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Vascular endothelial growth factor (VEGF) is an endothelial
cell-specific mitogen in vitro and an angiogenic inducer in a
variety of in vivo models. Hypoxia has been shown to be a
major inducer of VEGF gene transcription. The tyrosine ki-
nases Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2) are high-
affinity VEGF receptors. The role of VEGF in developmental
angiogenesis is emphasized by the finding that loss of a single
VEGF allele results in defective vascularization and early em-
bryonic lethality. VEGF is critical also for reproductive and
bone angiogenesis. Substantial evidence also implicates
VEGF as a mediator of pathological angiogenesis. In situ hy-
bridization studies demonstrate expression of VEGF mRNA in

the majority of human tumors. Anti-VEGF monoclonal anti-
bodies and other VEGF inhibitors block the growth of several
tumor cell lines in nude mice. Clinical trials with various
VEGF inhibitors in a variety of malignancies are ongoing.
Very recently, an anti-VEGF monoclonal antibody (bevaci-
zumab; Avastin) has been approved by the Food and Drug
Administration as a first-line treatment for metastatic colo-
rectal cancer in combination with chemotherapy. Further-
more, VEGF is implicated in intraocular neovascularization
associated with diabetic retinopathy and age-related macular
degeneration. (Endocrine Reviews 25: 581–611, 2004)
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I. Introduction

THE CARDIOVASCULAR SYSTEM is the first organ sys-
tem to develop and reach a functional state in an em-

bryo (1). The initial steps consist of “vasculogenesis,” the in
situ differentiation of endothelial cell precursors, the angio-
blasts, from the hemangioblasts (2). The juvenile vascular
system evolves from the primary capillary plexus by subse-
quent pruning and reorganization of endothelial cells in a
process called “angiogenesis” (3). More recent evidence sug-
gests that incorporation of bone marrow-derived endothelial
precursor cells contributes to the growing vessels, comple-
menting the sprouting of resident endothelial cells (4), al-
though the precise contribution of these elements in various
pathophysiological circumstances has been a matter of de-
bate (5–9).

The development of a vascular supply is essential also for
tissue repair and reproductive functions in the adult (10).
Angiogenesis is also implicated in the pathogenesis of a
variety of disorders: proliferative retinopathies, age-related
macular degeneration (AMD), tumors, rheumatoid arthritis
(RA), and psoriasis (10, 11).

In endocrine glands, vascularization serves a unique ex-
change role for secretory products between interstitial fluid
surrounding the parenchymal cells and plasma. Endothelial
cells of endocrine glands frequently display fenestrae, which

Abbreviations: aFGF, Acidic fibroblast growth factor; AMD, age-
related macular degeneration; bFGF, basic fibroblast growth factor;
BMP, bone morphogenetic protein; CL, corpus luteum; CRC, colorectal
carcinoma; ECM, extracellular matrix; EG-VEGF, endocrine gland-
derived VEGF; eNOS, endothelial NOS; HIF, hypoxia-inducible factor;
HSC, hematopoietic stem cell; IFL, irinotecan, 5-fluorouracil, and leu-
covorin; LSEC, liver sinusoidal endothelial cell; MMP-9, matrix metal-
loproteinase 9; NO, nitric oxide; NOS, NO synthase; NP, neuropilin;
OHSS, ovarian hyperstimulation syndrome; PCOS, polycystic ovary
syndrome; PDGF, platelet-derived growth factor; PDGFR, PDGF recep-
tor; PI3 kinase, phosphatidylinositol 3-kinase; PlGF, placenta growth
factor; RA, rheumatoid arthritis; RTK, receptor tyrosine kinase; VEGF,
vascular endothelial growth factor; VEGFR, VEGF receptor; VHL, von
Hippel-Lindau; VPF, vascular permeability factor.
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are highly permeable to fluid and small solutes, thus facil-
itating bidirectional transport (12).

For more than a decade, the role of vascular endothelial
growth factor (VEGF) in the regulation of angiogenesis has
been the object of intense investigation (13). Recent evidence
indicates that new vessel growth and maturation are highly
complex and coordinated processes, requiring the sequential
activation of a series of receptors [e.g., Tie1, Tie2, and platelet-
derived growth factor (PDGF) receptor-� (PDGFR-�)] by
numerous ligands in endothelial and mural cells (for recent
reviews see Refs. 14–16). However, VEGF signaling often
represents a critical rate-limiting step in physiological an-
giogenesis. VEGF (referred to also as VEGF-A) belongs to a
gene family that includes placenta growth factor (PlGF) (17,
18), VEGF-B (19), VEGF-C (20, 21), and VEGF-D (22, 23).
Additionally, homologs of VEGF have been identified in the
genome of the parapoxvirus, Orf virus (24), and shown to
have VEGF-like activities (25, 26). Importantly, VEGF-C and
VEGF-D regulate lymphatic angiogenesis (27, 28), empha-
sizing the unique role of this gene family in controlling
growth and differentiation of multiple anatomic components
of the vascular system.

The main focus of this review is the progress in the biology
and clinical applications of the prototype member, VEGF-A.
For additional reviews on this topic, see Refs. 29–35.

Importantly, very recent data have shown that inhibiting
VEGF results in a clinical benefit, including increased sur-
vival, in patients with advanced malignancies, providing the
first clinical validation of the hypothesis that blocking an-
giogenesis is a strategy to treat cancer (36, 37).

II. Historical Note on Angiogenic Factors

The observation that tumor growth can be accompanied
by increased vascularity was reported more than one century
ago (for review, see Ref. 13). In 1939, Ide et al. (38) postulated
the existence of a tumor-derived blood vessel growth-stim-
ulating factor on the basis of the strong neovascular response
induced by tumors transplanted in transparent chambers.
These authors proposed that such a factor may be responsible
for inducing a neovascularization and thus for delivery of
nutrients to the growing tumor (38). In 1945, Algire et al. (39)
advanced this concept, proposing that “the rapid growth of
tumor transplants is dependent upon the development of a
rich vascular supply,” and speculated that capillary prolif-
eration elicited by tumor cells is mediated by chromatin
breakdown products, in agreement with a view prevalent at
that time that such products have growth-promoting activ-
ity. These investigators also suggested that the acquisition by
tumor cells of the ability to promote vascular proliferation is
a critical step in tumorigenesis, because it is expected to
confer on the tumor cells a growth advantage relative to
normal cells (39).

In 1948, Michaelson (40) proposed that a diffusible angio-
genic “factor X” produced by the retina is responsible for
retinal and iris neovascularization that occurs in proliferative
diabetic retinopathy and other retinal disorders, such as cen-
tral retinal vein occlusion.

In 1968, the first experiments to directly test the hypothesis

that tumors produce angiogenic factors were performed.
Greenblatt and Shubik (41) and Ehrmann and Knoth (42)
demonstrated that transplantation of melanoma or chorio-
carcinoma cells promoted blood vessel proliferation even
when a Millipore filter is interposed between the tumor and
the host, thus providing evidence that tumor angiogenesis
was mediated by diffusible factor(s) produced by the tumor
cells.

In 1971, Folkman (43) proposed that antiangiogenesis
might be an effective approach to treat human cancer. Folk-
man et al. (44) initiated initial efforts aimed to isolate a “tumor
angiogenesis factor” from human and animal tumors. Sub-
sequently, the angiogenic effects of various factors, including
epidermal growth factor, TGF-�, TGF-�, TNF-�, angiogenin,
etc., were reported. These molecules all were shown to have
activity in angiogenesis bioassays—either directly, by pro-
moting endothelial cell proliferation or indirectly, via re-
cruitment of inflammatory cells that could, in turn, release
endothelial mitogens (45). However, much of the attention
was directed toward two related potent endothelial cell mi-
togens and angiogenic factors, acidic and basic fibroblast
growth factors (aFGF and bFGF) (46). In 1985, the purifica-
tion to homogeneity and sequencing of both aFGF (47) and
bFGF (48) were reported, and the subsequent year their
cDNAs were cloned (49, 50). An unexpected finding was that
the genes for both aFGF and bFGF do not encode for a
conventional secretory signal peptide. Accordingly, it be-
came clear that these molecules are not efficiently secreted
and are mostly cell associated (46). Yet, as previously noted,
earlier reports had pointed toward the involvement of dif-
fusible factors in tumor angiogenesis (41, 42). This require-
ment appeared to be true also for physiological angiogenesis
such as that associated with corpus luteum (CL) develop-
ment (51). Vlodavsky et al. (52) suggested that the FGFs are
sequestered and stored in the extracellular matrix (ECM)
bound to heparan sulfate-containing proteoglycans and can
be released in a soluble form when the ECM is degraded.
However, several studies suggested that immunoneutraliza-
tion of bFGF had little or no effect on tumor angiogenesis (53,
54). Furthermore, bFGF-null mice, and even double knockout
mice with disruptions in aFGF and bFGF genes, do not de-
velop vascular defects (55, 56). A plausible explanation is that
several soluble members of the FGF family compensate for
the absence of the cell-associated forms. Thus, the ability of
growth factors to promote angiogenesis in in vitro or in vivo
bioassays does not necessarily predict a role for such factors
in physiological or pathological angiogenesis (57, 58).

III. Identification of VEGF

Independent and unrelated lines of research converged
toward the identification of VEGF (see Ref. 13 for additional
details).

In 1983, Senger et al. (59) described the partial purification
from the conditioned medium of a guinea-pig tumor cell line
of a protein able to induce vascular leakage in the skin, which
was named “tumor vascular permeability factor” (VPF). The
authors proposed that VPF could be a mediator of the high
permeability of tumor blood vessels. Because VPF was not
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isolated and sequenced, this factor remained molecularly
unknown at that time. Senger et al. (60) reported the puri-
fication and NH2-terminal amino acid sequencing of guinea
pig VPF in 1990.

In 1989, Ferrara and Henzel (61) reported the isolation of
a diffusible endothelial cell-specific mitogen from medium
conditioned by bovine pituitary follicular cells, which they
named “vascular endothelial growth factor” to reflect the
restricted target cell specificity of this molecule. NH2-termi-
nal amino acid sequencing of purified VEGF proved that this
protein was distinct from the known endothelial cell mito-
gens such as aFGF or bFGF and indeed did not match any
known protein in available databases (61). Subsequently,
Connolly et al. (62) followed up on the work by Senger et al.
and independently reported the isolation and sequencing of
human VPF from U937 cells. cDNA cloning of VEGF (63) and
VPF (64), reported also in 1989, demonstrated that VEGF and
VPF were the same molecule. This was surprising, consid-
ering that other endothelial cell mitogens such as FGF do not
increase vascular permeability. The finding that VEGF is
potent, diffusible, and specific for vascular endothelial cells
led to the hypothesis that this molecule might play a role in
the regulation of physiological and pathological growth of
blood vessels (61, 63, 65).

IV. Activities of VEGF

A. Mitogenesis, angiogenesis, and endothelial survival

A well-documented in vitro activity of VEGF is the ability
to promote growth of vascular endothelial cells derived from
arteries, veins, and lymphatics (for review see Ref. 30). VEGF
promotes angiogenesis in tridimensional in vitro models, in-
ducing confluent microvascular endothelial cells to invade
collagen gels and form capillary-like structures (66, 67). Also,
VEGF induces sprouting from rat aortic rings embedded in
a collagen gel (68). VEGF also elicits a pronounced angio-
genic response in a variety of in vivo models including the
chick chorioallantoic membrane (63, 69), the rabbit cornea
(70), the matrigel plug in mice (71), the primate iris (72), etc.
VEGF delivery also induces lymphangiogenesis in mice, at
least in some circumstances (73). Ergun et al. (74) recently
proposed that induction of carcinoembryonic antigen-
related cell adhesion 1, a membrane glycoprotein expressed
in some microvascular endothelial cells, mediates some of
the angiogenic effects of VEGF.

VEGF is also a survival factor for endothelial cells, both in
vitro and in vivo (75–79). In vitro, VEGF prevents endothelial
apoptosis induced by serum starvation. Such activity is me-
diated by the phosphatidylinositol 3-kinase (PI3 kinase)/Akt
pathway (77, 80). Also, VEGF induces expression of the an-
tiapoptotic proteins Bcl-2, A1 (76), XIAP (81), and survivin
(82) in endothelial cells. In vivo, the prosurvival effects of
VEGF are developmentally regulated. VEGF inhibition re-
sults in extensive apoptotic changes in the vasculature of
neonatal, but not adult, mice (83). Furthermore, a marked
VEGF dependence has been demonstrated in endothelial
cells of newly formed but not of established vessels within
tumors (78, 79). Coverage by pericytes has been proposed to

be one of the key events resulting in loss of VEGF depen-
dence (78).

Although endothelial cells are the primary targets of
VEGF, several studies have reported mitogenic effects also
on certain nonendothelial cell types, such as retinal pigment
epithelial cells (84), pancreatic duct cells (85), and Schwann
cells (86). Compernolle et al. (87) have also shown that VEGF
stimulates surfactant production by alveolar type II cells,
resulting in a protective effect from respiratory distress syn-
drome in mice. Recent studies have emphasized the potential
role of VEGF as a neuronal protective factor, and a haplotype
in the VEGF gene promoter associated with reduced VEGF
expression has been reported to be is a risk factor for amyo-
trophic lateral sclerosis (88).

B. Effects of VEGF on bone marrow cells and hematopoiesis

The earliest evidence that VEGF can affect blood cells came
from a report describing its ability to promote monocyte
chemotaxis (89). Subsequently, VEGF was reported to have
hematopoietic effects, inducing colony formation by mature
subsets of granulocyte-macrophage progenitor cells (90). In-
terestingly, VEGF delivery to adult mice inhibits dendritic
cell development (91, 92), leading to the hypothesis that
VEGF facilitates tumor growth by allowing escape of tumors
from the host immune system. Also, VEGF increased pro-
duction of B cells and the generation of immature myeloid
cells (93). Recently, conditional gene knockout technology
has been employed to achieve selective VEGF gene ablation
in bone marrow cell isolates and hematopoietic stem cells
(HSCs) (94). VEGF-deficient HSCs and bone marrow mono-
nuclear cells failed to repopulate lethally irradiated hosts,
despite coadministration of a large excess of wild-type cells.
These studies elucidated an internal autocrine loop, not
blocked by extracellular inhibitors such as antibodies,
whereby VEGF controls HSC survival during hematopoietic
repopulation (94).

Interestingly, a VEGF-dependent pathway has been
shown to play an important role in hematopoiesis even in
Drosophila, where it controls migration (95) and proliferation
(96) of blood cells. Three VEGF-like ligands and a single
receptor, known as PDGF/VEGF receptor or PVR, have been
identified in Drosophila (97). Because Drosophila is devoid of
a vascular system, these findings indicate that one ancestral,
conserved role of VEGF is indeed the regulation of blood cell
function (97).

C. Enhancement of vascular permeability and
hemodynamic effects

As previously noted, VEGF is known also as VPF, based
on its ability to induce vascular leakage (59, 98). Such per-
meability-enhancing activity underlies important roles of
this molecule in inflammation and other pathological cir-
cumstances (see Section IX.D). Bates and Curry (99) have
shown that VEGF induces an increase in hydraulic conduc-
tivity of isolated microvessels, an effect that is mediated by
increased calcium influx (100). Consistent with a role in the
regulation of vascular permeability, VEGF induces endothe-
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lial fenestration in some vascular beds (101) and in cultured
adrenal endothelial cells (102).

Several studies have pointed to the critical role of nitric
oxide (NO) in VEGF-induced vascular permeability, as
well as angiogenesis (103–105). Recently, Fukumura et al.
(106) assessed the relative contribution of the NO synthase
(NOS) isoforms, inducible NOS and endothelial NOS
(eNOS) to these processes. Angiogenesis, vessel diameter,
blood flow rate, and vascular permeability were propor-
tional to NO levels and were most impaired in eNOS�/�

mice. VEGF significantly increased permeability in both
wild-type and inducible NOS�/� mice, but not in
eNOS�/� mice. VEGF-induced angiogenesis was mark-
edly reduced in eNOS�/� mice, although the mice develop
normally and have no apparent defect in the vasculature.
These findings suggest that, although eNOS plays a pre-
dominant role in angiogenesis and vascular permeability
in response to exogenous VEGF, this pathway is dispens-
able for developmental angiogenesis.

An issue that has been long debated is whether a corre-
lation exists between vascular permeability and angiogene-
sis. It has been proposed that increase in microvascular per-
meability is a step necessary and sufficient for angiogenesis,
by providing extravasation of fibrin, which represents a scaf-
fold for endothelial cell proliferation and migration (107).
However, as previously mentioned, factors such as bFGF are
not known to induce vascular permeability and yet potently
induce angiogenesis. Furthermore, vascular leakage is not
necessarily followed by angiogenesis. For example, in back-
ground diabetic retinopathy, vascular leakage and fibrin
deposition (108) may occur in the retina for decades before
the onset of angiogenesis in the proliferative phase (109, 110).
The report by Eliceiri et al. (111) that members of the Src
family are differentially involved in mediating VEGF-
dependent permeability and angiogenesis showed that the
permeability-enhancing activity specifically depends on Src,
or Yes. Mice lacking src and Yes display a normal angiogenic
response to VEGF without any overt defects in the vascu-
lature, suggesting that enhanced vascular permeability is not
a requirement for VEGF-dependent angiogenesis, at least in
the circumstances examined to date. Recently, Gratton et al.
(112) have reported that a peptide that prevents the associ-
ation of eNOS with caveolin inhibits vascular permeability
and tumor progression in mice. However, additional studies
have emphasized the complexity of the role of eNOS in
tumorigenesis, including a role in the recruitment of endo-
thelial progenitor cells (113) as well as a requirement for
angiogenesis (114). Clearly, further studies are needed to
fully elucidate this complex issue.

VEGF induces vasodilatation in vitro in a dose-dependent
fashion (115, 116) and produces transient tachycardia, hy-
potension, and a decrease in cardiac output when injected iv
in conscious, instrumented rats (116). Such effects appear to
be caused by a decrease in venous return, mediated primarily
by endothelial cell-derived NO (116). Hypotension was a
dose-limiting side effect in human trials in which VEGF was
systemically administered (117). Conversely, administration
of anti-VEGF monoclonal antibodies to cancer patients re-
sulted in elevation of blood pressure (36), indicating that
VEGF signaling plays a tonic homeostatic role in the regu-

lation of blood pressure. The mechanism is likely to involve
eNOS, but remains to be fully elucidated.

V. VEGF Isoforms

VEGF has significant homology to PDGF, and all the eight
cysteines found in the A and B chains of PDGF are conserved
in VEGF (63, 64). The human VEGF-A gene is organized in
eight exons, separated by seven introns (118, 119) and is
localized in chromosome 6p21.3 (120). Alternative exon splic-
ing results in the generation of four different isoforms, hav-
ing 121, 165, 189, and 206 amino acids, respectively, after
signal sequence cleavage (VEGF121, VEGF165, VEGF189,
VEGF206) (118, 119). VEGF165, the predominant isoform, lacks
the residues encoded by exon 6, whereas VEGF121 lacks the
residues encoded by exons 6 and 7. Less frequent splice
variants have been also reported, including VEGF145 (121),
VEGF183 (122), VEGF162 (123), and VEGF165b, a variant re-
ported to have paradoxically an inhibitory effect on VEGF-
induced mitogenesis (124).

VEGF is a heparin-binding homodimeric glycoprotein of
45 kDa (61). Such properties closely correspond to those of
VEGF165, which is indeed the major VEGF isoform (125).

Solution of the crystal structure of VEGF has shown that
VEGF forms an antiparallel homodimer covalently linked by
two disulfide bridges between Cys-51 and Cys-60 (126). This
mode of dimerization is similar to that of the PDGF mono-
mers. The dominant feature within the VEGF monomer is the
cystine knot motif that is found in other growth factors (126).
Although the VEGF monomer resembles that of PDGF, its
NH2-terminal segment is helical rather than extended (126).

VEGF121 is an acidic polypeptide that fails to bind to hep-
arin (125). VEGF189 and VEGF206 are highly basic and bind
to heparin with high affinity (125). VEGF121 is a freely dif-
fusible protein. In contrast, VEGF189 and VEGF206 are almost
completely sequestered in the ECM. VEGF165 has interme-
diate properties, because it is secreted, but a significant frac-
tion remains bound to the cell surface and ECM (127). The
ECM-bound isoforms may be released in a diffusible form by
heparin or heparinase, which displaces them from their bind-
ing to heparin-like moieties, or by plasmin cleavage at the
COOH terminus, which generates a bioactive fragment con-
sisting of the first 110 NH2-terminal amino acids (125). Given
the important role of plasminogen activation during phys-
iological and pathological angiogenesis processes (128), this
proteolytic mechanism can be particularly important in reg-
ulating locally the activity and bioavailability of VEGF.

Plouet et al. (129) have proposed a role for urokinase in the
generation of bioactive VEGF. Recombinant VEGF189 from
insect cells infected with a recombinant baculovirus was
purified as a nonmitogenic 50-kDa precursor that binds to the
receptor VEGFR-1 but not to VEGFR-2. However, it could be
matured by urokinase as a 38-kDa fragment able to promote
endothelial cell proliferation (129). Figure 1 illustrates the
properties of the VEGF isoforms.

Importantly, loss of the heparin-binding domain results in
a reduction in the mitogenic activity of VEGF (130). These
findings suggest that VEGF165 has optimal characteristics of
bioavailability and biological potency. In agreement with
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such conclusions, only VEGF164 (murine VEGF is shorter by
one amino acid) is able to fully rescue a tumorigenic phe-
notype in mouse VEGF�/� cells (131). The significance of the
heparin-binding VEGF isoform(s) is also emphasized by the
finding that 50% of the mice expressing exclusively VEGF120
(VEGF120/120) die shortly after delivery, whereas the rest die
within 2 wk (132). Recent studies have also evidenced a
deficit in the distribution of endothelial cells and impaired
filopodia extension in VEGF120/120 mice, suggesting that the
heparin-binding VEGF isoforms provide essential stimula-
tory cues to initiate vascular branch formation (133).

VI. Regulation of VEGF Gene Expression

A. Oxygen tension

Oxygen tension plays a key role in regulating the expres-
sion of a variety of genes (134). VEGF mRNA expression is
induced by exposure to low pO2 in a variety of pathophys-
iological circumstances (135, 136). Earlier studies indicated
similarities between the mechanisms leading to hypoxic reg-
ulation of VEGF and erythropoietin (Epo) (137). Hypoxia
inducibility is conferred on both genes by homologous se-
quences. A 28-base sequence has been identified in the 5�-
promoter of the rat and human VEGF gene, which mediates
hypoxia-induced transcription (138, 139). Such sequence re-
veals a high degree of homology and similar protein binding
characteristics as the hypoxia-inducible factor 1 (HIF-1) bind-
ing site within the Epo gene (140). HIF-1 is a basic, het-

erodimeric, helix-loop-helix protein consisting of two sub-
units, HIF-1� and aryl hydrocarbon receptor nuclear
translocator, known also as HIF-1� (141). It is now well
established that HIF-1 is a key mediator of hypoxic responses
(142). In response to hypoxia, HIF-1 binds to specific en-
hancer elements, resulting in increased gene transcription. A
gene highly homologous to HIF-1, HIF-2, also forms het-
erodimers with aryl hydrocarbon receptor nuclear translo-
cator and regulates VEGF expression (143). Recent studies
have uncovered the critical role of the product of the von
Hippel-Lindau (VHL) tumor suppressor gene in HIF-1-
dependent hypoxic responses (for review see Ref. 144). The
VHL gene is inactivated in patients with von Hippel-Lindau
disease, an autosomal-dominant neoplasia syndrome char-
acterized by capillary hemangioblastomas in retina and cer-
ebellum, and in most sporadic clear cell renal carcinomas
(145). Also, the mitogenic activity for endothelial cells in the
conditioned medium of renal cell carcinoma cells expressing
a mutant VHL was largely neutralized by anti-VEGF anti-
bodies (146). Earlier studies indicated that a function of the
VHL protein is to provide negative regulation of VEGF and
other hypoxia-inducible genes (147). The spectrum of activ-
ities of the VHL protein remains to be fully elucidated, and
multiple functions have been proposed, including interac-
tion with fibronectin (148). However, the VHL protein is
known to interact with a series of proteins including elongins
B and C and CUL2, a member of the Cullin family (149),
suggesting homology to yeast ubiquitin ligase complexes
known as “SCF complexes.” HIF-1 was shown to be consti-

FIG. 1. VEGF isoforms and their in-
teraction with VEGFRs. The diffus-
ible VEGF isoforms, VEGF121 and
VEGF165, are released by a variety of
normal and transformed cells (the fig-
ure shows tumor cells) and may bind to
VEGFR-1 (R1) and VEGFR-2 (R2).
VEGF165, but not VEGF121, interacts
also with NP1 and NP2. This binding
results in enhancement of VEGFR-2-
dependent signaling in endothelial
cells. After plasmin generation and
ECM breakdown, VEGF189 is cleaved at
the COOH terminus, and the resulting
110-amino acid NH2-terminal fragment
is diffusible and bioactive.
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tutively activated in VHL-deficient renal cell carcinoma cell
lines (150). More recent studies demonstrated that, indeed,
one of the functions of VHL is to be part of a ubiquitin ligase
complex that targets HIF subunits for proteasomal degra-
dation after covalent attachment of a polyubiquitin chain
(151, 152). Oxygen promotes the hydroxylation of HIF at a
proline residue, a requirement for the association with VHL
(151, 152). Recently, a family of prolyl hydroxylases related
to Egl-9 Caenorhabditis elegans gene product were identified
as HIF prolyl hydroxylases (134, 153, 154).

Importantly, other studies have implicated the PI3 kinase/
Akt pathway in the regulation of HIF-mediated responses in
a hypoxia-independent manner. Zundel et al. (155) have
shown that mutations resulting in loss of function of the
tumor suppressor PTEN, which negatively regulates effec-
tors of PI3 kinase/Akt and is mutated in glioblastoma and
other tumors (156, 157), result in increased activation of
HIF-1 and increased VEGF transcription. Tang and Lasky
(158) have recently elucidated the role of the Forkhead tran-
scription factor (FOXO4) in this pathway. Nuclear localiza-
tion of Forkhead, which is inhibited by PI3 kinase activation,
normally down-regulates the HIF-1 protein. These findings
emphasize the multiple advantages conferred on tumor cells
by PI3 kinase/Akt activation.

B. Growth factors, hormones, and oncogenes

Several major growth factors, including epidermal growth
factor, TGF-�, TGF-�, keratinocyte growth factor, IGF-I, FGF,
and PDGF, up-regulate VEGF mRNA expression (159–161),
suggesting that paracrine or autocrine release of such factors
cooperates with local hypoxia in regulating VEGF release in
the microenvironment. Also, inflammatory cytokines such as
IL-1-� and IL-6 induce expression of VEGF in several cell
types, including synovial fibroblasts, in agreement with the
hypothesis that VEGF may be a mediator of angiogenesis/
permeability in inflammatory disorders (162, 163).

Hormones are also important regulators of VEGF gene
expression. TSH has been shown to induce VEGF expression
in several thyroid carcinoma cell lines (164). Shifren et al.
(165) have also shown that ACTH is able to induce VEGF
expression in cultured human fetal adrenal cortical cells,
suggesting that VEGF may be a local regulator of adrenal
cortical angiogenesis and an important mediator of the tropic
action of ACTH. Gonadotropins have been shown to be
potent inducers of VEGF transcription in the ovary, both in
vivo (166, 167) and in vitro (168). Also, human chorionic
gonadotropin results in increased VEGF mRNA transcrip-
tion and protein levels in cultured Leydig cells (169). Several
studies have implicated sex steroids as an important stim-
ulus for VEGF regulation in hormone-sensitive tissues. In
vitro, androgen deprivation of LnCaP prostate cancer cells
led to decreased VEGF mRNA and protein expression as well
as a 5-fold destabilization in VEGF mRNA transcripts. In
mice bearing LnCaP tumors, castration resulted in a rapid
decrease in mRNA expression and markedly reduced tumor
neovascularization (170). Mueller et al. (171) have reported
that estradiol is a direct transcriptional activator of VEGF,
mediated by a variant estrogen response element located 1.5
kb from the transcription start. Progestins have also been

reported to induce VEGF gene transcription in endometrial
carcinoma cells (172).

Specific transforming events also result in induction of
VEGF gene expression. Oncogenic mutations or amplifica-
tion of ras leads to VEGF up-regulation (173, 174). These
studies indicate that mutant ras-dependent VEGF expression
is necessary, albeit not sufficient, for progressive tumor
growth in vivo (173–175). Mutations in the Wnt-signaling
pathway, which are frequently associated with premalignant
colonic adenomas, result in up-regulation of VEGF (176).
K-ras activation appeared to enhance Wnt signaling, which
suggests an interaction between these two pathways (176).
Interestingly, VEGF is up-regulated in polyps of Apc knock-
out (Apc�716) mice, a model for human familial adenoma-
tous polyposis (177). In both benign and malignant mouse
intestinal tumors, stromal expression of cyclooxygenase 2
results in elevated PGE2 levels that stimulate, in turn, cell
surface receptor EP2, followed by induction of VEGF and
angiogenesis (177–179). In this context, Amano et al. (180)
have recently shown that PGE2-EP3 receptor signaling also
plays a significant role in up-regulating VEGF in stromal cells
and thus potentially in tumor angiogenesis.

VII. VEGFRs

Initially, VEGF binding sites were identified on the cell
surface of vascular endothelial cells in vitro (181, 182) and in
vivo (183, 184). Subsequently, VEGFRs were shown to exist
also on bone marrow-derived cells such as monocytes (185).
VEGF binds two highly related receptor tyrosine kinases
(RTKs), VEGFR-1 and VEGFR-2. Both VEGFR-1 and
VEGFR-2 have seven Ig-like domains in the extracellular
domain, a single-transmembrane region, and a consensus
tyrosine kinase sequence that is interrupted by a kinase-
insert domain (186–188). A member of the same family of
RTKs is VEGFR-3 (Flt-4) (189), which, however, is not a
receptor for VEGF, but instead binds VEGF-C and VEGF-D
(27). In addition to these RTKs, VEGF interacts with a family
of coreceptors, the neuropilins (NP). Figure 2 summarizes the
interaction of the members of the VEGF gene family with the
VEGF RTKs.

A. VEGFR-1 (Flt-1)

Although Flt-1 (fms-like tyrosine kinase) was the first RTK
to be identified as a VEGFR more than a decade ago (190),
the precise function of this molecule is still the object of
debate. Recent evidence indicates that the conflicting reports
may be due, at least in part, to the fact that VEGFR-1 func-
tions and signaling properties can be different depending on
the developmental stage and the cell type, e.g., endothelial vs.
hematopoietic cells. VEGFR-1 expression is up-regulated by
hypoxia via a HIF-1-dependent mechanism (191). VEGFR-1
binds not only VEGF-A but also PlGF (192) and VEGF-B
(193), which fail to bind VEGFR-2. An alternatively spliced
soluble form of VEGFR-1 (sFlt-1) has been shown to be an
inhibitor of VEGF activity (194). The binding site for VEGF
(and PlGF) has been mapped primarily to the second Ig-like
domain (195–197). The crystal structure of a VEGF-Flt-1 do-
main 2 complex has shown the poles of the VEGF dimer to
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be in a predominantly hydrophobic interaction with domain
2 (198). Figure 3 illustrates the complex VEGF-VEGFR-1 do-
main 2 in a ribbon format.

Flt-1 reveals a weak tyrosine autophosphorylation in re-
sponse to VEGF (190, 199). Park et al. (192) initially proposed
that VEGFR-1 may be not primarily a receptor transmitting
a mitogenic signal, but rather a “decoy” receptor, able to
regulate in a negative fashion the activity of VEGF on the
vascular endothelium, by sequestering and rendering this
factor less available to VEGFR-2 (see Fig. 2). Thus, the ob-
served potentiation of the action of VEGF by PlGF could be
explained, at least in part, by displacement of VEGF from
VEGFR-1 binding (192). Not only the full-length membrane-
bound form of VEGFR-1, but also sFlt-1, could perform such
a decoy function (200). Recent studies have shown that, in-
deed, a synergism exists between VEGF and PlGF in vivo,
especially during pathological situations, as evidenced by
impaired tumorigenesis and vascular leakage in Plgf�/�

mice (200). Gille et al. (201) have identified a repressor motif
in the juxtamembrane region of VEGFR-1 that impairs PI3
kinase activation and endothelial cell migration in response
to VEGF. Zeng et al. (202) have proposed that VEGFR-1

activation results in inhibition of VEGFR-2-dependent en-
dothelial cell proliferation and that this inhibitory pathway
is PI3 kinase dependent. However, other studies indicated
that VEGFR-1 is able to interact with various signal-trans-
ducing proteins and generate, in some circumstances, a mi-
togenic signal (203, 204). Very recently, Autiero et al. (205)
have proposed that PlGF regulates inter- and intramolecular
cross-talk between the VEGF RTKs. Activation of VEGFR-1
by PlGF resulted in transphosphorylation of VEGFR-2, thus
amplifying VEGF-driven angiogenesis through VEGFR-2.
According to these studies, although VEGF and PlGF both
bind VEGFR-1, PlGF uniquely stimulated the phosphoryla-
tion of specific VEGFR-1 tyrosine residues, and this results
in the expression of distinct target genes (205). This finding
is somewhat surprising, considering that PlGF and VEGF
bind to the same binding interface of VEGFR-1 in a very
similar fashion (206).

Irrespective of the conflicting evidence on the role of
VEGFR-1 as a signaling receptor, gene-targeting studies have
demonstrated the essential role of this molecule during em-
bryogenesis. Flt-1�/� mice die in utero between d 8.5 and d
9.5 (207, 208). Endothelial cells develop but fail to organize

FIG. 3. Ribbon representation of the VEGF-
VEGFR1-domain 2 complex. The two VEGF mono-
mers are shown in blue and yellow, and the two re-
ceptor molecules are depicted in green. This is a “top
down” view and shows the complex looking toward
the membrane. The termini are labeled. [Reproduced
with permission from C. Wiesmann.]

FIG. 2. Role of the VEGFR tyrosine kinases in endo-
thelial cells. VEGFR-1 (R1) and VEGFR-2 (R2) are ex-
pressed in the cell surface of most blood endothelial cells.
In contrast, VEGFR-3 (R3) is largely restricted to lym-
phatic endothelial cells. VEGF-A binds both VEGFR-1
and VEGFR-2. In contrast, PlGF and VEGF-B interact
only with VEGFR-1. VEGF-C and VEGF-D bind
VEGFR-2 and VEGFR-3. There is much evidence that
VEGFR-2 is the major mediator of endothelial cell mi-
togenesis, survival, and microvascular permeability. In
contrast, VEGFR-1 does not mediate an effective mito-
genic signal in endothelial cells and it may, especially
during early embryonic development, perform an inhib-
itory role by sequestering VEGF and preventing its in-
teraction with VEGFR-2. Such a “decoy” role could be
also performed by the alternatively spliced soluble
VEGFR-1. EC, Endothelial cell; uPA, urokinase-type
plasminogen activator; tPA, tissue-type plasminogen ac-
tivator.
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in vascular channels. Excessive proliferation of angioblasts
has been reported to be responsible for such disorganization
and lethality (208), indicating that, at least during early de-
velopment, VEGFR-1 is a negative regulator of VEGF action.
More compelling evidence in support of this view stems from
the report that a targeted mutation resulting in a VEGFR-1
lacking the tyrosine kinase (TK) domain, but able to bind
VEGF, does not result in lethality or any overt defect in
vascular development (209). Nevertheless, one specific bio-
logical response, the migration of monocytes in response to
VEGF (or PlGF) has been shown to require the tyrosine
kinase domain of VEGFR-1 (209, 210) (Fig. 4). Selvaraj et al.
(211) have shown recently that PlGF binding to VEGFR-1 in
monocytes results in activation of PI3 kinase/AKT and ERK-
1/2 pathways, leading to chemotaxis as well as to the in-
duction of a series of inflammatory cytokines. Furthermore,
Lewis lung carcinoma cells overexpressing PlGF grow in
wild-type mice faster than in VEGFR-1 tyrosine kinase-
deficient mice, suggesting that VEGFR-1 may be a positive
regulator under pathological conditions when a VEGFR-1-
specific ligand is highly expressed (212). These findings sug-
gest that VEGFR-1 has a dual function in angiogenesis, acting
in a positive or negative manner in different circumstances.
Recently, VEGFR-1 signaling has been also linked to the
induction of matrix metalloproteinase 9 (MMP-9) in lung
endothelial cells and to the facilitation of lung metastases
(213). Recent studies have emphasized the effects of
VEGFR-1 in hematopoiesis and recruitment of endothelial
progenitors. Hattori et al. (214) have shown that VEGFR-1
activation by PlGF is able to reconstitute hematopoiesis by
recruiting VEGFR-1� HSC. In addition, Gerber et al. (94) have
shown that VEGFR-1 activation by enforced expression of
PlGF rescues survival and ability to repopulate in VEGF�/�

HSC. Furthermore, PlGF can promote collateral vessel

growth and arteriogenesis in models of myocardial and limb
ischemia through the recruitment of bone marrow cells such
as monocytes (215, 216).

LeCouter et al. (217) recently provided evidence for a novel
function of VEGFR-1 in liver sinusoidal endothelial cells
(LSECs). VEGFR-1 activation achieved with a receptor-
selective VEGF mutant or PlGF resulted in the paracrine
release of hepatocyte growth factor, IL-6, and other hepa-
totrophic molecules by LSECs, to the extent that hepatocytes
were stimulated to proliferate when cocultured with LSECs.
VEGF had no direct mitogenic effect on hepatocytes. A
VEGFR-1 agonist protected the liver from CCl4-induced
damage, in spite of the inability to induce LSEC proliferation
(Fig. 5). These findings suggest that a key function of
VEGFR-1 signaling in the vascular endothelium is not the
regulation of angiogenesis but, rather, the paracrine release
of tissue-specific growth/survival factors, possibly in a vas-
cular bed-specific fashion (217). In this context, liver and
pancreas morphogenesis is induced by endothelial cells be-
fore the establishment of a blood flow, indicating that a
paracrine function of gut endothelial cells plays a critical role
during organogenesis (218, 219).

B. VEGFR-2 (KDR, human; Flk-1, mouse)

VEGFR-2 binds VEGF, albeit with lower affinity relative to
VEGFR-1 [dissociation constant (Kd) 75–250 pm vs. 25 pm]
(220–222). The key role of this receptor in developmental
angiogenesis and hematopoiesis is evidenced by lack of vas-
culogenesis and failure to develop blood islands and orga-
nized blood vessels in Flk-1 null mice, resulting in death in
utero between d 8.5 and d 9.5 (223). Consistent with a role in
hematopoiesis, VEGFR-2 has been identified on a subset of
multipotent human HSCs (224). There is now general agree-

FIG. 4. Role of VEGFR-1 (R1) in monocyte
chemotaxis. VEGFR-1 activation by VEGF-A,
PlGF, or VEGF-B (data not shown) results in
monocyte recruitment in normal or trans-
formed tissues. Monocytes may, in turn, pro-
duce VEGF-A and other angiogenic factors,
which may amplify the angiogenesis cascade.
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ment that VEGFR-2 is the major mediator of the mitogenic,
angiogenic, and permeability-enhancing effects of VEGF.

The binding site for VEGF has been mapped to the second
and third Ig-like domains (225). VEGFR-2 undergoes dimer-
ization and strong ligand-dependent tyrosine phosphoryla-
tion in intact cells and results in a mitogenic, chemotactic,
and prosurvival signal. Several tyrosine residues have been
shown to be phosphorylated (for review see Ref. 226). Ta-
kahashi et al. (227) have shown that Y1175 and Y1214 are the
two major VEGF-A-dependent autophosphorylation sites in
VEGFR-2. However, only autophosphorylation of Y1175 is
crucial for VEGF-dependent endothelial cell proliferation.
Also, VEGF has been shown to induce the phosphorylation
of at least 11 proteins in bovine aortic endothelial cells (228).
Among these, VEGF induces phosphorylation of phospho-
lipases C�, PI3-kinase, ras GTPase activating protein (228),
src family (111), and several other signal transduction mol-
ecules (226). Byzova et al. (229) have reported that VEGFR-2
activation by VEGF results in PI3 kinase/Akt-dependent
activation of several integrins. VEGF enhanced cell adhesion,
migration, soluble ligand binding, and adenovirus gene
transfer mediated by �v�3 and also activated other integrins
known to be involved in angiogenesis, �v�5, �5�1, and �2�1
(229). VEGFR-2 activation induces endothelial cell growth by
activating the Raf-Mek-Erk pathway. An unusual feature of
VEGFR-2 activation of this pathway is the requirement for
protein kinase C but not ras (230, 231). VEGF mutants that
bind selectively to VEGFR-2 are fully active endothelial cell
mitogens, chemoattractants, and permeability-enhancing
agents, whereas mutants specific for VEGFR-1 are devoid of
all three activities (232). Also, VEGF-E, a homolog of VEGF
identified in the genome of the parapoxvirus Orf virus (24),
which shows VEGF-like mitogenic and permeability-

enhancing effects, binds and activates VEGFR-2 but fails to
bind VEGFR-1 (25, 26). Interestingly, similar biological ef-
fects and receptor selectivity have been recently reported
with snake-derived VEGF (233). Furthermore, VEGFR-2 (but
not VEGFR-1) activation has been shown to be required for
the antiapoptotic effects of VEGF for human umbilical vein
endothelial cells (77). As previously noted, such a prosur-
vival effect of VEGF is mediated by the PI3 kinase/Akt
pathway (77). This pathway is critical also for VEGF-depen-
dent endothelial chemotaxis (201, 232, 234). Recent studies
suggest, however, that at least in some circumstances,
VEGFR-1 may transmit a prosurvival signal in endothelial
cells, possibly mediated by induction of the antiapoptotic
gene survivin (235).

C. Neuropilin (NP)1 and NP2

Earlier studies indicated that certain tumor and endothe-
lial cells express cell surface VEGF-binding sites distinct in
affinity and molecular mass from the two known VEGF RTKs
(236). Interestingly, VEGF121 failed to bind these sites, indi-
cating that exon 7-encoded basic sequences are required for
binding to this putative receptor (236). Subsequently, Soker
et al. (237) identified such isoform-specific VEGF receptor as
NP1, a molecule that had been previously shown to bind the
collapsin/semaphorin family and was implicated in neuro-
nal guidance (for review see Ref. 238). When coexpressed in
cells with VEGFR-2, NP1 enhanced the binding of VEGF165
to VEGFR-2 and VEGF165-mediated chemotaxis (237). NP1
appears to present VEGF165 to the VEGFR-2 in a manner that
enhances the effectiveness of VEGFR-2-mediated signal
transduction (237). Fuh et al. (239) have shown that NP1 is
able to directly bind VEGFR-1, suggesting that one of the

FIG. 5. Differential effects of VEGFR-1 and
VEGFR-2 in LSECs. In response to VEGFR-1
activation, LSECs are not stimulated to pro-
liferate but are instructed to up-regulate a
series of hepatotrophic genes, including he-
patocyte growth factor (HGF), IL-6, and
heparin-binding epidermal growth factor
(HB-EGF). Thus, VEGFR-1 agonists may re-
sult in significant hepatocellular protection
from hepatotoxins, without stimulation of an-
giogenesis. VEGFR-2 activation not only me-
diates LSEC proliferation, migration, and
survival, but also results in induction of a
subset of hepatotrophic genes. CTGF, Con-
nective tissue growth factor.

Ferrara • VEGF: Basic Science and Clinical Progress Endocrine Reviews, August 2004, 25(4):581–611 589

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/25/4/581/2355249 by guest on 09 April 2024



mechanisms by which VEGFR-1 functions as a negative reg-
ulator of VEGF activity is competing for NP1 binding. Bind-
ing to NP1 may help to explain the greater mitogenic potency
of VEGF165 relative to VEGF121. So far, there is no clear
evidence that NP1 or the related NP2 signals after VEGF
binding (238). In contrast, in response to semaphorin bind-
ing, NP1 and NP2 signals axon repulsion. Interestingly, col-
lapsin 1 is able to inhibit the motility of porcine aortic en-
dothelial cells expressing NP1 (240). Recent evidence
indicates that the formation of complexes with plexins is a
requirement for NP signaling in neurons (241, 242). The role
of NP1 in the development of the vascular system has been
demonstrated by gene-targeting studies, documenting em-
bryonic lethality in null mice (243). Furthermore, Lee et al.
(244) have shown that, in the zebrafish, NP1 is required for
vascular development and mediates VEGF-dependent an-
giogenesis. Interestingly, recent studies have linked NP2 to
lymphatic vessel development (245).

VIII. Role of VEGF in Physiological Angiogenesis

A. Embryonic and postnatal development

In 1996, two studies demonstrated an essential role of
VEGF in embryonic vasculogenesis and angiogenesis in the
mouse (246, 247). Inactivation of a single VEGF allele resulted
in embryonic lethality between d 11 and d 12. The vegf�/�

embryos exhibited a number of developmental anomalies,
defective vascularization in several organs, and a markedly
reduced number of nucleated red blood cells within the
blood islands in the yolk sac, indicating that VEGF regulates
both vasculogenesis and early hematopoiesis. Conditional
VEGF gene inactivation in VEGF loxP mice, using a Nestin
promoter-driven Cre-recombinase, has shown that the dos-
age of VEGF from neural progenitor cells is a critical deter-
minant in the development and density of vascular plexus in
the developing nervous system, to the extent that severe
reductions in VEGF led to decreases in vascularity and sub-
sequent hypoxia, resulting in the specific degeneration of the
cerebral cortex and neonatal lethality (248, 249). Conversely,
even modest increases in VEGF gene expression, achieved by
the insertion of a LacZ cassette in the 3�-untranslated region
of the VEGF gene, result in severe abnormalities in heart
development and embryonic lethality at embryonic d 12.5
(E12.5)–E14 (250). These findings indicate a critical VEGF
gene-dosage dependence during development. In contrast,
inactivation of PlGF (200) or VEGF-B (251) genes did not
result in any major development abnormalities, although
VEGF-B inactivation in mice results in reduced heart size and
impaired recovery from experimentally induced myocardial
ischemia (251). So far, it appears that, among the other mem-
bers of the VEGF gene family, only VEGF-C plays an essen-
tial role in development, because its inactivation results in
embryonic lethality due to defective lymphatic development
and fluid accumulation in tissues (252).

To determine the role of VEGF in early postnatal life,
several strategies have been employed (83). Partial inhibition
of VEGF achieved by Cre-loxP-mediated gene targeting re-
sulted in increased mortality, stunted body growth, and im-
paired organ development. Administration of a soluble

VEGFR-1 chimeric protein, which achieves a nearly complete
VEGF inhibition, results in almost complete growth arrest,
when the treatment is initiated at d 1 or d 8 postnatally.
Endothelial cells isolated from the liver of VEGFR1-IgG-
treated neonates demonstrated increased apoptotic index,
indicating that VEGF is required not only for proliferation
but also for survival of endothelial cells (83). Such treatment
is also accompanied by rapid lethality, primarily due to in-
hibition of glomerular development leading to kidney failure
(83). Defective glomerular endothelial development in neo-
nates was also observed in studies using anti-VEGF anti-
bodies (253). The pivotal role of VEGF in kidney develop-
ment was also demonstrated by a very recent study showing
that selective VEGF deletion in podocytes, using a Nephin
promoter-driven Cre recombinase, leads to glomerular dis-
ease in a gene dosage-dependent fashion (254). Heterozy-
gous mice developed renal disease by 2.5 wk of age, char-
acterized by proteinuria and endotheliosis. Homozygosity
resulted in perinatal lethality (254). However, VEGF neu-
tralization in fully developed normal mice (83) or rats (255)
had no significant effects on glomerular function. In contrast,
VEGF inhibition in adult rats with mesangioproliferative
nephritis led to a reduction of glomerular endothelial regen-
eration and an increase in endothelial cell death, indicating
that VEGF may be important for glomerular endothelial cell
repair after injury, but not for endothelial survival in a
healthy animal (255). In apparent conflict with these conclu-
sions, Sugimoto et al. (256) have recently reported that the
administration of anti-VEGF antibodies or sFlt-1 to adult
mice results in proteinuria accompanied by glomerular en-
dothelial cell detachment and hypertrophy, in association
with down-regulation of nephrin. The reason for such dis-
crepancies is unclear.

Importantly, VEGF neutralization in juvenile primates us-
ing a humanized anti-VEGF monoclonal antibody (bevaci-
zumab) did not result in any renal or other significant ab-
normalities, except the suppression of growth plate and
ovarian angiogenesis, as described below (257). Further-
more, as discussed in Section IX.A, long-term administration
of bevacizumab to cancer patients resulted in minimal kid-
ney toxicity (36, 258).

B. Skeletal growth and endochondral bone formation

Endochondral bone formation is a fundamental mecha-
nism for longitudinal bone growth. Cartilage, an avascular
tissue, is replaced by bone in a process named endochondral
ossification (259). VEGF mRNA is expressed by hypertrophic
chondrocytes in the epiphyseal growth plate, suggesting that
a VEGF gradient is needed for directional growth and car-
tilage invasion by metaphyseal blood vessels (260, 261). After
VEGF blockade with a soluble VEGFR-1 chimeric protein or
an anti-VEGF monoclonal antibody, blood vessel invasion is
almost completely suppressed, concomitant with impaired
trabecular bone formation, in developing mice and primates
(257, 260). Although proliferation, differentiation, and mat-
uration of chondrocytes were apparently normal, resorption
of hypertrophic chondrocytes was inhibited, resulting in a
marked expansion of the hypertrophic chondrocyte zone.
Importantly, cessation of the anti-VEGF treatment is fol-

590 Endocrine Reviews, August 2004, 25(4):581–611 Ferrara • VEGF: Basic Science and Clinical Progress

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/25/4/581/2355249 by guest on 09 April 2024



lowed by capillary invasion, restoration of bone growth, and
normalization of the growth plate architecture. Recent stud-
ies indicate that VEGF mRNA in osteoblasts is induced by
bone morphogenetic proteins (BMPs), suggesting that VEGF
produced by osteoblasts in response to BMPs may couple
angiogenesis to bone formation (262). Conversely, VEGF
may induce BMP-2 expression in endothelial cells, suggest-
ing that endothelial cells may play also an osteogenic role by
a BMP-2-dependent stimulation of osteoblasts (263).

Interestingly, a growth plate abnormality similar to that
induced by VEGF inhibitors was observed in MMP-9�/�

mice (264). Recent evidence indicates that a function of
MMP-9 is to render VEGF bioavailable to its receptors (265).
VEGF blockade inhibits bone repair (266); MMP-9�/� mice
have delayed healing of fractures, and administration of
exogenous VEGF corrects this defect (267). Furthermore,
VEGF has direct chemotactic and other effects on osteoblasts
(268) and osteoclasts (269). These findings indicate not only
that VEGF-dependent blood vessel recruitment is essential
for coupling cartilage resorption with bone formation, but
also that the effects of VEGF on bone homeostasis are com-
plex and involve direct effects on bone cells (270).

A similar, although less dramatic, phenotype was ob-
tained, when VEGF was deleted in the cartilage of develop-
ing mice by means of Cre-loxP-mediated, tissue-specific gene
ablation (271). Furthermore, examination of VEGF120/120

mice not only revealed a delayed recruitment of blood ves-
sels into the perichondrium but also showed delayed inva-
sion of vessels into the primary ossification center, demon-
strating a significant role of heparin-binding VEGF isoform
at both an early and later stage of cartilage vascularization
(272).

C. Angiogenesis in endocrine glands

Angiogenesis is a key aspect of normal cyclical ovarian
function. Follicular growth and the development of the CL
are dependent on the proliferation of new capillary vessels
(273). The process of selection of a dominant follicle in
monovular species has been also associated with angiogen-
esis, as there is evidence that selected follicles possess a more
elaborate microvascular network than other follicles (274).
The angiogenesis that accompanies CL development also
plays a key role in the delivery of cholesterol to luteal cells
for progesterone biosynthesis (275). Subsequently, the blood
vessels regress, suggesting the coordinated action of induc-
ers as well as inhibitors of angiogenesis in the course of the
ovarian cycle (276, 277).

Previous studies have shown that the VEGF mRNA ex-
pression is temporally and spatially related to the prolifer-
ation of blood vessels in the ovary (278, 279). Administration
of VEGF inhibitors delays follicular development (280) and
suppresses luteal angiogenesis in rodents (167, 281) as well
as in primates (257, 282–284). These studies have established
that VEGF is indeed the principal regulator of ovarian an-
giogenesis and that blockade of the VEGF pathway is suf-
ficient to disrupt angiogenesis. Figure 6 illustrates the ex-
periments that demonstrated, for the first time, such a key
role of VEGF, using VEGF-soluble receptors in a rat model
of hormonally induced ovulation (167).

More recent studies have indicated that endocrine gland-
derived VEGF (EG-VEGF), a novel angiogenic factor that is
selectively expressed in steroidogenic tissues, plays a coop-
erative role with VEGF in the regulation of angiogenesis in
the human ovary (285). EG-VEGF is not structurally related

FIG. 6. VEGF is essential for CL angiogenesis (167). Ovulation was hormonally induced in rats using PMSG, followed by human chorionic
gonadotropin (hCG), and this treatment resulted in a dramatic increase in ovarian weight and vascularity 5 d after PMSG administration.
Animals were given human (h) or mouse (m) Flt(1–3)-IgG, which potently inhibits VEGF, or control proteins (CD4-IgG or mIgG). Note the
complete suppression of ovarian angiogenesis and growth after administration of the VEGF inhibitors. PMSG, Pregnant mare’s serum
gonadotropin.
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to VEGF but belongs to a unique gene family having distant
homology to Dickopf, an inhibitor of Wnt signaling (286,
287). A sequential activation of the two genes occurs in the
human ovary (288). Whereas VEGF mRNA is strongly ex-
pressed in early-stage CL, coincident with the initial devel-
opment of a capillary plexus, its expression is markedly
reduced by midluteal phase. In contrast, EG-VEGF starts
being expressed later than VEGF but persists throughout
mid- and early-late luteal phase, suggesting that EG-VEGF
may be important for the persistence and adequacy of luteal
function (288). Thus, the ovary has apparently developed a
highly specific local mechanism to complement the action of
VEGF. Interestingly, such an acquisition seems to be, at least
in part, a late event in evolution and may reflect a greater
functional/morphological complexity of organs like the
ovary. Although association of human EG-VEGF expression
with steroidogenic cells is compelling, the mouse ortholog of
this gene has a different expression pattern (289). In this
context, a consensus binding site for the NR5A1 orphan
nuclear receptor is present within the human EG-VEGF pro-
moter (289). NR5A1, considered to be a key regulator of
endocrine development and function (290, 291), regulates
multiple target genes involved in gonadal and adrenal de-
termination and development, steroidogenesis, and repro-
duction (for review see Ref. 292). Although rodents have
served as models for endocrinology and ovarian physiology,
clear differences exist between the rodent and human ovary.
The length of the ovarian cycle also distinguishes the human
or primate from the rodent. In humans the cycle is 28 d, and
in rodents the cycle is completed every 4 d (293). The primate
CL is functional for 2 wk before its regression in the infertile
cycle, whereas the rodent CL is active for less than 1 d (294).

Recently, the role of VEGF in the development of pancre-
atic islets has been investigated (295). Deletion of VEGF in the
mouse pancreas reveals that endocrine cells signal back to the
adjacent endothelial cells to induce the formation of a dense
network of fenestrated capillaries in islets. Interestingly,
VEGF is not required for the development of all islet capil-
laries. However, the remaining capillaries found in the
VEGF-deficient islets were not fenestrated and contained an
unusual number of caveolae. In addition, glucose tolerance
tests reveal that the VEGF-induced capillary network is not
strictly required for blood glucose control but is essential for
fine tuning blood glucose regulation (295).

IX. Role of VEGF in Pathological Conditions

A. Solid tumors

Many tumor cell lines secrete VEGF in vitro, suggesting the
possibility that this diffusible molecule may be a mediator of
tumor angiogenesis (29). In situ hybridization studies have
demonstrated that the VEGF mRNA is expressed in the vast
majority of human tumors so far examined, including car-
cinoma of the lung (296, 297), breast (298, 299), gastrointes-
tinal tract (300–303), kidney (304–306), bladder (304), ovary
(307–309), and endometrium (310) and several intracranial
tumors including glioblastoma multiforme (311–313) and
sporadic, as well as VHL syndrome-associated, capillary he-
mangioblastoma (314, 315). In glioblastoma multiforme and

other tumors with significant necrosis, the expression of
VEGF mRNA is highest in hypoxic tumor cells adjacent to
necrotic areas (311–313).

VEGF mRNA is also expressed in endocrine tumors. Ex-
pression of VEGF has been demonstrated in a variety of
pituitary tumors. Lloyd et al. (316) examined a series of 148
tumors and found that VEGF expression, as assessed by
immunohistochemistry, although in general less intense than
in normal pituitary tissue, is more prominent in certain ad-
enoma subtypes, especially GH adenomas. Furthermore,
carcinomas show increased VEGF expression relative to
adenomas, suggesting an up-regulation of VEGF during pi-
tuitary tumor progression (316). Soh et al. (317) found the
VEGF mRNA to be higher in thyroid cancer cell lines com-
pared with primary cultures of normal thyroid cells and
higher in thyroid cancers of follicular than those of parafol-
licular cell origin. Furthermore, Klein et al. (318) have shown
that expression of VEGF by immunohistochemistry is a neg-
ative prognostic marker in papillary thyroid carcinoma. The
distribution of VEGF and other angiogenic factors in endo-
crine tumors has been recently reviewed by Turner et al.
(319).

In 1993, Kim et al. (320) reported that anti-VEGF mono-
clonal antibodies exert a potent inhibitory effect on the
growth of several tumor cell lines in nude mice, whereas the
antibody had no effect on the tumor cells in vitro. Subse-
quently, many other tumor cell lines were found to be in-
hibited in vivo by anti-VEGF monoclonal antibodies (321–
327). Tumor growth inhibition was demonstrated also with
other anti-VEGF treatments, including a retrovirus-delivered
dominant negative Flk-1 mutant (328), small molecule in-
hibitors of VEGFR-2 signaling (329–331), antisense oligonu-
cleotides (332, 333), anti-VEGFR-2 antibodies (334), and sol-
uble VEGF receptors (335–339).

Tumors of endocrine origin are also substantially growth
inhibited by anti-VEGF treatment. Treatment with an anti-
human VEGF monoclonal antibody resulted in more than
90% inhibition of tumor growth in a model of thyroid cancer
(340). Also, administration of PTK787, a small molecule
VEGFR-2 kinase inhibitor, led to a 41% reduction of tumor
volume in a nude mouse model of poorly differentiated
thyroid carcinoma (341).

Although tumor cells usually represent the major source
of VEGF, tumor-associated stroma is also an important site
of VEGF production (337, 342–344). As illustrated in Fig. 7,
chemotactic signals from tumor cells recruit stromals cells,
which also produce VEGF and other angiogenic factors. The
growth of a variety of human tumor cell lines transplanted
in nude mice is substantially reduced, but not completely
suppressed, by antihuman VEGF monoclonal antibodies
(320). Administration of mFlt (1–3)-IgG, a chimeric receptor
containing the first three Ig-like domains of VEGFR-1, that
binds both human and mouse VEGF, results in a nearly
complete suppression of tumor growth, accompanied by dra-
matic tumor cells necrosis, in a nude mouse model of human
rhabdomyosarcoma (Fig. 8) (337). Similar results were ob-
tained using a chimeric soluble receptor consisting of domain
2 of VEGFR-1 fused with domain 3 of VEGFR-2, referred to
as “VEGF-trap” (339). Therefore, the use of VEGF inhibitors
that only target human VEGF in human xenograft models
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frequently results in underestimating the contribution of
VEGF to the process of tumor angiogenesis.

Cre-LoxP-mediated gene targeting has been used to show
that VEGF inactivation suppresses tumor angiogenesis in the
Rip-Tag model, a well-established genetic model of insuli-
noma (345). Furthermore, at least in the Rip-Tag model,
MMP-9-mediated proteolytic events have been shown to
determine an “angiogenic switch,” mediated by enhance-
ment of the activity of low constitutive levels of VEGF that
become available to bind VEGFR-2 (265, 346).

Several studies have shown that combining anti-VEGF
treatment with chemotherapy (347) or radiation therapy
(348, 349) results in greater antitumor effects than either
treatment alone. An issue that is being debated is the mech-
anism of such potentiation, and various hypotheses, not mu-
tually exclusive, have been proposed. Klement et al. (347)
proposed that chemotherapy, especially when delivered at
low doses, preferentially damages endothelial cells, and the
blockade of VEGF blunts a key survival signal for endothelial
cells, thus amplifying the antitumor cell effects of chemo-
therapy. Jain (350) proposed that antiangiogenic therapy
“normalizes” the tumor vasculature, leading to pruning of
excessive endothelial cells and perivascular cells, reduction
in vessel tortuosity, and drop in interstitial pressure and
improved delivery of chemotherapy to tumor cells. These
effects would provide an explanation for the apparent par-
adox that administration of VEGF inhibitors leads to a re-
duction in vascular permeability (79, 351), which would be
expected to reduce the delivery of protein-bound chemo-
therapy into the tumor cells.

Most recently, Willett et al. (352) have shown that VEGF
blockade using an anti-VEGF monoclonal antibody (bevaci-
zumab) decreases tumor perfusion, vascular volume, micro-
vascular density, interstitial fluid pressure, and the number
of viable, circulating endothelial and progenitor cells in colo-
rectal cancer patients, providing direct evidence for antivas-
cular effects after VEGF blockade.

Clinical trials in cancer patients are ongoing with several
VEGF inhibitors, including a humanized anti-VEGF mono-

clonal antibody (rhuMab VEGF; bevacizumab; Avastin, Ge-
nentech, South San Francisco, CA) (353), an anti-VEGFR-2
antibody (334), small molecules inhibiting VEGFR-2 signal
transduction (330, 331), and a VEGFR chimeric protein (339).
Phase II clinical data provided initial evidence that bevaci-
zumab, in combination with 5-fluorouracil/leucovorin, re-
sults in increase in time to progression and survival in pa-
tients with metastatic colorectal carcinoma (CRC) (258).
Thrombosis and increased blood pressure, as well as some
proteinuria, were among the side effects of treatment ob-
served in such a trial.

A double-blind placebo-controlled phase II trial demon-
strated a significant increase in time to progression in renal
cell carcinoma patients treated with bevacizumab as a single
agent (36). Interestingly, the toxicity of the treatment was
very modest and consisted of asymptomatic proteinuria and
hypertension. In light of the fact that many renal cell carci-
noma patients harbor mutations in the VHL gene, which
result in altered regulation of VEGF (145), these results are
particularly significant.

Recently, Hurwitz et al. (37) presented the results of a large
randomized placebo-controlled phase III trial in which be-
vacizumab was tested in combination with chemotherapy as
first-line therapy for previously untreated metastatic CRC.
Patients were randomized to receive weekly bolus irinote-
can, 5-fluorouracil, and leucovorin (IFL) plus bevacizumab (5
mg/kg every 2 wk), or IFL plus bevacizumab placebo. Sur-
vival was significantly increased in the IFL/bevacizumab
arm compared with the IFL/placebo arm. Progression-free
survival, response rate, and duration of response were also
significantly increased in the bevacizumab group. Hyper-
tension was more common in the IFL/ bevacizumab-treated
group but was readily managed in all cases with oral anti-
hypersensitive agents (37). Interestingly, the increased inci-
dence of thrombosis and proteinuria, which was observed in
phase II, was not observed in this phase III study. The pro-
longation of survival and improvement in other markers of
clinical benefit observed with the addition of bevacizumab to
standard chemotherapy confirms the importance of angio-

FIG. 7. Both tumor and stromal VEGF contribute to
tumor angiogenesis. In response to chemotactic stimuli,
stromal cells are recruited into the tumor and produce
VEGF and other angiogenic factors.
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genesis in the clinical outcome of patients with CRC. Based
on these results, Avastin was approved by the Food and
Drug Administration on February 26, 2004 as a first-line
treatment for metastatic CRC.

Several additional phase III studies are currently ongoing
to fully assess the benefit of bevacizumab and other anti-
VEGF therapies, such as small-molecule kinase inhibitors, in
patients with advanced cancer.

FIG. 8. Complete suppression of tumor angiogenesis requires inhibition of both tumor and stromal VEGF in a nude mouse model of human
A673 rhabdomyosarcoma. To test whether the incomplete inhibition of tumor growth achieved with systemic administration of an antihuman
VEGF monoclonal antibody is due to incomplete tumor penetration of the antibody or up-regulation of host-derived murine VEGF, systemic
administration of the antibody was performed in conjunction with intratumoral administration of an antihuman VEGF Fab (E–H) or mFlt(1–
3)-IgG (I–L), which blocks both human and mouse VEGF. A–D, Control antibody. Note the extensive tumor cell necrosis in the mFlt(1–3)-
IgG-treated animals (panels I and J), which is not observed in the other groups, although the monoclonal antibody treatment resulted in more
than 90% inhibition of tumor growth. Systemic administration of mFlt(1–3)-IgG as a single agent resulted in tumor cell necrosis indistin-
guishable from that induced by intratumoral mFlt(1–3)-IgG. Note also the nearly complete suppression of vascularization in the mFlt(1–3)-
IgG-treated group, as assessed by two vascular-specific markers, Flk-1 (C, G, and K) and CD31 (D, H, and L). Arrows in B point to entrapped
host-derived elements such as skeletal muscle fibers. Arrows in C and D point to microvessels, often present in greater number around
host-entrapped elements. Arrows in E point to pyknotic areas, staining more deeply than the viable tumor, at the interface between viable and
necrotic regions. However, other regions (box and arrowheads) in E lack such pyknotic changes. Arrows in K and L point to a single blood vessel
visible within viable tumor, verifying the dramatic reduction in vascularization. [Reproduced with permission from H. P. Gerber et al.: Cancer
Res. 60:6253–6258, 2000 (337).]
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B. Hematological malignancies

VEGF is expressed in a wide variety of cell lines derived
from various hematological malignancies, including T cell
lymphoma, acute lymphoblastic leukemia, Burkitt’s lym-
phoma, acute lymphocytic leukemia, histiocytic lymphoma,
promyelocytic leukemia, etc. (for review see Ref. 354). Ex-
pression of both VEGFRs has been detected in some, but not
all, leukemia cell lines, and VEGFR-1 was found to be more
frequently expressed than VEGFR-2. These findings suggest
that the production of VEGF by malignant myeloid precur-
sors might serve both as an autocrine growth stimulus and
a diffusible, paracrine, signal-mediating angiogenesis within
the bone marrow. The inhibitory effects of small molecule
inhibitors targeting VEGFR-1 and VEGFR-2 on the growth of
human myeloid leukemia cell lines have been documented
(355). Further evidence for a functional role of VEGFR-2 in
leukemic cell growth was provided by experiments showing
that an anti-VEGFR-2 antibody inhibits proliferation of xe-
notransplanted human leukemia cells and significantly in-
creased survival of nude mice (356). Recently, Fiedler et al.
(357) reported a multicenter phase II trial of SU5416, a small-
molecule inhibitor of phosphorylation of VEGF receptors,
c-kit, the SCF receptor, and FLT3 in patients with advanced
acute myelogenous leukemia, and some preliminary evi-
dence of efficacy was evidenced. One patient had a mor-
phological remission lasting for 2 months, and seven patients
achieved a partial response. Interestingly, patients with acute
myelogenous leukemia blasts expressing high levels of VEGF
had a higher response rate and reduction of bone marrow
microvessel density than patients with low VEGF expression,
consistent with the antiangiogenic effects of SU5416. Taken
together, these findings suggest that inhibition of VEGF or
VEGFR signaling may be effective in the treatment of he-
matological malignancies. Currently, several clinical trials
are testing this hypothesis.

C. Intraocular neovascular syndromes

Diabetes mellitus, occlusion of central retinal vein, or pre-
maturity with subsequent exposure to oxygen can all be
associated with retinal ischemia and intraocular neovascu-
larization, which may result in vitreous hemorrhages, retinal
detachment, neovascular glaucoma, and blindness (11, 358).
As previously mentioned, in 1948 Michaelson (40) postulated
the existence of a diffusible angiogenic factor, released by the
ischemic retina. Given its hypoxia inducibility, VEGF became
an attractive candidate as a mediator of pathological intraoc-
ular neovascularization.

Hypoxia-regulated VEGF release likely plays a key role in
the normal development of the retinal vasculature. Stone et
al. (359) proposed that hypoxia caused by the onset of neu-
ronal activity leads to the release of VEGF by populations of
astrocytes, resulting in induction of the superficial and deep
layers of retinal vessels. As vessels become patent and per-
fusion begins, the hypoxic stimulus recedes. Retinal vessels
are initially dependent on VEGF as a survival factor (75), but
such dependence is lost as soon as capillaries are covered by
pericytes, a process mediated by endothelial cell-derived
PDGF-BB acting through PDGFR� (360, 361).

Expression of VEGF mRNA spatially and temporally cor-

relates with neovascularization in several animal models of
retinal ischemia (75, 362, 363). Interestingly, down-regulation
of VEGF expression by hyperoxia is likely to be, at least in
part, responsible for the vasoobliteration and cessation of
normal retinal blood vessel growth observed in premature
infants in whom retinopathy of prematurity develops (75,
363). The subsequent retinal hypoxia leads to VEGF up-
regulation and neovascularization, when normoxia is re-
stored. Administration of VEGF during the hyperoxic phase
significantly prevented the vascular regressive changes and
the neovascularization (75, 363).

Elevations of VEGF levels in the aqueous and vitreous
humor of human eyes with proliferative retinopathy sec-
ondary to diabetes and other conditions have been previ-
ously described (364, 365). Similar to the animal models,
these studies demonstrated a temporal correlation between
VEGF elevations and active proliferative retinopathy (364).
Subsequently, animal studies using various VEGF inhibitors,
including soluble VEGF receptor chimeric proteins (366),
monoclonal antibodies (367), antisense oligonucleotides
(368), and small molecule VEGFR-2 kinase inhibitors (369),
have directly demonstrated the role of VEGF as a key me-
diator of ischemia-induced intraocular neovascularization.
Activation of protein kinase C � 2 isoform has been reported
to be important for VEGF-dependent retinal neovascular-
ization (370).

Neovascularization and vascular leakage are major causes
of visual loss also in the wet form of AMD, the overall leading
cause of blindness (11). Earlier studies demonstrated the
immunohistochemical localization of VEGF in surgically re-
sected choroidal neovascular membranes from AMD pa-
tients (371), suggesting a role for VEGF in the progression of
AMD-related choroidal neovascularization. Whether such
VEGF up-regulation is hypoxia related is unclear (372). Cur-
rently, anti-VEGF strategies are being explored in clinical
trials in AMD patients, using either a recombinant human-
ized anti-VEGF Fab (rhuFab VEGF) (373) or 2�-fluoropyri-
midine RNA oligonucleotide ligand (aptamers) (374). rhuFab
VEGF has been recently found to reduce angiogenesis and
vascular leakage in a primate model of AMD (375). Both the
aptamer and rhuFab VEGF, administered intravitreally, are
currently in phase III trials. Most recently, preliminary re-
sults of a phase III study with Macugen (Eyetech, Boston,
MA) (aptamer) in patients with wet AMD indicate reduced
vision loss compared with placebo (C. Puliafito: Abstract
Proc. American Academy of Ophthalmology Subspecialty
Day - Retina The Retina Debates 2003: New Technology &
Controversies from the Posterior Segment). However, the
magnitude of the effect did not appear markedly greater than
that achieved by photodynamic therapy (Visudyne, QLT,
Vancouver, British Columbia, Canada), the only approved
treatment for wet AMD. However, Macugen neutralizes only
intact VEGF165 and does not bind VEGF121 or bioactive pro-
teolytic fragments of VEGF165 lacking the heparin-binding
domain that may be generated after plasminogen activation
(374). In contrast, rhuFab VEGF neutralizes all VEGF iso-
forms and bioactive fragments (373). Whether a more com-
plete VEGF neutralization will translate in greater clinical
efficacy remains to be established. For review of anti-VEGF
approaches in AMD clinical trials, see Ref. 372.

Ferrara • VEGF: Basic Science and Clinical Progress Endocrine Reviews, August 2004, 25(4):581–611 595

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/25/4/581/2355249 by guest on 09 April 2024



VEGF is implicated also in the corneal angiogenesis asso-
ciated with herpes simplex infection (376). After viral infec-
tion in mice, VEGF was expressed by stromal as well as by
corneal epithelial cells. Administration of a soluble VEGF
receptor markedly reduces angiogenesis and severity of le-
sions associated with the viral infection, suggesting that the
control of angiogenesis represents a useful adjunct to therapy
of herpetic ocular disease, an important cause of human
blindness (376).

D. Inflammatory disorders and brain edema

VEGF up-regulation has been implicated in various in-
flammatory disorders (for review see Ref. 34). VEGF is
strongly expressed by epidermal keratinocytes in wound
healing and psoriasis, conditions that are characterized by
increased microvascular permeability and angiogenesis
(377). Transgenic overexpression of VEGF in the skin results
in increased density of tortuous cutaneous blood capillaries
and enhanced leukocyte rolling and adhesion in postcapil-
lary skin venules, suggesting that overexpression of VEGF in
the epidermis is sufficient to induce features of chronic skin
inflammation. Interestingly, no changes in lymphatic vessels
were detected in these studies (378). Very recent studies have
shown, however, that myeloid cell activation and infiltration,
key aspects of acute inflammatory responses, require HIF-1�
but are largely independent of VEGF (379).

VEGF has been implicated also in the pathogenesis of RA,
an inflammatory disease in which angiogenesis plays a sig-
nificant role (380, 381). Levels of immunoreactive VEGF were
found to be high in the synovial fluid of RA patients, whereas
they were very low or undetectable in the synovial fluid of
patients affected by other forms of arthritis or by degener-
ative joint disease (380, 381). Interestingly, administration of
VEGF inhibitors significantly delayed the development of
arthritis and decreased clinical score and paw thickness as
well as histological severity (382–384). Recent studies have
also emphasized the importance of VEGFR-1 signaling in the
development of an inflammatory exudate in RA (385–387).

Recently, Reinders et al. (388) provided evidence for a role of
VEGF as a proinflammatory mediator in allograft rejection.
VEGF was found to be functional in the trafficking of human
T cells into skin allografts in vivo in the humanized SCID mouse.
In vitro, VEGF enhanced endothelial cell expression of several
chemokines and, in combination with interferon-� (IFN-�),
synergistically induced endothelial cell production of the po-
tent T cell chemoattractant IFN-�-inducible protein-10 (IP-10).
Treatment of BALB/c recipients of fully major histocompati-
bility complex-mismatched C57BL/6 donor hearts with an anti-
VEGF antibody markedly reduced T cell infiltration of allo-
grafts and acute rejection (388).

VEGF up-regulation has been also implicated in the de-
velopment of brain edema. Diffuse, low-abundance, VEGF
mRNA expression has been observed in the adult rat brain
(389). However, as previously noted, hypoxia is a major
trigger for VEGF expression, and enhanced levels of VEGF,
together with VEGFR-1 and VEGFR-2, have been reported by
several groups in the rat brain after the induction of focal
cerebral ischemia (390–392). Because brain edema is a major
determinant of morbidity in patients with cerebral ischemia,

the hypothesis that VEGF blockade may be beneficial was
tested. van Bruggen et al. (393) have shown that adminis-
tration of a soluble VEGF receptor has beneficial effects in a
murine model of cortical ischemia, resulting in a significant
reduction in the volume of the edematous tissue shortly after
the onset of ischemia and in the infarct size measured several
weeks later. As previously noted, some members of the src
family may mediate VEGF-dependent vascular permeability
(111). In this context, Paul et al. (394) reported that src�/�

mice have reduced brain damage after induction of cortical
ischemia and that a src inhibitor has protective effects in
wild-type mice in a similar brain injury model. However,
other studies have shown that infusion of VEGF itself may
have protective effects in similar models, reducing infarct
size (395) and even brain edema formation (396) by virtue of
its endothelial and possibly also neuronal protective effects.
Such conflicting results likely reflect a “double-edged
sword” role of VEGF in stroke, such that the timing of ad-
ministration and the dose of VEGF (or the VEGF inhibitor)
will determine whether the treatment will be beneficial or
detrimental.

E. Pathology of the female reproductive tract

Angiogenesis is a prominent feature of polycystic ovary
syndrome (PCOS), a leading cause of infertility affecting as
many as 5–10% of women of reproductive age. PCOS was
originally described as a disorder characterized by the as-
sociation of hirsutism, obesity, reduced fertility, and en-
larged, polycystic ovaries (397). Hyperplasia of the theca
interna and stroma and excessive production of androgens
are hallmarks of PCOS (for review see Ref. 398). Indeed,
ultrasonographic assessment of stromal area (399) and blood
flow (400) is currently used as a diagnostic test. Although
PCOS was described more than 50 yr ago, its etiology has
remained largely unclear. However, increased LH/FSH ra-
tio, defective selection of a dominant follicle, and anovula-
tion are considered to be key aspects of the pathogenesis.
Recent evidence also indicates that PCOS is part of a complex
endocrine/metabolic disorder in which insulin resistance
plays a major role (401).

Interestingly, VEGF levels have been reported to be ele-
vated in the serum of PCOS patients compared with normal
controls, although the degree of increase varied among dif-
ferent studies, being as little as 25% (402) or approximately
2- to 3-fold (403). In situ analysis indicated that both VEGF
and EG-VEGF are expressed in all PCOS ovaries examined,
but with an almost mutually exclusive expression pattern
(288, 404). Somewhat surprisingly, expression of VEGF
mRNA is largely limited to the cyst walls, with little or no
expression in the stroma. Cysts appear to express VEGF only,
EG-VEGF only, or to express VEGF in an inner rim sur-
rounded by an outer rim of EG-VEGF expression. Some
VEGF expression was seen in theca interna, although not as
consistently as in granulosa cells (Fig. 9). EG-VEGF expres-
sion was strongest in theca interna of follicles in various
stages of atresia. Importantly, thecal and stromal tissue ex-
pressing EG-VEGF maintain an abundant vascular supply,
despite lacking significant VEGF expression. Endothelial im-
munostaining with anti-CD34 demonstrates persistent vas-
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cularity in these areas (288). These findings raise the possi-
bility that, whereas VEGF is an essential player in normal
cycling ovaries, EG-VEGF might be particularly significant
for the acyclical angiogenesis occurring during chronic
anovulation. However, tumor studies have shown that even
a low, constitutive VEGF expression may be of great patho-
physiological significance as assessed by loss of function
studies (343). Therefore, studies with specific inhibitors will
be crucial to determine the respective roles of VEGF and
EG-VEGF in models of ovarian dysfunction.

Previous studies (405, 406) have implicated VEGF also in
the pathogenesis of ovarian hyperstimulation syndrome
(OHSS), a potentially fatal condition characterized by ovar-
ian enlargement, with multiple follicular cysts and increased
vascular permeability (407, 408). PCOS is a well-established
risk factor for OHSS (409). However, other studies have cast
doubt on the hypothesis that VEGF may be the causative
factor in the vascular permeability associated with OHSS and
suggested that the kallikrein system is of greater importance
(410). Such discrepancies may be due, at least in part, to the
fact that although VEGF may be an important mediator in
OHSS, it is by itself insufficient, and the symptoms reflect the
contribution of other factors, such as EG-VEGF.

Angiogenesis is important in the pathogenesis of endo-
metriosis, a condition characterized by ectopic endometrium
implants in the peritoneal cavity. High levels of VEGF have
been measured in the peritoneal fluid of patients with en-
dometriosis (411–413). Recently, a model in which human
endometrium is implanted into nude mice was used to test
the effects of two VEGF inhibitors, a soluble truncated Flt-1
receptor and an antibody to human VEGF. Both agents sig-
nificantly inhibited the growth of nude mouse explants, sug-
gesting that antiangiogenic agents may provide a novel ther-
apeutic approach for the treatment of endometriosis (413).

According to Maynard et al. (414), circulating levels of
sFlt-1 derived from placenta are increased in preeclampsia,
resulting in reduced free VEGF and PlGF. Thus, endothelial
dysfunction of preeclampsia may be due to excess VEGF/
PlGF neutralization by circulating sFlt-1. Furthermore, recent
studies have indicated that increased levels of sFlt-1 and
reduced levels of PlGF predict the subsequent development
of preeclampsia (415) .

X. VEGF and Therapeutic Angiogenesis

The development of pharmacological treatments for dis-
orders characterized by inadequate tissue perfusion would
fulfill an unmet medical need, as there are no effective al-
ternatives to surgical reconstruction procedures. For exam-
ple, chronic limb ischemia, most frequently caused by ob-
structive atherosclerosis affecting the superficial femoral
artery, is associated with a high rate of morbidity and mor-
tality, and treatment is currently limited to surgical revas-
cularization or endovascular interventional therapy (416).
The hypothesis that “therapeutic angiogenesis” may be ben-
eficial for these conditions generated a high level of enthu-
siasm in the field of cardiovascular medicine over the last
several years and led to several clinical trials.

Early studies indicated that intraarterial or im adminis-

tration of VEGF165 may significantly augment perfusion and
development of collateral vessels in a rabbit model of chronic
hindlimb ischemia (417). Arterial gene transfer with cDNA
encoding VEGF also led to revascularization in the same
rabbit model to an extent comparable to that achieved with
the recombinant protein (418, 419). Other studies have shown
that VEGF administration also leads to a recovery of normal
endothelial reactivity in dysfunctional endothelium (420).
Furthermore, adenovirus-delivered VEGF165 stimulated an
angiogenic response that protected against acute vascular
occlusion in the setting of preexisting limb ischemia in a rat
model (421). VEGF gene transfer was also reported to pre-
vent the ischemic peripheral neuropathy associated with
lower extremity vascular insufficiency in a rabbit model
(422). In addition, extraluminal administration of as little as
2 �g of recombinant human VEGF was reported to result in
a significant increase in coronary blood flow in a pig model
of chronic myocardial ischemia (423). Adenoviral-mediated
gene transfer of VEGF121 has also been found to result in
collateral vessel growth and functional improvement in a
porcine model (424).

The hypothesis that VEGF may result in therapeutically
significant angiogenesis in humans was initially tested by
Isner et al. (425) using a gene therapy approach. Arterial gene
transfer of naked plasmid DNA encoding VEGF165 was re-
ported to result in angiographic and histological evidence of
angiogenesis in the knee midtibial and ankle levels 4 wk after
the transfer in a single patient with severe limb ischemia. In
a subsequent study, the VEGF165 cDNA was injected im in 10
limbs of nine patients with nonhealing ischemic ulcers
and/or rest pain due to peripheral arterial disease and was
reported to improve distal blood flow in several patients
(426). The same group also reported that local injection of
naked plasmid DNA encoding VEGF165 results in a thera-
peutic effect in patients with myocardial ischemia (427).
However, none of these studies were placebo controlled. A
relatively large (174 patients) placebo-controlled phase II
study in which recombinant human VEGF165 was delivered
as a single intracoronary infusion, followed by three iv in-
jections, did not demonstrate clinical benefit. The treatment
was not superior to the placebo in treadmill time and pain
relief, at least at a 60-d assessment, although some improve-
ment in angina class was measured at a later time point (117).
This study indicated that the placebo effect is considerably
greater than initially suspected and that even patients with
markedly compromised myocardial function may show, at
least initially, a significant improvement in response to pla-
cebo. A major difference between animal models and human
patients may lie in the fact that young and otherwise healthy
animals are able to mount an effective endogenous angio-
genic response that can be maximized by an additional stim-
ulus provided by recombinant protein or gene therapy,
whereas patients with extensive atherosclerotic disease may
have an impaired response to endogenous and exogenous
factors. However, an increase in vascularity was recently
reported in a controlled trial with adenovirus-mediated de-
livery of VEGF165 in limb ischemia patients (428).

Currently, several laboratories are exploring the possibil-
ity that a more persistent exposure than that achieved in the
early trials may achieve better results. In this context, recent
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FIG. 9. Distribution of VEGF and EG-VEGF mRNA in parallel sections of cysts in individual PCOS ovaries. Parallel sections were hybridized
with EG-VEGF antisense (D–F), VEGF antisense (G–I), EG-VEGF sense (J—L), and VEGF sense (M–O) riboprobes. Hematoxylin and eosin
(H&E) images (A–C) are shown for reference. Panels A, D, G, J, and M, Detail of late-stage atretic follicle; EG-VEGF (D) is strongly expressed
in theca cells surrounding follicle lumen in which the granulosa cell layer has degenerated. Panels B, E, H, K, and N, Detail of early-stage atretic
follicle; VEGF (H) is strongly expressed in granulosa cells surrounding the follicle lumen; some surrounding thecal cells are weakly VEGF
positive; EG-VEGF (C) is expressed in clusters of surrounding thecal cells. VEGF (I) is strongly expressed in granulosa cells surrounding lower
follicle lumen; the surrounding thin layer of thecal cells are weakly VEGF positive, and EG-VEGF negative; EG-VEGF (F) is expressed in the
thecal cells of the upper follicle in which the granulosa cell layer has degenerated. GC, Granulosa cells; Th, theca; St, stroma; L, lumen. Scale
bars are 200 �m (A, D, G, J, and M) and 100 �m (B, C, E, F, H, I, K, L, N, and O). [Reproduced with permission from N. Ferrara et al.: Am J
Pathol 162:1881–1893, 2003 (288).]
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studies using a conditional VEGF switch have shown that
early cessation of the VEGF stimulus results in regression of
newly formed vessels in the heart or in the liver. However,
after a critical duration of exposure, the vessels persisted for
months after VEGF withdrawal and resulted in an improve-
ment in organ perfusion (429). Furthermore, a combination
of growth factors offers the theoretical advantage of reca-
pitulating at least some of the events leading to the correct
assembly of the vessel wall. Coadministration of VEGF and
angiopoietin-1 has been proposed to result in more normal
and less leaky vessels than those induced by VEGF alone
(430). Likewise, delivery of both bFGF and PDGF-BB has
been reported to result in the induction of stable vascular
networks in a model of limb ischemia (431).

A greater understanding of the differential role of VEGF
receptors may open additional avenues. In particular, recent
studies have emphasized that VEGFR-1, a molecule with
highly complex and apparently conflicting roles, possesses
important activities in hematopoiesis and in the recruitment
of mononuclear cells. The fact that VEGFR-1 activation is
associated with fewer side effects relative to VEGF makes it
a particularly attractive target. Furthermore, the recent re-
port that a VEGFR-1 agonist protects the liver from toxic
damage, by instructing the quiescent endothelium to pro-
duce a series of tissue-specific growth factors, extends the
potential clinical applications of VEGFR-1 agonists (217).

Other activities of VEGF may have interesting clinical im-
plications. For example, on the basis of the key role played
by VEGF in angiogenesis and endochondral bone formation
(258), the application of this factor might be useful to enhance
revascularization and healing of fractures and other skeletal
conditions (for review, see Ref. 270). Recent studies have
shown that both recombinant (266) and adenovirus-deliv-
ered (432) VEGF leads to enhanced blood vessel formation
and ossification in models of bone damage. Figure 10 illus-
trates the effects of recombinant VEGF in a rabbit model of
segmental gap defect.

XI. Perspectives

The VEGF family clearly plays an essential role in the
regulation of embryonic and postnatal physiological angio-

genesis processes, such as normal growth processes (83, 260)
and cyclical ovarian function (167). Furthermore, VEGF in-
hibition has been shown to suppress pathological angiogen-
esis in a wide variety of models, including genetic models of
cancer, leading to the clinical development of a variety of
VEGF inhibitors. An important question is what impact
VEGF inhibition will have in human patients, especially
those with highly advanced malignancies. Initial encourag-
ing phase II results were followed by setbacks, such as the
lack of efficacy of SU5416 in a phase III study in metastatic
CRC in combination with chemotherapy, or the lack of sur-
vival benefit in patients with refractory metastatic breast
cancer treated with bevacizumab plus chemotherapy as a
third-line therapy (433). Most recently, however, a large
phase III study has provided unequivocal evidence that
VEGF inhibition, using bevacizumab in combination with
chemotherapy, may provide a substantial clinical benefit,
including increased survival, in patients with previously un-
treated metastatic CRC (37). Bevacizumab is the first anti-
angiogenic agent to be approved by the Food and Drug
Administration as a cancer therapy.

It is unclear at present whether such differences in re-
sponse to bevacizumab reflect a different biology/angio-
genic profile between breast and CRC or simply a reduced
response in more advanced disease. However, progression
eventually occurs in many CRC patients, raising the question
of what might mediate angiogenic escape after VEGF inhi-
bition, although one cannot rule out the possibility that a
different dosage/regimen of bevacizumab might achieve
even greater efficacy. Different angiogenic mechanisms
might be differentially important at various stages of the
neoplastic progression, and some data suggest that VEGF
may be especially important in the initial stages (434). Such
a notion may be useful for the design of further clinical trials.
The existence of organ-specific angiogenic pathways may be
particularly important in some endocrine tumors, in which
both VEGF and EG-VEGF are highly expressed (286).

Recent studies have proposed that pericyte recruitment
into tumor vasculature, a process dependent on PDGFR�
signaling, is a mechanism of resistance in late-stage tumors
to therapies that only target VEGF (435). These findings
suggest that combination therapies that target both VEGF

FIG. 10. VEGF promotes bone repair.
Three-dimensional (3D) renderings of CT
images of radius critical defects at 28 d in
vehicle and VEGF (250 �g)-treated rabbits.
Segmental defects in rabbit radii were cre-
ated, and animals were implanted with a
pump with various doses of VEGF (0, 50,
100, 250, and 1000 �g) continuously re-
leased over the first 7 d after surgery. Con-
sistent with the critical size (10 mm) of these
defects, vehicle-treated defects were not able
to create a bony bridge across the gap. In
contrast, VEGF treatment caused signifi-
cant filling with bone. VEGF, at 250 �g,
caused a 91% increase (P � 0.02) in total
callus volume and a 95% increase (P � 0.02)
in calcified callus volume. [Adapted with
permission from Street et al.: Proc Natl Acad
Sci USA 99:9656–9661, 2002 (266). © Na-
tional Academy of Sciences, U.S.A.]
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and PDGF may be promising. Furthermore, reliable markers
that can predict which patients are more likely to respond to
anti-VEGF therapy (or other antiangiogenic treatments)
would be of utmost importance, but so far they have been
elusive.

The potential clinical utility of VEGF inhibition is not lim-
ited to cancer. Trials in AMD patients are already in phase
III and, as already noted, initial evidence indicates that the
treatment has efficacy. Furthermore, gynecological condi-
tions such as endometriosis or PCOS might also benefit from
this approach.

Finally, the recent progress in the molecular and biological
understanding of blood vessel growth and differentiation
raises hope that a return to human trials for therapeutic
angiogenesis may be more rewarding than the early
attempts.
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