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Summary: I develop algorithms to facilitate Bayesian inference in structural vector autore-
gressions that are set-identified with sign and zero restrictions by showing that the system
of restrictions is equivalent to a system of sign restrictions in a lower-dimensional space.
Consequently, algorithms applicable under sign restrictions can be extended to allow for zero
restrictions. Specifically, I extend algorithms proposed in Amir-Ahmadi and Drautzburg (2021)
to check whether the identified set is nonempty and to sample from the identified set without
rejection sampling. I compare the new algorithms to alternatives by applying them to variations
of the model considered by Arias et al. (2019a), who estimate the effects of US monetary policy
using sign and zero restrictions on the monetary policy reaction function. The new algorithms
are particularly useful when a rich set of sign restrictions substantially truncates the identified
set given the zero restrictions.
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1. INTRODUCTION

Structural vector autoregressions (SVARs) are used in macroeconomics to estimate the dynamic
causal effects of structural shocks. Parameters in these models have traditionally been point-
identified using zero restrictions on the SVAR’s structural parameters. However, it has become
increasingly common to set-identify parameters using sign restrictions and/or a set of zero
restrictions that are insufficient to achieve point-identification.1 Inference in set-identified SVARs
has typically been carried out via Bayesian methods that rely on rejection sampling.2 For example,
when there are both sign and zero restrictions, the algorithms in Arias et al. (2018) involve drawing
parameter values satisfying the zero restrictions and discarding them if they do not satisfy the sign
restrictions. A drawback of this approach is that it may be computationally demanding when the
sign restrictions considerably truncate the identified set given the zero restrictions, because many
draws of the parameters satisfying the zero restrictions may be required to obtain a sufficient

1 For an overview of identification in SVARs, see Kilian and Lütkepohl (2017) or Stock and Watson (2016).
2 For examples of frequentist approaches to inference in set-identified SVARs, see Gafarov et al. (2018) and Granziera

et al. (2018).
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700 M. Read

number of draws that additionally satisfy the sign restrictions. To address this problem, this paper
develops algorithms to facilitate Bayesian inference in SVARs that are set-identified using a
combination of sign and zero restrictions.

It is convenient to parameterize set-identified SVARs in terms of the VAR’s reduced-form
parameters and an orthonormal matrix so that sign and zero restrictions can be expressed as
restrictions on this matrix. I focus on the case where sign and zero restrictions linearly constrain a
single column of the orthonormal matrix, which I denote by q ∈ Rn, where n is the dimension of
the VAR. I also discuss extensions to the case where there are restrictions on multiple columns of
the orthonormal matrix. The algorithms I develop are compatible with a wide range of sign and
zero restrictions. These restrictions include sign restrictions on impulse responses (e.g., Uhlig,
2005), bounds on elasticities (e.g., Kilian and Murphy, 2012), and shape restrictions (e.g., Amir-
Ahmadi and Drautzburg, 2021), as well as sign and zero restrictions on the structural parameters
themselves. Other compatible zero restrictions include ‘short-run’ restrictions on impact impulse
responses, as in Christiano et al. (1999) or Sims (1980), ‘long-run’ restrictions, as in Blanchard
and Quah (1989), and restrictions arising from external instruments or ‘proxies’, as in Mertens
and Ravn (2013) and Stock and Watson (2018). The algorithms can also accommodate certain
types of ‘narrative restrictions’, including restrictions on the sign of a structural shock in particular
periods (e.g., Antolı́n-Dı́az and Rubio-Ramı́rez, 2018) or the timing of its maximum/minimum
realization (e.g., Giacomini et al., 2021).

The algorithms developed in this paper build on those proposed in Amir-Ahmadi and
Drautzburg (2021) (AD21), which are applicable when there are sign restrictions only. AD21
show that the problem of determining whether the identified set is nonempty can be cast as a
linear program, which can be solved rapidly using standard software. They also propose a Gibbs
sampler that draws q from a uniform distribution conditional on sign restrictions. Importantly,
both algorithms avoid rejection sampling and so may be more computationally efficient than
existing algorithms when the sign restrictions substantially truncate the identified set given the
zero restrictions.3

To extend the algorithms in AD21 to allow for zero restrictions, I show how a system of sign
and zero restrictions in Rn can be expressed as an equivalent system of sign restrictions in a lower-
dimensional space. The algorithms in AD21 are applicable to the transformed system of sign
restrictions and, in conjunction with a simple transformation, can be used to obtain values of the
parameters satisfying the original identifying restrictions. Specifically, an algorithm determines
whether the identified set is nonempty by solving a linear program and, if so, generates a value of
q satisfying the identifying restrictions. This value of q can be used to initialize a Gibbs sampler
that draws from a uniform distribution over the identified set for q. Additionally, it can be used to
initialize a gradient-based numerical optimization routine whose aim is to compute the bounds of
the identified set for a scalar parameter of interest, which is useful in the context of prior-robust
Bayesian inference (e.g., Giacomini and Kitagawa, 2021).

I illustrate the algorithms using the empirical application in Arias et al. (2019a) (ACR19).
They estimate the effects of monetary policy shocks in the United States by imposing sign and
zero restrictions on the monetary policy reaction function. I augment these restrictions with the
sign restrictions on impulse responses considered in Uhlig (2005), and explore the accuracy and
computational efficiency of my algorithms relative to alternatives. My algorithms are particularly
useful when a large number of sign restrictions appreciably truncate the identified set given

3 Rubio-Ramı́rez et al. (2010) describe an algorithm for drawing from a uniform distribution over the space of
orthonormal matrices conditional on sign restrictions. Arias et al. (2018) extend this algorithm to allow for zero restrictions.
Both algorithms use rejection sampling to impose that the draws satisfy the sign restrictions.

C© The Author(s) 2022.
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Algorithms for inference in SVARs 701

the zero restrictions. These algorithms should therefore facilitate the use of rich sets of sign
restrictions alongside zero restrictions.

As an additional illustration of the utility of the algorithms, I impose a restriction on the timing
of the maximum realization of the monetary policy shock considered in Giacomini et al. (2021);
in addition to the restrictions from ACR19 and Uhlig (2005), I impose that the monetary policy
shock in October 1979 – the month in which Paul Volcker dramatically and unexpectedly raised
the federal funds rate – was the largest positive realization of the shock in the sample. This
restriction generates as many sign restrictions as observations in the sample (around 500 in this
application) and tends to truncate the identified set considerably, which makes existing algorithms
extremely computationally burdensome. Under this restriction, output falls with high posterior
probability following a positive monetary policy shock. However, the identified set is empty in
around 95 per cent of draws from the posterior of the reduced-form parameters, which suggests
the restriction is inconsistent with the data.

Outline. The remainder of the paper is structured as follows. Section 2 outlines the SVAR
framework and describes the identifying restrictions considered. Section 3 shows how a system
of sign and zero restrictions can be expressed as an equivalent system of sign restrictions in a
lower-dimensional space and explains how algorithms used to conduct inference in sign-restricted
SVARs can consequently be extended to the case of zero restrictions. Section 4 describes how
to numerically implement the algorithms. Section 5 explores the accuracy and efficiency of the
algorithms relative to existing alternatives using the model in ACR19 augmented with additional
identifying restrictions. Section 6 discusses extending the algorithms to allow for restrictions on
additional columns of the orthonormal matrix. Section 7 concludes. Proofs are relegated to the
Appendix.

Generic notation. For a matrix X, vec(X) is the vectorization of X. When X is symmetric,
vech(X) is the half-vectorization of X, which stacks the elements of X lying on or below the
diagonal into a vector. ei,n is the ith column of the n × n identity matrix, In. 0m×n is an m × n

matrix of zeros. ‖.‖ is the Euclidean norm. Sn−1 is the unit sphere in Rn (i.e., the set {q ∈ Rn :
q′q = 1}).

2. FRAMEWORK

2.1. SVAR

Let yt be an n × 1 vector of endogenous variables following the SVAR(p) process:

A0yt =
p∑

l=1

Alyt−l + εt , t = 1, . . . , T ,

where A0 is invertible and εt

iid∼ N (0n×1, In) are structural shocks. The diagonal elements of A0

are normalized to be positive, which is a normalization on the signs of the structural shocks.
Exogenous regressors (such as a constant) are omitted for simplicity of exposition, but these are
straightforward to include. Letting xt = (y′

t−1, . . . , y′
t−p)′ and A+ = (A1, . . . , Ap), rewrite the

SVAR(p) as

A0yt = A+xt + εt , t = 1, . . . , T .

C© The Author(s) 2022.
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702 M. Read

(A0, A+) are the structural parameters. The reduced-form VAR(p) representation is

yt = Bxt + ut , t = 1, . . . , T ,

where B = (B1, . . . , Bp), Bl = A−1
0 Al for l = 1, . . . , p, and ut = A−1

0 εt

iid∼ N (0n×1,�) with
� = A−1

0 (A−1
0 )′. φ = (vec(B)′, vech(�)′)′ are the reduced-form parameters. The SVAR’s orthog-

onal reduced form is

yt = Bxt + �trQεt , t = 1, . . . , T ,

where �tr is the lower-triangular Cholesky factor of � (i.e., �tr�
′
tr = �) with nonnegative

diagonal elements and Q is an n × n orthonormal matrix with j th column qj . Let O(n) denote
the space of all n × n orthonormal matrices.

Impulse responses are typically the parameters of interest in analyses using SVARs. The
horizon-h impulse response of the ith variable to the j th shock is

ηi,j,h ≡ ηi,j,h(φ, qj ) = e′
i,nCh�trqj ,

where Ch is defined recursively by Ch = ∑min{h,p}
l=1 BlCh−l for h ≥ 1 with C0 = In.

2.2. Identifying restrictions

Consider the case where there are linear sign and zero restrictions constraining q1 only (extensions
to this case are discussed in Section 6). Let F(φ) be the r × n matrix whose rows represent the
coefficients of r zero restrictions, so F(φ)q1 = 0r×1. For example, zero restrictions on the first row
of A0 take the form e′

1,nA0ei,n = (�−1
tr ei,n)′q1 = 0, zero restrictions on impact responses to the first

shock take the form e′
i,nA−1

0 e1,n = e′
i,n�trq1 = 0, and long-run restrictions on cumulative impulse

responses to the first shock take the form e′
i,n(In − ∑p

l=1 Bl)−1�trq1 = 0. Assume 0 < r < n − 1,
which implies q1 is set-identified (Rubio-Ramı́rez et al., 2010), and assume rank(F(φ)) = r .

Similarly, let S(φ)q1 ≥ 0s×1 represent a set of s sign restrictions, which includes the sign nor-
malization e′

1,nA0e1,n = (�−1
tr e1,n)′q1 ≥ 0. S(φ) may include restrictions on impulse responses

to a standard-deviation shock, ratios of these impulse responses (e.g., elasticity and shape re-
strictions), and/or elements of the first row of A0. For example, a bound on the impact impulse
response of the ith variable to a shock in the first variable that raises the first variable by one unit
is (e′

i,n�trq1)/(e′
1,n�trq1) ≥ λ, where λ is a known scalar. This restriction can be expressed as

(e′
i,n − λe′

1,n)�trq1 ≥ 0. An example of a shape restriction is that the horizon-h impulse response
of the first variable to the first shock is weakly greater than the horizon-l response, which requires
that e′

i,nCh�trq1 ≥ e′
i,nCl�trq1 or e′

i,n(Ch − Cl)�trq1 ≥ 0. S(φ) may also include particular types
of narrative restrictions, including restrictions on the sign or relative magnitude of the first shock
in particular periods. For example, the restriction that the first shock is nonnegative in period k is
e′

1,nA0uk = (�−1
tr uk)′q1 ≥ 0. The restriction that the first shock in period k is larger than the first

shock in period m is e′
1,nA0uk ≥ e′

1,nA0um, which is equivalent to (�−1
tr (uk − um))′q1 ≥ 0.4

Given a set of identifying restrictions, the identified set for q1 collects observationally equivalent
parameter values and is defined as

Q1(φ|F, S) = {
q1 ∈ Sn−1 : F(φ)q1 = 0r×1, S(φ)q1 ≥ 0s×1

}
.

4 Under narrative restrictions, S(φ) is also a function of the data in particular periods through the reduced-form
innovations, but I leave this potential dependence implicit. See Antolı́n-Dı́az and Rubio-Ramı́rez (2018) or Giacomini
et al. (2021) for further details on narrative restrictions.
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Algorithms for inference in SVARs 703

This set has a geometric interpretation. The zero restrictions F(φ)q1 = 0r×1 restrict q1 to lie in
an (n − r)-dimensional hyperplane, while the sign restrictions S(φ)q1 ≥ 0s×1 restrict q1 to lie
within the intersection of s half-spaces. Since q1 is a column of an orthonormal matrix, it must
have unit length, so it lies on the unit sphere in Rn. The identified set for q1 is the intersection
of these spaces, which may be empty at particular values of φ. The identified set for an impulse
response ηi,j,h is

ISη(φ|F, S) = {
ηi,j,h(φ, q1) : q1 ∈ Q1(φ|F, S)

}
.

3. TRANSFORMING THE SYSTEM OF IDENTIFYING RESTRICTIONS

This section shows that the system of equality and inequality restrictions in Rn can be expressed as
an equivalent system of inequality restrictions in Rn−r . Subsequently, I explain how the algorithms
proposed in AD21 for the case of sign restrictions can be used to check whether Q1(φ|F, S) is
nonempty and, if so, to generate a value of q1 satisfying the identifying restrictions. Additionally,
the Gibbs sampler developed in AD21 can be extended to randomly sample q1 from a uniform
distribution over Q1(φ|F, S).

Let N (F(φ)) denote an orthonormal basis for the null space of F(φ), which spans the hyperplane
F(φ)q1 = 0r×1. Under the assumption rank(F(φ)) = r , the rank-nullity theorem implies N (F(φ))
is of dimension n − r . The null space of N (F(φ))′ is then of dimension r and the columns of
the matrix K = (N (F(φ)), N(N (F(φ))′)) form an orthonormal basis for Rn.5 The matrix that
transforms from this basis into the standard basis is K−1. In the new basis, the coefficients in the
zero and sign restrictions are, respectively, F̃(φ) = (K−1F(φ)′)′ and S̃(φ) = (K−1S(φ)′)′. After
applying this change of basis, the hyperplane generated by the zero restrictions coincides with
the hyperplane spanned by the first n − r basis vectors (i.e., the first n − r column vectors of In).
Any vector lying in this hyperplane will therefore have its last r elements equal to zero.

After the change of basis, the projection of the ith row of S̃(φ), S̃i(φ), onto the hyperplane
generated by the zero restrictions is6

S̄i(φ)′ = (In − F̃(φ)′(F̃(φ)F̃(φ)′)−1F̃(φ))S̃i(φ)′. (3.1)

Let M = (In−r , 0(n−r)×r ) be the (n − r) × n matrix such that Mx drops the last r elements of the
n × 1 vector x and let S̄(φ) = (MS̄i(φ)′, . . . , MS̄s(φ)′)′. The end result of these transformations
is that the sign and zero restrictions in Rn have been replaced with an equivalent system of sign
restrictions S̄(φ)q̄1 ≥ 0s×1 in Rn−r . This claim is formalized in the following proposition.

PROPOSITION 3.1. Let F(φ)q1 = 0r×1 be a system of r zero restrictions with rank(F(φ)) = r

and let S(φ)q1 ≥ 0s×1 be a system of s sign restrictions.
(a) If q1 ∈ Rn satisfies F(φ)q1 = 0r×1 and S(φ)q1 ≥ 0s×1, then q̄1 = MK−1q1 ∈ Rn−r satisfies

S̄(φ)q̄1 ≥ 0s×1.
(b) If q̄1 ∈ Rn−r satisfies S̄(φ)q̄1 ≥ 0s×1, then q1 = KM′q̄1 ∈ Rn satisfies F(φ)q1 = 0r×1 and

S(φ)q1 ≥ 0s×1.

This proposition implies the following corollary relating (non)emptiness of the set Q̄1(φ|S̄) ={
q̄1 ∈ Sn−r−1 : S̄(φ)q̄1 ≥ 0s×1

}
to (non)emptiness of the set Q1(φ|F, S).

5 I leave the dependence of K on F(φ) implicit.
6 Since the hyperplane generated by the zero restrictions coincides with the hyperplane spanned by the first n − r

basis vectors, this is equivalent to projecting onto the linear subspace spanned by the first n − r basis vectors via
S̄i (φ)′ = (In − B(B′B)−1B′)S̃i (φ)′, where B = (0r×(n−r), Ir )′ contains the last r basis vectors.

C© The Author(s) 2022.
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704 M. Read

COROLLARY 3.1. Q1(φ|F, S) is nonempty if and only if Q̄1(φ|S̄) is nonempty.

Based on the results in AD21, Q̄1(φ|S̄) is nonempty if the largest ball that can be inscribed
within the intersection of the s half-spaces generated by the inequality restrictions S̄(φ)q̄1 ≥ 0s×1

and the unit (n − r)-cube has positive radius. The problem of finding the radius and ‘Chebyshev’
centre of this ball can be formulated as a linear program, which can be solved efficiently (e.g., Boyd
and Vandenberghe, 2004). If the ball has positive radius with centre c ∈ Rn−r , then q̄(0)

1 = c/‖c‖
satisfies S̄(φ)q̄(0)

1 ≥ 0s×1 and lies in Sn−r−1. By Proposition 3.1(ii), q(0)
1 = KM′q̄(0)

1 satisfies the
original set of identifying restrictions and lies in Sn−1.

The Gibbs sampler in AD21 can be used to obtain a sequence of draws of q̄1 from a uni-
form distribution over Q̄1(φ|S̄) using q̄(0)

1 to initialize the sampler.7 Let q̄(k)
1 represent the kth

draw. If q̄(k)
1 is uniformly distributed over Q̄1(φ|S̄), then M′q̄(k)

1 is uniformly distributed over{
M′q̄1 ∈ Sn−1 : F̃(φ)M′q̄1 = 0r×1, (M′S̄(φ)′)′M′q̄1 ≥ 0s×1

}
. Since K is an orthonormal matrix,

q(k)
1 = KM′q̄(k)

1 is also uniformly distributed. Applying this transformation to each draw q̄(k)
1

therefore yields draws q(k)
1 that are uniformly distributed over Q1(φ|F, S). These transformed

draws can be used when conducting Bayesian inference under a conditionally uniform prior for
q1 given φ.8

To provide some geometric intuition, it is useful to consider the case where n = 3 and there
is one zero restriction. The set Q̄1(φ|S̄) (when it is nonempty) is an arc of the unit circle in
R2. The Gibbs sampler from AD21 generates draws from a uniform distribution over this arc.
Applying the transformation M′q̄(k)

1 to the draws embeds the draws on this arc as draws on an
arc of the unit sphere in R3, where the arc lies within the plane perpendicular to the z axis. Since
K is orthonormal, left-multiplication by K rotates the draws about a particular axis of rotation.
The rotation preserves the distribution of the draws on the arc, which now lies within the plane
perpendicular to the vector F(φ)′.

4. NUMERICAL IMPLEMENTATION

This section describes numerical algorithms to facilitate inference in SVARs identified using sign
and zero restrictions. Algorithm 4.1 determines whether the identified set is nonempty and, if so,
generates a value of q1 satisfying the identifying restrictions. Algorithm 4.2 generates draws of
q1 that are uniformly distributed over Q1(φ|F, S) via Gibbs sampling. The algorithms operate
given a value of φ and can be embedded within a posterior sampler for these parameters, in which
case the assumption rank(F(φ)) = r needs to hold φ-almost surely. For convenience, I suppress
dependence on φ in the descriptions of the algorithms below.

ALGORITHM 4.1. Determining whether Q1(φ|F, S) is empty. Let Fq1 ≥ 0r×1 be the set of zero
restrictions and let Sq1 ≥ 0s×1 be the set of sign restrictions (including the sign normalization)
given φ.

7 The Gibbs sampler in AD21 builds on a Gibbs sampler developed by Li and Ghosh (2015) for sampling from a
multivariate normal distribution truncated by linear inequality restrictions.

8 The accept-reject sampler proposed in Arias et al. (2018) involves rejecting joint draws of (φ, Q) that violate the
sign restrictions. In contrast, imposing a conditionally uniform prior requires obtaining a single draw of Q (or q1) that
satisfies the identifying restrictions at each draw of the reduced-form parameters such that the identified set is nonempty.
See Uhlig (2017) for a discussion of this point.

C© The Author(s) 2022.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/article/25/3/699/6529229 by guest on 18 April 2024



Algorithms for inference in SVARs 705

Step 1. Compute the change-of-basis matrix K = (N (F), N(N (F)′)) and transform the coeffi-
cient vectors of the sign and zero restrictions into the new basis via S̃ = (K−1S′)′ and
F̃ = (K−1F′)′.9

Step 2. Project the coefficient vectors of the sign restrictions in the new basis onto the linear
subspace spanned by the rows of F̃ and drop the last r elements of the resulting
vectors. The transformed matrix of coefficients is S̄ = (M(In − F̃′(F̃F̃′)−1F̃)S̃′)′, where
M = (In−r , 0(n−r)×r ).

Step 3. Solve for the Chebyshev centre c = (c1, . . . , cn−r )′ and radius R of the set {q̄1 ∈ Rn−r :
S̄q̄1 ≥ 0s×1, |q̄1,i | ≤ 1, i = 1, . . . , n − r}, where q̄1,i is the ith element of q̄1, by solving
the linear program:

max
{R≥0,c}

R

subject to

e′
k,s S̄c + R‖e′

k,s S̄‖ ≥ 0, k = 1, . . . , s,

ci + R ≤ 1, i = 1, . . . , n − r,

ci − R ≥ −1, i = 1, . . . , n − r.

Step 4. If R > 0, conclude Q1(φ|F, S) is nonempty and compute q̄(0)
1 = c/‖c‖. Otherwise,

conclude Q1(φ|F, S) is empty.

If interest is in computing the bounds of the identified set for a scalar function of φ and q1,
such as ηi,j,h, q(0)

1 = KM′q̄(0)
1 is a feasible value of q1 satisfying the identifying restrictions and

can be used to initialize a gradient-based optimization algorithm. This is relevant in the context
of conducting prior-robust Bayesian inference, as in Giacomini and Kitagawa (2021).

If interest is in obtaining uniformly distributed draws over Q1(φ|F, S), q̄(0)
1 can be used to

initialize the following Gibbs sampler.

ALGORITHM 4.2. Gibbs sampler for q1. Assume the output of Algorithm 4.1 is available and
Q1(φ|F, S) is nonempty. Initialize the algorithm at z(0) = q̄(0)

1 and let L be the desired number of
draws of q1. For k = 1, . . . , L, iterate on the following steps:

Step 1. Let S̄j,v:w be elements v, v + 1, . . . , w − 1, w of the j th row of S̄ and let z(k)
v:w be

elements v, v + 1, . . . , w − 1, w of z(k). For i = 1, . . . , n − r , draw z
(k)
i from the

truncated standard normal distribution with lower bound l
(k)
i and upper bound u

(k)
i ,

where

l
(k)
i = max

{
− S̄j,1:(i−1)z

(k)
1:(i−1) + S̄j,(i+1):(n−r)z

(k−1)
(i+1):(n−r)

S̄j,i

: S̄j,i > 0, j = 1, . . . , n − r
}
,

u
(k)
i = min

{
− S̄j,1:(i−1)z

(k)
1:(i−1) + S̄j,(i+1):(n−r)z

(k−1)
(i+1):(n−r)

S̄j,i

: S̄j,i < 0, j = 1, . . . , n − r
}

with l
(k)
i = −∞ (u(k)

i = ∞) if S̄j,i > 0 (S̄j,i < 0) does not hold for any j .

9 In the MATLAB code accompanying the paper, I implement this step using MATLAB’s ‘null’ function, which uses
the singular value decomposition to compute an orthonormal basis for the null space.
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706 M. Read

Step 2. Compute q̄(k)
1 = z(k)/‖z(k)‖ and q(k)

1 = KM′q̄(k)
1 .

After discarding an appropriate number of initial draws, q(k)
1 can be considered as dependent

draws from the uniform distribution over Q1(φ|F, S). To obtain (approximately) independent
draws, keep only every f th draw, where f is chosen such that the retained draws are serially
uncorrelated. To implement Step 1 in practice, I follow AD21 by drawing from the truncated
standard normal distribution using the inverse cumulative distribution function (CDF) method.
Letting u ∼ U (0, 1), �−1(u(�(b) − �(a)) + �(a)) is a truncated standard normal random vari-
able with lower truncation point a and upper truncation point b, where �(.) is the CDF of a
standard normal random variable and �−1(.) is the inverse CDF.

5. EMPIRICAL ILLUSTRATION AND COMPARISON AGAINST ALTERNATIVE
ALGORITHMS

This section applies the new algorithms in an empirical setting and compares their performance
against existing alternatives.10 The empirical application is from ACR19, who estimate the effects
of monetary policy shocks in the United States.

Reduced-form VAR. The model’s endogenous variables are real gross domestic product
(GDPt ), the GDP deflator (GDPDEFt ), a commodity price index (COMt ), total reserves (TRt ),
nonborrowed reserves (NBRt ) (all in natural logarithms), and the federal funds rate (FFRt ). The
data are monthly and run from January 1965 to June 2007.11 The VAR includes 12 lags.

I follow ACR19 by assuming a diffuse normal-inverse-Wishart prior over the reduced-form
parameters. The posterior for the reduced-form parameters is then also a normal-inverse-Wishart
distribution, from which it is straightforward to obtain independent draws (e.g., Del Negro and
Schorfheide, 2011).

Identifying restrictions. Let yt = (FFRt , GDPt , GDPDEFt , COMt , TRt , NBRt )′. The mon-
etary policy shock is ε1t and the first equation of the SVAR can be interpreted as the mon-
etary policy reaction function. ACR19 set-identify the monetary policy shock using a mix-
ture of sign and zero restrictions on the monetary policy reaction function. The zero re-
strictions are that FFRt does not react contemporaneously to TRt or NBRt , which implies
e′

1,6A0e5,6 = (�−1
tr e5,6)′q1 = 0 and e′

1,6A0e6,6 = (�−1
tr e6,6)′q1 = 0. The matrix containing the co-

efficients of the zero restrictions is F(φ) = (�−1
tr e5,6,�

−1
tr e6,6)′. The sign restrictions are that, all

else equal, FFRt is not decreased in response to higher GDPt or GDPDEFt , which—given the
sign normalization e′

1,6A0e1,6 = (�−1
tr e1,6)′q1 ≥ 0—implies e′

1,6A0e2,6 = (�−1
tr e2,6)′q1 ≤ 0 and

e′
1,6A0e3,6 = (�−1

tr e3,6)′q1 ≤ 0. The impact response of FFRt to the monetary policy shock is also
restricted to be nonnegative, which requires e′

1,6A−1
0 e1,6 = e′

1,6�trq1 ≥ 0. The matrix containing
the coefficients of the sign restrictions is S(φ) = (�−1

tr e1,6,−�−1
tr e2,6,−�−1

tr e3,6, (e′
1,6�tr)′)′.

I also consider other sets of identifying restrictions that add additional sign restrictions to S(φ).
Specifically, I add the sign restrictions on impulse responses proposed in Uhlig (2005). These
restrictions are that the impulse response of FFRt to the monetary policy shock is nonnegative
for h = 0, 1, . . . , H and the impulse responses of GDPDEFt , COMt , and NBRt are nonpositive
for h = 0, 1, . . . , H , where H is a specified horizon. To explore how the algorithms perform

10 All results are obtained using MATLAB 2020b on a laptop with Windows 10, an Intel Core i7-6700HQ CPU @
2.60 GHz with four cores, and 8 GB of RAM.

11 The data were obtained from the replication files for ACR19 (Arias et al. 2019b).
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Table 1. Determining emptiness of Q1(φ|F, S).

Pr(Q1(φ|F, S) = ∅) (%) Computing time (s)

Restrictions A4.1 RS GKV A4.1 RS GKV

(1) 0.00 0.00 0.00 9.86 0.04 0.17
(2) 0.60 1.00 0.60 9.26 6.55 4.26
(3) 6.50 8.00 6.50 9.38 50.55 103.78
(4) 31.60 35.40 31.60 9.64 223.51 3,277.20

Notes: (1) are the restrictions from ACR19 (2 zero restrictions, 4 sign restrictions); (2), (3), and (4) are the restrictions
from ACR19 plus the restrictions from Uhlig (2005) with H = 5 (27 sign restrictions), H = 11 (51 sign restrictions), and
H = 23 (99 sign restrictions), respectively; A4.1 refers to Algorithm 4.1; RS refers to the rejection-sampling approach;
GKV refers to the algorithm from Giacomini, Kitagawa and Volpicella (2022).

under different numbers of sign restrictions, I consider H ∈ {5, 11, 23}. In total, there are 27 sign
restrictions when H = 5, 51 sign restrictions when H = 11, and 99 sign restrictions when
H = 23.

Determining emptiness of Q1(φ|F, S). Given 1,000 draws from the posterior of φ, I check
whether the identified set is empty using Algorithm 4.1 and two alternative approaches. I compare
the accuracy and speed of the three algorithms.

The first alternative is a rejection-sampling (RS) approach similar to that used by Arias et al.
(2018) and Giacomini and Kitagawa (2021) to draw values of Q. The algorithm draws q1 from a
uniform distribution over Q1(φ|F) = {

q ∈ Sn−1 : F(φ)q1 = 0r×1
}

and checks whether the draw
satisfies the sign restrictions.12 If no draws of q1 satisfy the sign restrictions after 100,000 draws, I
approximate the identified set as empty. This algorithm may incorrectly classify the identified set
as being empty, particularly when draws satisfying the zero restrictions satisfy the sign restrictions
with low probability.

The second algorithm is from Giacomini, Kitagawa and Volpicella (2022). Their algorithm
relies on the fact that any nonempty identified set for q1 must contain a vertex on the unit sphere
where at least n − 1 restrictions are binding. The algorithm determines whether the identified
set is nonempty by considering all possible combinations of n − r − 1 binding sign restrictions
and checking whether the implied vertex satisfies the remaining sign restrictions. This approach
will exactly determine whether the identified set is empty, but may become computationally
burdensome when the number of sign restrictions is large, since it requires checking

(
s

n−r−1

)
combinations of restrictions before concluding the identified set is empty.

To compare the accuracy of the algorithms, I compute the posterior probability that the identi-
fied set is empty. To compare computational efficiency, I tabulate the time taken to check whether
the identified set is empty. Under the restrictions from ACR19, all three algorithms correctly de-
termine that the identified set is nonempty at every draw of φ (Table 1). Although Algorithm 4.1
is slower than the two alternatives in this case, in practice it would not be necessary to numer-
ically check whether the identified set is nonempty, because the identified set is never empty
when r + s ≤ n.13 As the number of restrictions increases, the RS approach misclassifies the

12 The algorithm draws z ∼ N (0n×1, In) and computes q̃1 = [
In − F′

1(F1F′
1)−1F1

]
z, so q̃1 satisfies the zero restric-

tions. q̃1 is then normalized so that it satisfies the sign normalization and has unit length before checking whether it
satisfies the remaining sign restrictions.

13 This can be shown by applying Gordan’s Theorem (e.g., p. 31 of Mangasarian (1969)) after transforming the system
of identifying restrictions into a system of sign restrictions in a lower-dimensional space.
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708 M. Read

Figure 1. Histogram of impulse response under alternative sampling algorithms.
Notes: Impact response of output; based on 100,000 draws of q1 at random draw of φ.

identified set as being empty at some draws of φ. Algorithm 4.1 is somewhat slower than the two
alternatives under the second set of restrictions, but is much faster under the two larger sets of
restrictions.

Obtaining uniform draws over Q1(φ|F, S). I verify that the Gibbs sampler generates draws
from the uniform distribution over Q1(φ|F, S) by comparing the distributions of draws obtained
using the Gibbs sampler and the rejection sampler. Experiments using parallel Markov chains
initialized at the same value suggest that dropping the first three draws from the Gibbs sampler is
sufficient to remove dependence on the initial value; the distribution of the fourth draw across the
parallel chains is statistically indistinguishable from the distribution generated by the rejection
sampler (which generates independent draws). Dropping every second draw from the Gibbs
sampler is sufficient to eliminate a significant first-order autocorrelation in the original set of
draws.

Under the restrictions from ACR19 and given a single (random) draw of φ with nonempty
identified set, I obtain 100,000 draws of q from the Gibbs sampler after dropping the initial
three draws and keeping every second draw. Figure 1 plots histograms of the impact impulse
response of output obtained using the two samplers; the distributions appear very similar and a
two-sample Kolmogorov-Smirnov test fails to reject the null hypothesis that the two sets of draws
are generated by the same distribution (p-value = 0.8).

Next, I compare the efficiency of the two algorithms. I embed the Gibbs sampler (with a burn-in
of three draws) and the rejection sampler within a standard posterior sampler for φ to obtain 1,000
draws from the joint posterior of (φ, q1) such that Q1(φ|F, S) is nonempty. The rejection sampler
is more efficient than the Gibbs sampler when there are few sign restrictions (Table 2). The
algorithms perform similarly when there is an intermediate number of sign restrictions. Under
the larger sets of restrictions, the Gibbs sampler is more efficient.

Computing the bounds of I Sη(φ|F, S). At 1,000 draws of φ where Q1(φ|F, S) is nonempty, I
compute the lower and upper bounds of ISη(φ|F, S) when η = ηi,j,h(φ, q1) is the output response
to the monetary policy shock at horizons h = 0, . . . , 60. The upper bound, u(φ), is defined as
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Table 2. Time taken to obtain 1,000 draws (s).

Draws of (φ, q1) Draws of ISη(φ|F, S)

Restrictions Gibbs RS A4.1 RS GMM

(1) 13 3 407 396 10
(2) 13 13 591 609 1,537
(3) 14 61 759 797 10,638
(4) 19 352 887 1,270 85,990

Notes: (1) are the restrictions from ACR19 (2 zero restrictions, 4 sign restrictions); (2), (3),
and (4) are the restrictions from ACR19 plus the restrictions from Uhlig (2005) with H = 5
(27 sign restrictions), H = 11 (51 sign restrictions), and H = 23 (99 sign restrictions),
respectively; ‘Gibbs’ refers to Algorithm 4.2 with a burn-in of three draws; RS refers to the
rejection-sampling approach; GMM refers to the active-set algorithm from Gafarov et al.
(2018).

the value function of the optimization problem u(φ) = maxq1∈Q1(φ|F,S) ηi,j,h(φ, q1), which is a
quadratically constrained linear program with linear equality and inequality constraints. The lower
bound, l(φ), is defined as the value function from the corresponding minimization problem.

I consider three alternative approaches. The first uses Algorithm 4.1 to check whether the
identified set is nonempty and to obtain a value of q1 satisfying the identifying restrictions, which
is used to initialize a gradient-based numerical optimization routine.14 The second algorithm uses
the same numerical optimization routine, but uses the RS approach to obtain the initial value of
q1. The third approach uses the active-set algorithm described in Gafarov et al. (2018) (GMM).15

This approach may be computationally burdensome when the number of sign restrictions is large,
since it requires computing the bounds of the identified set at

∑n−r−1
k=0

(
s

k

)
combinations of binding

sign restrictions.
When there is a small number of sign restrictions, the algorithm from GMM is the most

efficient of the three (Table 2). The other two algorithms perform similarly, since the bulk of the
computing time is spent on the optimization step—which is common across the two approaches—
rather than on trying to find a feasible initial value. As the number of sign restrictions increases,
the algorithm from GMM becomes computationally burdensome due to the explosion in the
number of combinations of active restrictions to check. When H = 23, using Algorithm 4.1 to
obtain a feasible initial value for the numerical optimization routine is about 30 per cent faster
than obtaining the initial value via rejection sampling.

To provide some sense of how tight the identified set is on average under the different identifying
restrictions, Figure 2 plots the set of posterior means and 68 per cent robust credible regions for
the output response. These quantities are proposed by Giacomini and Kitagawa (2021) to assess or
eliminate the sensitivity of posterior inference in set-identified models to the choice of conditional
prior for Q|φ. The set of posterior means is the average of ISη(φ|F, S) over the posterior for φ and

14 I use the interior-point algorithm in MATLAB’s fmincon optimizer with analytical gradients of the objective function
and constraints.

15 Given a set of binding restrictions, GMM derive an expression for the value function (up to sign) of the optimization
problems that define the bounds of the identified set. They also provide expressions for the corresponding solutions of the
problems. They propose computing the value function at every possible combination of binding restrictions and checking
whether the corresponding solution satisfies the remaining sign restrictions. The lower and upper bounds of the identified
set are then the minimum and maximum, respectively, over the feasible value functions obtained at each combination of
binding restrictions.
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710 M. Read

Figure 2. Output response to a monetary policy shock.
Notes: (1) are the restrictions from ACR19 (2 zero restrictions, 4 sign restrictions); (2), (3), and (4) are the

restrictions from ACR19 plus the restrictions from Uhlig (2005) with H = 5 (27 sign restrictions),
H = 11 (51 sign restrictions), and H = 23 (99 sign restrictions), respectively; responses are to a positive

standard-deviation shock to the federal funds rate and are obtained using Algorithm 4.1 and a
gradient-based numerical optimization routine.

can be interpreted as a consistent estimator of the identified set. The robust credible region is the
shortest interval covering 68 per cent of the posterior distribution under all possible conditional
priors for Q|φ that satisfy the identifying restrictions, and can be interpreted as an asymptotically
valid frequentist confidence interval. Each additional set of sign restrictions appears to appreciably
truncate the identified set, on average. This explains the improvement in the performance of the
proposed algorithms relative to those based on rejection sampling as the number of restrictions
increases.

An extremely large number of restrictions. This section provides an example of a set of
identifying restrictions under which (accurate) posterior inference would be extremely compu-
tationally burdensome using existing algorithms. Specifically, in addition to the restrictions in
ACR19 and the restrictions in Uhlig (2005) when H = 5, I impose a narrative restriction on the
timing of the maximum realization of the monetary policy shock, as in Giacomini et al. (2021).

C© The Author(s) 2022.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/article/25/3/699/6529229 by guest on 18 April 2024



Algorithms for inference in SVARs 711

Figure 3. Impulse responses to monetary policy shock—shock-rank restriction.
Notes: Shock-rank restriction is the restriction that the monetary policy shock in October 1979 was the

largest positive realization of the shock in the sample; this restriction is in addition to the restrictions from
ACR and Uhlig (2005) with H = 5 (525 sign restrictions in total); responses are to a positive

standard-deviation shock to the federal funds rate and are obtained using Algorithm 4.1 and a numerical
optimization procedure.

This ‘shock-rank’ restriction is that the monetary policy shock in October 1979—the month in
which Paul Volcker dramatically and unexpectedly raised the federal funds rate—was the largest
positive realization of the monetary policy shock in the sample. This restriction requires that
ε1k = e′

1,nA0uk = (�−1
tr uk)′q1 ≥ 0 and ε1k ≥ maxt �=k{ε1t } where k is the index corresponding to

October 1979. The latter restriction is equivalent to (�−1
tr (uk − ut ))′q1 ≥ 0 for t �= k. The re-

striction generates T additional inequality restrictions on q1, where T is the sample size and the
inequality restrictions depend on the data (via the reduced-form VAR innovations).

The restriction noticeably tightens the set of posterior means and robust credible intervals
for the output response; the set of posterior means excludes zero at all horizons considered
and the robust credible intervals exclude zero at most horizons (Figure 3). The posterior lower
probability—the smallest probability attainable in the class of posteriors—of a negative output
response at the two-year horizon is around 95 per cent. The restriction therefore appears to
be extremely informative when combined with the restrictions from ACR19 and Uhlig (2005);
however, the posterior probability that the identified set is empty is very high (around 96 per
cent), which suggests that the restriction is inconsistent with the data.

The large system of inequality restrictions and narrow identified set generated by the restric-
tion poses difficulties for existing algorithms. The approach in GKV would require checking(498+3+24

3

) = 23, 979, 550 combinations of sign restrictions to determine that the identified set

is empty. The approach in GMM would require considering
∑3

k=0

(498+3+24
k

) = 24, 117, 626
combinations of restrictions for every parameter of interest (i.e, for every variable and every
impulse-response horizon) to compute the bounds of the identified set. Furthermore, given how
tight the identified set appears to be on average over the posterior for φ, the RS approach would
require a very large number of draws of q1 given the zero restrictions to accurately approxi-
mate the posterior probability that the identified set is empty or to conduct inference under a
conditionally uniform prior.
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712 M. Read

Discussion. Overall, the results of this empirical exercise suggest that the new algorithms
are likely to be preferable to existing alternatives when more than a handful of sign restrictions
are imposed and/or these sign restrictions substantially truncate the identified set given the zero
restrictions. The new algorithms should therefore facilitate the use of rich sets of sign restrictions
alongside zero restrictions. It is difficult to provide definitive guidance about the number of
restrictions above which the new algorithms will be more computationally efficient than the
alternative algorithms considered; for example, whether the new algorithms are more efficient
than the alternatives based on rejection sampling will depend on the extent to which the sign
restrictions truncate the identified set given the zero restrictions. If practitioners want to use the
fastest algorithm in any particular circumstance, they could test the algorithms against each other
at particular values of the reduced-form parameters, such as at the maximum-likelihood estimate
or at a small number of draws from the posterior.

6. EXTENSIONS

The algorithms described in the paper can be extended to some additional cases where there are
restrictions on multiple columns of Q.

6.1. Some columns of Q are point-identified

Consider the case where the first i∗ columns of Q, [q1, . . . , qi∗ ], are point-identified by zero
restrictions, but interest is in impulse responses to the j ∗ = (i∗ + 1)th shock with both zero and
sign restrictions on qj∗ . Let F(i)(φ) represent the ri × n matrix containing the coefficients of the
zero restrictions constraining qi and let

F(φ, Q) =

⎡
⎢⎣

F(1)(φ)q1
...

F(n)(φ)qn

⎤
⎥⎦ = 0∑n

i=1 ri×1.

If the zero restrictions do not constrain qi , then F(i)(φ) does not exist and ri = 0. As in Giacomini
and Kitagawa (2021), assume the variables in yt are ordered to satisfy the following ordering
convention.

DEFINITION 6.1. Ordering convention. Order the variables in yt so that ri satisfies r1 ≥ r2 ≥
. . . ≥ rn ≥ 0. If the impulse response of interest is to the j ∗th variable, order the j ∗th variable
first among ties.

A necessary condition for exact identification of the first i∗ columns of Q is that rank(F(i)(φ)) =
ri = n − i for i = 1, . . . , i∗ (Rubio-Ramı́rez et al., 2010). A necessary and sufficient condition
is that

rank
([

F(i)(φ)′, q1, . . . , qi−1
]′) = n − 1, for i = 1, . . . , i∗, (6.1)

which additionally requires that the restrictions in F(i)(φ), i = 1, . . . , i∗, are ‘non-redundant’ in
the sense discussed in Bacchiocchi and Kitagawa (2021).16

16 If the condition in Equation (6.1) is satisfied, then qi is restricted to lie in the one-dimensional linear subspace of Rn

satisfying (F(i)(φ)′, q1, . . . , qi−1)′qi = 0(n−1)×1. The sign normalization and requirement that qi lie on the unit sphere
pin down qi .
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Assume rj∗ < n − j ∗, in which case qj∗ is set-identified. qj∗ is constrained by the sign restric-
tions S(φ)qj∗ ≥ 0s×1 and an extended set of zero restrictions incorporating the restriction that
qj∗ is orthogonal to the preceding columns of Q:

F̈(j∗)(φ)qj∗ = [
F(j∗)(φ)′, q1, . . . , qi∗

]′
qj∗ = 0(rj∗ +j∗−1)×1,

where I have suppressed the dependence of F̈(j∗)(φ) on F(i)(φ), i = 1, . . . , i∗. If the conditions
for exact identification above are satisfied, each qi , i = 1, . . . , i∗, can be determined itera-
tively as follows. First, find a unit-length vector q1 satisfying F(1)(φ)q1 = 0(n−1)×1 by computing
an orthonormal basis for the null space of F(1)(φ). Normalize q1 so it satisfies the sign nor-
malization (�−1

tr e1,n)′q1 ≥ 0. Then, for i = 2, . . . , i∗, find a unit-length vector qi satisfying
(F(i)(φ)′, q1, . . . , qi−1)′qi = 0(n−1)×1 by computing an orthonormal basis for the null space of
(F(i)(φ)′, q1, . . . , qi−1)′. Normalize qi so it satisfies the sign normalization (�−1

tr ei,n)′qi ≥ 0. Un-
der the assumption that rank(F̈(j∗)(φ)) = rj∗ + j ∗ − 1, F̈(j∗)(φ) can replace F(φ) in the algorithms
described in Section 4 without further modification.

6.2. A subset of the columns of Q is determined up to a linear subspace

The algorithms can also be applied when (q1, . . . , qi∗ ) is not point-identified, but is pinned down
to lie within an i∗-dimensional linear subspace of Rn. Consider the case where F(1)(φ) = . . . =
F(i∗)(φ), so r1 = . . . = ri∗ ≡ r̃ , and assume r̃ = n − i∗, which implies qi is set-identified for
i = 1, . . . , i∗. For example, this pattern of restrictions arises in proxy SVARs when there are
multiple proxies for multiple shocks (e.g., Giacomini, Kitagawa and Read, 2022). The restriction
F(i)(φ)qi = 0r̃×1 restricts qi to lie in a linear subspace of Rn with dimension n − r̃ = i∗. Since
F(i)(φ) is common for i = 1, . . . , i∗, the first i∗ columns of Q are restricted to lie in the same
i∗-dimensional subspace. An orthonormal basis for this subspace is N (F(1)(φ)). q∗

j must be
orthogonal to the preceding columns of Q, so it must be orthogonal to the i∗-dimensional
subspace spanned by the columns of N (F(1)(φ)). qj∗ must therefore satisfy S(φ)qj∗ ≥ 0s×1 and
the extended set of zero restrictions

F̈(j∗)(φ)qj∗ =
[

F(j∗)(φ)
N (F(1)(φ))′

]
qj∗ = 0(rj∗ +j∗−1)×1.

Under the assumption rank(F̈(j∗)(φ)) = rj∗ + j ∗ − 1 < n − j ∗, F̈(j∗)(φ) can replace F(φ) in the
algorithms described in Section 4 without further modification.

6.3. Sign and zero restrictions on multiple columns of Q

Consider the case where there are zero and sign restrictions on the first i∗ < n columns of Q with
0 ≤ ri < n − i for i = 1, . . . , i∗, so qi is set-identified for all i = 1, . . . , n. Let S(i)(φ)qi ≥ 0si×1

represent the sign restrictions constraining qi and let S(φ, Q) ≥ 0∑n
i=1 si×1 represent the system

of sign restrictions (including the sign normalizations). The identified set for Q is

Q(φ|F, S) = {
Q ∈ O(n) : F(φ, Q) = 0∑n

i=1 ri×1, S(φ, Q) ≥ 0∑n
i=1 si×1

}
.

When there are sign restrictions only, AD21 provide a sufficient condition for checking whether
Q(φ|F, S) is empty and a sufficient condition for checking whether it is nonempty. These sufficient
conditions can be extended to the case with zero restrictions in the following way.

First, a sufficient condition for Q(φ|F, S) = ∅ is Qi(φ|F(i), S(i)) = ∅ for any i ∈ {1, . . . , i∗}.
Intuitively, if the identified set for a single column of Q is empty when imposing only the
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714 M. Read

restrictions directly constraining that column, the identified set for Q itself must be empty. To
check this, one can apply Algorithm 4.1 for each i, replacing F(φ) and S(φ) with F(i)(φ) and
S(i)(φ), respectively.

Second, a sufficient condition forQ(φ|F, S) to be nonempty is thatQ1(φ|F(1), S(1)) is nonempty
and Qi(φ|F̂(i), S(i)) is nonempty for all i = 2, . . . , i∗, where

F̂(i)(φ) = [
F(i)(φ)′, q(0)

1 , . . . , q̂(0)
i−1

]′
.

q(0)
1 is the transformed Chebyshev centre obtained from applying Algorithm 4.1 under the system

of restrictions F(1)(φ)q1 = 0r1×1 and S(1)(φ)q1 ≥ 0s1×1, and q̂(0)
i is the transformed Chebyshev

centre obtained from applying Algorithm 4.1 under the system of restrictions F̂(i)(φ)qi = 0ri×1

and S(i)(φ)qi ≥ 0si×1. It is only necessary to check this condition for the first i∗ columns of
Q, since a set of n − i∗ orthonormal vectors satisfying the sign normalizations can always be
constructed in the null space of (q(0)

1 , . . . , q(0)
i∗ ).

If neither sufficient condition is satisfied, one could attempt to determine whether the identified
set is nonempty using rejection sampling. However, as in the case where a single column of Q is
restricted, this is likely to be inaccurate or computationally burdensome when the sign restrictions
markedly tighten the identified set for Q given the zero restrictions.

AD21 also describe a Gibbs sampler that is applicable when there are sign restrictions on
multiple columns of Q. Similar to the case where a single column of Q is restricted, this
sampler can be extended to allow for zero restrictions. Assume one is able to obtain a value of
Q1:i∗ = (q1, . . . , qi∗ ) satisfying the sign and zero restrictions and that the parameter of interest
is a function of Q1:i∗ (e.g., an impulse response to one of the first i∗ shocks). Also, assume that
ri < n − i∗ for all i = 1, . . . , n and that i∗ < n − 1.

ALGORITHM 6.1. Gibbs sampler for Q1:i∗ . Assume Q(0)
1:i∗ = (q(0)

1 , . . . , q(0)
i∗ ) is available satis-

fying the system of identifying restrictions. Let L be the desired number of draws of Q1:i∗ . For
each k = 1, . . . , L, sequentially complete the following steps for j = 1, . . . , i∗:

Step 1. Compute F†
j = (q(k)

1 , . . . , q(k)
j−1, q(k−1)

j+1 , . . . , q(k−1)
i∗ , F′

j )′.
Step 2. Compute the change-of-basis matrix K = (N (F†

j ), N(N (F†
j )′)) and transform the co-

efficient vectors of the sign, zero, and orthogonality restrictions into the new basis via
S̃j = (K−1S′

j )′ and F̃j = (K−1F†′
j )′.

Step 3. Project the coefficient vectors of the sign restrictions in the new basis onto the
linear subspace spanned by the rows of F̃j and drop the last rj + i∗ − 1 el-
ements of the resulting vectors. The transformed matrix of coefficients is S̄j =
(M(In − F̃′

j (F̃j F̃′
j )−1F̃j )S̃′

j )′, where M = (In−rj −i∗−1, 0(n−rj −i∗−1)×(rj +i∗+1)).

Step 4. Set z(k−1)
j = MK−1q(k−1)

j and apply Steps 1 and 2 of Algorithm 4.2 for i = 1, . . . , n −
rj − i∗ + 1 to obtain q(k)

j .

The key difference between this algorithm and Algorithm 4.2 is that, within every iteration of
the Gibbs sampler, the columns of Q1:i∗ other than qj are treated as given. The condition that
qj is orthogonal to the remaining columns of Q1:i∗ can be treated as a set of zero restrictions.
An important assumption is that an initial value of Q1:i∗ satisfying the identifying restrictions
is available; when the sufficient condition for a nonempty identified set described above is not
satisfied, obtaining such a value may require the use of RS methods. Numerical exercises in-
dicate that this algorithm draws from the same uniform distribution over the identified set for
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Q1:i∗ as the rejection samplers described in Arias et al. (2018) and Giacomini and Kitagawa
(2021). The algorithm is likely to be more efficient than rejection sampling when sign restric-
tions considerably truncate the identified set for Q1:i∗ given the zero restrictions. The algorithm
may be useful for approximating the bounds of the identified set for a scalar parameter of
interest.17

7. CONCLUSION

In SVAR models, a system of sign and zero restrictions constraining a single column of the
orthonormal matrix can be expressed as a system of sign restrictions in a lower-dimensional
space. Consequently, algorithms that are useful for conducting Bayesian inference under
sign restrictions can be extended to the case where there are also zero restrictions. I show
that such algorithms can be more accurate and computationally efficient than existing al-
ternatives, particularly when a large number of sign restrictions considerably truncates the
identified set given the zero restrictions. The algorithms in this paper should therefore fa-
cilitate Bayesian inference when rich sets of sign restrictions are imposed alongside zero
restrictions.
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APPENDIX A: PROOFS OF RESULTS

Proof of Proposition 3.1: (a) Assume q1 ∈ Rn satisfies F(φ)q1 = 0r×1 and S(φ)q1 ≥ 0s×1, and let
q̃1 = K−1q1. Since K is orthonormal, F̃(φ)q̃1 = (K−1F(φ)′)′K−1q1 = F(φ)q1 = 0r×1 and S̃(φ)q̃1 =
(K−1S(φ)′)′K−1q1 = S(φ)q1 ≥ 0s×1, so q̃1 satisfies the restrictions in the transformed basis. It follows
that

S̄i(φ)q̃1 =
[(

In − F̃(φ)′
(
F̃(φ)F̃(φ)′

)−1
F̃(φ)

)
S̃i(φ)′

]′
q̃1

= S̃i(φ)q̃1 − S̃i(φ)F̃(φ)′
(
F̃(φ)F̃(φ)′

)−1
F̃(φ)q̃1

≥ 0,

for i = 1, . . . , s, where the final line uses F̃(φ)q̃1 = 0r×1 and S̃i(φ)q̃1 ≥ 0. q̃1 therefore satisfies the sign
restrictions after projecting their coefficient vectors onto the hyperplane generated by the zero restric-
tions. Since S̄i(φ) and q̃1 both lie in the hyperplane spanned by the first n − r basis vectors, their last
r elements are equal to zero, so S̄i(φ)q̃1 = (MS̄i(φ)′)′Mq̃1 ≥ 0. It follows that S̄(φ)q̄1 ≥ 0s×1, where
S̄(φ)′ = M(S̄i(φ)′, . . . , S̄s(φ)′) and q̄1 = Mq̃1 = MK−1q1.

(b) Assume that q̄1 ∈ Rn−r satisfies S̄(φ)q̄1 ≥ 0s×1. Given the definition of M, M′ is the n × (n − r)
matrix such that, for an (n − r) × 1 vector x, M′x = (x′, 01×r )′. It follows that (M′S̄(φ)′)′M′q̄1 ≥ 0s×1. The
ith column of M′S̄(φ)′ is S̄i(φ)′ as defined in Equation (3.1), so S̄i(φ)M′q̄1 ≥ 0. From the definition of S̄i(φ),
S̄i(φ)M′q̄1 ≥ 0 implies that

S̃i(φ)M′q̄1 ≥ S̃i(φ)F̃(φ)′(F̃(φ)F̃(φ)′)−1F̃(φ)M′q̄1

⇒ Si(φ)KM′q̄1 ≥ 0,

where the last line follows from S̃i(φ) = (K−1Si(φ)′)′ and F̃(φ)M′q̄1 = 0r×1.18 q1 = KM′q̄1 therefore
satisfies S(φ)q1 ≥ 0s×1. Since F̃(φ) = (K−1F(φ)′)′, M′q̄1 satisfies F(φ)KMq̄1 = 0r×1, so q1 = KM′q̄1 ad-
ditionally satisfies F(φ)q1 = 0r×1. �

Proof of Corollary 3.1: Assume q̄1 ∈ Sn−r−1 satisfies S̄(φ)q̄1 ≥ 0s×1. Then, from Proposition 3.1(b),
q1 = KM′q̄1 ∈ Rn satisfies F(φ)q1 = 0r×1 and S(φ)q1 ≥ 0s×1. Since q̄1 ∈ Sn−r−1, it has unit norm, which
implies that q1 also has unit norm, because multiplication by M′ adds r zeros to q̄1 (leaving the norm
unchanged) and K is orthonormal. q1 therefore lies in Sn−1. Since q1 satisfies the identifying restrictions
and lies in Sn−1, it lies in Q1(φ|F, S), which must therefore be nonempty.

Now, assume that q1 ∈ Sn−1 satisfies F(φ)q1 = 0r×1 and S(φ)q1 ≥ 0s×1. By Proposition 3.1(a), q̄1 =
MK−1q1 ∈ Rn−r satisfies S̄(φ)q̄1 ≥ 0s×1. Since q1 has unit norm, so does K−1q1, since K−1 is orthonormal.
The last r elements of K−1q1 are equal to zero, so q̄1 = MK−1q1 also has unit norm and thus lies in Sn−r−1.
Since q̄1 satisfies S̄(φ)q̄1 ≥ 0s×1 and lies in Sn−r−1, it lies in Q̄1(φ|S̄), which must therefore be nonempty. �

18 Since the last r elements of M′q̄1 are equal to zero, M′q̄1 lies in the hyperplane spanned by the first n − r basis
vectors. From the construction of the basis, any vector within this hyperplane lies within the null space of F̃(φ), so
F̃(φ)M′q̄ = 0r×1.
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