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Summary: The Rubin Causal Model (RCM) is a framework that allows to define the causal
effect of an intervention as a contrast of potential outcomes. In recent years, several methods
have been developed under the RCM to estimate causal effects in time series settings. None
of these makes use of autoregressive integrated moving average (ARIMA) models, which
are instead very common in the econometrics literature. In this paper, we propose a novel
approach, named Causal-ARIMA (C-ARIMA), to define and estimate the causal effect of
an intervention in observational time series settings under the RCM. We first formalise the
assumptions enabling the definition, the estimation and the attribution of the effect to the
intervention. We then check the validity of the proposed method with a simulation study. In
the empirical application, we use C-ARIMA to assess the causal effect of a permanent price
reduction on supermarket sales. The CausalArima R package provides an implementation
of the proposed approach.
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1. INTRODUCTION

The potential outcomes approach is a framework that allows to define the causal effect of a
treatment (or ‘intervention’) as a contrast of potential outcomes, to discuss assumptions enabling
to identify such causal effects from available data, as well as to develop methods for estimating
causal effects under these assumptions (Rubin, 1974, 1975, 1978; Imbens and Rubin, 2015).
Following Holland (1986), we refer to this framework as the Rubin Causal Model (RCM). Under
the RCM, the causal effect of a treatment is defined as a contrast of potential outcomes, only one
of which is observed while the others are missing and become counterfactuals once the treatment
is assigned.

Having its roots in the context of randomised experiments, several methods have been developed
to define and estimate causal effects under the RCM in the most diverse settings, including
networks (VanderWeele, 2010; Forastiere et al., 2020; Noirjean et al., 2020), time series (Robins,
1986; Robins et al., 1999; Bojinov and Shephard, 2019) and panel data (Rambachan and Shephard,
2019; Bojinov et al., 2020).
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2 F. Menchetti et al.

Focusing on observational time series data, popular methods for policy evaluation under the
RCM include Difference-in-Differences (DiD) and synthetic controls methods. However, both
approaches require the presence of controls that did not experience the treatment and, in case of
an extensive policy change impacting all units, finding untreated units is often challenging.

A different approach to assess the impact of shocks occurring on a time series is intervention
analysis, introduced in Box and Tiao (1975) and Box and Tiao (1976). The effect is gener-
ally estimated by fitting an autoregressive integrated moving average (ARIMA) type model
with the addition of an intervention component whose structure should capture the effect gen-
erated on the series (e.g., level shift, slope change and similar). For example, a simple model
structure that is extensively used in literature is a linear regression with ARIMA errors (REG-
ARIMA henceforth) and the addition of a level shift (e.g., Larcker et al., 1980; Worthington and
Valadkhani, 2004; Schaffer et al., 2021). However, intervention analysis fails to define the causal
estimands and to discuss the assumptions enabling the attribution of the uncovered effect to the
intervention.

Closing the gap between causal inference under the RCM and intervention analysis, in this
paper we propose a novel approach, Causal-ARIMA (C-ARIMA), to estimate the causal effect
of an intervention in observational time series settings where no control unit is available. In
particular, we discuss assumptions under the RCM to define, estimate and attribute the effect of
the intervention in such settings; we then introduce the causal estimands of interest and derive
a methodology to perform inference. Finally, we illustrate how the proposed approach can be
conveniently applied to solve real inferential issues by estimating the causal effect of a permanent
price reduction on supermarket sales. More specifically, on 4 October 2018 the branch of a
supermarket chain located in Florence (Italy) introduced a new price policy that permanently
lowered the price of several store brands. The main goal is estimating the effect of the new policy
on the sales of those products, as well as its indirect impact on competitor brands with the same
characteristics as the discounted goods. Our results suggest that store brands’ sales increased due
to the permanent price discount; interestingly, we find little evidence of a detrimental effect on
competitor brands, suggesting that unobserved factors may drive competitor-brand sales more
than price.

The remainder of the paper is organised as follows: Section 2 surveys the literature; Section 3
presents the causal framework; Section 4 illustrates the proposed C-ARIMA approach; Section 5
reports the results of a simulation study; Section 6 describes the empirical findings; Section 7
concludes.

2. LITERATURE REVIEW

In time series settings, the identification and the estimation of causal effects using potential out-
comes have been formalised in the context of randomised experiments, see, e.g., Bojinov and
Shephard (2019), Rambachan and Shephard (2019) and Bojinov et al. (2020). However, obser-
vational studies pose additional challenges to the identification and estimation of causal effects:
unlike randomised experiments, the assignment mechanism, i.e., the process that determines
which units receive treatment and which receive control, is unknown; in addition, in the presence
of a single series receiving the intervention, estimands like the ATE (average treatment effect)
are not applicable, and sometimes it might be difficult to find suitable control series.

In economics, a prediction-based causal approach for time series data is Granger–Sims
causality (Granger, 1969; Sims, 1972). Despite several differences with the potential outcome
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Counterfactual outcomes and ARIMA models for policy evaluation 3

framework, some connections exist between the two approaches (Rambachan and Shephard,
2019). However, as shown in Lechner (2011), neither of these concepts implies the other without
additional assumptions. In addition, Holland (1986) points out that a Granger-Sims cause may
become a spurious association when new information is gathered and added in the predictive
model.

DiD estimators (Card and Krueger, 1993; Angrist and Pischke, 2008; Anger et al., 2011) and
synthetic control methods (Abadie and Gardeazabal, 2003; Abadie et al., 2010, 2015) have been
used to evaluate the effect of interventions in the absence of experimental data in a wide range
of fields, including economics (Billmeier and Nannicini, 2013; Botosaru and Ferman, 2019;
Ben-Michael et al., 2021) and marketing (Brodersen et al., 2015; Li, 2019). Recent developments
also include their combinations, as the Synthetic Difference-in-Differences (SDiD) estimator
proposed in Arkhangelsky et al. (2019), and the strand of literature on heterogeneous treatment
effects with staggered adoption and variation in timing (Callaway and Sant’Anna, 2021; Sun and
Abraham, 2021; Athey and Imbens, 2022). In such settings the treatment time varies across units
and they remain exposed to it at all times afterwards; thus, it is possible to estimate the effect of
the intervention, even when all units are eventually treated by using, as a control group, the set
of last-treated units or the set of not-yet-treated units.

Nevertheless, DiD estimators, synthetic control methods and their combinations usually require
to observe at least one suitable control unit, which is often impractical. For example, in our
application, appropriate control series could be the sales of products that are not impacted by the
new policy. However, since the supermarket chain implemented an extensive price policy change
addressing at least one product in each category, all products were impacted, directly or indirectly,
by the intervention. In addition, all products received the intervention simultaneously, thereby
precluding the adoption of the DiD estimators developed under variation in timing. Therefore, in
our setting none of the methods mentioned above is applicable.

An approach overcoming these limitations is proposed by Brodersen et al. (2015), and only
requires to learn the dynamics of the treated unit prior to the intervention. In particular, the authors
employ Bayesian Structural Time Series models (Harvey, 1989; West and Harrison, 2006) to build
a synthetic control by forecasting the counterfactual series in the absence of intervention based
on a model estimated on the pre-intervention data. Borrowing the name from the associated
R package, from now on we refer to their method as ‘CausalImpact’. A generalisation of this
approach is proposed in Menchetti and Bojinov (2022), where the authors employ Multivariate
Bayesian Structural Time Series models to assess the impact of an intervention on statistical units
showing interactions with one another.

This work is most closely related to CausalImpact and to its multivariate extension in Menchetti
and Bojinov (2022), since they both consider time series setups where suitable control units are
absent. In the same vein as CausalImpact, our method exploits the time dynamics in the pre-
intervention period to predict the series in the absence of intervention. Similarly to Menchetti and
Bojinov (2022), in the application we deal with interfering units, but we handle the interference
problem by considering all units to receive an active form of treatment. Furthermore, in contrast to
CausalImpact and Menchetti and Bojinov (2022), our methodology is based on ARIMA models,
and can be used as an alternative by researchers and practitioners in many fields that are not
familiar to (or are not willing to adopt) Bayesian inference. In addition, ARIMA models have
desirable properties (tractability, consistency of the estimator of model parameters), and are suited
to describe a wide variety of time series generated by complex, non-stationary processes. They
are also implemented in a large number of statistical software programs, which makes C-ARIMA
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very easy to use in practice. The associated CausalArima R package should further promote
a wide adoption of the proposed approach.1

Therefore, C-ARIMA complements the set of tools for causal inference on observational time
series data: it is tailored to estimate the effect of an intervention when no control series is
available and when the number of pre-treatment periods is large, since it allows to fully exploit
useful information provided by the pre-intervention dynamics; it is well suited in case of a
single time series as well as for a simultaneous intervention on a large number of units (policy
evaluation). Conversely, by focusing on a few time points, DiD estimators and synthetic controls
have a limited ability to exploit long pre-treatment periods.2

Finally, C-ARIMA also shares many features with the approach described in Box and Tiao
(1976), where the authors suggest to compare, at each point in time, the observed data after
an intervention with the forecasts from a model fitted to the pre-intervention period. However,
oftentimes researchers are interested in a cumulative sum of point effects, e.g., Papadogeorgou
et al. (2018) focus on estimating the total number of hospital readmissions due to the Hospital
Readmission Reduction Program over the entire post-intervention period. Therefore, we also
provide test statistics for two additional effects: the cumulative and the temporal average effect.
Most importantly, we frame our estimators in the potential outcome framework, defining the
effects and discussing the assumptions enabling their attribution to the intervention: both Box
and Tiao (1976) and canonical intervention analysis fail to do so, and thus it is unclear whether
the effect estimated with such methods might also have a causal interpretation.

3. CAUSAL FRAMEWORK

On 4 October 2018 the Florence branch of an Italian supermarket chain introduced a new price
policy that permanently lowered the price of 707 store brands in several product categories; the
empirical analysis focuses on the goods belonging to the ‘cookies’ category. The supermarket
chain also sells competitor-brand cookies with the same characteristics (e.g., ingredients, flavour,
shape) as their store brand equivalent; starting from the intervention date, these products became
more expensive compared to the store brands. As the price reduction ranges from −5.7% to
−23.2%, we expect an heterogeneous effect on each product. The main goal of the analysis is
then to assess the overall impact of the price policy, which is done by estimating its causal effect
on the sales of both store and competitor-brand cookies.

In this section we present the notation and introduce some assumptions allowing the definition
and the estimation of the causal effect, as well as its attribution to the intervention. We also discuss
their validity in our empirical setting. Finally, we define the causal estimands we are interested
in.

3.1. Assumptions

Let Wj,t ∈ {0, 1} be a random variable describing the treatment assignment of unit j ∈ V =
{1, . . . , J } at time t ∈ {1, . . . , T }, where 1 denotes that a ‘treatment’ (or ‘intervention’) has

1 The development version of the CausalArima R package can be accessed from https://github.com/FMenchetti/
CausalArima.

2 A notable exception is the method proposed by Chernozhukov et al. (2019), although it requires to observe many
control units, and thus it is not applicable in our setting. Related to this, it is worth mentioning that DiD estimators,
synthetic control methods and their combinations can be a better choice than C-ARIMA and CausaImpact in case of few
pre-treatment periods and multiple treated and control units.
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Counterfactual outcomes and ARIMA models for policy evaluation 5

taken place and 0 denotes control. Lower case wj,t denotes a realisation of Wj,t . In general,
the treatment on unit j can be allocated (or not) at each time t , thereby generating a different
sequence Wj,1:T = (Wj,1, . . . , Wj,T ) for each unit. Instead, we restrict our attention to a setting
where all units are subject to a simultaneous and persistent intervention.3

ASSUMPTION 3.1 (SINGLE PERSISTENT INTERVENTION). We say that unit j received a single
persistent intervention if there exists a t∗j such that Wj,t = 0 for all t ∈ {1, . . . , t∗j } and for all
t ∈ {t∗j + 1, . . . , T } the unit is either always treated, Wj,t = 1, or always assigned to control,
Wj,t = 0. If the intervention happens simultaneously on all units, we denote with t∗ = t∗j the
single intervention date.

Notice that, since the treatment is irreversible, Wj,t = Wj,t ′ for all t, t ′ ∈ {t∗ + 1, . . . , T }, thus
we can drop the t subscript from the treatment variable. Both the permanent price reduction on
store brands and the relative price increase on competitor brands are single persistent interventions,
although the treatment definition differs for the two groups. More formally, let S = {1, . . . , Js}
and C = {1, . . . , Jc} denote the subsets of store and competitor brands, respectively; these are
such that V = S ∪ C and J = Js + Jc. Then, Wj = 1 for j ∈ S indicates the ‘permanent price
reduction’ of each store brand; while Wj = 1 for j ∈ C stands for ‘relative price increase’, whose
size also varies across competitor cookies as a result of the different reductions applied to store
brands.

In the RCM, the sales that we would have under treatment or control are known as potential
outcomes. Although in a panel study the potential outcomes of each unit generally depend on the
other units’ assignment, in our empirical setting we can exclude cross-unit interactions within
each group of store and competitor brands. Indeed, the cookies selected for the permanent price
discount appeal to different customers, as they differ on many characteristics, such as shape,
flavor and ingredients. We call this assumption temporal no-interference.4 As for the interactions
between the two groups, we postulate that any spillover from store to competitor brands is well
captured by the relative price increase (additional spillovers due to other promotional activities
on store brands are ruled out), and that competitor brands are not subject to other interventions.
Furthermore, we assume that the intervention has no anticipatory effects on the outcome. This is
plausible when the statistical units have no knowledge of the future intervention (see also Bojinov
and Shephard, 2019; Callaway and Sant’Anna, 2021; Sun and Abraham, 2021), which is also
the case of our application, since the supermarket chain did not advertise the price reduction in
advance.

Therefore, under the previously discussed assumptions, we can use Yj,t (wj ) to denote the
potential outcomes time series of unit j at time t . Indeed, unit j ’s potential outcomes depend
solely on its assignment wj . In addition, recall that there are only two potential paths for each
unit in the post-intervention period, i.e., wj = 1 or wj = 0. These give rise to the same number of
potential outcomes, but we can only observe one of them for each unit. In our case, the observed
potential outcome series is Yj,t (1) for all units and all t ∈ {t∗ + 1, . . . , T }, whereas Yj,t (0) is
the missing or counterfactual potential outcome time series which is unobserved and needs to be
estimated.

3 This is equivalent to the irreversibility of treatment assumption in Callaway and Sant’Anna (2021). Our persistent
treatment is also analogous to the absorbing treatment in Sun and Abraham (2021).

4 This is also known as temporal stable unit treatment value assumption or TSUTVA (Bojinov and Shephard, 2019;
Bojinov et al., 2020), which is the time series equivalent of the cross-sectional SUTVA (Rubin, 1974).
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Including covariates that are linked to the outcome can improve the estimation of Yj,t (0), but
if the covariates are influenced by the treatment the estimates will be biased. We therefore make
the following assumption.

ASSUMPTION 3.2 (COVARIATES-TREATMENT INDEPENDENCE). Let Xj,t be a vector of co-
variates that are predictive of the outcome of unit j ; for all t ∈ {t∗ + 1, . . . , T } such covariates
are not affected by the intervention, i.e., Xj,t (1) = Xj,t (0).

As a result, we can use the known covariates values to improve the prediction of the outcome in
the absence of intervention Yj,t (0). As detailed in Section 6, the set of covariates in the application
includes a holiday dummy, some day-of-the-week dummies and the price per unit. While it is
quite obvious that all the dummies are unaffected by the intervention, things get trickier for price.
For the analysis on competitor brands we used their actual price, since it is not directly affected
by the intervention (only their relative price is altered by the policy); conversely, for the analysis
on store brands, we assumed that the price would not have changed without the intervention.5

Finally, following Antonelli and Beck (2020), we use the next assumption for identification of
the treatment effect.

ASSUMPTION 3.3 (CONDITIONAL STATIONARITY). Let I0 denote the information set up
to time t = 0 and define It = {I0, Xj,1, . . . , Xj,t , Yj,1, . . . , Yj,t }, where covariates Xj,t satisfy
Assumption 3.2. Indicating with fYj,t+1 |It

the conditional density of unit j ’s outcome at time t + 1
given past information, for any positive integer t ≥ 1, we have

fYj,t+1 |It
(yj,t+1|It ) = fYj,1 |I0 (yj,t+1|It ).

In other words, the conditional distribution of the outcome in the absence of treatment is
invariant to time translations of one lag; thus, if we had perfect knowledge of the conditional dis-
tribution of Yj,t (0) in the pre-intervention period, we would also know its conditional distribution
in the post-intervention period. In the empirical practice, the model fitted prior to intervention
approximates our knowledge of this distribution before t∗ and, under Assumption 3.3; we can
rely on that knowledge to estimate the counterfactual outcome in the post-intervention period.
Therefore, this assumption allows us to identify the effect from available data (the identification
proof is provided in Appendix A).

It is worth pointing out that any analysis attempting to convey a causal message should be
explicit on the assumptions needed to define and estimate causal effects. Furthermore, such
assumptions depend on the empirical setting. For example, in case of a single unit (no panel
dimension) the assumption of no-temporal interference is unnecessary; and in the absence of
relevant covariates there is no need to include Assumption 3.2. Thus, before any causal analysis,
researchers need to carefully formulate the set of assumptions and discuss their validity in the
specific empirical setting.

5 The supermarket chain sometimes run temporary promotions reducing the price of selected goods for a limited period
of time. The time interval after the permanent price discount spans from 4 October 2018 to 30 April 2019, and in the
corresponding period before the intervention (4 October 2017 to 30 April 2018) there were no temporary promotions on
the store brands that are part of this analysis. Thus, the assumption of a constant price level in the period following the
intervention is plausible.
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Counterfactual outcomes and ARIMA models for policy evaluation 7

3.2. Causal estimands

We now introduce three related causal estimands: the point effect (an instantaneous effect at each
point in time after the intervention), the cumulative effect (a partial sum of the point effects) and
the temporal average effect (the average of the point effects in a given time period).

DEFINITION 3.1. Let t∗ be the time of the intervention and define k ∈ {1, . . . , K} such that
t∗ + K = T . For any k, the point, cumulative and temporal average causal effects on unit j at
time t∗ + k are defined, respectively, as

τj,t∗+k(1; 0) = Yj,t∗+k(1) − Yj,t∗+k(0) (3.1)

�j,t∗+k(1; 0) =
k∑

h=1

τj,t∗+h(1; 0) (3.2)

τ̄j,t∗+k(1; 0) = 1

k

k∑
h=1

τj,t∗+h(1; 0) = �j,t∗+k(1; 0)

k
. (3.3)

In other words, the point effect measures the causal effect at a specific point in time and can
be defined at every t ∈ {t∗ + 1, . . . , t∗ + K}, thereby originating a vector of causal effects. The
cumulative effect is then obtained by summing the point effects up to a predefined time point. For
example, in our application, the cumulative effect would be the total number of cookies sold due
to the permanent price reduction from the day when the new policy became effective until the
end of the analysis period. Finally, the temporal average effect indicates the number of cookies
sold daily, on average, due to the permanent price reduction.6

As described in Bojinov et al. (2020), in a panel setting we can also explore a cross-sectional
average point effect, which averages the unit-specific point effects across units. In our case, it
would be the average sales across the cookies in each group at a given time.

DEFINITION 3.2. The cross-sectional average point effects at time t∗ + k for the units in each
group are

τ
(S)
t∗+k(1; 0) = 1

Js

∑
j∈S

τj,t∗+k(1; 0), τ
(C)
t∗+k(1; 0) = 1

Jc

∑
j∈C

τj,t∗+k(1; 0). (3.4)

In line with Definition 3.1; we could also define a cross-sectional cumulative effect and a cross-
sectional temporal average effect, e.g., for the group of store brands �

(S)
t∗+k = ∑k

h=1 τ
(S)
t∗+h(1; 0) and

τ̄
(S)
t∗+k(1; 0) = �

(S)
t∗+k/k. In the next section, we introduce the C-ARIMA model and we describe

how it can be used to estimate the causal quantities of interest.

4. C-ARIMA

We propose a causal version of the widely used ARIMA model, which we indicate as C-ARIMA.
After introducing the model equation, we briefly discuss how causal effects under the RCM differ
from general intervention components. Then, we present estimators for the estimands defined in

6 Notice that the point effect is analogous to the general causal effect defined in Bojinov and Shephard (2019), with
the difference that our estimand is referred to a special setting were the units are subject to a single persistent treatment.
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Section 3.2 and describe our inferential strategy. Finally, we provide a theoretical comparison
with REG-ARIMA, so as to highlight the major differences between the proposed approach
and a widely adopted method in the intervention analysis literature. From now on we drop the
j subscript from the notation of the potential outcomes and the causal effects, since under the
assumptions set out in Section 3 we can focus on a single generic unit.

4.1. Model

Let us assume the potential outcome series Yt (w) evolving as,7

Yt (w) = τt (1; 0)1{w=1} + X′
t β + �Q(Ls)θq(L)

(1 − L)d (1 − Ls)D�P (Ls)φp(L)
εt︸ ︷︷ ︸

zt

, (4.1)

where: φp(L) and θq(L) are lag polynomials having all roots outside the unit circle; �Q(Ls),
�P (Ls) are the lag polynomials of the seasonal component of the model (with period s) having all
roots outside the unit circle; φp(L)�P (Ls) and θq(L)�Q(Ls), whose parameters are collected in a
vector ϑ , have no common roots; Xt is a set of m external regressors, including a possible intercept
term, satisfying Assumption 3.2; (1 − Ls)D and (1 − L)d are contributions of the differencing
operators to ensure stationarity; εt is white noise with mean 0 and variance σ 2

ε ; τt (1; 0) = 0∀t ∈
{1, . . . , t∗} and 1{w=1} is an indicator function which is one if w = 1. As a result, τt (1; 0) can
be interpreted as the point causal effect in (3.1), since it is defined as a contrast of potential
outcomes, τt (1; 0) ≡ Yt (w = 1) − Yt (w = 0).

Notice that, under the RCM and the assumptions set out in Section 3; τt (1; 0) is a properly
defined causal effect and, as such, it should not be confused with additive outliers or any other
kind of intervention component typically used in the econometric literature (e.g., Box and Tiao,
1975; Chen and Liu, 1993). Indeed, we can show that (4.1) encompasses all types of interventions.
For example, consider the following model specification (innovation-type effect) absent from any
covariate,

Yt (w) = �Q(Ls)θq(L)

(1 − L)d (1 − Ls)D�P (Ls)φp(L)
(εt + τt (1; 0)1{w=1})

and define

τ̃t (1; 0) = �Q(Ls)θq(L)

(1 − L)d (1 − Ls)D�P (Ls)φp(L)
τt (1; 0).

Then, we have

Yt (w) = zt + τ̃t (1; 0)1{w=1},

where τ̃t (1; 0) = Yt (1) − Yt (0) is the point causal effect at time t .
As it will be clear in Section 4.2, our model is estimated on the pre-intervention data, thus in

the C-ARIMA approach we do not need to find the structure that better represents the effect of the
intervention (e.g., additive outlier, transient change, innovation outlier). Conversely, such effect

7 Notice that (4.1) can be written in this form because we are assuming absence of within-group interference and
absence of additional spillovers, which imply that the potential outcomes of each unit j only depends on its assignment.
Conversely, in case these assumptions are not plausible, (4.1) would need to be restated, e.g., by considering a multivariate
model. We are also exploiting Assumption 3.1; since we have a single τt (1; 0) in the model equation.
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Counterfactual outcomes and ARIMA models for policy evaluation 9

emerges as a contrast of potential outcomes in the post-intervention period and the proposed
approach allows us to estimate τt (1; 0) whatever structure it has.

4.2. Causal effect inference in the stationary case

Based on the C-ARIMA model, we can now detail inference on τt (1; 0) = τt and the other causal
estimands defined in Section 3.2 (for sake of simplicity, we remove the (1; 0) label from now on).

In this section we discuss the stationary case, which we denote as

Y†
t (w) = τ

†
t 1{w=1} + X†′

t β + �Q(Ls)θq(L)

�P (Ls)φp(L)
εt︸ ︷︷ ︸

z
†
t

. (4.2)

This situation can result from a time series process, which is stationary in itself, or because it has
been suitably differentiated by premultiplying both sides of (4.1) by (1 − L)d (1 − Ls)D , so that

Y†
t = (1 − L)d (1 − Ls)D Yt X†

t = (1 − L)d (1 − Ls)D Xt (4.3)

and

τ
†
t = (1 − L)d (1 − Ls)Dτt . (4.4)

If w = 0, namely absence of intervention, the k-step ahead forecast of Y†
t given the information

available until t∗ is

Y†
t∗+k|t∗ (0) = Ê[Y†

t∗+k(0)|It∗ ] = X
†′
t∗+kβ̂ + Ê[z†t∗+k|It∗ ], (4.5)

where Ê[·] means that the expectation is computed at the estimated values of the parameters and
It∗ indicates the information up to time t∗.8 By definition, Y†

t∗+k|t∗ (0) is the potential outcome
expected at time t∗ + k in case the intervention does not occur; thus, it plays a crucial role in the
estimation of the effects. Indeed, an estimator of the point causal effect (3.1) can be defined as

τ̂
†
t∗+k = Y†

t∗+k(1) − Y†
t∗+k|t∗ (0)

= τ
†
t∗+k + X†′

t∗+k(β − β̂) + z
†
t∗+k − Ê[z†t∗+k|It∗],

where Y†
t∗+k(1) is the observed outcome derived directly from (4.2).

DEFINITION 4.1 (CAUSAL EFFECT ESTIMATORS). Let {Y†
t (w)} follow model (4.2). Consider-

ing an intervention at time t∗, let Y†
t∗+k(1) be the observed potential outcome time series, and let

Y†
t∗+k|t∗ (0) = E[Y†

t∗+k(0)|It∗ ] be the estimator of the corresponding missing potential outcome

under the same model. Then, the estimators of the point effect τ
†
t∗+k , the cumulative effect �

†
t∗+k

and the temporal average effect τ̄
†
t∗+k are, respectively,

τ̂
†
t∗+k = Y†

t∗+k(1) − Y†
t∗+k|t∗ (0), (4.6)

8 The information set at time t∗ includes both Y1(0), . . . , Yt∗ (0) and X1, . . . , Xt∗ . Instead, recall that in the post-
intervention period we are under Assumption 3.2; meaning that covariates are unaffected by the treatment. Thus, we can
consider them as deterministic, which explains why we can take X†

t∗+k outside the expectation in (4.5).
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10 F. Menchetti et al.

�̂
†
t∗+k =

k∑
h=1

τ̂
†
t∗+h (4.7)

̂̄τ †
t∗+k = 1

k

k∑
h=1

τ̂
†
t∗+h. (4.8)

Starting from this definition, we can also derive estimators for the cross-sectional effects, e.g.,̂̄τ (S)†
t∗+k = (kJs)−1 ∑Js

j=1

∑k
h=i τ̂

†
j,t∗+k . Then, to derive the distributional properties of (4.6), (4.7)

and (4.8), it is convenient to represent (4.2) using matrix notation as(
y
†
1

y
†
2

)
︸ ︷︷ ︸

y†

=
(

0
τ †

)
β +

(
X

†
1

X
†
2

)
︸ ︷︷ ︸

X†

β +
(

z
†
1

z
†
2

)
︸ ︷︷ ︸

z†

, (4.9)

where

(
z
†
1

z
†
2

)
∼

⎡⎢⎢⎢⎣
(

0
0

)
, σ 2

z

(
R11 R12

R21 R22

)
︸ ︷︷ ︸

R

⎤⎥⎥⎥⎦ , (4.10)

and: y
†
1, X

†
1 and z

†
1 denote the time series rv’s (size t∗ × 1), the external regressors (size t∗ × m),

and the zero mean errors (size t∗ × 1), respectively, during the estimation period (label 1); y
†
2,

X
†
2 and z

†
2 indicate similar components (sizes K × 1, K × m and K × 1, respectively) in the

post-intervention period (label 2); β is an m × 1 vector of regression coefficients; τ † is the K × 1
vector of the point effects in the intervention period; z† is ruled by stationary autoregressive
moving average (ARMA) dynamics parameterised by ϑ (in its conditional mean) and σ 2

ε (in its
error term ε); R is the Toeplitz correlation matrix implied by ϑ ; σ 2

z is the scaling variance implied
by ϑ and σ 2

ε . The full stack of estimators (4.6) is then

τ̂ † = y
†
2 − ŷ

†
2, (4.11)

where

ŷ
†
2 = X

†
2β̂ + ẑ

†
2

and ẑ
†
2 is the prediction of the ARMA component based on the estimation data.

THEOREM 4.1. Let {Y†
t (w)} follow the model (4.2), equivalently represented in matrix form as

by (4.9)–(4.10). Let β, ϑ , and σ 2
ε be estimated consistently by the usual Maximum Likelihood

estimators β̂, ϑ̂ , and σ̂ 2
ε using estimation data (label 1), which, in turn, implies similar properties

for estimators σ̂ 2
z and R̂ of the corresponding elements.

Then the estimator of the vector of point effects (4.11) behave like

τ̂ † = τ † + z
†
2 − Az

†
1, (4.12)

where

A =
(
X

†
2 − R21R

−1
11 X

†
1

) (
X

†′
1 R−1

11 X
†
1

)−1
X

†′
1 R−1

11 + R21R
−1
11 . (4.13)

C© The Author(s) 2023.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/article/26/1/1/6713620 by guest on 20 April 2024



Counterfactual outcomes and ARIMA models for policy evaluation 11

This implies that τ̂ † has mean τ † and variance-covariance matrix

σ 2
z

(
R22 − AR12 − R21A

′ + AA′) . (4.14)

Proof: given in Appendix A.

Some comments are in order.

(a) Equations (4.12)–(4.13) show that the random behaviour of τ̂ † depends on different
components: z

†
2 is the intrinsic randomness of the post-intervention period; −R21R

−1
11 z

†
1

is the ARMA ‘inertia’ (ARMA predictions on period 2 using estimation data);
−X

†
2(X†′

1 R−1
11 X

†
1)−1X

†′
1 R−1

11 z
†
1 is the contribution of the covariates of the post-intervention

period; R21R
−1
11 X

†
1(X†′

1 R−1
11 X

†
1)−1X

†′
1 R−1

11 z
†
1 is the contribution of the covariates of the esti-

mation period, which are propagated to period 2 by the ARMA dynamics.
(b) Regarding the distribution of τ̂ †, there are two possible strategies. If one trusts in the

Normality of the ARIMA error term ε, also z† and then τ̂ † are Gaussian. Otherwise, it is
possible to resort to a bootstrap strategy, where randomly sampled empirical residuals (ε)
are used to simulate the ARIMA errors (z†) via the estimated ϑ̂ parameters.

(c) The single τ̂
†
t∗+k estimator corresponds to the kth element of (4.12); the single �̂

†
t∗+k

estimator is instead the linear combination (unit weights) of the first k elements of (4.12).
Thus, its variance can be derived directly from (4.14). The same reasoning applies for the
variance of ̂̄τ †

t∗+k .

4.3. Causal effect inference in the non-stationary case

In Section 4.2, we derived estimators of the considered causal effects for a stationary C-ARIMA.
If {Yt (w)} is instead non-stationary, Theorem 4.1 is no longer valid. In this situation, there
are two possible strategies: (i) perform causal inference on the transformed τ

†
t∗+k effects via

(4.4), which can be done using the tools described in Section 4.2; (ii) convert inference from
τ
†
t∗+k to the original τt∗+k . The two paths are equivalent and lead to identical conclusions. What

cannot be done, is to make inference directly on τt∗+k effects by estimating them using the
customary Yt∗+k(1) − Yt∗+k|t∗ (0) = Yt∗+k −Ê[Yt∗+k(0)|It∗].9 Conversion of the inference from
τ † to the original τ is based on the relationship (4.4), which connects the two, and the fact that
τ
†
t∗+k = τt∗+k = 0 for k ≤ 0, which imply

τt∗+k =
k∑

j=1

bk−j τ
†
t∗+j (4.15)

9 The situation where the ARIMA component of the model is a Random Walk (RW) provides a glaring example of
this. In fact,

τ̂
†
t∗+1 = � Yt∗+1 −Ê[� Yt∗+1(0)|It∗ ]

= τ
†
t∗+1 + � X′

t∗+1

(
β − β̂

) + εt∗+1,

but

Yt∗+1 −Ê[Yt∗+1(0)|It∗ ] = τt∗+1 + X′
t∗+1

(
β − β̂

) + εt∗+1

so that Yt∗+1 −Ê[Yt∗+1(0)|It∗ ] = τ̂
†
t∗+1 + X′

t∗
(
β − β̂

) �= τ̂
†
t∗+1 despite τt∗+1 = τ

†
t∗+1.
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12 F. Menchetti et al.

for some bj constants (b0 = 1) and k ≥ 1.10 For different k’s up to some final K , all such b

constants can be arranged into a K × K lower triangular matrix (unit diagonal)

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0
b2,1 1 0 . . . 0 0
b3,2 b3,1 1 . . . 0 0

...
...

...
. . .

...
...

bK−1,K−2 bK−1,K−3 bK−1,K−4 . . . 1 0
bK,K−1 bK,K−2 bK,K−3 . . . bK,1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (4.16)

where the first index corresponds to k and the second follow the numeration in Note 10. This
provides the compact K × 1 vector expression

τ = Bτ †

for the vector of the point effects, which is the basis of the following theorem.

THEOREM 4.2. Let {Yt (w)} follow model (4.1).
Then, for some K × K matrix B as in (4.16), we have

τ̂ = Bτ̂ †,

where (4.1) is represented by (4.2), or by (4.9)–(4.10) in matrix form, via (4.3) and (4.4), and τ̂ †

behaves as in Theorem 4.1.
Proof: it follows directly from (4.15) and (4.16).

4.4. Estimation and inference of causal effects under C-ARIMA

Summarising, in order to estimate the causal effects (3.1), (3.2) and (3.3), we need to follow a
three-step process: (i) estimate the ARIMA model only in the pre-intervention period, so as to learn
the dynamics of the dependent variable and the links with the covariates without being influenced
by the treatment; (ii) based on the process learned in the pre-intervention period, perform a
prediction step and obtain an estimate of the counterfactual outcome during the post-intervention
period in the absence of intervention; (iii) by comparing the observations with the corresponding
forecasts at any time point in the post-intervention period, evaluate the resulting differences, which
represent the estimated point causal effects. Then, we have two options to perform inference on
the estimated effects: if we rely in the Normality of the error terms (possibly, after an inspection
of model residuals) we can use the results presented in Theorem 4.1; otherwise, we can resort to
a bootstrap strategy by using resampled residuals in order to compute empirical critical values

10 Since

(1 − L)d (1 − Ls )D =
d+sD∑
j=0

ajL
j

for some aj coefficients (a0 = 1), then

bj = −
min{d+sD;j}−1∑

i=0

aibj−i .

For example, if d = D = 1 and s = 7, then τt∗+k = τ
†
t∗+1 + . . . + τ

†
t∗+k for k = 1, . . . , 7; τt∗+8 = 2τ

†
t∗+1 + τ

†
t∗+2 +

. . . + τ
†
t∗+8, τt∗+9 = 2τ

†
t∗+1 + 2τ

†
t∗+2 + τ

†
t∗+3 + . . . + τ

†
t∗+9, and so on.
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Counterfactual outcomes and ARIMA models for policy evaluation 13

(the detailed algorithm is provided in the Online Appendix). Finally, in case we used differencing
operators to make the process stationary, we can recover the effect on the original variable by
applying the results presented in Theorem 4.2.

4.5. Comparison with REG-ARIMA

An alternative approach that is widely used in the literature to measure the effect of a persistent
intervention is the linear regression with ARIMA errors and the addition of a level shift compo-
nent. For ease of reference, we called this approach REG-ARIMA. Essentially, it is a standard
intervention analysis method that is used when the intervention is supposed to have produced a
fixed change in the level of the outcome. Such a model can be written as,

Yt = X′
t β + βDDt + z,

where: Xt is a set of regressors including the intercept; Dt is a dummy variable taking value 1 after
the intervention and 0 otherwise; β is a vector of regression coefficients; βD is the coefficient of
the dummy variable and measures the association between the intervention and the outcome; zt is
defined in (4.1). Notice that under REG-ARIMA, Yt is not a potential outcome series, therefore,
it does not depend on the treatment path.

There are three main differences between C-ARIMA and REG-ARIMA. First, REG-ARIMA is
estimated using the entire time series of observed data (it does not introduce potential outcomes).
This implies that without discussing any assumption, the effect grasped by βD cannot be attributed
to the intervention. For example, it might be biased by the inclusion of a regressor linked to the
treatment, or even be the anticipated result of a future intervention. Second, REG-ARIMA can
only capture effects in the form of level shifts and, more generally, intervention analysis requires
to repeat model estimation until the assumed structure on the intervention component is supported
by data. Conversely, C-ARIMA assumes no structure on τt and, as such, it can capture any form
of effects (level shift, slope change, irregular time-varying effects) in only one step. Finally, βD

is the only effect that we can estimate under REG-ARIMA and, by construction, it averages
across the whole post-intervention period; instead, with C-ARIMA we can define and estimate
an average effect, but also the point effect, thereby appreciating the evolution of the causal effect
in time.

Next section reports a simulation study where we compare the empirical performance of both
approaches (C-ARIMA and REG-ARIMA) in inferring causal effects. We remark, however, that
the comparison is purely practical, since the theoretical limitations of REG-ARIMA do not allow
the attribution of such effects to the intervention.

5. SIMULATION

We generated 2,000 replications from an ARIMA(1, 0, 1)(1, 0, 1)7 model, then we added two
types of effects: (i) a level shift of four different magnitudes, i.e., +0% (absence of effect), +10%,
+25%, +50%; (ii) two irregular, time-varying effects that fade after a while to increase again near
the end of the analysis period (IRR 1 and IRR 2). Figure 1 provides a graphical representation of
the level shift and the irregular interventions for one of the simulated time series. Notice that IRR
1 is designed such that the effect is negative after three months from the intervention and zero at
the end of the analysis period. Instead, the effect under IRR 2 is always positive, except when it
is exactly zero at the 3-month horizon.
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14 F. Menchetti et al.

Figure 1. (a) Level shift of +25% for one simulated series; (b) irregular effect (IRR 2); (c) pattern of the
irregular effects during all the post-intervention period (those at 1, 3 and 6-month horizons are highlighted

in the plot).

In line with the theory presented in Section 4, we tested C-ARIMA and REG-ARIMA in
detecting these effects, comparing the performance of both approaches in terms of three indicators:
(i) the probability of rejecting the null hypothesis of absence of effect when it is true (type I error
probability); (ii) the probability of correctly rejecting the null hypothesis when it is false (power);
(iii) computational time. We also tested whether the two approaches would give different results
based on the model used in the pre-intervention period (the true model used to generate the data
versus the best-fitting model based on the Bayesian Information Criterion) and the time horizon
used for valuation (1 month, 3 months and 6 months after the fictional intervention producing the
effects).

Table 1 shows the results of simulations in terms of power. Unsurprisingly, REG-ARIMA
outperforms C-ARIMA when the effect is a level shift; indeed, the former model is specifically
designed for interventions in this form. However, REG-ARIMA fails to detect the negative effect
under IRR 1, and incorrectly reject the null of absence of effect at the second time horizon under
IRR 2. Conversely, C-ARIMA performs well when the effect is irregular, and does a reasonably
good job in case of level shifts compared to benchmark REG-ARIMA, especially when the
impact size increases. The simulation results also show that the type I error probability of both
approaches is in line with the desired threshold (α = 0.05) and that C-ARIMA is computationally
more efficient than REG-ARIMA. Further comments and additional results are reported in the
Online Appendix. Overall, the simulation results indicate that C-ARIMA performs well when the
true effect takes the form of a level shift; furthermore, it outperforms the standard REG-ARIMA
approach in the estimation of irregular, time-varying effects.

6. EMPIRICAL APPLICATION

In this section we describe the results of our empirical application; the goal is to estimate the
impact of the permanent price reduction performed by an Italian supermarket chain.

6.1. Data and methodology

Data consists of daily sales counts of 11 store brands and their corresponding competitor-brand
cookies in the period 1 September 2017–30 April 2019 (Anonymous firm, 2019).11 The permanent

11 We excluded the last competitor brand because 62% of observations were missing. Thus, we analysed Js = 11 store
and Jc = 10 competitor brands, for a total of J = 21 cookies.
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16 F. Menchetti et al.

Figure 2. Daily time series of unit sold, price per unit and autocorrelation function for two selected items.

price reduction on the store-brand cookies was introduced by the supermarket chain on 4 October
2018. As an example, Figure 2 shows the time series of units sold, the evolution of price per unit
and the autocorrelation function of one store brand and its direct competitor. The plots for the
remaining store-brand and competitor-brand cookies are provided in the Online Appendix. The
occasional price drops before the intervention date indicate temporary promotions run regularly
by the supermarket chain. The products exhibit a clear weekly seasonal pattern, evidenced by
the spikes in the autocorrelation functions. In the panel referred to the direct competitor brand,
we can also observe the evolution of the relative price per unit (the ratio between the prices of
the competitor brand and the corresponding store brand). Unsurprisingly, despite the occasional
drops due to temporary promotions, the price of the competitor brand relative to the corresponding
store brand has increased after the intervention.

To estimate the causal effect of the permanent price discount on the sales of store-brand
cookies, we follow the approach outlined in Section 4. In particular, under the assumptions set
out in Section 3, we can analyse each cookie separately, thereby fitting 11 independent models.
In order to improve model diagnostics, the dependent variable is the natural log of the daily
sales count. This also means that we are postulating the existence of a multiplicative effect of the
new price policy on the sales of cookies. Therefore, we focused our attention on estimating the
temporal average causal effect, which can still be interpreted as an average multiplicative effect in
terms of the original variable. Furthermore, we included covariates to improve prediction of the
missing potential outcomes in the absence of intervention. As ruled by Assumption 3.2; all the
considered regressors can be safely assumed to be unaffected by the intervention. In particular,
to take care of the seasonality we included six dummy variables corresponding to the day of
the week and one dummy denoting December Sundays.12 Indeed, the policy of the supermarket
chain implies that all shops are closed on Sunday afternoon, except during Christmas holidays.
Thus, we may have two opposite ‘Sunday effects’: a positive effect in December, when the shops
are open all day; a negative effect during the rest of the year, since all shops are closed in the
afternoon. We also included a holiday dummy taking value 1 before and after a national holiday
and 0 otherwise. This is to account for consumers’ tendency to increase purchases before and after

12 We may have a monthly seasonal pattern on top of the weekly cycle, but the reduced length of the pre-intervention
series (398 observations) does not allow to assess whether a double seasonality is present.
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a closure day.13 Finally, we included a modified version of the unit price, that after the intervention
day and during all the post-period is taken equal to the last price before the permanent discount.
As explained in the discussion of Assumption 3.2; this is the most likely price that the unit
would have had in the absence of intervention. In addition, to estimate the average causal effect
of the intervention on store brands, we are also interested in evaluating how this effect evolves
with time. Thus, we repeated the analysis by making predictions at three different time horizons:
1 month, 3 months and 6 months after the intervention.

The same methodology is applied to the competitor brands, with a slight modification on the
set of covariates. Indeed, this time the unit price is not directly influenced by the intervention,
which instead affects the relative price (as shown in Figure 2); so, to forecast competitor sales in
the absence of intervention we directly used the actual price.

The results obtained from C-ARIMA are then compared to those of REG-ARIMA. More
specifically, we fitted independent linear regressions with ARIMA errors for each of the 11 store
brands and their competitors.

6.2. Results and discussion

Table 2 shows the results of the C-ARIMA and the REG-ARIMA approaches applied to the
store brands. To provide a more direct comparison with REG-ARIMA, the C-ARIMA results
reported here have been derived under the assumption that the error terms are normally distributed.
Residuals diagnostics and Normal QQ-plots seem to support this assumption for some of the items
(see Figures S5 and S9 in the Online Appendix). In addition, the results based on bootstrapped
residuals are in line with those shown in this section for both store and competitor brands (see
Tables S6 and S8 in the Online Appendix). Figure 3 illustrates the causal effect, the observed time
series and the forecasted series in the absence of intervention for one selected item (additional
plots are provided in the Online Appendix). At the 1-month time horizon, the causal effect is
significantly positive at the 5% level for 5 out of 11 items; three months after the intervention, the
causal effect is significantly positive at the same level for 8 items; after six months, the effect is
significant and positive for 10 items. The analysis performed with REG-ARIMA leads to similar
results, except for the effects on items 1 and 2 at the 3-month horizon. This suggests that the
intervention might have produced a level shift in the outcome level. To have a summary figure for
the impact produced by the permanent price reduction on all store brands, we also estimated the
cross-sectional temporal average effect as defined in (3.4). This is positive and significant at all
time horizons, indicating that the intervention was, on average, effective in increasing store-brand
sales.

Table 3 reports the results for the competitor brands and Figure 4 plots the causal effect, the
observed series and the forecasted series for one selected item. Again, the causal effect seems
to strengthen as we proceed far away from the intervention. At a 1-month horizon no significant
effect is observed; three months after the intervention, on item 10 we find a negative effect and
significant at the 5% level; at a 6-month horizon we find a significant negative effects on item 10
and a significant positive effect on item 5. A negative effect suggests that, following the permanent
price discount, consumers have changed their behaviour by privileging the cheaper store brand.
Instead, a positive effect might indicate that the price policy has determined an increase in the
customer base, i.e., new clients have entered the shop and eventually bought the items at full
price. This time, REG-ARIMA leads to different results: at the 6-month horizon, positive effects

13 To be precise, on the day of a national holiday we have a missing value (so there is no holiday effect), whereas the
dummy variable should capture the effect of additional purchases before and after the closure day(s).
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Table 2. Causal effect estimates of the permanent price reduction on store brands.

Time horizon:

1 month 3 months 6 months

Item ̂̄τ †
t β̂D ̂̄τ †

t β̂D ̂̄τ †
t β̂D

1 0.14 0.09 0.15. 0.11 0.18** 0.16**

(0.13) (0.10) (0.09) (0.07) (0.07) (0.06)
2 0.14 0.11 0.13 0.13* 0.14* 0.14***

(0.12) (0.10) (0.09) (0.06) (0.07) (0.04)
3 0.19. 0.15. 0.21* 0.18*** 0.25*** 0.24***

(0.11) (0.08) (0.08) (0.05) (0.06) (0.04)
4 0.49*** 0.32*** 0.30*** 0.22** 0.32*** 0.27***

(0.10) (0.09) (0.07) (0.07) (0.05) (0.06)
5 −0.02 −0.05 0.07 0.01 0.11 0.07

(0.13) (0.09) (0.10) (0.07) (0.07) (0.05)
6 0.24. 0.25** 0.34*** 0.30*** 0.37*** 0.35***

(0.12) (0.09) (0.09) (0.07) (0.07) (0.05)
7 0.55*** 0.57*** 0.34*** 0.49*** 0.30*** 0.35***

(0.11) (0.04) (0.08) (0.09) (0.06) (0.04)
8 0.26** 0.33*** 0.25*** 0.25*** 0.14* 0.18**

(0.08) (0.07) (0.07) (0.07) (0.06) (0.06)
9 0.47*** 0.56*** 0.20*** 0.28*** 0.21*** 0.26***

(0.07) (0.07) (0.05) (0.08) (0.04) (0.06)
10 0.66*** 0.82*** 0.57*** 0.58*** 0.33*** 0.36***

(0.12) (0.12) (0.10) (0.05) (0.08) (0.06)
11 0.12. 0.11* 0.16* 0.14*** 0.14** 0.13***

(0.06) (0.05) (0.06) (0.03) (0.05) (0.03)̂̄τ (S)†
t 0.29** 0.25** 0.23***

(0.11) (0.08) (0.06)

Notes: ·p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001. The estimates are reported for three different time horizons: 1 month,
3 months and 6 months from the intervention. In this table, ̂̄τ †

t is the estimated temporal average effect (in all models

d = D = 0, therefore this is the effect on the original variable and ̂̄τ †
t = 0 implies no effect); ̂̄τ (S)†

t is the temporal average
effect aggregated across all items; β̂D is the coefficient estimate of the intervention dummy according to REG-ARIMA
(̂βD = 0 implies absence of association). Standard errors within parentheses.

Figure 3. Forecasted sales and pattern of point effect on store brand 4 at 1 month horizon.
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Table 3. Causal effect estimates of the permanent price reduction on competitor brands.

Time horizon:

1 month 3 months 6 months

Item ̂̄τ †
t β̂D ̂̄τ †

t β̂D ̂̄τ †
t β̂D

1 −0.04 −0.03 0.02 −0.16 0.04 −0.12
(0.57) (0.21) (0.52) (0.25) (0.42) (0.22)

2 −0.13 −0.17 −0.07 −0.13 −0.15 −0.13
(0.52) (0.21) (0.52) (0.20) (0.45) (0.19)

3 0.04 −0.06 0.09 −0.03 0.17 0.01
(0.42) (0.22) (0.32) (0.20) (0.21) (0.17)

4 0.00 0.04 −0.13 −0.03 −0.04 0.01
(0.31) (0.19) (0.23) (0.16) (0.18) (0.13)

5 −0.03 −0.02 0.05 0.06 0.12* 0.12**

(0.11) (0.06) (0.07) (0.06) (0.05) (0.05)
6 −0.05 −0.01 0.03 0.06 0.09 0.10*

(0.13) (0.10) (0.11) (0.06) (0.09) (0.05)
7 0.04 −0.11 0.11 −0.05 0.40 0.39***

(0.57) (0.29) (0.38) (0.26) (0.29) (0.08)
8 −0.09 −0.09 −0.06 − 0.07. −0.08 − 0.10**

(0.08) (0.06) (0.06) (0.04) (0.05) (0.04)
9 −0.09 −0.09 −0.11 −0.11 −0.10 −0.09

(0.14) (0.10) (0.10) (0.08) (0.08) (0.06)
10 −0.03 −0.02 − 0.12* − 0.09* − 0.11* − 0.08*

(0.06) (0.05) (0.05) (0.04) (0.04) (0.04)̂̄τ (C)†
t −0.04 −0.02 0.04

(0.35) (0.30) (0.24)

Notes: ·p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001. The estimates are reported for three different time horizons: 1 month,
3 months and 6 months from the intervention. In this table, ̂̄τ †

t is the estimated temporal average effect on the original

variable (in all models d = D = 0, therefore this is the effect on the original variable and ̂̄τ †
t = 0 implies no effect);̂̄τ (C)†

t is the temporal average effect aggregated across all items; β̂D is the coefficient estimate of the intervention dummy
according to REG-ARIMA (̂βD = 0 implies absence of association). Standard errors within parentheses.

Figure 4. Forecasted sales and pattern of point effect on competitor brand 10 at 1 month horizon.

are found on items 6 and 7, and a negative effect is detected on item 8. This suggests that
whatever impact was captured by the intervention dummy of REG-ARIMA, this was not due
to the relative price increase experienced by competitor brands. Overall, our analysis on the

C© The Author(s) 2023.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/article/26/1/1/6713620 by guest on 20 April 2024



20 F. Menchetti et al.

cross-sectional temporal average effect indicates that competitor brands were mostly unaffected
by the intervention applied on store brands.

Summarising, the intervention seems to have produced a significant and positive effect on the
sales of store-brand cookies. Conversely, we do not find considerable evidence of a detrimental
effect on competitor cookies (the only exception being item 10). This indicates that, even though
each store-competitor pair is formed by perfect substitutes, price might not be the only factor
driving sales. For example, unobserved factors such as individual preferences or brand faithfulness
may have a role as well.

7. CONCLUDING REMARKS

We propose a novel approach under the RCM to estimate the effect of interventions in observa-
tional time series settings in the absence of untreated units. After a detailed illustration of the
assumptions underneath our causal framework, we defined three causal estimands of interest,
i.e., the point, cumulative and average causal effects. Then, we introduced a methodology to
perform inference. We applied the proposed methodology to estimate the causal effect of the new
price policy introduced by a big supermarket chain in Italy, which addressed a selected subset
of store-brand products by permanently lowering their price. The empirical analysis was carried
out on the goods belonging to the ‘cookies’ category: the results show that the permanent price
reduction was effective in increasing store-brand cookies’ sales. Little evidence of a detrimental
effect on the corresponding competitor-brand cookies is found.
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APPENDIX A: PROOFS OF RESULTS

Proof of Theorem 4.1
Under the assumptions of Theorem 4.1, the maximum likelihood estimator of β can be represented as

feasible generalised least squares (FGLS) estimator

β̂ =
(
X

†′
1 R̂−1

11 X
†
1

)−1
X

†′
1 R̂−1

11 y
†
1, (A.1)

which can be used to obtain the forecasts on period-2 observations as

ŷ
†
2 = X

†
2β̂ + ẑ

†
2 = X

†
2β̂ + R̂21R̂

−1
11 ẑ

†
1,

where ẑ
†
1 = y

†
1 − ŷ

†
1 are the ARMA residuals and the structure of the ẑ

†
2 forecasts is implied by the fact that

ARMA are linear predictors. Since (A.1) gives

β̂ = β +
(
X

†′
1 R̂−1

11 X
†
1

)−1
X

†′
1 R̂−1

11 z
†
1, (A.2)

the distribution of the estimator of τ † is given by

τ̂ † = y
†
2 − ŷ

†
2

= τ † + X
†
2β + z

†
2 −

(
X

†
2β̂ + R̂21R̂

−1
11 ẑ

†
1

)
= τ † + z

†
2 +

(
X

†
2 − R̂21R̂

−1
11 X

†
1

) (
β − β̂

) − R̂21R̂
−1
11 z

†
1 (A.3)

= τ † + z
†
2 −

[(
X

†
2 − R̂21R̂

−1
11 X

†
1

) (
X

†′
1 R̂−1

11 X
†
1

)−1
X

†′
1 R̂−1

11 + R̂21R̂
−1
11

]
︸ ︷︷ ︸

A

z
†
1.

Equation (A.3) evidences that the dependence of τ̂ † on z
†
1 stems partly from the inertia of the ARMA

dynamics in the intervention period (the −R̂21R̂
−1
11 z

†
1 addend) and partly from the dependence of β̂ on the

noise z
†
1

(
the

(
X

†
2 − R̂21R̂

−1
11 X

†
1

) (
β − β̂

)
addend

)
. This implies that τ̂ † has mean τ † and variance

σ 2
z

(
R22 − AR12 − R21A

′ + AA′) .

Finally, (A.3) allows us to interpret the contribution of the different addends in determining the behaviour
of τ̂ †. In case R̂21 and R̂11 are substituted with their true counterparts (we recall that we are assuming that
model parameters are consistently estimated), nothing changes substantially. Differently, replacing β̂ by β

suppresses the dependence on z
†
1 that is instead apparent from (A.3). It is true that, differently from the

other addends, the role of
(
X

†
2 − R̂21R̂

−1
11 X

†
1

) (
β − β̂

)
vanishes with the sample size, but is also true that its

weight can be important in relatively small samples. �
Identification proof We prove that under Assumption 3.3; the point causal effect is identifiable from

available data. To simplify the notation while deriving of the proof, we drop the j subscript from the outcome
and the effect. By Definition 3.1,

τt∗+k = Yt∗+k(1) − Yt∗+k(0) (A.4)

= Yt∗+k(1) − E[Yt∗+k(0)|It∗ ] (A.5)

is the point causal effect at time t∗ + k. The quantity Yt∗+k(1) is immediately identified from the available
data, since it is the observed outcome. We now show that, under Assumption 3.3 the second quantity is
identifiable from the data as well.
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Let I0 denotes the information set up to time t = 0 and define It∗ = {I0, X1, . . . , Xt∗ , Y1(0), . . . , Yt∗ (0)}.
At time t∗ + 1 this relation follows directly from Assumption 3.3:

fYt∗+1 |It∗ (yt∗+1|It∗ ) = fY1 |I0 (yt∗+1|It∗ ). (A.6)

Therefore, assume we know the density at time t = 1 (conditioning on the information up to t = 0) by
learning from observed data. Then, under conditional stationarity we would also know the density at time
t∗ + 1 (conditioning on the information up to t = t∗). Similarly, at time t∗ + 2 we have,

fYt∗+2 |It∗ (yt∗+2|It∗ ) =
∫

fYt∗+2 | Yt∗+1,It∗ (yt∗+2|yt∗+1, It∗ )fYt∗+1 |It∗ (yt∗+1|It∗ )dyt∗+1

=
∫

fYt∗+1 |It∗ (yt∗+2|yt∗+1, It∗ )fYt∗+1 |It∗ (yt∗+1|It∗ )dyt∗+1, (A.7)

where, again, the last equality follows from Assumption 3.3. Therefore, the density at time t∗ + 2 is
identifiable from observed data. The proof for a generic time t∗ + k follows analogously by induction. Notice,
however, that the assumption of absence of anticipatory effects is implicit in the conditional stationarity
assumption. Indeed, if Yt (0) is influenced by the intervention for some t ≤ t∗, this would result in a change
in the density function and the conditional stationary assumption would no longer be valid. �
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