for W .

There are two cases to consider:

(1) REGULAR CASE: the parameters σ , κ/σ , and L are bounded, leading to 1/
√

n concen-
tration, adaptation, and Gaussian approximation.

(2) NONREGULAR CASE, the parameters σ, κ/σ , and L diverge, so that we need

σ/
√

n → 0, L/
√

n → 0, (κ/σ )/
√

n → 0,

for σ/
√

n concentration, adaptation, and Gaussian approximation.

As we show in Section S3, in the case of local functionals, the latter condition can be more
succinctly stated as

(κ/σ ) � σ � L, L/
√

n → 0.

Finally, we establish that we can transfer learning and inference guarantees for local functionals
to those for the (perfectly) localized functionals if the localization bias is sufficiently small, namely

√
n(θ (γ �

0 ; �h) − θ (γ �
0 ; �0)/σ → 0.

We think it is remarkable that a single inference theory covers both regular and nonregular
cases, and provides uniform validity over large classes of P .
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Table 1. Average treatment effect of 401(k) eligibility on net financial assets in US dollars. Localized
average treatment effects are reported by income quintile groups. The regression is estimated by GDS or

Lasso. Standard errors are reported in parentheses.

Income quintile N treated N untreated GDS Lasso

All 3682 6187 7607.95 (1394.92) 7733.31 (1416.46)
1 272 1702 4500.33 (924.12) 4477.43 (920.31)
2 527 1447 1051.60 (1501.03) 1119.06 (1500.78)
3 755 1219 5204.93 (1199.87) 4919.65 (1200.10)
4 962 1012 9515.58 (2141.92) 8837.39 (2150.58)
5 1166 807 19354.00 (7934.70) 14138.37 (8310.59)

3. APPLICATIONS

3.1. Global and local effects of 401(k) eligibility on net financial assets

First, we use our method to answer a question in household finance: what is the average treatment
effect of 401(k) eligibility on net financial assets (over a horizon of about two years)? 401(k) is a
retirement savings and investing plan that gives employees a tax break on money they contribute.
We follow the identification strategy of Poterba et al. (1995), who assume selection on observables.
The authors assume that when 401(k) was introduced, workers ignored whether a given job
offered 401(k) and instead made employment decisions based on income and other observable
job characteristics; after conditioning on income and job characteristics, 401(k) eligibility was
exogenous at the time. This empirical question corresponds to Example 2.1.

We use data from the 1991 US Survey of Income and Program Participation (Chernozhukov
et al., 2018b), using sample selection and variable construction as in Abadie (2003) and
Chernozhukov and Hansen (2004). The outcome Y is net financial assets defined as the sum
of individual retirement account (IRA) balances, 401(k) balances, checking accounts, US saving
bonds, other interest-earning accounts, stocks, mutual funds, and other interest-earning assets mi-
nus nonmortgage debt. The treatment D is an indicator of eligibility to enroll in a 401(k) plan. The
raw covariates X are age, income, years of education, family size, marital status, two-earner sta-
tus, benefit pension status, IRA participation, and home-ownership. We impose common support
of the propensity score for the treated and untreated groups based on these covariates, yielding
n = 9869 observations. We consider the fully-interacted specification b(D,X) of Chernozhukov
et al. (2018a) with p = 277 including polynomials of continuous covariates, interactions among
all covariates, and interactions between covariates and treatment status.

Tables 1 and 2 summarize results for the entire population and for each quintile of the income
distribution. We use K = 5 folds in cross-fitting. To estimate the RR, we use the GDS procedure
introduced in the present work. To estimate the regression, we use GDS, Lasso, random forest, or
neural network. GDS is implemented using the tuning procedure described in Section S5. Lasso is
implemented using the tuning procedure described in Chernozhukov et al. (2018). Random forest
and neural network are implemented with the same settings as Chernozhukov et al. (2018a),
i.e., with 1000 trees or a single hidden layer of eight neurons, respectively. We find average
treatment effect (ATE) of 7608 (1395) using GDS for both the RR and the regression. This ATE
estimate is stable across different choices of regression estimator. We find that localized ATE is
not statistically significant for the second quintile, and it is statistically significant, positive, and
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Table 2. Average treatment effect of 401(k) eligibility on net financial assets in US dollars. Localized
average treatment effects are reported by income quintile groups. The regression is estimated by random

forest or neural network. Standard errors are reported in parentheses.

Income quintile N treated N untreated Random forest Neural network

All 3682 6187 8638.15 (1621.78) 7364.66 (1844.39)
1 272 1702 4874.49 (937.86) 4664.61 (1309.59)
2 527 1447 1957.72 (1738.61) 1635.69 (1603.19)
3 755 1219 3973.11 (1474.72) 5106.03 (1287.70)
4 962 1012 10056.79 (2375.44) 9529.03 (2205.61)
5 1166 807 21168.13 (8015.79) 20138.57 (7506.92)

strongly heterogeneous for the other quintiles. Interpreting the relatively high effect of 401(k)
eligibility for the first quintile is a question for future research.

For comparison, Chernozhukov et al. (2018a) report ATE of 7170 (1398) by DML, which
estimates the RR by estimating the propensity score and plugging it into the RR functional
form. Though these two estimators are asymptotically equivalent under correct specification, our
estimator avoids the estimated propensity score in the denominator which could cause numerical
instability. The ATE results are broadly consistent with Poterba et al. (1995), who use a simpler
specification motivated by economic reasoning. The localized ATE estimates by income quintile
group appear to be new empirical results and are of interest in their own right. In Section S5 we
report analogous estimates without debiasing. Without debiasing, the GDS and Lasso estimates
of ATE are attenuated due to regularization. The bias is smaller for the random forest and neural
network estimates of ATE.

3.2. Global and local price elasticity of petrol demand

Second, we use our method to estimate the average price elasticity of household petrol demand:
the percentage change in demand due to a unit percentage change in price. This parameter
is critical for assessing the welfare consequences of tax changes, and it has been studied in
Hausman and Newey (1995), Schmalensee and Stoker (1999), Yatchew and No (2001), and
Blundell et al. (2012). Formally, the parameter of interest is the average derivative of log demand
with respect to log price holding income and demographic characteristics fixed. The exact version
of this empirical question corresponds to Example 2.4. The approximate version of this empirical
question corresponds to Example 2.3.

We use data from the 1994–1996 Canadian National Private Vehicle Use Survey (Semenova and
Chernozhukov, 2021b), using sample selection and variable construction as in Yatchew and No
(2001) and Belloni et al. (2019). The outcome Y is log petrol consumption. The variable D with
respect to which we differentiate is log price per litre. The raw covariates X are log age, log income,
and log distance as well as geographical, time, and household composition dummies. In total
we have n = 5001 observations. We consider the specification b(D,X) previously considered by
Semenova and Chernozhukov (2021a) augmented with additional interactions. The Semenova
and Chernozhukov (2021a) specification includes polynomials of continuous covariates, and
interactions of log price (and its square) with time and household composition dummies. We
further include interactions of log price (and its square) with log age, log age squared, log
income, and log income squared to allow for heterogeneity. Altogether, p = 99.
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Table 3. Estimated average derivative (price elasticity) of petrol demand. Localized average derivatives are
reported by income quintile groups. The regression is estimated by GDS, Lasso, random forest, or neural

network. Standard errors are reported in parentheses.

Income quintile N GDS Lasso Random forest Neural network

All 5001 −0.28 (0.06) −0.16 (0.05) −0.01 (0.06) 0.15 (0.05)
1 1001 −0.84 (0.13) −0.44 (0.12) −0.37 (0.14) 0.06 (0.12)
2 1000 −0.36 (0.12) −0.27 (0.11) −0.13 (0.13) 0.42 (0.12)
3 1000 −1.40 (0.15) −0.91 (0.13) −0.60 (0.13) −0.28 (0.13)
4 1000 −1.06 (0.14) −0.79 (0.14) −0.32 (0.15) 0.13 (0.14)
5 1000 −0.11 (0.14) −0.03 (0.11) 0.16 (0.12) 0.58 (0.10)

Table 3 summarizes results for the entire population and for each quintile of the income
distribution. We use K = 5 folds in cross-fitting. To estimate the RR, we use the GDS procedure
introduced in the present work. To estimate the regression, we use GDS, Lasso, random forest, or
neural network. Again, GDS is implemented using the tuning procedure described in Section S5,
Lasso is implemented using the tuning procedure described in Chernozhukov et al. (2018), and
random forest and neural network are implemented with the same settings as Chernozhukov
et al. (2018a). We find average price elasticity of −0.28 (0.06) using GDS for both the RR and
the regression. Lasso gives similar results. Note that random forest is not differentiable, and the
derivative of a neural network may be difficult to extract from a black-box implementation. When
using these estimators, we implement a partial difference approximation of the derivative, detailed
in Section S5. We conjecture that this approximation explains why the results using random
forest appear attenuated and why the results using neural network appear positive or statistically
insignificant. Using GDS, we find that localized average price elasticity is statistically significant
and negative in each income quintile, with substantial heterogeneity.

For comparison, OLS regression of log consumption on log price, log age, log income, and log
distance as well as geographical, time, and household composition dummies yields an estimate of
0.14 (0.06). The linear specification leads to a positive elasticity estimate, contradicting economic
intuition (since it says there would be more petrol consumption when prices are higher). Our
localized average price elasticity results using GDS are broadly consistent with Semenova and
Chernozhukov (2021a), who more explicitly consider the relationship between average price
elasticity and income. In Section S5 we report analogous estimates without debiasing. Without
debiasing, the GDS and Lasso estimates of quintile elasticities are attenuated due to regularization.
The bias is smaller for the random forest and neural network estimates of quintile elasticities.

4. ESTIMATION AND INFERENCE FOR HIGH DIMENSIONAL
APPROXIMATELY LINEAR MODELS

4.1. Best linear approximations for the regression function and the Riesz representer

To approximate the regression function, we consider the p-vector of dictionary functions

x �→ b(x) = (bj (x))pj=1, bj ∈ L2(F ).
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The dimension p of the dictionary can be large, potentially much larger than n. Let �b be the
linear subspace of L2(F ) generated by b. We assume that as n → ∞ we have that p → ∞ and
�b → �̄ := closure(�), where �̄ is a linear subspace of L2(F ) with the basis functions {b̃j }∞j=1.
Here convergence means that any convergent sequence in �b has its limit in �̄ and for each γ ∈ �̄

we have a sequence in �b converging to it, with respect to the L2(F ) norm. Note that this setup
allows the dictionary b = bn to change with n, as for example with b-splines.

Here we define γ �
0 as a projection of Y onto �̄, i.e., γ �

0 is the projection of Y on the infinite set of
variables {b̃j (X)}∞j=1. This setup is slightly more general than in the introduction, where γ �

0 was
the conditional expectation function. Of course, if the latter is an element of �̄, it automatically
coincides with γ �

0 .
We approximate γ �

0 by the finite-dimensional best linear predictor (BLP) γ0 via

γ �
0 = γ0 + rγ := b′β0 + rγ : E[b(X)rγ (X)] = 0,

where rγ is the approximation error, and γ0 := b′β0 is the BLP of Y and best linear approximation
to γ �

0 . We define β0 as a minimal �1-norm solution to the system of equations

min ‖β‖1 : E[b(X)(γ �
0 (X) − b(X)′β)] = 0,

when G = Eb(X)b(X)′ is not full rank.
Similarly, we approximate the RR α�

0, which exists by Lemma 2.1 whenever L < ∞, via the
best linear approximation α0:

α�
0 = α0 + rα = b′ρ0 + rα : E[rα(X)b(X)] = 0.

We define ρ0 as a minimal �1-norm solution to the system of equations

min ‖ρ‖1 : E[(α�
0(X) − b(X)′ρ)b(X)] = 0.

Using that Eα�
0(X)b(X) = Em(W, b), we note that

0 = E[rα(X)b(X)] = E((α�
0(X) − b(X)′ρ0)b(X)) = Em(W, b) − Eα0(X)b(X). (4.1)

Hence α0 is the RR for Em(W, γ ) for each γ ∈ �b. Here we can interpret �b as the collection of
test functions on which the representation property (4.1) holds.

DEFINITION 4.1 (PENULTIMATE AND ULTIMATE TARGET PARAMETERS). Our penultimate
target is the linear functional applied to the BLP γ0:

θ0 := E[m(W, γ0)] = E[α0(X)γ0(X)] = E[m(W, γ0) + α0(X)(Y − γ0(X))].

Our ultimate target is the linear functional applied to γ �
0

θ�
0 := E[m(W, γ �

0 )] = E[α�
0(X)γ �

0 (X)] = E[m(W, γ �
0 ) + α�

0(X)(Y − γ �
0 (X))].

If the approximation errors are such that

(
√

n/σ )
∫

rαrγ dF → 0, (4.2)

our inference will target the ultimate parameter. In the nonregular setup, the second order error
condition

∫
rαrγ dF ≤ σ/

√
n in (4.2) is weaker than what is usually required for pathwise

differentiable functionals (since σ → ∞ is the nonregular case); there is a lower bar for oracle
rates in nonregular problems. This phenomenon was also noted by Foster and Syrgkanis (2019)
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and Kennedy (2020). Otherwise our inference will target an interpretable penultimate parameter.
We shall formally refer to the latter case as the misspecified case.

LEMMA 4.1 (BASIC PROPERTIES OF THE SCORE). Our DML estimator of θ0 will be based on
the following score function:

ψ(W, θ ; β, ρ) = θ − m(W, b)′β − ρ ′b(X)(Y − b(X)′β),

which has the following properties:

∂βψ(W, θ ; β, ρ) = −m(W, b) + ρ ′b(X)b(X)′, ∂ρψ(W, θ ; β, ρ) = −b(X)(Y − b(X)′β),

∂2
ββ ′ψ(W, θ ; β, ρ) = ∂2

ρρ ′ψ(W, θ ; β, ρ) = 0, ∂2
βρ ′ψ(W, θ ; β, ρ) = b(X)b(X)′.

This score function is Neyman orthogonal at (β0, ρ0):

E[∂βψ(W, θ ; β, ρ0)] = −E[m(W, b)] + Gρ0 = 0,

E[∂ρψ(W, θ ; β0, ρ)] = E[−b(X)(Y − b(X)′β0)] = −E[b(X)γ0(X)] + Gβ0 = 0.

The second claim of the lemma is immediate from the definition of (β0, ρ0) and the first follows
from elementary calculations. The orthogonality property above says that the score function is
invariant to small perturbations of the nuisance parameters ρ and β around their ‘true values’ ρ0

and β0. This invariance property plays a crucial role in removing the impact of biased estimation
of nuisance parameters ρ0 and β0 on the estimation of the main parameters θ0.

4.2. Estimators

Estimation will be carried out using the following Dantzig selector-type estimators (Candes and
Tao, 2007). In a follow-up work, Chernozhukov et al. (2018) consider Lasso-type estimators.

DEFINITION 4.2 (GENERALIZED DANTZIG SELECTOR ESTIMATOR). Consider a parameter
t ∈ T ⊂ Rp, where T is a convex set. Consider the moment functions t �→ g(t) and the estimated
moment functions t �→ ĝ(t), mapping Rp to Rp:

g(t) = Gt − M; ĝ(t) = Ĝt − M̂,

where G and Ĝ are p by p nonnegative-definite matrices and M and M̂ are p-vectors. Define
t0 as a minimal �1-norm solution to g(t) = 0 and assume t0 ∈ T . Define the GDS estimator t̂ by
solving

t̂ ∈ arg min ‖t‖1 : ‖ĝ(t)‖∞ ≤ λ, t ∈ T ,

where λ is chosen such that ‖ĝ(t0) − g(t0)‖∞ ≤ λ, with probability at least 1 − ε.

Here we record the possibility of convex restrictions on the parameter space by placing t in a
convex parameter space T . If parameter restrictions are correct, then this can potentially improve
theoretical guarantees by weakening the requirements on G and other primitives.

DEFINITION 4.3 (GDS FOR BLP: DANTZIG SELECTOR). Given a diagonal positive-definite
normalization matrix Dβ , define β̂A = Dβt̂ , where t̂ is the GDS estimator for t0 = D−1

β β0 with

G = Eb(X)b(X)′, Ĝ = EAb(X)b(X)′,M = D−1
β EYb(X), M̂ = D−1

β EAYb(X); Tβ ⊂ Rp.
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In this setting, our estimator specializes to the original Dantzig selector. In practice, we
use Tβ = Rp, although when we are interested in average derivative functionals, it is theoreti-
cally helpful to impose the convex restrictions of the sort T = {t ∈ Rp : supx∈X |∂db(x)′t | ≤ B},
where B is some a priori known upper bound on the derivative. Ideally, Dβ is chosen such that
diag(V ar(D−1

β (Ĝβ0 − M̂)) = I . Our practical algorithm given in Section S5 estimates Dβ from
the data.

DEFINITION 4.4 (GDS FOR RIESZ REPRESENTER). Given a diagonal positive-definite
normalization matrix Dρ , define ρ̂A = Dρt̂ , where t̂ is the GDS estimator of the parameter
t0 = D−1

ρ ρ0 with

G = Eb(X)b(X)′, Ĝ = EAb(X)b(X)′,M = D−1
ρ Em(W, b), M̂ = D−1

ρ EAm(W, b); Tρ ⊂ Rp.

In this setting, our estimator is a generalization of the original Dantzig selector. In practice,
we are using Tρ = Rp, even though it is possible to exploit some structured restrictions on
the problem motivated by the nature of the universal RRs. Ideally, Dρ is chosen such that
diag(V ar(D−1

ρ (Ĝρ0 − M̂)) = I . Our practical algorithm given in Section S5 estimates Dρ from
the data.

We now define the DML estimator with RRs, which makes use of cross-fitting.

DEFINITION 4.5 (DML WITH RR). Consider the partition of {1, . . . , n} into K ≥ 2 blocks
(Ik)Kk=1, with m = �n/K� observations in Ik , for k < K and �n/K� remaining in IK . For each
k = 1, . . . , K , let β̂k and ρ̂k denote GDS estimators obtained using data (Wi)i∈I c

k
, where I c

k =
{1, . . . , n} \ Ik , and let estimator θ̂k be defined as

θ̂k = EIk
[m(W, b)′β̂k + ρ̂ ′

kb(X)(Y − b(X)′β̂k)].

Define the DML estimator θ̂ as the average:

θ̂ =
K∑

k=1

θ̂kwk; wk = �n/K�
n

if k < K, wK = �n/K�
n

.

4.3. Properties of DML: Main result

We provide a single nonasymptotic result that allows us to cover both global and local functionals,
implying uniformly valid rates of concentration and normal approximations over large sets of P .

Consider the oracle estimator based upon the true score functions:

θ̄ := θ0 − n−1
n∑

i=1

ψ0(Wi), ψ0(W ) := ψ(W, θ0; β0, ρ0).

We seek to establish minimal conditions under which the DML estimator approximates the oracle
estimator, and is approximately normal with distribution

N (0, σ 2/n), σ := ‖ψ0‖P,2.

For regular functionals σ is bounded, giving 1/
√

n concentration around θ0, and for nonregular
functionals σ ∝ L → ∞ requring L/

√
n → 0 to get concentration. Our normal approximation

is accurate if kurtosis of ψ0 does not grow too fast:

(κ/σ )3/
√

n is small, κ := ‖ψ0‖P,3.
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In the regular case (κ/σ )3 is bounded, but for the nonregular cases it can scale as fast as L, again
requiring L/

√
n → 0.

Fix all of these sequences and the constants. Define the guarantee set:

S = {
(u, v) ∈ R2p :

√
u′Gu ≤ r1,

√
v′Gv ≤ σr2, |u′Gv| ≤ σr3, β0 + u ∈ Tβ, ρ0 + v ∈ Tρ

}
,

We will take u = β̂k − β0 and v = ρ̂k − ρ0. As such, r1 measures the nonasymptotic mean square
rate for the BLP; r2 measures the nonasymptotic mean square rate for the RR; and r3 measures how
the estimation errors interact. Note the presence of σ acting on r2 and r3, which accommodates
nonregular functionals. We will instantiate (r1, r2, r3) as fast and slow rates by analysing the GDS
estimator, in Theorem 4.3 below.

Next, define μ to be the smallest modulus of continuity such that on (u, v) ∈ S
√

V ar((−m(W, b) + ρ0
′b(X)b(X))′u) ≤ μσ‖b′u‖P,2,

√
V ar((Y − b(X)′β0)b(X)′v) ≤ μ‖b′v‖P,2,

√
V ar(u′b(X)b(X)′v) ≤ μ(‖b′u‖P,2 + ‖b′v‖P,2).

In typical applications, the modulus of continuity μ is bounded. Indeed, if elements of the
dictionary are bounded with probability one, ‖b(X)‖∞ ≤ C, then we can select μ = CB for
many functionals of interest, so the assumption is plausible. If b(X) = X are sub-Gaussian, then
this assumption is also easily satisfied; however, this case is not of central interest to us. See
Chernozhukov et al. (2021) for a more general discussion.

Consider P that satisfies the following conditions.

R(δ) With probability 1 − ε, the estimation errors {(β̂k − β0, ρ̂k − ρ0)}Kk=1 take values in SK ,
with quality of the guarantee obeying

σ−1(
√

mσr3 + μr1(1 + σ ) + μσr2) ≤ δ.

R(δ) is a requirement on how the sequences (r1, r2, r3) evolve relative to (σ,μ,m). We will
formally verify R(δ) for the approximately sparse setting, in Corollary 4.4 below. R(δ) is the key
condition for our main result, Theorem 4.1.

THEOREM 4.1 (ADAPTIVE ESTIMATION AND APPROXIMATE GAUSSIAN INFERENCE). Sup-
pose K divides n for simplicity. Under condition R(δ), we have the adaptivity property, namely
the difference between the DML and the oracle estimator is small: for any � ∈ (0, 1),

|√n(θ̂ − θ̄ )/σ | ≤
√

K4δ/�,

with probability at least 1 − ε − �2.
As a consequence, θ̂ concentrates in a σ/

√
n neighborhood of θ0, with deviations approximately

distributed according to the Gaussian law �(z) = P(N (0, 1) ≤ z):

sup
z∈R

∣∣∣P(σ−1√n(θ̂0 − θ0) ≤ z) − �(z)
∣∣∣ ≤ A(κ/σ )3n−1/2 +

√
K2δ/� + ε + �2,

where A < 1/2 is the sharpest absolute constant in the Berry–Esseen bound.

The conclusions of this result are distinguished from those of Chernozhukov et al. (2018a)
and Chernozhukov et al. (2018) in applying to local, nonparametric objects, in providing finite
sample bounds, and in being uniform over the parameter space. The conclusions are similar to
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this previous work in relying on a rate condition that is the product of rates of estimation for two
distinct functions, here the regression and the RR.

The constants can be chosen to yield an asymptotic result.

COROLLARY 4.1 (UNIFORM ASYMPTOTIC ADAPTIVITY AND GAUSSIANITY). Let Pn be
any nondecreasing set of probability laws P that obey condition R(δn) where δn → 0 is a
given sequence. Then the DML estimator θ̂ is uniformly asymptotically equivalent to the oracle
estimator θ̄ , that is

|√n(θ̂ − θ̄ )/σ | = OP (δn),

uniformly in P ∈ Pn as n → ∞. In addition, if for each P ∈ Pn the kurtosis of ψ0 does not grow
too fast, namely:

(κ/σ )3/
√

n ≤ δn,

we have that
√

n(θ̂ − θ0)/σ is asymptotically Gaussian uniformly in P ∈ Pn:

lim
n→∞ sup

P∈Pn

sup
z∈R

∣∣∣PP (
√

n(θ̂0 − θ0)/σ ≤ z) − �(z)
∣∣∣ = 0.

Hence the DML estimator of the linear functionals of the BLP function γ0 enjoys good prop-
erties under the stated regularity conditions. This result does not distinguish between inference
on global functionals from inference on local functionals, as long as the latter are not perfectly
localized. We state a separate result for perfectly localized functionals below.

COROLLARY 4.2 (INFERENCE ON THE ULTIMATE PARAMETER θ�
0 ). Suppose that, in addition

to conditions of Corollary 4.1, P satisfies the small approximation error condition:

(
√

n/σ )|θ0 − θ�
0 | = (

√
n/σ )

∣∣∣∣
∫

rαrγ dF

∣∣∣∣ ≤ δ. (4.3)

Then conclusions of Theorem 4.1 hold with θ�
0 replacing θ0, with

√
K4δ/� increased by δ, and

the same probability. Conclusions of Corollary 4.1 continue to hold with θ�
0 replacing θ0 for a

class of probability laws Pn, provided each P ∈ Pn satisfies the conditions of Corollary 4.1 and
(4.3) for the given δ = δn → 0.

The approximation bias for the ultimate target can be plausibly small due to the fact that many
rich function classes admit regularized linear approximations with respect to conventional dictio-
naries b. For instance, Tsybakov (2012) and Belloni et al. (2014) show small approximation bias
using Fourier bases as dictionaries, and using Sobolev and rearranged Sobolev balls, respectively,
as the function classes.

COROLLARY 4.3 (INFERENCE ON THE PERFECTLY LOCALIZED PARAMETER). Suppose that,
in addition to conditions of Corollary 4.1, P satisfies the small approximation error condition:

√
n|θ0(γ0; �h) − θ0(γ �

0 ; �h)|/σ = √
n

∣∣∣∣
∫

rαrγ dF

∣∣∣∣ /σ ≤ δ, (4.4)

and the localization bias is small:
√

n|θ0(γ �
0 ; �h) − θ0(γ �

0 ; �0)|/σ ≤ δ. (4.5)

Then conclusions of Theorem 4.1 hold with θ0(γ �
0 ; �0) replacing θ0, with

√
K4δ/� increased

by 2δ, and the same probability. Conclusions of Corollary 4.1 continue to hold with θ�
0 (γ �; �0)
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replacing θ0 = θ0(γ0; �h) for a class of probability laws Pn, provided each P ∈ Pn satisfies the
conditions of Corollary 4.1 and (4.4)–(4.5) for the given δ = δn → 0.

4.4. Semiparametric efficiency

Below we use concepts from semiparametric efficiency, as presented in Bickel et al. (1993) and
Van der Vaart (2000); we do not recall them here for brevity.

The DML estimator θ̂ will be asymptotically efficient for estimating θ�
0 , defined as a functional

of γ �
0 , the projection of Y on �̄. The distribution of a data observation is unrestricted in this case,

so that there will only be one influence function for each functional of interest, and the estimator is
asymptotically linear with that influence function. The standard semiparametric efficiency results
then imply that our estimator will have the smallest asymptotic concentration among estimators
that are locally regular; see Bickel et al. (1993) and Van der Vaart (2000).

Our formal result stated below only implies efficiency for the regular case, where the operator
norm of the function L is bounded, holding P fixed. We expect that a similar result continues to
hold with L → ∞, by developing an appropriate formalization that handles P changing with n

and rules out super-efficiency phenomena. However, this formalization requires a separate major
development, which we leave to future research. In what follows, the notation γ �

0,P emphasizes
the dependence of the projection γ �

0 on P .

THEOREM 4.2 (EFFICIENCY). Let ψ�
0 (W ) := θ�

0 − m(W, γ �
0 ) − α�

0(X)(Y − γ �
0 (X)). Suppose

that E[Y 2] < ∞, E[ψ�
0 (W )2] < ∞, and m(W, γ ) is mean square continuous in γ under P . Then

θ0,P := ∫
m(w, γ �

0,P )dP (w) is differentiable at P , in the sense that

lim
τ↘0

θ0,Pτ
− θ0,P

τ
= EP δ(W )ψ�

0 (W ),

where ψ�
0 is called the influence function and is unique, and the directional perturbation Pτ

is defined as dPτ = dP [1 + τδ], where the direction δ is any element of the tangent set
{δ measurable : W → R :

∫
δdP = 0, ‖δ‖∞ < M} for each 0 < M < ∞. Consequently, the

asymptotic variance of every regular sequence of estimators is bounded below by ‖ψ�
0‖P,2. Fur-

ther, since the tangent set is a convex cone, other conclusions of theorems 25.20 and 25.21 of
Van der Vaart (2000) also hold, namely the convolution and the minimax characterization of the
efficiency.

4.5. Properties of GDS estimators

Our goal is to verify that the guarantee R(δ) holds. In particular we have to analyse (r1, r2, r3)
by bounding the population prediction norm v �→ √

v′Gv. This is a more nuanced problem than

bounding the empirical prediction norm v �→
√

v′Ĝv, which has been accomplished in a variety
of prior analyses done on Dantzig-type and Lasso-type estimators.

We begin with the following condition, which only controls the max of error rates and controls
the �1 norm of true parameters:

MD We have that t0 ∈ T and ‖t0‖1 ≤ B, where B ≥ 1, and the empirical moments obey the
following bounds with probability at least 1 − ε, for λ̄ ≥ λ

‖Ĝ − G‖∞ ≤ λ̄, ‖Ĝt0 − M̂‖∞ ≤ λ.
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The bounds on �1 norm of coefficients are naturally motivated, for example, by working in
Sobolev or rearranged Sobolev spaces (see, Tsybakov, 2012 and Belloni et al., 2014, respectively).
Rearranged Sobolev spaces allow the first p regression coefficients in the series expansion to
be arbitrarily rearranged, allowing a much greater degree of oscillatory behaviours than in the
original Sobolev spaces. The complexity of these function classes are also different. Sobolev
spaces are Donsker sets under sufficient smoothness, whereas rearranged Sobolev spaces have
the covering entropy bounded below by log p and are not Donsker if p → ∞.

At the core of this approach is the restricted set

S(t0, ν) := {δ : ‖Gδ‖∞ ≤ ν, ‖t0 + δ‖1 ≤ ‖t0‖1, t + δ ∈ T },
where ν is the noise level. As demonstrated in the proof of Lemma 4.3, the GDS estimator belongs
to this set with high probability 1 − ε for the noise level ν = 4Bλ̄, where λ is the penalty level
of GDS (ν scales like

√
log(p ∨ n)/

√
n in our problems).

DEFINITION 4.6 (EFFECTIVE DIMENSION). Define the effective dimension of t0 at the noise
level ν > 0 as:

s(t0) := s(t0; ν) := sup
δ∈S(t0,ν)

|δ′Gδ|/ν2.

The effective dimension is defined in terms of the population (rather than sample) covariance
matrix G, which makes it easy to verify regularity conditions. Note that if G = I and ‖t0‖0 = s,
then s(t0) ≤ s. More generally, s(t0) measures the effective difficulty of estimating t0 in the
prediction norm, created by design G and the structure of t0. The condition imposes no conditions
on the restricted or sparse eigenvalues of G. For example, take G = 11′, a rank 1 matrix, and
suppose ‖t0‖0 = 1. Then s(t0) ≤ 1 holds in this case, giving useful and intuitive performance
bounds, while the standard restricted eigenvalues and cone invertibility factors are all zero in
this case, yielding no bounds on the performance in the population prediction norm. This type of
example illustrates the possibility of accommodation of overcomplete (multiple or amalgamated)
dictionaries in b, whose use in conjunction with �1− penalization has been advocated by Donoho
et al. (2005). Of course, the bounds on effective dimension follow from the bounds on cone-
invertibility factors and restricted eigenvalues.

Given a vector δ ∈ Rp, let δA denote a vector with the j -th component set to δj if j ∈ A and 0
if j �∈ A.

LEMMA 4.2 (BOUND ON EFFECTIVE DIMENSION IN APPROXIMATELY SPARSE MODEL).
Suppose that t0 is approximately sparse, namely

|t0|∗j ≤ Aj−a j = 1, . . . , p,

for some finite positive constants A and a > 1, where (|t0|∗j )pj=1 is the nonincreasing rear-
rangement of (|t0j |)pj=1. Let tM0 := t0(1(|t0| > ν) := (t0j 1(|t0j | > ν))pj=1 denote the vector with
components smaller than ν trimmed to 0. Then

s(t0; ν) ≤ s ×
(

k−1 ∨ 6a

a − 1

)
, ‖tM0 ‖0 ≤ s := (A/ν)1/a,

k is the cone invertibility factor:

k := inf
|M|‖Gδ‖∞

‖δ‖1
: δ �= 0, ‖δMc‖1 ≤ 2‖δM‖1,
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M = support(tM0 ), Mc = {1, . . . , p} \ M, and |M| ≤ s.

The cone invertibility factor is a generalization of the restricted eigenvalue condition of Bickel
et al. (2009), proposed by Ye and Zhang (2010).

Since approximate sparsity is a simple condition that implies a bound on effective dimension,
we pause and interpret approximate sparsity in the context of a motivating example from causal
inference. In particular, we revisit ATE (Example 2.1). For simplicity, consider the global parame-
ter and assume that the function E[Y |D,Z] is an element of �̄, so that γ �

0 (D,Z) = E[Y |D,Z] and
α�

0(D,Z) = D/π�
0 (Z) − (1 − D)/(1 − π�

0 (Z)) where π�
0 (Z) = E[D|Z] is the propensity score.

Consider the dictionary b(d, z) = (dq(z)′, (1 − d)q(z)′)′ where {qj (z)}p/2
j=1 are the initial p/2 el-

ements of a sequence of basis functions that approximates the functions E[Y |1, Z], E[Y |0, Z],
1/π�

0 (Z), and 1/(1 − π�
0 (Z)).

Suppose the minimal �1-norm mean square projections of E[Y |1, Z] and E[Y |0, Z] onto
{qj (z)}p/2

j=1 are approximately sparse after rescaling appropriately by D−1
β . (Note that if E[Y |1, Z]

and E[Y |0, Z] are already approximately sparse then so are their projections.) It follows that the
minimal �1-norm mean square projection of γ �

0 is approximately sparse and sβ := s(D−1
β β0; ν) is

small.
Suppose instead that the minimal �1-norm mean square projections of 1/π�

0 (Z) and 1/(1 −
π�

0 (Z)) onto {qj (z)}p/2
j=1 are approximately sparse after rescaling appropriately by D−1

ρ . (Note that
if 1/π�

0 (Z) and 1/(1 − π�
0 (Z)) are already approximately sparse then so are their projections.)

It follows that the minimal �1-norm mean square projection of α�
0 is approximately sparse and

sρ := s(D−1
ρ ρ0; ν) is small.

The concept of the effective dimension does not split t0 into a sparse component and a
small dense component, as is done in the now standard analysis of �1-regularized estimators of
approximately sparse t0. The effective dimension is simply stated in terms of t0 alone.

LEMMA 4.3 (NON-ASYMPTOTIC BOUND FOR GDS IN POPULATION PREDICTION NORM).
Suppose that MD holds. Then with probability 1 − 2ε the estimator t̂ exists and obeys:

(t̂ − t0)′G(t̂ − t0) ≤ (s(t0; ν)ν2) ∧ (2Bν).

The bound is a minimum of what is called the ‘fast rate bound’ and the ‘slow rate’ bound. This
result tightens the result in Chatterjee (2013), who established a ‘slow rate’ bound (in the context
of Lasso) that applies under no assumptions on G. If the effective dimension is not too big, as in
the examples above, the ‘fast rate’ s(t0; ν)ν2 provides a tighter bound under weak assumptions
on G. It is important to emphasize that the result is stated in terms of the population prediction
norm rather than the empirical norm.

We now apply this result to GDS estimators of the RR and the BLP. We impose the following
conditions. Let GA denote the empirical process over f ∈ F : W → Rp and i ∈ A, namely

GAf := GAf (W ) := |I |−1/2
∑
i∈A

(f (Wi) − Pf ), Pf := Pf (W ) :=
∫

f (w)dP (w).

The following is a sufficient condition that will deliver the guarantee R(δ) for δ → 0. Let �̃

denote a positive constant (that increases to ∞ as n → ∞ in the asymptotic results).

SC (a) The �1 norms of coefficients are bounded as ‖D−1
ρ ρ0‖1 ≤ B and ‖D−1

β β0‖1 ≤ B,
for B ≥ 1, and the scaling matrices obey ‖Dρv‖ ≤ μDσ‖v‖ for D−1

ρ v ∈ S(D−1
ρ ρ0, ν)

and ‖Dβu‖ ≤ μD‖u‖ for D−1
β u ∈ S(D−1

β β0, ν) for ν = 4B�̃/
√

n. (b) Given a random
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subset A of {1, . . . , n} of size m ≥ n − �n/K�, dictionary b obeys with probability at
least 1 − ε, ‖GAbb′‖∞ ≤ �̃. (c) The penalty levels λρ and λβ are chosen such that with
probability at least 1 − ε, ‖D−1

β (GAbb′β0 − GAYb(X))‖∞/
√

m ≤ λρ,‖D−1
ρ (GAbb′β0 −

GAm(W, b))‖∞/
√

m ≤ λβ, and are not overly large, λβ ∨ λρ ≤ �̃/
√

m.

SC(a) records a restriction on the �1 norm of β0 and ρ0. For instance, in Examples 2.1, 2.2,
and 2.3, Dρ � σI � LI , which requires the �1-norm of ρ0 to increase at most at the speed L � σ .

SC(b) is a weak assumption: the bound λ̄ and the penalty level λ can be chosen proportionally
to

√
log(p ∨ n)/

√
n, that is

�̃ �
√

log(p ∨ n),

using self-normalized moderate deviation bounds (Jing et al., 2003; Belloni et al., 2014) or high-
dimensional central limit theorems (Chernozhukov et al., 2017), under mild moment conditions,
without requiring sub-Gaussianity. For instance, Belloni et al. (2014) employ these tools to show
that, for the bounded design case ‖b‖∞ ≤ C, λ can be chosen as in the Gaussian error case,
provided that errors follow t(2 + δ) distribution (having above 2 bounded moments), and get
the error bounds similar to the Gaussian case. Here we state a general condition as our working
assumption, instead of focusing on more specific condition that get us Gaussian-type conclusions.

THEOREM 4.3 (GDS FOR BLP AND RR). Suppose SC holds. Then with probability at least
1 − K4ε, we have that u = β̂A − β0 and v = ρ̂A − ρ0 obey, for some absolute constant C,

u′Gu ≤ r2
1 , v′Gv ≤ σ 2r2

2 , |u′Gv| ≤ σr3,

r2
1 = Cμ2

D(B2�̃2sβ/n) ∧ (B2�̃/
√

n), r2
2 = Cμ2

D(B2�̃2sρ/n) ∧ (B2�̃/
√

n), r3 = r1r2,

where sβ and sρ are the effective dimensions for parameters D−1
β β0 and D−1

ρ ρ0 for the noise level
ν = 4B�̃/

√
n.

In other words, we have instantiated (r1, r2, r3) for approximately sparse models in the guarantee
set S. We have the following corollary, which verifies R(δ) for approximately sparse models and
hence provides sufficient conditions for Theorem 4.1.

COROLLARY 4.4 (SUFFICIENT CONDITION FOR R(δ)). Suppose SC holds. The guarantee
R(δ) holds with ε = 1 − K4ε, provided

either Csβ ≤ √
nδ2/(�̃3μ2μ2

D) or Csρ ≤ √
nδ2/(�̃3μ2μ2

D),

for some large enough constant C that only depends on B and K .

REMARK 4.1 (SHARPNESS OF CONDITIONS: DOUBLE SPARSITY ROBUSTNESS). This gives
sufficient conditions such that (ignoring slowly growing term �̃) the condition R(o(1)) holds if

either sβ � √
n or sρ � √

n,

where sβ and sρ are measures of the effective dimensions of parameters D−1
β β0 and D−1

ρ ρ0. In
well-behaved exactly sparse models, these effective dimensions are proportional to the sparsity
indices divided by restricted eigenvalues. The latter possibility allows one of the parameter
values to have unbounded effective dimension, in which case this parameter can be estimated at
some ‘slow’ rate n−1/4. These types of conditions appear to be rather sharp, matching similar
conditions used in Javanmard and Montanari (2018) in the case of inference on a single coefficient
in Gaussian exactly sparse linear regression models.
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5. ESTIMATION AND INFERENCE USING GENERAL REGRESSION
LEARNERS

In this section we generalize the previous analysis to allow for any regression learner γ̂ of E[Y |X]
to be used in the construction of the estimator. As we have done in preceding sections we continue
to include local functionals in our analysis, so that the results apply to nonregular objects as well
as regular ones that can be estimated

√
n-consistently.

Compared to the global case, the local case may have smaller regularization and model selection
biases relative to the variance. Nonetheless, bias correction is important for inference in theory
and in practice. Theoretically, the local case begins to resemble the global case as the number
of dimensions being integrated increases. Empirically, we provide local estimates without bias
correction in Section S5. The differences can be substantial.

The only conditions we will impose on the regression learner are certain L2 convergence
properties that we will specify in this section. These properties will allow for a wide variety of
learners, including GDS, Lasso, neural nets, boosting, and others. Thus we provide estimators of
local functions that can be constructed using many regression learners.

We continue to consider estimators that use cross-fitting and have the form

θ̂ = 1

n

K∑
k=1

∑
i∈Ik

{m(Wi, γ̂k) + α̂k(Xi)[Yi − γ̂k(Xi)]} ,

where γ̂k denotes the regression learner computed from observations not in Ik and α̂k(x) = b(x)′ρ̂k

is the GDS learner of the RR described in previous sections.
To allow for as many regression learners as possible under as weak conditions as possible we

focus on asymptotic analysis in this section. The fundamental property we will require of γ̂ is
that it have some mean square convergence rate as an estimator of the true conditional mean γ �

0 .

Specifically we require that there is r�
1 converging to zero such that for each k,∥∥γ̂k − γ �

0

∥∥
P,2 = Op(r�

1 ). (5.1)

For purposes of formulating regularity conditions it is also useful to work with α�
0 rather than α0.

We will also require that∥∥α�
0(γ̂k − γ �

0 )
∥∥

P,2 = op(σ ),
∥∥m(·, γ̂k − γ �

0 )
∥∥

P,2 = op(σ ). (5.2)

In the regular case these conditions generally follow from the mean square consistency of γ̂k under
boundedness of α�

0. In nonregular cases they may impose additional conditions. For example,
under the conditions of Lemma 4.3 it will be sufficient for these conditions to hold that

h−p1/2
∥∥γ̂k − γ �

0

∥∥
P,2 →P 0.

This condition will hold as long as h grows slowly enough relative to the mean square convergence
rate of each γ̂k.

Recall from Theorem 4.3 that r2 is the convergence rate of σ−1 ‖α̂k − α0‖P,2. Let r�
2 = r2 +

σ−1
∥∥α0 − α�

0

∥∥
P,2 and

ψ�
0 (W ) = θ0 − m(W, γ �

0 ) − α�
0(X)[Y − γ �

0 (X)].

THEOREM 5.1 (ASYMPTOTIC GAUSSIAN INFERENCE WITH GENERAL REGRESSION

LEARNER). Suppose V ar(Y |X) is bounded; r�
1 → 0 and r�

2 → 0; equations (5.1) and (5.2)
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are satisfied; and
√

nr�
1r�

2 → 0. Then

θ̂ = θ0 − 1

n

n∑
i=1

ψ�
0 (Wi) + op

(
σ√
n

)
, hence

√
n

σ
(θ̂ − θ0)

d→ N (0, 1).

This result shows that asymptotic linearity of the estimator θ̂ will result if r�
2 → 0 fast enough

relative to r�
1 . Asymptotic linearity implies asymptotic Gaussian inference by standard central

limit theorem arguments. As in regular doubly robust estimation problems it allows for a tradeoff
between the speed of convergence r�

2 of the RR and r�
1 of the regression. It only requires a mean

square convergence rate for the regression learner γ̂k and so allows for a wide variety of first step
machine learning estimators.

We could also formulate a nonasymptotic analogue to this asymptotic result. This would depend
on the availability of nonasymptotic results for the learner γ̂k . To the best of our knowledge such
results are not available for many learners, such as neural nets and random forests. To allow the
results of this section to include as many first steps as possible we focus here on the asymptotic
result and reserve the nonasymptotic result to future work.
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