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During the past decade, possible advancement in timing of
puberty has been reported in the United States. In addition,
early pubertal development and an increased incidence of
sexual precocity have been noticed in children, primarily
girls, migrating for foreign adoption in several Western Eu-
ropean countries. These observations are raising the issues of
current differences and secular trends in timing of puberty in
relation to ethnic, geographical, and socioeconomic back-
ground. None of these factors provide an unequivocal expla-
nation for the earlier onset of puberty seen in the United
States. In the formerly deprived migrating children, refeeding

and catch-up growth may prime maturation. However, pre-
cocious puberty is seen also in some nondeprived migrating
children. Attention has been paid to the changing milieu after
migration, and recently, the possible role of endocrine-
disrupting chemicals from the environment has been consid-
ered. These observations urge further study of the onset of
puberty as a possible sensitive and early marker of the inter-
actions between environmental conditions and genetic sus-
ceptibility that can influence physiological and pathological
processes. (Endocrine Reviews 24: 668–693, 2003)
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I. Introduction

PUBERTY RESULTS FROM the awakening of a complex
neuroendocrine machinery in which the primary mech-

anism is still unclear (1). A peculiarity of sexual maturation in

the human species is the 4- to 5-yr physiological variation in age
at onset of puberty that is observed among normal individuals
despite relatively similar life conditions (2). This variability
involves genetic factors, as indicated by the studies on herita-
bility of menarcheal age (3), although the molecular determi-
nants are yet to be identified. Other factors such as ethnicity,
nutritional conditions, and secular trends have been shown to
influence the physiological range in age at the onset of puberty
(4, 5). In these conditions, the age limits used to define sexual
precocity are necessarily subject to local assessment and regular
revision. Whereas reference data seemed to have stabilized in
most industrialized countries during the 1990s, two recent
American studies (6, 7), which were reviewed by Lee et al. (8),
highlighted an unexpected and unexplained advance in phys-
iological age at the onset of breast development. These findings
urged us to examine the current variations in timing of puberty
around the world and the related age limits for sexual precocity.
In addition, new aspects regarding the etiology of sexual pre-
cocity provided another reason to consider the differences in
timing of puberty worldwide. Most patients with sexual pre-
cocity are diagnosed as idiopathic, and no causative process is
found at brain imaging (9, 10). Recently, a special form of sexual
precocity has been described in foreign children adopted from
developing countries to Western Europe. The occurrence of
early or precocious sexual maturation in such a unique situation
of changing environment was originally described in Indian
girls adopted in Sweden (11). Subsequently, similar observa-
tions were made in several European countries and involved
children from various countries (12–18).

The aim of this review is to address the significance of early
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onset of puberty in children living in their home countries or
migrating to other countries. Emphasis will be put on the
differences in age limits for pubertal development between
countries and ethnic groups. The possible etiologies for ad-
vancement in timing of puberty in some conditions will be
discussed in the light of our current understanding of the
mechanism of the onset of puberty.

II. Normal Puberty and Variations in Timing

A. Clinical indicators

Although the concerns about sexual precocity and changes
in timing of puberty appear to be much greater in girls than
in boys, these issues must be addressed in both sexes, in a
comprehensive and comparative perspective. In boys, the
first sign of pubertal development is an increase in testicular
volume above 3 ml, consistent with Tanner G2 stage (2, 9).
This change, however, can be observed only by thorough
evaluation at physical examination (2, 19). There is no reliable
event that can be recalled to time male pubertal development
when taking a medical history. In girls, the earliest mani-
festation of puberty is acceleration in growth velocity, which,
however, is difficult to ascertain because it requires several
accurate height measurements each year (20). The commonly
used markers of the timing of female puberty are thelarche
and menarche, of which different characteristics are sum-
marized in Table 1. Thelarche is the first appearance of breast
development defined as Tanner B2 stage (2). This relatively
obvious pubertal sign might not be easily distinguished from
fat tissue in slightly obese girls. Importantly, the appearance
of pubic hair is dependent primarily on testicular androgens
in boys and on adrenal androgens in girls. The developmen-
tal increase in adrenal androgen secretion is referred to as
adrenarche and occurs independently of the pituitary-
gonadal maturation or gonadarche (8, 21, 22). Thus, devel-
opment of pubic hair in girls does not provide any informa-
tion on pituitary-ovarian maturation. The evaluation of
Tanner stages can be obtained by self-assessment or physi-
cian’s assessment. The self-assessment of pubertal charac-
teristics has been shown to be nonreliable (23), although the
answers of adolescents to a global question on development
compared with their peers can be a valid approach (24). The
assessment of Tanner stages by professionals provides more
reliable information than self-assessment but involves sig-
nificant variations between observers (23). The Tanner stages

provide semiquantitative information with less accuracy
than using the menarcheal age to assess the timing of pu-
bertal development.

Menarche, the occurrence of first menstruation, is a unique
and relatively late marker of female puberty (2). The men-
archeal age can be assessed directly and preferably by the
status quo method, which consists of asking girls in different
age groups whether or not they have had the first menses.
Retrospective assessment through the recall method leads to
comparable data in some conditions (25), although a longer
recall period (26) and socioeconomic or cultural biases (27)
can result in a loss of accuracy. The menarcheal age is highly
significantly correlated with age at the appearance of breast
buds (2) and is therefore considered to be an indicator of the
onset of puberty. Menarche, however, might provide infor-
mation different from breast budding because the former is
the endpoint of a complex sequence of maturational events,
whereas the latter results more simply from onset of estro-
genic action. In addition, there are possible confounding
factors that can explain that the ages at the onset of breast
development and at menarche are not strictly correlated (28).
Among these factors, a decrease in duration of puberty or
time period between B2 stage and menarche has been ob-
served in subjects with late onset of puberty when compared
with early onset of puberty (28–30). Also, any factor stim-
ulating breast development independently of hypothalamic-
pituitary-ovarian maturation can account for dissociation
between the ages at breast budding and at menarche. In
fact, these two events might show different responses
with different sensitivity to the biasing effects of exogenous
substances.

In the published literature on the timing of puberty, the
data are given either as mean � sd in some studies, assuming
that the data are normally distributed, or as median and
centiles in other studies. This issue is important because the
mean and median are comparable only when the distribution
of data is Gaussian (Fig. 1A). This can be the case in a well-off
setting, as indicated by the symmetrical distribution of cen-
tiles of menarcheal age in North American girls (31). By
contrast, an asymmetrical distribution of data with increased
variability toward late ages (Fig. 1B) can be observed in an
underprivileged setting (32). In these conditions, the calcu-
lated mean age will be greater than the median. An increased
prevalence of early sexual maturation in a population such
as migrating children can result from either a subset of fast
maturers causing an asymmetrical distribution of ages at

TABLE 1. Differences between thelarche and menarche used as markers of the onset of puberty

Thelarche Menarche

Assessment by a professional Direct (physical exam) Indirect (history)
Self-assessment Possible Required
Method of assessment Inspection (and palpation) Recall or status quo
Reference Tanner stage picture and description –
Accuracy Limited (staging) Dependent on precision of

information
Reliability Observer dependent (confounding adipose

tissue. . .)
Interviewer dependent (questions)

and subject-dependent (memory)
Relation to the sequence of pubertal events Close to onset, tempo independent Distant from onset, tempo dependent
Relation to hypothalamic-pituitary-ovarian axis Thelarche possibly involving gonadotropin-

dependent ovarian secretion or
exogenous estrogens

Likely involving the whole axis
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onset of puberty (Fig. 1C) or a shift of the whole population
toward earlier timing of puberty (Fig. 1D), or both. The
magnitude of the sd provides an index of variability in timing
of puberty. For instance, during the 19th century (33), not
only was the average menarcheal age later but also the sd was
greater than today (Fig. 1E).

Because food and/or energy availability influence sexual
maturation (4, 34) and are unequally distributed around the
world, the age limits for puberty are to be discussed sepa-
rately in well-off and underprivileged conditions. Such a
distinction provides a basis to assess differences in timing of
onset of puberty in children moving from developing coun-
tries to Western Europe. Also, the observations in the United
States and in Western Europe will be separated for the pur-
pose of comparison between two industrialized settings.

B. Age references in well-off conditions

In the United States, Mac Mahon (35) reported a mean
menarcheal age of 12.8 yr in 1973. Very similar data (12.7 yr)
were reported by Tanner and Davies (31) in 1985 with a
median age of 10.9 yr for onset of breast development. This
is very close to the data obtained in most European countries
(Fig. 2). In 1997, however, a publication from the American
Academy of Pediatrics-Pediatric Research in Office Settings
(PROS) network reporting on more than 17,000 girls led to an
adjustment in the above-mentioned limits in the United
States (6). These authors found the mean age at B2 to be 10.0
yr in White American girls and 8.9 yr in African-American
girls, with �2 sd limits of 6.3 and 5.0 yr, respectively. These

findings generated comments on the possible overestimation
of breast development because assessment was made
through visual inspection only, whereas palpation may be
required to distinguish between adipose and glandular tis-
sue (8, 36). In addition, the data were not corrected for the
difference in racial representation that resulted from only
10% of the participants in the PROS study being African-
Americans (37). This, together with other possible biases
such as the increased variance due to the involvement of
multiple observers, raises the issue of whether or not the
onset of puberty is shifted toward earlier ages in the United
States (36, 37). In another large cross-sectional American
study (the National Health and Nutrition Examination Sur-
vey, NHANES III), a similarly early median age of 9.7 yr at
B2 was found in White Americans (7), although slightly less
advanced median ages of 10.4 yr (White Americans) and 9.5
yr (Black Americans) were recently reported in subgroups
from that cohort (38). The large NHANES III study, however,
was not different from the PROS study in that it was cross-
sectional and involved many different observers, without
mention of the possible or systematic use of palpation to
assess breast tissue development. Therefore, confirmation of
those findings may warrant a carefully designed prospective
longitudinal study involving a limited number of observers
who use breast palpation to assess development. Interest-
ingly, the mean menarcheal age found in the PROS study (6)
did not show the same shift as age at the onset of breast
development because age at menarche (12.9 yr in White
Americans and 12.7 yr in Black Americans) was unchanged
when compared with the data reported earlier (31, 35). Here
also, a bias was possible in the PROS study where the subjects
were aged 12 yr or less and mean menarcheal age was ex-
trapolated by probit analysis. However, in the NHANES III
study (7), which involved subjects aged up to 17 yr, menarche
occurred in White Americans at an age (12.5 yr) similar to
that extrapolated in the PROS study. The similar menarcheal
ages observed in the United States recently (6, 7) and several
decades earlier (31, 35) suggest that the secular trend toward
earlier menarche has stopped. This issue was more specifi-
cally addressed in two recent studies based on the NHANES
III data and the National Health Examination Survey (NHES)
data (39, 40). In these two studies, the median menarcheal age
in the U.S. girls studied around 1990 was 12.43 or 12.54 yr
with a reduction of 0.34 yr in 30 yr or 0.21 yr in 25 yr,
respectively. These differences are much less than that de-
scribed for breast development in the same period. Is it
possible that the secular trend toward earlier menarche has
been underestimated in the two large cross-sectional Amer-
ican studies (6, 7)? Such a possibility might be consistent with
the data from the Bogalusa Heart study, which reported on
a smaller biracial cohort of 1082 girls studied in 1992–1994
(41). In this study, the mean menarcheal age was found to be
11.4 and 11.5 yr in African-American and White-American
girls, respectively, which is much earlier than in the PROS
and NHANES studies and indicates an important secular
trend, because in 1978–1979, the menarcheal age was 12.3
and 12.2 yr, respectively, in the same area (41). Several factors
might account for this discrepant observation. First, local
environmental changes in the semirural area of Bogalusa
may be greater than in the United States in general, resulting

FIG. 1. Schematic representation of the distribution of timing of pu-
berty (e.g., menarcheal age) in different conditions. The important
parameters are the median and mean ages, the symmetry or asym-
metry of distribution, and the variability as expressed by the SD values
(�2 SD to �2 SD illustrated).
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in faster increase in body fatness. Between 1974 and 1994, the
prevalence of body mass index (BMI) greater than the 85th
percentile among 5- to 14-yr-old subjects has increased by
22% (from 15 to 37%) in the Bogalusa study (42). This race-
and gender-independent increase is much more than the 7%

increase found using the same criteria in the NHES study
between 1963 and 1991 in 6- to 17-yr-old subjects (43) and the
8% increase found in the adult U.S. population (44). Another
bias in the report from the Bogalusa cohort (42) was that two
different cohorts of subjects were studied at a 15-yr interval.

FIG. 2. Average (mean or median) ages at onset of breast development (B2) or menarche in different well-off populations around the world.
The most recently published data were used to provide an update.
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The impact of such a biasing factor is likely because a recent
analysis including a longitudinal subset of 2058 subjects
showed that the median menarcheal age in the Bogalusa
cohort was 12.6 yr in White Americans and 12.3 yr in Black
Americans, with a secular reduction of 0.8 and 0.17 yr during
the past 20 yr, respectively (45). In a recent longitudinal study
of an equal proportion of White and Black Californian girls,
similar mean menarcheal ages of 12.7 and 12.0 yr, respec-
tively, were reported (46). In a cross-sectional study per-
formed in the 1970s and involving 84% of White American
girls, the mean menarcheal age was 12.2 yr (47). Thus, it is
likely that the average menarcheal age has almost stabilized
in the United States, whereas age at onset of breast devel-
opment may have declined. As already mentioned, the in-
creasing difference between trends in ages at B2 and men-
arche might involve an inverse correlation between age at
onset of puberty and duration of puberty (28–30). However,
a trend toward increasing time length between B2 and men-
arche is somewhat contradictory to the observation of a sec-
ular acceleration of the progression or tempo of pubertal
development in Dutch and Swedish boys and girls (48). Al-
ternatively, unidentified external factors might cause breast
development to start earlier without affecting menarcheal
age.

Data published during the last 20 yr on the age at onset of
breast development and menarche in different European
countries are represented in Fig. 2 following a north-south
gradient (49–64). The average menarcheal age in Western
Europe currently varies between 12.0 yr in Italy (61) and 13.5
yr in the eastern part of Germany (55). The mean menarcheal
ages in France and the Mediterranean countries (60–64) are
lower than in other Western European countries (49–59). As
reviewed by Eveleth and Tanner (65), this points to a geo-
graphical difference that can involve genetic or ethnic factors
as well as environmental factors. Although data on age at the
onset of breast development are available only in some of
these European countries, they do not indicate any obvious
geographical gradient (Fig. 2). In some Asian, African, and
South-American countries, girls living in privileged condi-
tions also show differences in average menarcheal age as
compared with those living in underprivileged conditions.
Well-off Chinese (66), Japanese (67), and Indian (68) girls
have menarcheal ages similar to girls from the Mediterra-
nean countries. The age at B2, however, is 0.8 yr earlier in
Hong Kong (66) than in Greece (64), suggesting a difference
in tempo of pubertal development or the involvement of
factors affecting separately the age at B2 and the menarcheal
age. In Thailand (69) and South-American countries such as
Chile (70) and Venezuela (71), the menarcheal age averages
12.5 yr. In Cameroon (72) and South Africa (73), menarche
occurs in well-off black girls at a mean age of 13.2, which is
about 1 yr later than in African-American girls (6, 46, 47).

In the pioneering work of Marshall and Tanner (19), which
provided age references for male pubertal development in
1970, the mean age for G2 stage was found to be 11.6 yr in
the United Kingdom. Very similar data have been reported
for the United States (11.5 yr) in 1985, Sweden (11.6 yr) in
1996, The Netherlands (11.5 yr) in 2001, and Switzerland (11.2
yr) in 1983 (31, 51, 57, 74). In a longitudinal Spanish study,
the mean age at G2 was 12.3 yr (63). These stabilized refer-

ences are in contrast to the lowered median age of 9.7 yr at
G2 that has been reported from the American NHANES III
study, which was performed in the period 1988–1994 (75).
This study involved 25% of White Americans, 37% of Mex-
ican Americans and 38% of African Americans with respec-
tive median ages at G2 of 10.1, 10.4, and 9.5 yr, a difference
that was not significant (72). In a more recent subgroup study
from the same cohort, similar ages were reported (38). Those
data were obtained based on visual inspection without pal-
pation of testicular volume or assessment of testicular size.
As mentioned in an editorial comment by Reiter and Lee (76),
that bias may be important because the increase in testicular
volume or size is critical in the evaluation of the G2 stage of
Tanner. The inaccuracy of visual assessment might also ac-
count for the one-stage variance between physicians in-
volved in the study (76) and the surprisingly long time in-
terval of 2 yr between G2 and P2 stages (75), whereas this
interval was found to be 1 yr by others (51, 59). There are
unfortunately no data available from comparable studies. In
the NHES study, G2 data were not available (77). In a lon-
gitudinal study of 78 boys, Roche et al. (78) reported a mean
age of 11.3 yr at G2, but the validity of these data may be
limited because of self-assessment. Biro et al. (79) also per-
formed a longitudinal study, but they used modified global
stages of puberty that are not comparable. Thus, it is difficult
to draw conclusions before we have additional data from a
prospective study with assessment of testicular volume or
size. The stable mean age at G5 (15.3 yr) in the NHANES III
study is in contrast with the earlier age at G2. This would
suggest that the tempo of male puberty is, in fact, decreasing.
In some countries such as Hong Kong where the median ages
at G2 and B2 are 11.4 and 9.8 yr, respectively (66, 80), the age
at G2 in boys has not changed, whereas the age at B2 is
declining. Although girls classically precede boys by an av-
erage of 0.8 yr for the onset of puberty (51, 53, 57), such a
sexual dimorphism has not been found any longer in two
recent American and German studies where identical ages at
B2 and G2 were reported (6, 55, 75, 81). Such discrepancies
point to the need to compare studies conducted using similar
design and methods in different countries.

C. Age references in underprivileged conditions

In developing countries, inequalities related to socio-
economic status or life setting (urban vs. rural) are still
prominent and might account for important variations in
timing of puberty within and among countries (5, 65).
Secular trends can still be observed in developing coun-
tries because of current changes in living standards. When
subgroups of girls in well-off and underprivileged con-
ditions are compared in some countries (Fig. 3), the impact
of these differences in living standards is obvious (5, 68,
72, 73, 82, 83). The socioeconomic status of the study group
is not always specified, and we can then assume an av-
erage living standard. In recent reports from Nigeria, Gua-
temala, or Colombia (32, 84, 85), later ages at menarche
were observed compared with well-off girls from the
neighboring countries of Chile and Venezuela (70, 71). In
countries such as China and Senegal where girls living in
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underprivileged conditions have been studied, the mean
menarcheal age is as great as 16.1 yr (86, 87). The vari-
ability in menarcheal age can be translated into the coef-
ficient of variation (CV), which is the sd expressed as a
percentage of the mean. The CV is greater in underpriv-
ileged girls from Cameroon (11.6%) than in privileged girls
from the same country (8.2%) (72), although such a dif-
ference is not observed in South Africa (73). A low CV
(9.2–10.0%) is obtained in other well-off conditions (6, 64,
69). Taken together, these data highlight the crucial role of
socioeconomic and nutritional conditions in the timing of
puberty. A similar conclusion was drawn in a recent study
reviewing menarcheal age in 67 countries (88). These au-
thors pointed out that, on a large scale, extrinsic factors
were crucial: the effects of early involvement in physical
activities on energy expenditure were emphasized in re-
lation to frequent illiteracy rate.

D. Secular trends

Between the mid-19th and the mid-20th century, the av-
erage menarcheal age decreased remarkably from 17 to un-
der 14 yr in United States and in some countries in Western
Europe (4, 5, 9, 65, 89, 90). This was a steady process because
the average menarcheal age decreased uniformly until the
1960s. This decline, however, varied among countries (Fig.
4). A decline of about 0.3 yr per decade could be calculated
from the Norwegian and Finnish data (5, 65, 90) and the
prospective American studies (89, 90). In France, the slope of
the linear regression calculated for the mean menarcheal age
between 1841 and 1974 accounts for a decline of 0.175 yr per
decade (33). Such a difference in time shift can be related to
the fact that, by the mid-19th century, menarcheal age in
France (�15 yr) was already earlier than in Scandinavia (�17
yr) (5, 33, 65). This suggests that the north-south Euro-

FIG. 3. Average (mean or median) menar-
cheal age in different developing countries.
The data are shown separately for different
living conditions.
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pean gradient in menarcheal age has existed for more than
a century and was greater in the past than today.

The studies performed after 1960 provide less uniform
data as indicated by the recently reported changes in average
menarcheal age, which are quite different among countries
(Fig. 4). In the United Kingdom, Sweden, and Belgium, a
modest increase in menarcheal age is seen (�0.14, �0.05 and
�0.03 yr per decade, respectively), which provides some
evidence that the secular trend toward earlier menarche has
come at least to an arrest (50, 58, 91). In Denmark, Finland,
The Netherlands, Russia, France, and Greece, the trend is still
negative but very moderate and much less rapid than for-
merly because the decline does not exceed �0.12 yr per
decade (48, 49, 52, 56, 64, 92, 93). This figure is similar to that
reported recently in the United States based on NHANES/
NHES data (39, 40). A relatively slow decline of �0.14 yr per
decade is now observed in countries such as Hong Kong,
Venezuela, and Cameroon, which developed more recently
than the United States and Western European countries (66,
72). In Spain, it seems that the secular trend is still quite
marked with a decline of �0.22 yr per decade during the
1990s (94). In India and China, the most recent reports in-
dicate that the secular trend in reduction of menarcheal age
is still obvious, with a decline either comparable to the former
figure in the United States and Western Europe or twice as
fast (83, 86). A similar finding has been made in some coun-
tries from Eastern Europe, such as Bulgaria, where the trend
is still continuing (95). This set of updated information from

all around the world is in concordance with the evolution of
living standards in different countries and further supports
the role of nutritional and health status or socioeconomic
conditions. Recently, Anderson et al. (40) reported that the
secular trends toward earlier menarche and more elevated
body weight for height in the United States could be asso-
ciated because increased BMI was predictive of the increased
likelihood of being menarcheal after adjustment for age and
race. As reported recently from the Bogalusa Heart Study, a
more obvious secular trend in African-American girls com-
pared with white Americans indicates the possible combi-
nation of environmental and ethnic factors (45). In Denmark,
Olesen et al. (96) reported that the negative trend seemed to
have resumed after a halt period. Olesen et al. emphasized
that, even in this industrialized country, the menarcheal age
can still be delayed in some subgroups, thus accounting for
the remaining potential of an active secular trend (96). Then,
the differences between urban and rural or well-off and poor
living conditions that have been extensively documented in
developing countries (5, 65) might still be relevant to the
so-called developed countries. Variations in particular sub-
groups may not be apparent from whole population data.
Mau et al. (97) reported recently that in Denmark, menarcheal
age had not changed between 1964 (13.3 yr) and 1990–1991
(13.4 yr).

The variability in menarcheal age in France as reflected by
the CV was greater in the mid-19th century (17.3%) than in
the mid-20th century (10.0%) (33, 60). It appears, however,

FIG. 4. Secular trend in menarcheal age in different countries around the world. A, Twin set of average data obtained after 1960 in different
countries at several 10-yr intervals. B, Secular difference in menarcheal age calculated from those data. For the purpose of comparison, the
average secular trend observed before 1960 in the United States and in Europe is also shown.
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that between the 1930s and the 1960s in the United States, CV
was 9–10% and did not change any longer, whereas the
decline in average menarcheal age was still progressing (89).
In China, where the secular trend in decline of menarcheal
age was still important between the early 1970s and the early
1990s (Fig. 4), there was only a modest concomitant reduction
in that CV from 11.9 to 9.8% (87). Such a dissociation between
the mild changes in variability of age at menarche and the
steady decline in average menarcheal age suggests that both
parameters are influenced by different factors or differently
by the same factors.

Some authors have looked into the secular trend dynamics
using other markers such as the onset of breast development
in girls and genital development in boys. In Sweden and the
United Kingdom, the onset of breast development has been
found to be slightly earlier in 1980 than in the 1960s or 1970s
(48). In Denmark (97), the average age at onset of breast
development even tended to increase between 1964 (10.6 yr)
and 1990–1991 (11.2 yr). In Europe, there is no evidence of
marked secular reduction in average age at B2 such as shown
in the United States (6, 7). The age at G2 has shown some
increase in The Netherlands during the last decades, whereas
a decrease has been observed in Sweden (48). Although a
methodological bias is possible due to the small number of
boys in the G2 stage, such discrepant observations might
point to some country-specific environmental changes.
These observations are also raising important issues regard-
ing the significance of the data in relation to the markers used
to evaluate the timing of pubertal development as discussed
above.

III. Precocious Puberty

A. Age limits

On the basis of the above mentioned average ages at onset
of pubertal development and assuming a Gaussian distri-
bution in the normal population, abnormally precocious sex-
ual development has been defined in Europe as less than 8
yr for the B2 stage in girls and less than 9 yr for the G2 stage
in boys (10, 98, 99). These age limits, which are above the 99th
centile, have been used for several decades and are still used
currently. Similar age limits were thought to be relevant to
the United States until the publication of the PROS study (6)
prompted Kaplowitz and Oberfield (100) to recommend, on
behalf of the Lawson Wilkins Pediatric Endocrine Society, to
reset the age limit for nonphysiological onset of breast de-
velopment at 7 yr in Caucasian girls and 6 in African-Amer-
icans. Some American colleagues, however, did not share the
opinion of Kaplowitz and Oberfield and advocated a pos-
sible recruitment bias through pediatricians’ offices (36). In
addition, the unexplained dissociation between earlier breast
development and relatively unchanged menarcheal age was
raising indirectly the issue of the reality of breast develop-
ment estimated through visual inspection. The definition of
appropriate age limits is crucial to restrict diagnostic eval-
uation and possible therapeutic intervention to children with
abnormal precocious development (98, 99). In a recent review
of 223 patients referred for sexual precocity occurring be-
tween 7 and 8 yr in white girls or 6 and 8 yr in black girls,

Midyett et al. (101) found that 47% showed both breast and
pubic hair development, 35% had bone age at more than 3 sd
above chronological age, and 12% appeared to have a non-
idiopathic form of sexual precocity. The authors concluded
that occurrence of sex characteristics between 6 and 8 yr is not
necessarily benign and may warrant diagnostic and thera-
peutic intervention (101). Thus, the question of age limit for
sexual precocity does not have any definitive and unequiv-
ocal answer.

B. Common etiologies

Sexual precocity is classified as central, gonadotropin-
dependent, i.e., driven by the central nervous system, when
it results primarily from early hypothalamic-pituitary mat-
uration (8, 99). Central precocious puberty represents four
fifths of the total number of patients with precocious puberty
(99, 102) and is much more frequently seen in girls than in
boys. Idiopathic central precocious puberty is diagnosed
when early pubertal development (including acceleration of
growth and bone maturation) is associated with a pubertal
pattern of gonadotropin secretion (increased LH secretion)
and when there is no evidence of organic cause provided
through history, physical examination, or brain imaging (9,
98). Among patients with central precocious puberty, the
proportion of idiopathic forms varies between 58 and 96%,
as reviewed recently (103, 104). This proportion is greater in
girls than in boys, who show a higher prevalence of recog-
nizable organic forms. As shown in Fig. 5, the female to male
ratio found among the patients with central precocious pu-
berty in the studies published between 1961 and 1990 was
relatively similar, around 3:1 to 4:1 (102, 105–112). In the same
studies, the idiopathic to organic ratio was around 2:1, in-
dicating that two thirds of the patients had idiopathic forms
and one third had organic forms with identified neurogenic
etiologies. In more recently published studies from four Eu-
ropean countries as well as from the United States (10, 17, 18,
113–115), the proportion of female patients and idiopathic
forms has clearly increased (Fig. 5). In a recently published
American series, however, the sex ratio and etiological dis-
tribution were similar to the data from early studies despite
the changing age limits for sexual precocity in the United
States (116). It should be noted that this study reported on
final height and involved patients diagnosed several years
earlier and referred to the NIH with possible recruitment
biases. The changing gender and etiological distribution of
patients with precocious puberty in the United States could
have resulted from the recently observed reduction in age at
onset of puberty, before the age limits for sexual precocity
were revised. Such an explanation, however, is unlikely in
Europe where the physiological age at onset of puberty and
the age limits for sexual precocity did not change during the
past decade. An increased variability in timing of puberty
without change in the mean ages could account for an in-
creasing number of girls with idiopathic forms. Based on the
diagnostic advances made during the past decades using
nuclear magnetic resonance imaging, an increasing propor-
tion of idiopathic forms would not have been expected. An-
other clue to the changing epidemiology of central preco-
cious puberty could be the occurrence of new etiologies as
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suggested by the increasing proportion of migrating children
who develop sexual precocity, as discussed below.

In peripheral, gonadotropin-independent sexual pre-
cocity, the primary event is increased secretion of adrenal or
gonadal sex steroids or exposure to exogenous steroids (10,
102). Peripheral sexual precocity represents one third to one
fifth of the total number of patients with precocious puberty
(10, 117) and involves both sexes. Some forms of peripheral
sexual precocity predominate in boys, such as chorionic go-
nadotropin-secreting tumors and familial gonadotropin-
independent precocious puberty or testotoxicosis, which is
caused by activating mutations of the LH receptor or con-
stitutive Gs� activity in Leydig cells (10, 117). The latter
mechanism also accounts for the McCune Albright syn-
drome. This form of sexual precocity predominates in girls
as well as ovarian cysts and exposure to environmental es-
trogens (10, 117). Some peripheral or partial forms of sexual
precocity, such as isolated premature thelarche, can second-
arily evolve into central precocious puberty (98, 103, 117).

C. Children migrating from developing countries

After an initial report from Sweden in 1981 (118), sexual
precocity has been reported in children migrating from de-
veloping countries to different European countries, primar-
ily through international adoption (11–18). So far, there is
only one similar report from the United States published in
abstract form (119). Some data from the published series are
summarized in Table 2, and methodological aspects are
listed in Table 3. In the original Swedish report and the
subsequent Dutch, French, and American reports, cohorts of
foreign adopted patients were studied, and the mean men-
archeal age was evaluated through questionnaires sent out to
the families (11, 13, 16, 119). In these studies, the absolute
frequency of sexual precocity was undoubtedly increased
(Table 3) but was variable among the studies between 13%
(11) and 30% (119). In the Swedish cohort study, the men-

archeal ages, although advanced, followed a relatively sym-
metrical pattern of distribution (11), such as expected in
normal adolescents (120). This indicates that advanced pu-
berty was a general feature of the whole cohort (Fig. 1D)
instead of precocity being a feature of a particular subset (Fig.
1C). It is of note that the variability in menarcheal age (CV,
11.5–24.7%) in these cohorts (13, 16, 119) can be greater than
in the nonmigrating girls living in well-off conditions. Sev-
eral biases may have influenced the calculation of the fre-
quency of sexual precocity. In the cohort studies, sexual
precocity was defined as early menarche, which was re-
ported in the questionnaire (11, 13, 16). Such a definition was
different from the patient studies in which early breast de-
velopment was the first criterion used to define precocity (14,
16–18). This distinction is important because thelarche and
menarche may have a different significance (Table 1). India
was the only country of origin in the Swedish study (11),
whereas several different countries were involved in the
other studies (13, 16, 119). The differences in country of origin
were unlikely to bias the findings because, in three cohort
studies, the average menarcheal age was advanced in com-
parison with data from the foster country and the country of
origin as well (11, 13, 16). In the study by Oostdijk et al. (13),
mean ages at menarche differed significantly, with the lowest
observed in girls from India (11.2 yr) and the highest in girls
adopted from South Korea (12.4 yr). In the Swedish study,
birth date was uncertain in 28% of subjects, but similar data
were obtained when the subsets with certain and uncertain
birth date were compared (11). In a study on children
adopted from China, 11% were thought to have an inaccurate
birth date (121). Birth date uncertainty is a potential bias in
all the studies, with possible differences among the countries
of origin. This, however, is unlikely to account for false
diagnosis of sexual precocity in most migrating children,
although such a possibility should be kept in mind for in-
dividual patients. More important, the bias of parental con-
cern about early sexual development of their adopted child

FIG. 5. Gender and etiological distribution of pa-
tients with central precocious puberty in the series
published between 1961 and 2001 in relation to the
year of publication and the country of study (DK,
Denmark; F, France; UK, United Kingdom; NL, the
Netherlands; B, Belgium). The number of patients
and reference (in parentheses) are indicated at the
top of each bar.
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may have influenced the decision to respond to the ques-
tionnaire, accounting for overrepresentation of early matur-
ers in the responding families.

In addition to the cohort studies of foreign adopted chil-
dren, additional evidence of early timing of puberty has been
provided by the observation of sexual precocity in individual
foreign adopted patients described as an entity in Italy (14)
and France (16) or in comparison with the whole group of
patients seen or treated for central precocious puberty in
Copenhagen (18) and in Belgium (17). In Belgium, foreign
migrating children represented 28% of the patients seen with
central precocious puberty, including the organic forms (17).
The foreign adopted children represented 26% of the patients
with idiopathic central precocious puberty (Table 3). These
data were used to calculate the relative risk of sexual pre-
cocity in foreign adopted patients in comparison with chil-
dren native to Belgium (17). In native Belgian children, the
incidence of sexual precocity based on the patients treated in
the seven university departments in the country was found
to be 0.01% of the entire population of children. This figure
was consistent with the overall incidence of 0.01–0.05% es-
timated by Gonzalez (122). Using the database from the
national adoption registries, an 0.8% incidence of precocious
puberty in adopted children was calculated, accounting for
an 80-fold increased risk of sexual precocity in comparison
with Belgian natives (17). In similar conditions, the study in
Copenhagen showed that foreign adopted children ac-
counted for 16% of the patients referred for and diagnosed
with sexual precocity (18). Using the database from the Dan-
ish immigration office, a 20-fold increased risk was calcu-
lated in comparison with Danish natives (18). How can the
discrepancy between these data and those from the cohort
studies be explained? The factors contributing to possible
overestimation in the cohort studies have been discussed
earlier. In addition, some factors may have caused under-
estimation in the patient study. Some patients may have been
referred, but at such a final stage of development that treat-
ment was not justified. Patients may also have not been
referred, because early development was thought to be a
normal characteristic of foreign children (123). In this respect,
it is of note that Mason and Narad (123), referring to their
survey of children adopted in the United States from Eastern
Europe (119), mentioned that such girls with a mean (�sd)
age at B2 of 8.8 � 2.5 yr would be nearly normal and not meet
the criteria for early puberty. This statement could be un-
derstandable in the current context of early thelarche in the
United States (6, 7) and might explain why sexual precocity
is rarely reported from the United States where more than
100,000 foreign children were adopted in the decade 1990–
2000 (123). These adopted girls, however, showed much ear-
lier menarche (10.5 � 2.6 yr) than American girls. In the
European studies, one could argue that nonreferral would
apply to Belgian or Danish native children as well as to
adopted children. Also, the obviously incomplete adoption
registry database in Belgium, due to foreign adoption
through organizations not appointed by the state, could ac-
count for overestimation of the incidence of sexual precocity.
Finally, it is possible that the more careful medical attention
paid to the foreign adopted children contributes to overes-

timation of sexual precocity in comparison to children that
are born in the foster country (124).

In the foreign children with sexual precocity, evidence of
early hypothalamic-pituitary maturation and normal brain
imaging has been provided, leading to the diagnosis of id-
iopathic central precocious puberty (14, 16, 17). In all the
studies, sexual precocity was seen much more frequently in
foreign girls than in boys (11–14, 16, 17, 119). Such a sexual
dimorphism might reflect the general and unexplained fe-
male preponderance of idiopathic central precocious pu-
berty. However, a precise cause influencing specifically the
female endocrine system cannot yet be excluded. The early
hypotheses to explain sexual precocity in foreign adopted
children after migration have incriminated the transition
from an underprivileged to a privileged environment (11,
12). A new perspective has come from the recent Belgian
report indicating that 12 patients from a total group of 145
were foreign children moving together with their original
families without past history of deprivation (17). The obser-
vation of both nonadopted and adopted foreign children
among the patients with precocious puberty was also found
in Denmark (Table 2). The occurrence of precocious puberty
in nonadopted migrating children suggests the possible role
of factors related to migration and change of environment.
Although the impact of former nutritional and emotional
stress is less likely in children moving together with their
original families, it is possible as well that such children are
relieved from some stressful conditions after leaving their
country.

The available data on actual or predicted adult height in
migrating girls, including those with early or advanced pu-
berty (11, 13, 14, 17), indicate that the average final height was
close to or below the third centile of national references in the
foster countries (Table 2). The interpretation of height data is
difficult because of the possible role of ethnic differences,
unknown short parental height, and intrauterine growth re-
tardation (IUGR) in addition to precocious puberty. The
observation of short adult stature prompted several clini-
cians to study the effects of combined GnRH agonist sup-
pression of puberty and stimulation of growth with GH (125,
126). Pubertal growth and final height are obviously very
important factors in relation to changes in pubertal timing
and secular trends in the general population as well as in
migrating children. These aspects, however, involve many
factors beyond the control of pubertal timing and will not be
discussed in the present paper.

IV. Possible Mechanisms of Variations in Timing of
Puberty around the World and after Migration

Puberty and reproduction are determined by changes in
the secretion of the pituitary gonadotropins, LH and FSH,
which are dependent on the frequency and amplitude of
pulsatile GnRH neurosecretion from the hypothalamus (1, 9).
The timing of puberty can be influenced by signals involving
neurotransmitters and neuropeptides that originate in the
hypothalamus, in addition to peripheral or gonadal signals.
Signals linked to the environment such as nutrition, light,
stressors, and endocrine disrupters might impinge on the
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hypothalamic signaling network directly or through periph-
eral signals (Fig. 6). In the following sections, we will discuss
the possible contribution of hypothalamic, peripheral, and
environmental signaling to the differences in timing of pu-
berty around the world and the early activation of the hy-
pothalamic-pituitary-gonadal system in migrating children.
It is, however, virtually impossible to isolate the contribution
of each signal because many of them are interrelated. Geo-
graphical differences might involve altitude, temperature,
humidity, and lighting. An underprivileged life setting
might involve nutritional problems, high energy expendi-
ture, insufficient public health, individual diseases, large
family size, and social and emotional injuries.

A. Genetic factors (family, ethnicity, gender)

In 1935, Petri (127) reported a mean difference in menar-
cheal age that was 2.2, 12.0, 12.9, and 18.6 months in four
groups of identical twins, nonidentical twins, sisters, and
unrelated women. This finding and subsequent observations
(3, 89, 128) derived from monozygotic twin correlation stud-
ies of menarcheal age indicate that 70–80% of the variance
in pubertal timing can be explained by heritable factors.
Using the maximum likelihood model-fitting method (129)
and the survival analysis (130), two mathematical ap-
proaches that control for the biasing environmental influ-
ences in twin studies, the substantial role of genes in deter-
mining the timing of menarche was further strengthened.
Kaprio et al. (3) used a bivariance twin ANOVA in menar-
cheal age and BMI. They concluded that 74% of the variance
involved genetic (including dominance and additive) effects
and 26% environmental effects. These data were consistent
with the concept that, in privileged countries, there has been
a possible secular increase in relative genetic effects on tim-
ing of puberty together with a decrease in environmental
effects (129). Using a multivariate model for twin and lon-
gitudinal height data, Loesch et al. (131) calculated the ab-
solute genetic contribution to the pubertal growth spurt,

which was found to be maximal at the time of peak height
velocity. These data indicated the possible role of genetic
factors in the individual differences in pubertal growth spurt
with a gender dimorphism, possibly related to estrogen ef-
fects. In a recent review article, Palmert and Boepple (120)
suggested that the genetic control of the variance in pubertal
onset was likely to be a complex polygenic trait, and they
proposed a study of the association with precocious or de-
layed variants in pubertal timing to unravel those genes.
Similar genes could be involved in determining the timing of
menarche and the risk of breast cancer later in life, thus
accounting for the association between the two events. In
pairs of monozygotic twins discordant for breast cancer, an
earlier menarche did not predict an increased risk of the
disease, whereas in twins concordant for breast cancer, an
earlier menarche predicted an earlier occurrence or diagnosis
of breast cancer (132). These data indicate that, in the heri-
table or familial forms of breast cancer, genetic susceptibility
can cause unusual early sensitivity to sex hormones or un-
usual early load in sex hormones. Recently, two different
polymorphisms of the estrogen receptor � gene, which were
found previously to be associated with reduced breast cancer
risk, were also associated with a relative delay in menarcheal
age in Greek adolescent girls (133). More recently, in Japa-
nese women, menarcheal age was found to be not associated
with estrogen receptor � gene polymorphism. In contrast,
early menarche was linked to the A2 polymorphism of
CYP17 gene controlling androgen biosynthesis and thereby
possibly accounting for increased serum estradiol levels
(134). Such a polymorphism was also found to be associated
with increased breast cancer risk in young women (135). In
American girls, the CYP17 alleles were not associated with
early breast development that was strongly associated with
the A4 allele of CYP3, an enzyme involved in testosterone
catabolism (136). However, no association between menar-
cheal age and polymorphic variants of the CYP3A4, CYP17,
CYP1B1, and CYP1A2 genes was found in a Canadian cohort

FIG. 6. Schematic illustration of the relative
influences of hypothalamic, peripheral, and en-
vironmental signaling on the physiological
variability in timing of puberty (A) or the oc-
currence of a subset with sexual precocity (B) or
the shift of the whole study population toward
early pubertal timing (C).
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of 583 healthy women aged 17–35 yr (137). Taken together,
these findings suggest the involvement of genes controlling
sex steroid biosynthesis, action, and metabolism in the ge-
netic determinants of the timing of puberty with possible
variations between countries and populations. This area is
particularly complex because there are multiple mechanisms
and sites potentially involved in sex steroid effects. The es-
trogen receptors are expressed in numerous tissues and
might regulate many peripheral and central processes in the
hypothalamic-pituitary-gonadal axis and their peripheral
target tissues (138, 139). The androgen receptor gene can also
be involved in the pathogenesis of pubertal disorders be-
cause a CAG repeat polymorphism was shown to be asso-
ciated with ovarian hyperandrogenism (140).

It is likely that a cascade of genes may determine variations
in timing of pubertal onset. In the rat, manipulation of some
homeobox-containing genes (OCT2, TTF-1) involved as reg-
ulators of downstream genes of neuropeptides stimulating
GnRH secretion such as TGF�, can result in alterations of the
timing of puberty (141). We have not yet identified, however,
the upstream genes that possibly mediate variations related
to ethnic and familial patterns of development, as well as the
striking sexual dimorphism in onset of puberty. Unraveling
those genes will be critical because genetic control can ac-
count for most of the physiological variations in pubertal
timing whereas peripheral and environmental signals could
play relatively minor roles in that respect (Fig. 6A).

The ethnic or racial characteristics belong to the genetically
determined factors and could contribute to the sexual pre-
cocity of foreign migrating children, in addition to environ-
mental factors. In this respect, studies in migrating people
provide an interesting model and put emphasis on environ-
mental factors. In 1942, Ito (142) reported that, in Japanese
girls born and reared in California, menarcheal age was more
than 1.5 yr earlier than in Japanese girls born in California or
Japan and reared in Japan. Although this study put emphasis
on environmental factors, the dominant role of genetic fac-
tors was emphasized by others who found a similar men-
archeal age in Turkish girls living in Germany in comparison
with girls living in Turkey (143). Foreign adoption creates a
unique situation with children from many different countries
and races sharing a similar new setting, although many vari-
ables such as importance of former deprivation or insults and
age at adoption still account for heterogeneity. In the Belgian
experience, sexual precocity could not be related to any clear
racial factor because the patients came from different coun-
tries all around the world and belonged to different races
(17). The percentage of girls seen and treated for precocious
puberty was relatively high (1.2%) among those coming from
Colombia and India or Sri Lanka compared with other coun-
tries. There is a possible bias, however, because adoption
from those countries has occurred for many years and at a
relatively stable rate throughout the entire study period,
whereas that from some other countries (Vietnam, China,
Haiti) has started more recently and is still increasing. For
instance, many patients with sexual precocity were seen from
Haiti in the past few years but not formerly. In addition,
differences among countries, such as absence of sexual pre-
cocity in girls adopted from Ethiopia or the Philippines,
might involve racial and environmental influences, which

will be difficult to isolate from each other. In Western Europe,
we have relatively few children adopted from Eastern Eu-
rope, whereas these countries, particularly Russia and Ro-
mania, have provided a great number of children adopted in
the United States (119, 123, 144) and among whom early
puberty was also common (119, 123). Thus, although racial
factors may play some role in the timing of puberty, such a
role is relatively minor and unlikely to explain the variations
seen in different countries around the world or in migrating
children (89).

B. Intrauterine conditions

It has been proposed recently that the intrauterine milieu
might influence physiological and pathological events oc-
curring throughout life, although the mechanism of such a
programming remains elusive (145). With respect to puberty
and reproduction, low birth weight appears to be associated
with precocious pubarche (adrenarche) and ovarian hy-
perandrogenism in the human female (146) and subfertility
in the male (147). Evidence of central precocious puberty
associated with IUGR has been provided in some patients
with Russel-Silver syndrome (148) because, in a review of 148
observations with data on pubertal timing provided for 17
girls and eight boys, eight girls and one boy showed early
puberty (149). More recently, precocious puberty was re-
ported in some IUGR patients with maternal uniparental
isodisomy of chromosome 14 (150, 151). It is unknown why
some particular patients with this syndrome or Russel-Silver
syndrome will enter puberty early. Some variations in men-
archeal age can be related to low birth weight. In the United
Kingdom, the age at menarche was 0.2 yr earlier in girls with
birth weight below 2.85 kg compared with those weighing
more than 3.75 kg (152). Among Spanish girls with early
puberty (B2 between 8 and 9 yr), menarcheal age was 1 yr
earlier in girls with a birth weight below 2.7 kg compared
with the rest of the cohort (153). In a recent study from Israel,
the mean menarcheal age of IUGR girls was found to be
advanced by 1.3 yr vs. girls with birth weight appropriate for
gestational age, due to increased prevalence of early puberty
and reduced prevalence of delayed puberty (154). In a French
study, however, IUGR was found to be associated with a
pubertal delay averaging 0.8 yr in girls and 2.1 yr in boys,
respectively (155). In the general population, some authors
found no significant correlation between birth weight and
menarcheal age (156), whereas others reported that thin new-
borns enter puberty earlier (157, 158). A sexual dimorphism
in the relationship between birth weight and timing of pu-
berty was observed in a limited group of 35 girls who showed
pubertal age positively and significantly correlated with
birth weight tertiles, whereas a trend toward a negative
correlation was seen in 34 boys (159). The female predispo-
sition to early onset of puberty in IUGR (149, 159) is consis-
tent with the gender dimorphism seen in other etiological
conditions. This suggests that factors linked with IUGR are
superimposed to a more general mechanism making females
prone to develop sexual precocity. Experimental data ob-
tained in rats of both sexes, indicate that IUGR causes de-
layed puberty in both sexes, whereas early postnatal mal-
nutrition does not affect timing of puberty in the female but

680 Endocrine Reviews, October 2003, 24(5):668–693 Parent et al. • Timing of Puberty around the World

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/24/5/668/2424459 by guest on 09 April 2024



causes a delay in the male (160). Thus, alterations in intra-
uterine conditions are possibly associated with disorders of
puberty and reproduction, but their role in physiological
variations in timing of puberty remains uncertain.

Could IUGR contribute to sexual precocity in adopted
children migrating to Western Europe or the United States?
In these children, the likelihood of increased incidence of
IUGR is suggested by the Swedish cohort study in which 80%
of 37 children with known birth weight were below 2.5 kg
(161, 162). Unfortunately, information on birth weight and
maternal risk factors for IUGR is lacking in the other studies.
In those cases, we can only speculate until collaborative
studies are set up between foster and home countries of
adopted children. There is no evidence that, in the foreign
adopted girls with precocious puberty, a putative IUGR can
be linked with premature pubarche as observed in other
female populations (146). By contrast, we reported that the
development of pubic hair was less advanced in these pa-
tients compared with Belgian native girls with idiopathic or
organic sexual precocity (163). This finding is consistent with
the dissociation between adrenarche and gonadarche (21,
22). The delay in pubic hair development in migrating girls
may involve particularly the subset of Indian girls, indicating
a possible racial or geographical factor.

C. Nutrition

Among the factors linked with the living standards that
account for the downward secular trend in timing of puberty
and the differences between underprivileged and privileged
settings, nutrition is likely to play a key role. This area ap-
pears to be most complex for the following reasons. 1) Nu-
trition involves both quantitative and qualitative aspects that
have been rarely individualized in human studies. 2) Usu-
ally, the dietary status is assessed indirectly and incom-
pletely through anthropometry. Weight and the related vari-
ables provide some information on storage of metabolic
fuels, depending on individual differences in energy balance
that may be genetically determined. 3) Reproduction
has been more extensively studied than onset of puberty,
whereas these two manifestations of pituitary-gonadal func-
tion can be differently affected by nutritional signaling. 4)
The hypothalamic mechanism controlling food intake/en-
ergy balance and onset of puberty/reproduction involves
common local and peripheral regulators, which are numer-
ous and act through redundant pathways. 5) The contribu-
tion of differences in nutrition to disorders of puberty and
reproduction does not mean that nutrition is a determinant
of physiological variations in timing of puberty. In this sec-
tion, we will concentrate on the possible involvement of
nutrition in differences in timing of puberty around the
world and in migrating children.

A direct relationship between body weight and the age at
onset of puberty was suggested by Frisch and Revelle (164,
165) based on comparison between early and late maturers.
Frisch et al. (166) concluded that a critical amount of body fat
was needed for the onset of puberty. The maintenance of
cycling in women has been estimated to require that at least
22% of body composition is fat (167, 168). In the amenorrheic
running female monkey, ovulatory cycles are restored by

increasing energy availability (169). However, the nutritional
determinants of the ovulatory cycle can be different from the
control of pubertal timing. The secular decline in menarcheal
age occurs together with an opposite trend for regular cy-
cling because, within a 25-yr period, the interval between
menarche and regular cycling has increased from 1.9 to 3.0 yr
and attains an interval of 5 yr in 21% of women instead of 9%
formerly (170). These authors pointed out the possible in-
fluence of nutritional changes as well as differences in phys-
ical activities among female adolescents. Parallel to the delay
in regular cycling, the prevalence of ovulatory disorders
seems to increase, pointing to a possible environmental effect
as well (171). Nutritional factors also play some role in poly-
cystic ovary syndrome that can, however, predominantly
involve genetic factors (172).

The Frisch and Revelle hypothesis has triggered a number
of studies that confirmed (41, 156, 173–175) or did not con-
firm (28, 176–178) a significant relationship between men-
archeal age and fat mass estimated through BMI or the sum
of skinfold thickness or dual energy x-ray absorptiometry. It
is debatable whether the Frisch and Revelle hypothesis could
be relevant when only the physiological variations in body
fatness are considered. As an example, girls with early men-
arche are more likely to be obese than those with late men-
arche (156), and, in comparison with nonobese girls, the
average menarcheal age of obese girls was 9 months earlier
in Japan (67) and 0.9 yr earlier in Thailand (179). However,
the mechanisms involved in these pathological conditions
may be different from those in normal subjects. Another
difficult issue is the meaning of a significant correlation be-
tween fatness and menarcheal age. This may indicate a direct
relation between fatness and menarche that can be either
causal or consequential. Alternatively, the link between the
two parameters can only be indirect because they share sim-
ilar genetic determinants. In this respect, the recent study by
Wang (180) is interesting because early sexual maturation is
associated with an increased prevalence of fatness in girls
and leanness in boys. Such a sexual dimorphism could in-
volve genetic and/or endocrine factors. Several authors re-
ported that early menarche was associated with an increased
risk of obesity in adulthood (181, 182). Conversely, several
studies suggested that childhood might be a critical period
for weight to influence the timing of puberty because men-
archeal age was inversely related to weight at 7 yr (152). Qing
and Karlberg (183) reported that a gain in 1 U of BMI between
2 and 8 yr was associated with an advancement of age at the
pubertal growth spurt reaching 0.6 yr in boys and 0.7 yr in
girls. Davison et al. (184) reported that early onset of breast
development by 9 yr could be weakly but significantly pre-
dicted by a higher percentage body fat at 5 and 7 yr. In this
study, up to 14 and 35% of girls reached B2 stage at 7 and 9
yr, respectively, which was assessed, however, by visual
inspection only. Kaprio et al. (3) suggested that the associa-
tion between relative body weight and menarcheal age was
primarily due to correlated genetic effects, whereas the two
parameters were influenced by separate environmental cor-
relates independent of each other. Karlberg (158) came to a
similar conclusion about peak height velocity and menarche,
which can occur simultaneously or at a time interval of 2 yr.
They also emphasized the halt in secular trend in menarcheal
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age while height (and weight) are still increasing. It is tempt-
ing to conclude that the link between nutritional status and
physiological variations in timing of puberty can be signif-
icant but is not particularly strong, suggesting that the re-
lationship is indirect or partial and superseded by other
factors.

Is there any possible link between the anthropometric data
and the ethnic variations in pubertal timing? In some studies,
only a minor advancement of 0.1–0.3 yr in menarcheal age
was observed in African-American girls as compared with
white American girls (35, 41). That advancement was found
to be 0.4 yr in the NHANES III cohort (39) and reached 0.7 yr
in the PROS study (6), which raised the question of whether
racial differences in nutrition and weight for height play any
role. Recently, Anderson et al. (40) found that the racial dif-
ferences in menarcheal age were independent of differences
in BMI. In another recent study, African-American girls were
found to be fatter and sexually more mature than white
American girls, a difference that was associated with in-
creased levels of free bioavailable IGF-I (185). These data,
however, are not comparable to the PROS study (6) because
pubic hair, which was used as the marker of sexual matu-
ration, may provide information on adrenarche but not go-
nadarche. There are additional ethnic differences, including
higher insulin response to a glucose challenge among black
vs. white subjects, lower resting energy expenditure, and
perhaps less physical activity (186), without evidence, so far,
of contribution to the racial differences in pubertal timing.
Kaplowitz et al. (187) used the growth data from the PROS
study (6) to calculate the sd scores (SDS) or Z scores of BMI.
They found these scores to increase at the time of onset of
breast development and concluded that the gain in BMI was
predictive of onset of puberty and consistent with the racial
difference in pubertal timing. Again, this conclusion raises
the above debate about the causal or consequential nature of
the observed correlation. In addition, there is a possible bias
in these study conditions because BMI reference data from
average maturers were used to calculate Z scores in early
maturers. Likewise, in the recent report by Wang (180), the
definition of overweight in early maturers using the BMI
percentiles obtained in average maturers can involve a sim-
ilar bias. If an increase in BMI occurs early as a possible
consequence of early pubertal development, the reference
data from average maturers provide inappropriately low
values to calculate Z scores of BMI in early maturers. This
may result in overestimation of BMI increase and can mis-
takenly lead to the conclusion that such an increase has a
causal influence on pubertal onset.

Studies assessing directly the influence of dietary intake on
the age at menarche have not shown any clear correlation
between diets and timing of puberty. A weak but statistically
significant correlation was found between early menarche
and energy intake and expenditure (173). In contrast, high vs.
low energy intake was associated with later menarcheal age
in heavy Hispanic girls in California, which might have been
caused by underreporting of the dietary intake in some
groups (188). The protein source of food in early life could
also influence the timing of puberty because a high animal
vs. vegetable protein ratio at the ages of 3–5 yr is associated
with early menarche, after controlling for body size (189).

Phytoestrogens in the diet might have a role in the regulation
of puberty both directly and indirectly (190). They interact
with estrogen receptors and may have either agonistic or
antagonistic effects, depending on the endogenous hormonal
balance (191). In prepubertal boys who have very low en-
dogenous estrogen levels, phytoestrogens might have some
agonistic effects, whereas antagonistic effects would be ex-
pected when endogenous estrogen levels are higher. It was
shown in the rat that the phytoestrogen coumestrol caused
both reduced frequency of the electrophysiological hypo-
thalamic discharges associated with pulsatile LH secretion as
well as direct pituitary inhibition (192). In addition to their
receptor effects, phytoestrogens affect the metabolism of hor-
mones. They have been shown to inhibit aromatase and
17�-hydroxysteroid dehydrogenase type 1 and type 5 en-
zymes (193–196). Thus, the sum effect of phytoestrogens
appears clearly antiestrogenic, which is also in accordance
with animal experiments (197). A phytoestrogen-rich diet
might therefore delay puberty as demonstrated by Berkey et
al. (189). Such a conclusion may be relevant to the nutritional
changes that can be involved in early puberty after migration
because vegetable products such as soybean or cassava are
major food components in developing countries but not in
Western European societies (198).

Underfed children have delayed puberty (199), and, in
many children adopted from foreign countries, malnutrition
at arrival has been reported. The mean SDS of weight for
height at arrival was �0.6 in the Swedish study (161, 162),
and the weight deficit was �10.5% in the Italian study (14).
In such conditions, a catch up in height and weight is com-
monly seen after arrival and precedes early sexual matura-
tion. This has led to the hypothesis that hormonal events
linked with catch-up growth may prime hypothalamic mat-
uration and lead to puberty. This hypothalamic priming was
thought to possibly occur in a critical age window because
precocious menarche (�10 yr) was more common in Indian
girls who arrived in Sweden between 3 and 6 yr than in those
who arrived before 2 yr of age (11). The concept of a critical
prepubertal period for nutritional priming of maturation is
in agreement with observations in healthy boys and girls
(152, 183, 184). Proos (200) reported that, in foreign adopted
children, earlier menarche was correlated with later age at
immigration and faster catch up in height and weight after
immigration. He found, however, in a multiple linear re-
gression analysis, that menarcheal age was associated with
height at immigration but not with age at immigration. In a
study of 65 Romanian adoptees in the United States, Johnson
et al. (144) found that only 15% of them were mentally and
physically healthy at arrival. These authors observed that
growth failure was directly correlated with duration of in-
stitutionalization, every 3 months of life in an orphanage
resulting in a loss of 1 month in height age. They also re-
ported that weight was usually less compromised than
height, suggesting that nutritional deprivation might play a
less prominent role than other factors such as genetics, pre-
maturity, IUGR, medical illnesses, and stress. A catch-up
growth was also noticed after adoption, with a greater extent
of recovery in children adopted before 18 months than in
those adopted at later ages (144).

Whereas the impact of nutritional deprivation and resto-
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ration after migration may be crucial in some foreign chil-
dren who develop sexual precocity, others have normal
weight and height at arrival. In the French study, the mean
SDS of weight for height of foreign adopted children was
�1.2 at immigration (16). In the Belgian series, the mean SDS
of BMI was �0.2 at arrival, indicating normal weight for
height on average (17). The interpretation of height and
weight data in adopted children, however, should be cau-
tious because the Western European or North American ref-
erences may not be applicable. In a study of Indian adoles-
cent boys who showed peak height velocity at an average age
of 13, which is similar to American boys, the prevalence of
height and BMI below the fifth centile using the NCHS ref-
erences was 11 and 50%, respectively (201). In addition, the
proportion of obese and wasted children was not necessarily
reciprocal, and variability among countries was considerable
(202). Quite interestingly, the observation of precocious pu-
berty in nonadopted foreign children migrating to Belgium
together with their original families and without evidence of
former nutritional or affective deprivation (17) provides fur-
ther support to the role of factors other than nutrition in
relation to the changing environment. To mimic catch-up
growth after immigration in formerly deprived foreign chil-
dren, early underfeeding and refeeding was used in the rat,
and the effects were studied on hypothalamic glutamate
neurotransmission, which is a major trigger of pulsatile
GnRH secretion (1, 203). An acceleration of maturation of the
glutamate receptor-dependent secretion of GnRH occurred
after refeeding and was maximal at a particular postnatal age
period (12). These data suggest the involvement of hypo-
thalamic glutamate receptors in the pathophysiology of that
form of sexual precocity.

Whether fat-derived signals, such as leptin, or body-size
linked signals, such as IGF-I, or other factors related to en-
ergy availability, such as glucose, are essential for timing of
puberty and regulation of reproduction remains a matter of
debate (204, 205). Peripheral leptin signaling is likely to
be permissive only in physiological conditions (Fig. 5), as
suggested by the controversial studies throughout normal
development in human and subhuman primates (205, 206).
In some nonphysiological conditions, leptin appears to be a
prerequisite to normal hypothalamic-pituitary-gonadal
function (205, 207), confirming rodent studies (208–210). In
girls with sexual precocity, controversial data have been
obtained because modestly but consistently increased serum
levels of leptin were observed by Palmert et al. (211), whereas
no difference in BMI-adjusted levels was found by Heger
et al. (212). Another recent candidate messenger between
nutritional status/energy balance and the hypothalamus is
ghrelin (213), which we found to be capable of stimulation of
pulsatile GnRH secretion from prepubertal rat hypothalamic
explants (214). In conditions with impaired and restored
nutrition, other endocrine changes, such as increased secre-
tion of IGF-I, may occur during catch-up growth and act as
a mediator between the environment and the hypothalamus.
Although a role of IGF-I has been advocated for many years,
its contribution remains equivocal (215, 216). Acute effects of
glucose on pulsatile LH secretion have been shown in the
lamb (217), but not in the rhesus monkey (218). As reviewed
by Cameron (219), different metabolic signals, including glu-

cose, insulin, and leptin, are capable of modulating repro-
ductive axis activity under specific circumstances, but their
physiological role remains unknown. A potentially impor-
tant contribution of sex steroids in the hypothalamic effects
of environmental signals is suggested by the reduced ex-
pression of hypothalamic estrogen receptors after food re-
striction (220, 221). Thyroid hormones can be a mediator of
environmental effects as well (222). This indicates the com-
plexity of the potential neuroendocrine interactions between
nutritional conditions and puberty, including the role of
estrogen receptors such as already discussed in Section IV.A.
In addition, there are possible peripheral effects of some
forms of undernutrition (kwashiorkor, anorexia nervosa) re-
sulting in increased serum concentrations of SHBG which are
reduced by refeeding and may affect the bioavailability of sex
steroids (223, 224).

D. Other stresses

Different stresses, such as acute or chronic illnesses and
adverse physical or psychological conditions, are known to
depress the hypothalamic-pituitary-gonadal system (225,
226). Intensive physical training and sport competition, such
as in elite gymnasts, can result in combined physical, psy-
chological, and nutritional stresses that are associated with
delayed puberty or late menarche (227, 228). In war condi-
tions, which involve nutritional deprivation and psycholog-
ical or emotional insult such as occurred in Bosnia and
Croatia, a delay in menarcheal age or a reversal of the secular
trend was observed (229, 230). In these chronic conditions, it
is difficult to isolate the participation of each stress factor.
Some acute stress situations may not result in observable
effects on menarcheal age as shown in tribal girls undergoing
female circumcision at adolescence (231). In another acute
situation, such as fasting-induced suppression of LH secre-
tion, metabolic signals were shown to play a more important
role than psychological stress (232). The relative difference in
impact of the components of a stressful situation is further
suggested by the heterogeneity of the neuroendocrine re-
sponse to various acute stressors, indicating that they are
signaling through specific pathways (233). Among the neu-
ronal circuits involved, signaling through CRH and IL-1 may
be particularly important (234). Thus, it is possible that, in
foreign migrating children, withdrawal from a stressful en-
vironment contributes to potentiation of maturation, al-
though some stress may result from the adoption and mi-
gration processes as well. The latter hypothesis might be
consistent with the observation of early pubertal develop-
ment in conditions of stressful rearing and insecure attach-
ment to parents (235, 236).

E. Light-darkness cycle and climatic conditions

Environmental signals related to climate and light deserve
some attention in the context of variations in pubertal timing
around the world, as well as migrating children with sexual
precocity. Temperature and light-darkness rhythms that are
influenced by geography and seasons might modulate the
reproductive axis. As discussed above (Fig. 2), a north-south
gradient in menarcheal age around the world has suggested
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the possible influence of climatic conditions although most
observations indicate that climate in itself has little or no
effect on menarche (89). In Caucasian Jewish high school
girls, menarche is earlier in the hot city of Elat than in the
temperate city of Safad (237). In the 1950s, however, Zachar-
ias and Wurtman (89) observed a similar menarcheal age in
Nigerian (238) and Alaskan Eskimo girls (239).

Indirect evidence of a role of exposure to light in human
puberty comes from the fact that blind girls have earlier
menarche than normal (240, 241) although these reports were
not confirmed subsequently. Several studies have suggested
that menarche starts relatively more frequently in winter
than in summer in normal girls (242–244), suggesting an
inhibitory effect of photostimulation. However, in the Arctic
area, the dark winter months may be associated with reduced
pituitary-gonadal function and low conception rates (245).
Thus, the influences of light and temperature on the human
reproductive axis are uncertain and rather minor as com-
pared with the seasonally breeding animals. The effects of
light-darkness rhythms can be mediated through the pineal
gland hormone, melatonin, which circulates in high concen-
trations at night. Melatonin is inhibitory to the neonatal rat
pituitary gland (246), whereas its neonatal administration
accounts for sexual precocity (247, 248). In man, because a fall
in peripheral melatonin concentrations occurs during the
peripubertal period (249–251), a role for melatonin in the
onset of puberty has been proposed, which is further sup-
ported by observations in sexual precocity and hypogona-
dotrophic hypogonadism (252, 253). The most obvious de-
crease in melatonin secretion, however, occurs after onset of
puberty, between Tanner stages II and III (251). This might
suggest that melatonin secretion decreases as a consequence
of increase in sex steroid levels at puberty, a concept further
supported by studies in isolated gonadotropin deficiency
and delayed puberty (254). The role of melatonin in human
puberty warrants further longitudinal and mechanistic stud-
ies correlating melatonin secretion with other hormonal pa-
rameters. An influence of seasonal factors on sexual precocity
in migrating children cannot be excluded at this point, al-
though the average period of 4 yr between migration and
early onset of puberty (17) is inconsistent with the time
sequence of changes in melatonin secretion and puberty in
normal children.

F. Exposure to endocrine-disrupting chemicals (EDCs)

EDCs are widespread environmental substances that have
been introduced by man and that may influence the endo-
crine system in a harmful manner (255, 256). EDCs account
for several disturbances in wildlife (257) and may also play
a role (256, 258) in human disorders of sex differentiation and
of reproductive organs and functions. Also, the possible role
of EDCs in development of hormone-dependent cancers
such as breast cancer is a matter of concern, although the data
are controversial (259). Krstevska-Konstantinova and co-
workers (17) have hypothesized that moving to Belgium
could result in a change in exposure to EDCs when a child
moves from the home country to the foster country, thus
causing sexual precocity to occur. The screening for eight
organochlorine pesticides in serum of foreign migrating pa-

tients with precocious puberty in comparison with Belgian
native patients has revealed the presence of p,p	-DDE [1,1-
dichloro-2,2-bis(4-chlorophenyl) ethylene] in migrating chil-
dren (17). p,p	-DDE is a persistent derivative of the insecticide
DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] with a
half-life of several decades. DDT has been banned in the
United States and Western European countries since the late
1960s (104, 260) but is still used extensively in developing
countries. DDT and some isomers behave as estrogen ago-
nists and/or androgen antagonists (261, 262). In 26 foreign
patients (15 adopted and 11 nonadopted) with precocious
puberty, the mean serum concentration of p,p	-DDE was
10 times higher than the limit of detection, whereas the levels
were below this limit in 13 of 15 Belgian native patients (17).
Three of the foreign patients were born in Belgium and
showed elevated serum levels of p,p	-DDE, suggesting a
transplacental or lactational route of exposure. The latter
hypothesis is consistent with the lipophilic nature and bio-
accumulating capacity of DDT and other widespread endo-
crine-disrupting compounds such as polychlorinated and
polybrominated biphenyls. Also, the possible relationship
between sexual precocity and fetal or perinatal exposure to
EDCs is raising the issue of the period of exposure during
development, a possibly critical parameter (263, 264). Re-
cently, a 32% fall in probability of pregnancy in 28- to 31-
yr-old daughters was found to be associated with 10 �g/liter
of p,p	-DDT in mother’s serum drawn around the time of
delivery (265). Although the mechanism underlying such an
association is unclear, it indicates the importance of very
long-term studies, as in the case of diethylstilbestrol (266). In
the Belgian study (17, 267), it was likely that the p,p	-DDE
levels resulted from contamination in the country of origin
because they were correlated positively with age at immi-
gration and negatively with time since immigration (Fig. 7).
However, in addition to DDT contamination in the country
of origin, exposure to other EDCs in both the country of
origin and the foster country is quite likely and should be
considered in the mechanistic approach. This is a most dif-
ficult issue because the number of potential EDCs is increas-
ing dramatically in the environment, and isolation of the
responsible agent or mixture of agents is usually not possible.
As an example, it was reported very recently that a blood lead
concentration of 3 �g/dl was associated with delayed breast
and pubic hair development in black American girls but not
in white girls (268). Another recent study came to slightly
different conclusions because increased lead levels were as-
sociated with delayed pubic hair and menarche but not with
breast development in a mixed cohort of American girls
(269). In migrating children, the link between DDT and sex-
ual precocity is only correlative at this point, and DDT con-
tamination is an expected finding in any child migrating
from a developing country. Thus, the demonstration of DDT
involvement in the pathogenesis of sexual precocity warrants
further comparison with foreign migrating children who had
normal or even delayed puberty. In addition to the estrogenic
effects of EDCs, they may also cause antiandrogenic effects
that could explain the delay in pubic hair development (see
above), although ethnicity may play a role as well.

A pathophysiological mechanism of sexual precocity can be
proposed (Table 4), based on exposure to estrogenic EDCs in the
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country of origin and withdrawal after migration to Western
Europe. Three other conditions provide analogies with the sex-
ual precocity in migrating children. In congenital adrenal hy-
perplasia (270, 271) or peripheral isosexual precocity secondary
to tumoral (272) or gonadotropin-independent secretion of sex
steroids (273, 274), there are common consequences of exposure
to sex steroid effects. It is well known that sex steroids exert a
central inhibitory or negative feedback effect on the hypotha-
lamic-pituitary-gonadal system to which the prepubertal sub-
ject is most sensitive (9). The predominant pituitary inhibition
by estradiol has been recently confirmed by the increased go-
nadotropin secretion after the administration of an aromatase
inhibitor to early pubertal boys (275). Such an inhibition may
explain why precocious puberty does not necessarily occur in
the country of origin where exposure to estrogenic EDCs is
sustained. Obviously, the exposure to sex steroid effects may
result in peripheral signs of feminization or virilization de-
pending on the nature, potency, and duration of the involved

steroid. Also, it is possible that steroids interact with the neu-
roendocrine system to promote hypothalamic maturation. Such
an effect is suggested by preliminary data obtained using hy-
pothalamic explants from immature female rats and showing
acceleration of pulsatile secretion of GnRH in vitro by estradiol
and some DDT isomers (267). Additional evidence has been
provided very recently by the estradiol receptor-mediated stim-
ulatory effects of two organochlorine pesticides on GnRH nu-
clear transcripts in cultured immortalized GnRH neurons (276).
The therapeutic interruption of exposure of the prepubertal
patient to adrenal or gonadal sex steroids may, secondarily,
result in central precocious puberty. Likewise, migration may
interrupt exposure of foreign children to some EDCs. In such
conditions, it is unknown whether central precocious puberty
could result indirectly from withdrawal of the negative feed-
back effects of the sex steroids or their environmental analogs
and/or directly from accelerated hypothalamic maturation
caused by sex steroids. The dosage of estrogens or biopotency
of EDCs may play an important role because it was shown that
spermatogenesis was delayed or advanced after neonatal ad-
ministration of high or low doses of diethylstilbestrol (277).
According to the above-mentioned hypotheses, sexual precoc-
ity in migrating children is ultimately of central origin but may
initially involve a peripheral (environmental) trigger, with ref-
erence to the primary cause. Thus, this condition may point to
a new central effect of environmental hormones, in addition to
their well-known peripheral gonadotropin-independent man-
ifestations of sexual precocity (104, 278). In agreement with this
concept, early menarche was reported recently in girls who
showed an epidemic breast development between 3 and 7 yr of
age, presumably resulting from transitory EDC contamination
of some food served at school (279). According to the with-
drawal hypothesis discussed above, sustained exposure to ex-
ogenous steroids or EDCs could result in delayed puberty
through pituitary inhibition. Such a concept is consistent with
the recent findings of Den Hond et al. (280) who studied 17-
yr-old boys more or less exposed to polychlorinated biphenyls
in a Belgian industrial setting. They found that 38–52% of the
more exposed adolescents, as shown by serum polychlorinated
biphenyl concentrations, had not yet attained the final stage of
genital and pubic hair development as opposed to 0–23% of the
less exposed subjects. In girls exposed to polycyclic aromatic
hydrocarbons (dioxin-like compounds), breast development
was delayed, but menarcheal age (mean, 13.1 yr) was not af-
fected (281). Taken together, these data might be consistent with
pituitary inhibition and/or peripheral antagonistic effects.

Sexual precocity has been reported rarely in foreign chil-
dren adopted in the United States, although up to 140,000
children were adopted in this country from foreign countries
between 1960 and 1990 (200) and 100,000 between 1990 and
2000 (123). It could be argued that the revised limits for
sexual precocity in the early 2000s may have accounted for
recent underreporting, but it is difficult to understand why
there were no, or only anecdotal, reports in the preceding
decade, after the problem was reported in Europe in the early
1990s (11, 12). Before the abstract and review reports pub-
lished recently in the United States (119, 123), we hypothe-
sized that possible differences in EDC contamination in
Western European countries and the United States might
explain differences in occurrence of sexual precocity. This

FIG. 7. Serum levels of p,p	-DDE, a derivative of the organochlorine
pesticide DDT in different patients with sexual precocity. The Belgian
native patients have central precocious puberty of organic or idio-
pathic origin. The foreign migrating patients with sexual precocity
are adopted or nonadopted. The data of foreign patients are repre-
sented in relation to age at immigration and time since immigration.

Parent et al. • Timing of Puberty around the World Endocrine Reviews, October 2003, 24(5):668–693 685

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/24/5/668/2424459 by guest on 09 April 2024



hypothesis cannot be denied so far because there have been
no systematic and prospective studies on pubertal develop-
ment in relation to possible exposure to EDCs in native and
foreign migrating children. Such studies should be planned
urgently by an international network of scientists.

V. Conclusion and Future Research Directions

The variations in age at onset of puberty involve different
components including the average timing, the pattern of age
distribution, and the variability, which is the difference be-
tween average and upper/lower age limits. The differences
in average timing of puberty among countries around the
world have become relatively small because they do not
exceed 1 yr in well-off conditions, and the secular trends have
been less marked than before the 1960s except in conditions
of undernutrition. In contrast, an important individual vari-
ability in physiological pubertal timing that attains 4–5 yr is
consistently seen despite optimal or improved living stan-
dards in most countries. In addition, new forms of sexual
precocity are seen, such as in children migrating from de-
veloping countries. As summarized schematically in Fig. 6A,
this individual variability, which involves familial, ethnic,
and gender patterns, is likely to depend on the genetic con-
trol of the expression of signals or signal receptors in the
hypothalamus. This process is only slightly influenced by
peripheral and environmental signals, which play an essen-
tially permissive role in those conditions. In specific situa-
tions, however, these peripheral and environmental signals
may play a crucial role in the occurrence of either abnormal
precocious (or delayed) puberty in a subset of a population
(Fig. 6B) or increased incidence of precocity (or delay) be-
cause of a shift in timing of a whole population (Fig. 6C). The
latter situation is consistent with the recently demonstrated
advancement in onset of breast development in the United
States, where revised limits for sexual precocity were pro-
posed. No similar changes were evidenced in Europe, where
the age criteria for precocious puberty have remained un-
changed. Whether such discrepant observations involve dif-
ferences in nutrition or living standards and/or the recently
postulated effects of endocrine disruptors remains to be elu-
cidated. A challenging observation that put emphasis on the
environmental factors is the overall early age at onset of
puberty and the increased incidence of sexual precocity in
foreign children who migrate from developing countries to
Western Europe and, probably, to the United States as well.

However, there is no simple and single explanation to this
phenomenon. Further studies should evaluate the effects of
migration by comparing the timing and dynamics of puber-
tal development in both the developing and developed coun-
tries. A combination of epidemiological, toxicological, and
endocrinological studies is warranted to better delineate the
possible role of EDCs because precocious puberty in migrat-
ing children may represent an additional example of the
undesirable effects of emerging environmental chemicals. In
a broader sense, this review has integrated timing of puberty
and its disorders within a spectrum of physiological pro-
cesses or diseases throughout life (Fig. 8). Several more or less
strong associations have been observed between intrauterine
growth, sex differentiation, pubertal timing, fertility, fat
mass, sensitivity to insulin, and cancer risk. Nonfortuitous
associations of disorders involving these processes have been
proposed as the testicular dysgenesis syndrome in the male
with hypospadias, cryptorchidism, reduced sperm count,
and testicular cancer (258) and a polyendocrine-metabolic
syndrome in the female with IUGR, precocious pubarche,
ovarian hyperandrogenism, ovulatory dysfunction, hyper-
insulinism, and dyslipemia (146). Such associations may be
determined by both genetic factors and environmental hits

TABLE 4. A withdrawal hypothesis of central precocious puberty (CPP) after prepubertal exposure to sex steroids

Condition Reason of exposure Reason of withdrawal Ref.

Congenital adrenal hyperplasia Diagnostic or treatment failure Treatment adequacy 270, 271
Peripheral precocity (tumors) Secretion of sex steroids Surgery 272
Peripheral precocity (McCune Albright syndrome) Autonomous secretion of sex steroids Treatment 273, 274
Exposure to xenoestrogens Living in a contaminated setting Migration 17

Target tissues Consequences of exposure Consequences of withdrawal Ref.

Hypothalamus Silent accelerated maturation? Expressed accelerated maturation 267, 276
Pituitary gland Inhibition (negative feedback) Reduction or suppression of

negative feedback
9, 275

Peripheral (breast, pubic hair, . . .) Variable feminization or
virilization

Secondary CPP 270–273

FIG. 8. Integration of timing of puberty within a spectrum of pro-
cesses that are influenced by both genetic and environmental factors.
This concept may explain the nonfortuitous association of disorders
in the testicular dysgenesis syndrome described in the male (258) and
the polyendocrine-metabolic syndrome in the female (146).
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that may be common to some of those manifestations. Along
this line, the timing of puberty may be one early sensor of the
effects of genetics and environment, these two components
being often combined. This is a continuing challenge for both
researchers and clinicians.
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enfants adoptés, un risque à ne pas oublier. Arch Pediatr 6:589–590

16. Baron S, Battin J, David A, Limal JM 2000 Puberté précoce chez
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