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Type 2 diabetes is a complex disorder with diminished insulin
secretion and insulin action contributing to the hyperglyce-
mia and wide range of metabolic defects that underlie the
disease. The contribution of glucose metabolic pathways per
se in the pathogenesis of the disease remains unclear. The
cellular fate of glucose begins with glucose transport and
phosphorylation. Subsequent pathways of glucose utilization
include aerobic and anaerobic glycolysis, glycogen formation,

and conversion to other intermediates in the hexose phos-
phate or hexosamine biosynthesis pathways. Abnormalities in
each pathway may occur in diabetic subjects; however, it is
unclear whether perturbations in these may lead to diabetes
or are a consequence of the multiple metabolic abnormalities
found in the disease. This review is focused on the cellular fate
of glucose and relevance to human type 2 diabetes. (Endocrine
Reviews 25: 807–830, 2004)
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I. Introduction

THE PATHOPHYSIOLOGY OF type 2 diabetes involves
impairments in both insulin action and insulin secre-

tion (1–3). Insulin sensitivity is determined by the ability of
insulin to promote glucose uptake and utilization. Thus, in
insulin-resistant conditions, there is decreased glucose clear-
ance in response to insulin. Insulin regulates glucose ho-
meostasis primarily through suppression of hepatic glucose
production and stimulation of peripheral (and to a lesser
degree, splanchnic) glucose uptake (4). Clinical studies in
man have demonstrated impaired ability of insulin to pro-

mote glucose clearance in type 2 diabetic subjects assessed
after oral glucose administration (5), during euglycemic hy-
perinsulinemic clamp studies (6), or by nuclear magnetic
resonance spectrometry (7). The most conclusive evidence
for defective insulin sensitivity in type 2 diabetes comes from
euglycemic hyperinsulinemic clamp studies, in which total
body glucose clearance is shown to be reduced in type 2
diabetic subjects compared with age and weight-matched
controls (6). Furthermore, in vivo human studies suggest that
the primary site of reduced insulin-mediated glucose uptake
is located in the peripheral (muscle) tissue (6, 8). Decreased
insulin-mediated glucose clearance seen in type 2 diabetes
has also been demonstrated in humans at risk for develop-
ment of diabetes, including persons with obesity, hyperten-
sion, hyperlipidemia, or a strong family history of disease (9,
10). Thus, extensive research on the development of type 2
diabetes has been focused on cellular and molecular pro-
cesses of insulin signaling (11, 12).

In humans, insulin secretion increases with progressive
insulin resistance, and the relationship is both hyperbolic and
tightly coupled (13). Failure of pancreatic �-cells to compen-
sate for insulin resistance is critical in the pathogenesis of
type 2 diabetes (4). Factors limiting the ability of �-cells to
respond to an increasing demand remain largely unknown,
but likely involve genetic factors as well as glucotoxicity and
lipotoxicity (14, 15). In addition, diminished insulin secretion
could be mediated in part by abnormal glucose metabolism
within the �-cell where glucose metabolism is coupled to
insulin biosynthesis and secretion (16), as well as to �-cell
mass by hypertrophy, hyperplasia, and neogenesis (17).
Moreover, recent studies have shown the �-cell itself to be an
insulin-responsive tissue, demonstrating an additional po-
tential link between peripheral insulin resistance and �-cell
failure (18, 19).

Glucose metabolic pathways must also be considered in
the pathogenesis of the disease. Whole body glucose clear-
ance is due to both insulin-dependent and insulin-indepen-
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dent mechanisms, with insulin-independent clearance de-
rived from the ability of plasma glucose to influence its own
clearance by a mass action effect (20–23). In addition, glucose
per se may play an important role in promoting glucose
resistance via down-regulation of the enzymes involved its
own metabolism, such as AMP-activated protein kinase
(AMPK) (24), permitting amplification of diminished clear-
ance. Thus, in definition, glucose resistance would exist in
vivo when for any reason insulin-independent glucose clear-
ance is low. Insulin-independent glucose clearance is a major
determinant of iv glucose tolerance in healthy subjects (25),
such that after glucose administration, as much as half of the
decline in plasma glucose is due to the effect of hypergly-
cemia on glucose disposal (26). To date, the glucose effec-
tiveness (SG) measure from the Bergman model iv glucose
tolerance test remains one of the best measures of glucose
resistance (21). It should be noted that SG derived from the
iv glucose tolerance testing model maintains a dependence
on basal insulin and is thus a mixed parameter. In people
with diabetes, the ability of glucose to promote glucose clear-
ance is impaired, suggesting glucose resistance (27). Dimin-
ished insulin-independent glucose clearance is seen early in
the pathogenesis of type 2 diabetes, as demonstrated by the
contribution of glucose resistance to the incidence of disease
in the prospective evaluation of the development of diabetes
in normoglycemic offspring of type 2 diabetic parents (10).
Thus, in addition to the established role of insulin in the
pathophysiology of diabetes, glucose itself plays a central
role through its ability to control insulin secretion and to
self-regulate its own disposal.

However, the minimal model has been suggested to sys-
tematically overestimate SG in the presence of rapidly fluc-
tuating glucose and insulin concentrations as seen during the
iv glucose tolerance testing conditions (28) or underestimate
SG in the presence of blunted insulin secretory capacity (29).
To overcome these limitations, others have employed clamp
techniques in which basal insulin concentrations were main-
tained constant by an exogenous insulin infusion, endoge-
nous hormone secretion was inhibited by somatostatin, and
assessment was made of the integrated glycemic response
above baseline during identical prandial glucose infusions as
a measure of SG at basal insulin (30). In this important study,
diminished SG was found to be mediated by a reduced ability
of glucose to stimulate its own disappearance via mass action
and by an inhibitory effect of glucose on its own clearance.
Both factors contributed to the greater rise in glucose in
diabetic subjects, and this occurred without altered suppres-
sion of endogenous glucose production. Such studies pro-
vide additional support that in the presence of basal insulin
concentrations, the effects of glucose per se on its own me-
tabolism are diminished in people with type 2 diabetes.

To better understand the role of glucose resistance in the
development of diabetes, this review will focus on the dif-
ferent pathways of glucose metabolism, their contribution to
the development of type 2 diabetes, and the potential targets
of antiglycemic drugs. In the attempt to understand the un-
derlying pathophysiology of type 2 diabetes and to develop
new therapeutic agents to treat the disease, the scientific
community is actively performing investigations that in-
volve increasing or decreasing levels or activity of proteins

in these glucose metabolic pathways using site-directed mu-
tagenesis, knock-in/knockout models, or gene silencing
techniques singly or in combination, in cell and animal mod-
els. These studies reveal both specificity of enzyme function
and a surprising degree of redundancy by which pathway
function can be maintained even in the setting of specific
perturbations. Traditionally, metabolic pathway activity has
been considered to be regulated by either substrate avail-
ability or rate-limiting enzymes. However, it is becoming
increasingly apparent that activity of entire pathways can be
regulated in a coordinated fashion at the level of protein–
protein interactions (exemplified by glycogen synthase and
phosphorylase activities) or at the transcriptional level by
nuclear factor(s) and cofactor(s) such as those seen with
peroxisome proliferator-activated receptor (PPAR)� coacti-
vator 1� (PGC-1�). Changes in expression or activity of sin-
gle gene products may not appear significant independently,
but small alterations in multiple steps of a pathway may exist
simultaneously with substantial physiological implications.
Although there is a large body of literature on insulin resis-
tance contributing to the hyperglycemia of type 2 diabetes
(reviewed in Refs. 2 and 31) and on the potential role of
primary disturbances in lipid metabolism contributing to
secondary changes in carbohydrate metabolism in diabetes
and other insulin-resistant states (reviewed in Refs. 32 and
33), formal discussion of these topics is beyond the scope of
this review. Rather, this review will focus on the clinical
defects that occur in carbohydrate metabolism in type 2 di-
abetes, both physiological and genetic, and on pharmaco-
logical interventions that may ameliorate these defects as a
framework to better understand the contribution of the cel-
lular fate of glucose to the development of type 2 diabetes.

II. The First Step: Glucose Transport and
Phosphorylation

A. Glucose transport pathways

Although there are three principal monosaccharides re-
sulting from the digestive process, i.e., glucose, fructose, and
galactose, both fructose and galactose are readily converted
to glucose by the liver; thus, for all these sugars, glucose
metabolism becomes a critical factor in determining their
fate. Although fatty acids and ketone bodies can be used for
fuel in muscle and other tissues in the fasted state, in mam-
malian cells glucose metabolism generating ATP through
either aerobic or anaerobic pathways provides the principal
source of cellular energy and substrate storage (Fig. 1). How-
ever, due to its hydrophilic nature, glucose cannot penetrate
the lipid bilayer, and thus, specific transporter proteins are
required for facilitated diffusion into cells. The energy-
independent transport of glucose down its concentration
gradient is mediated by two distinct families of hexose trans-
port proteins present on the cell membrane (34): facilitative
glucose carriers [(glucose transporters (GLUTs)] and
sodium-glucose cotransporters (SGLTs).

1. Facilitative GLUT family. To date, 13 functional mammalian
facilitated hexose carriers (GLUTs) have been characterized
by molecular cloning. Structurally, all members of this family
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of proteins possess 12 membrane-spanning helices, with a
larger intracellular loop connecting the sixth and seventh
helices. The facilitated transport of glucose is saturable, ste-
reoselective, and bidirectional. According to the sequence
similarities, three classes of GLUTs have been defined.
Class I GLUTs include the high-affinity binding proteins
GLUT1, GLUT3, and GLUT4 and the lower-affinity trans-
porter GLUT2. Class II transporters including GLUT5, GLUT7,
GLUT9, and GLUT11 or myoinositol transporter (HMIT1) have
a very low affinity for glucose and preferentially transport fruc-
tose, and thus they are not additionally discussed in this review.
Class III transporters comprise four novel GLUTs, GLUT6,
GLUT8, GLUT10, and GLUT12 (35).

a. Class I: high-affinity transporters (GLUT1, GLUT3, and
GLUT4). The Michaelis-Menten constants (Km) of most of the
class I GLUTs (between 2 and 5 mmol/liter) are below the
normal range of blood glucose concentrations. Thus, the
high-affinity transporters function at rates close to maximal
velocity, and levels of cell surface expression greatly influ-
ence the rate of glucose uptake into cells.

i. GLUT1. In adult tissues, GLUT1 is expressed at the
highest levels in erythrocytes, kidney, colon, and cells of
blood-tissue barriers, including glial cells of the blood-brain
barrier. GLUT1 is also present at low levels in liver, adipose
tissue, and muscle. GLUT1 is the primary GLUT in fetal
tissues and tissue culture cells (34).

GLUT1 is a widely expressed isoform that provides glu-
cose transport under basal conditions for many cells. More-
over, the exposure of many mammalian cell types to meta-
bolic stresses such as hypoxemia and inhibition of oxidative
phosphorylation or to osmotic stresses results in an acute
increase in the rate of glucose uptake by GLUT1, probably
mediated by AMPK (36). This adaptive response allows cells
to increase their ATP levels when necessary from the gly-
colytic pathway. The activity of GLUT1 is modulated by
pretranslational modifications of gene expression (37), by
posttranslational modifications including transporter redis-
tribution mediated by insulin in insulin-sensitive tissues (38),
and by increased substrate binding activity probably via
protein–protein interactions (39).

FIG. 1. Schematic representation of the cellular fate of glucose showing the major metabolic pathways: glucose transport and phosphorylation,
glycolysis, glycogen synthesis, pentose phosphate pathway, and hexosamine biosynthesis pathway.
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Two different hemizygous nonsense mutations of the
GLUT1 gene resulting in truncated protein expression have
been described in man (40). These patients have a syndrome
characterized by infantile seizures, delayed development,
and microcephaly, with hypoglycorrachia (low cerebrospi-
nal fluid glucose), but normal blood glucose.

ii. GLUT3. GLUT3 is the major neuronal GLUT isoform.
With the lowest Km for glucose, it is the ideal GLUT for
neuronal cells that are incapable of glycogen storage yet have
a high glucose demand (34). GLUT3 is also expressed in
macrophages, platelets, placenta, and testes. The regulation
of glucose uptake by GLUT3 occurs through cellular trans-
location (41) and regulation of gene expression by hyper-
glycemia (42). Dysfunction or inadequate expression of
GLUT3 has not yet been described in man.

iii. GLUT4. GLUT4 mediates insulin-stimulated glucose
uptake by skeletal muscle, heart, and white and brown ad-
ipose tissues by a mechanism involving translocation be-
tween cellular compartments. GLUT4 recycles continuously
between the cell surface and the intracellular storage com-
partment. Insulin increases cell surface expression levels of
GLUT4 by increasing the rate of externalization and reducing
the rate of internalization (43). Thus, under hyperinsulinemic
conditions, increased glucose entry into the muscle is due to
the greater number of functioning GLUTs at the cell mem-
brane (44). Although the mechanism of movement of GLUT4
to the cell surface differs, exercise can also increase external
membrane GLUT4 levels, thereby facilitating increased glu-
cose disposal (44).

The fundamental role of GLUT4 in glucose homeostasis
can be demonstrated in transgenic animal models. Muscle-
specific overexpression of GLUT4 is sufficient to significantly
improve insulin action and to reduce blood glucose levels in
diabetic mice (45, 46). Overexpression of GLUT4 in adipose
tissue improves glucose tolerance and induces fat cell hy-
perplasia (47). Conversely, targeted disruption of GLUT4 in
muscle causes both reduced basal glucose transport and a
near-absence of stimulation by insulin or muscle contraction,
as well as whole-body insulin resistance and glucose intol-
erance from an early age (48). The phenotype of the muscle-
selective disruption of GLUT4 contrasts with that of the
whole-body GLUT4 knockout mouse, which exhibits growth
retardation, severely reduced adipose tissue deposits, car-
diac hypertrophy, and decreased life span (49). These
GLUT4-null mice have decreased insulin-stimulated skeletal
muscle glucose uptake and impaired insulin tolerance (49,
50). Although the cause of the phenotypic differences be-
tween selective tissue and whole-body deficiency of GLUT4
remains unclear, it is possible that compensatory overex-
pression of other GLUTs, as well as indirect effects of GLUT4
on fat storage and metabolism, may explain the disparity in
insulin tolerance between these models.

b. Class I: low-affinity transporters (GLUT2). GLUT2 is
present on �-cells and in tissues exposed to large glucose
fluxes, such as intestine, liver, and kidney (51). GLUT2 has
a high transport capacity and a higher Km for glucose than
GLUT1 (Km � 25, compared with 6 mmol for glucose, GLUT2
vs. GLUT1, respectively) (52, 53). Thus, the rate of transport

of glucose by GLUT2 is largely proportional to the ambient
glucose concentration, a feature that allows for glucose
sensing at times where levels of glucose change, as in the
postprandial state. Hyperglycemia induces GLUT2 gene ex-
pression in pancreatic islets and in the liver, whereas hy-
perinsulinemia decreases GLUT2 in the liver (54–56). The
pancreatic �-cells of GLUT2-null mice are characterized by
a loss of first phase but preserved second phase insulin
secretion (57). In humans, an inactivating mutation of GLUT2
is present in Fanconi-Bickel syndrome, a rare autosomal re-
cessive disorder of carbohydrate metabolism, characterized
by fasting hypoglycemia, hepatorenal glycogen accumula-
tion, glucose and galactose intolerance, and a characteristic
proximal tubular nephropathy (58, 59). Although most stud-
ies suggest that glucokinase enzymatic activity is rate lim-
iting for the liver and �-cell (reviewed in Ref. 60), expressions
of both GLUT2 and glucokinase appear to have coordinate
regulation (54, 61), causing controversy as to whether it is
transport or phosphorylation that limits pathway activity in
diabetes (57, 62).

c. Class III: novel GLUTs (GLUT6, GLUT8, GLUT10, and
GLUT12). Less is known about the Class III transporter pro-
teins. They exhibit tissue- and cell-specific expression pat-
terns and demonstrate preferential transport of glucose sim-
ilar to class I transporters. GLUT6 (previously named
GLUT9) is predominantly expressed in spleen, leukocytes,
and brain (63). It undergoes tightly regulated subcellular
redistribution in response to an unknown stimulus (64). In
humans, GLUT8 (previously named GLUTX1) is predomi-
nantly found in insulin-sensitive tissues such as muscle, fat,
and liver, as well as in testis, and is inhibited by fructose (65).
GLUT10 is predominantly expressed in insulin-sensitive tis-
sues (liver, muscle, and pancreas), but is also found in lung,
brain, placenta, and kidney (66). Likewise, GLUT12 is pre-
dominantly expressed in skeletal muscle, heart, fat, and pros-
tate. In the absence of insulin, this receptor is found in a
perinuclear location (67). To date, there are no known human
or animal diseases associated with alterations in either pro-
tein structure or expression of the class III transporters.

2. SGLT family. Members of this family of transporters struc-
turally contain 14 transmembrane �-helices. Sodium perme-
ates through the NH2-terminal of the protein, and the sugar
via the COOH-terminal (68). These proteins are expressed at
the highest levels in the intestine and kidney. Two distinct
members of the SGLT family have been described; however,
cDNA library data suggest the existence of additional
GLUTs, which have yet to be characterized in detail (68).

a. SGLT isoform-1 (SGLT1). SGLT1 utilizes the electrochem-
ical sodium gradient to transport glucose and galactose
against their concentration gradients, although it can also act
bidirectionally (68). SGLT1 is responsible for the dietary up-
take of glucose and galactose from the lumen of the small
intestine and plays a minor role in reabsorption from the
urine in the nephron. A defect in SGLT1 has been implicated
in glucose-galactose malabsorption, a syndrome of neonatal
diarrhea that can result in death unless these sugars are
removed from the diet (69).
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b. SGLT isoform-2 (SGLT2). SGLT2 is principally expressed
in the kidney, and it preferentially transports glucose across
the brush border of the human proximal tubule. Changes in
sodium or glucose filtration rates modulate the expression of
SGLT2 in renal proximal tubular cells (70). The major portion
of the filtered glucose is reabsorbed in the early proximal
tubule by SGLT2. Recently, a nonsense mutation of SGLT2
was implicated in a case of autosomal recessive renal gly-
cosuria (71).

3. Role of an abnormal glucose transport in human type 2 diabetes.
Muscle is the principal site of insulin-stimulated glucose
disposal in vivo. Previous studies have indicated that in mus-
cle, glucose transport is the rate-limiting step for glucose
metabolism in normal glucose-tolerant (72, 73) and diabetic
(74, 75) persons. Defects in total glucose transport into mus-
cle have been implicated in the reduced insulin sensitivity
observed in type 2 diabetes. Glucose transport activity, as-
sessed by serial measurements of intracellular glucose using
a 13C-nuclear magnetic resonance technique, appears to be
the rate-controlling step in insulin-stimulated muscle glyco-
gen synthesis in type 2 diabetic patients (76). Moreover,
insulin-resistant offspring of parents with type 2 diabetes
manifest a similar defect (77).

Of all the transport proteins, GLUT4 has been most ex-
tensively studied in humans with insulin resistance. In the
muscle of these subjects, there appears to be normal expres-
sion of GLUT4 but diminished targeting and trafficking (78–
80). Such alterations in protein regulation are also seen in
adipocytes (81), and these cells similarly have a marked
reduction in GLUT4 expression in type 2 diabetes (82). Poly-
morphisms in the GLUT4 gene are very rare in type 2 dia-
betes and have the same prevalence among nondiabetic per-
sons, suggesting that these are population variants and do
not play a role in the etiology of the disease (83). Exercise, in
part by inducing stimulation of GLUT4 translocation, has a
therapeutic effect on control of glycemia in people with di-
abetes (84) and decreases the risk for type 2 diabetes in
high-risk populations (85), although it may not be appro-
priate for patients with extremely poor glycemic control (86)
or those with significant underlying cardiovascular disease.
AMPK increases GLUT4 translocation in response to insulin
and during exercise by insulin independent mechanisms
(84).

GLUT10 may also contribute to the decreased glucose
transport seen in type 2 diabetes and was identified through
a survey of expressed sequences in the type 2 diabetes-linked
region of human chromosome 20q12–13.1. The gene local-
ization and functional properties suggest a role for GLUT10
in glucose metabolism and type 2 diabetes; however, the
information available to date remains limited (66, 87). In
addition, polymorphisms in the coding region of GLUT2
may be more abundant in persons with type 2 diabetes,
although their effect on protein abundance and function
requires further evaluation (88).

Increased concentrations of GLUTs would provide a ther-
apeutic advantage in diabetes. Although the main therapeu-
tic effect of sulfonylureas is to potentiate insulin secretion,
some studies suggest an additional role of facilitating the
translocation of both GLUT4 and GLUT1 to the cell surface

in insulin-resistant adipocytes (89) and in myofibrils (90).
Similarly, large doses of biguanides in vitro have demon-
strated an ability to increase GLUT4 translocation in adipo-
cytes (91) and in muscle (92). However, this effect has been
harder to demonstrate in vivo (93). In isolated rat skeletal
muscle, metformin stimulates glucose uptake coincident
with AMPK activation (94), suggesting an important role of
this signaling pathway in the regulation of glucose transport
and drug effect. In contrast, thiazolidinediones, the newest
class of insulin-sensitizing drugs, increase glucose disposal
in peripheral tissues (93, 95), and in vitro studies confirm that
thiazolidinediones are able to enhance both GLUT1 expres-
sion (96, 97) in cultured muscle and mesangial cells and
GLUT4 translocation in muscle (98). These effects on glucose
transport also appear to be mediated through activation of
AMPK, although signaling pathways distinct from those of
metformin are involved (99). These in vitro findings are sup-
ported in vivo by studies of troglitazone in type 2 diabetic
humans, which demonstrate improved insulin responsive-
ness in skeletal muscle and increased glucose transport ac-
tivity, as assessed by euglycemic hyperinsulinemic clamp
and nuclear magnetic resonance and spectrometry (100, 101).

B. Phosphorylation/dephosphorylation of glucose

1. Description of the pathways. The first step in glucose me-
tabolism is its transport into cells where it is rapidly phos-
phorylated to glucose 6-phosphate (G-6-P) by hexokinases,
trapping the glucose within the cell. The reverse reaction is
mediated by the enzyme glucose 6-phosphatase.

a. Hexokinase family. Mammalian tissues contain four types
of hexokinases, designated as hexokinases I-IV depending on
their electrophoretic mobility. These isozymes also differ in
their regulatory properties, tissue distribution, and intracel-
lular location. The type I-III isozymes have a molecular mass
of approximately 100 kDa and are thought to have evolved
by duplication and fusion of a gene encoding an ancestral
50-kDa hexokinase. The type IV isozyme is about 50 kDa and
is presumed to have evolved directly from the ancestral gene.
As expected from this proposed evolutionary scenario, the
isozymes exhibit striking internal sequence similarity, with
the N- and C-terminal halves being approximately 50% iden-
tical (102). Hexokinases I-III have a low Km (10�6 to 10�1

mmol/liter), whereas hexokinase IV, also named glucoki-
nase, has a high Km (between 6 and 15 mmol/liter) for
glucose.

i. High-affinity hexokinases (types I, II, and III). Hexokinases
I-III all exhibit high affinity for glucose. These proteins are
subject to varying degrees of feedback inhibition by their
product G-6-P.

Hexokinase I is relatively ubiquitous, is found in skeletal
muscle and �-cells, but has the highest levels of expression
in brain and kidney (103). A significant portion is associated
with mitochondria. The mitochondrially bound enzyme is
more active than the soluble enzyme because the bound form
can preferentially utilize ATP generated in the mitochondria
and is less sensitive to G-6-P inhibition (104). G-6-P can
inhibit hexokinase I activity either by a direct effect through
allosteric inhibition (105) or by inducing the solubility of the
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enzyme (106). Orthophosphate can reverse these inhibitory
effects (106).

Hexokinase II is most abundantly expressed in insulin-
responsive skeletal muscle and adipose tissues (107). Hex-
okinase II constitutes the vast majority of total hexokinase
activity in muscle and plays an essential role in skeletal
muscle glucose uptake (108). Under hyperglycemic-hyper-
insulinemic clamp conditions, glucose transport and/or hex-
okinase activity was found to be diminished in persons with
a strong family history of diabetes (77), whereas in transgenic
animals with modestly increased levels of hexokinase II,
glucose phosphorylation appeared rate limiting under sim-
ilar conditions (108). Hexokinase II is largely cytosolic (109)
but, like hexokinase I, may also be found bound to the mi-
tochondria and can also be inhibited by G-6-P. Exercise (110),
catecholamines (111), and insulin (107, 112) can all increase
hexokinase II mRNA levels and activity and modify subcel-
lular localization (112) in both skeletal muscle and adipose
tissues. Multiple signaling pathways may be involved in the
induction of hexokinase expression: in muscle, insulin uti-
lizes the phosphatidylinositol 3-kinase (PI3K)/p70(s6k) de-
pendent pathway (113), whereas in mesangial cells epider-
mal growth factor acts though the MAPK pathway (114).
Homozygous hexokinase II-deficient mice die in the prenatal
state, whereas heterozygotes lack any disturbances in glu-
cose tolerance as assessed by glucose and insulin tolerance
testing after either normal or provocative high-fat diets (115).
Transgenic mice overexpressing hexokinase II demonstrate
increased insulin and exercise-stimulated muscle glucose
uptake in vivo (108, 116).

Hexokinase III is the principal isoform in the spleen and
lymphocytes. The nuclear localization of the type III isozyme
contrasts with the mitochondrial association of isoforms I
and II (117). Hexokinase III appears to be expressed in cells
involved in transport, secretion, and filtration functions and
could play a role during development (103). However, little
is known about the metabolic role of hexokinase III.

ii. Low-affinity hexokinases (type IV or glucokinase). Glucoki-
nase (hexokinase IV) is predominantly expressed in liver and
�-cells. Glucokinase exhibits a low affinity (between 6 and 11
mmol/liter) for glucose and is not inhibited by physiological
concentrations of G-6-P. Glucokinase is the rate-limiting step
for glucose metabolism in �-cells and is responsible for glu-
cose-mediated regulation of insulin secretion (118). Expres-
sion of this enzyme is differentially regulated such that he-
patic glucokinase is stimulated by insulin and inhibited by
cAMP, whereas in �-cells its activity is increased by glucose
(119, 120). In the �-cell, glucokinase activity is largely reg-
ulated by transcriptional mechanisms (17), whereas in liver,
binding to glucokinase regulatory protein can also acutely
regulate activity (121). In liver, glucokinase is sequestered in
the nucleus with glucokinase regulatory protein at low con-
centrations of extracellular glucose (121).

The glucokinase gene has been characterized and is un-
usual as it contains two different transcriptional control do-
mains. One region regulates transcription of the gene in the
liver, whereas the other region, which lies at least 12 kb
further upstream, controls transcription in the pancreatic
�-cell. The finding of two different transcription control do-

mains in a single glucokinase gene provides a genetic basis
for the tissue-specific differential regulation of glucokinase.
Interestingly, Leibiger et al. (19) showed that the insulin
receptor isoform B, which is a splice variant of the receptor
containing a 12-amino acid insert (exon 11) near the C ter-
minus of the �-subunit, may preferentially regulate glucoki-
nase gene expression in the �-cell compared with the insulin
receptor isoform A, which does not contain the additional
sequence. These findings suggest that insulin could increase
glucokinase gene expression within the �-cell, a mechanism
that could amplify the ability of the cells to sense glucose.

Transgenic animals with either liver or �-cell-specific
knockouts help elucidate the complex role of glucokinase in
each tissue. Whereas global or �-cell glucokinase-deficient
mice die shortly after birth of severe diabetes, heterozygous
animals survive but have moderate hyperglycemia. In con-
trast, mice without glucokinase in liver are only modestly
hyperglycemic but have impaired glycogen synthesis and
glucose turnover, as well as defects in insulin secretion in
response to glucose (122).

b. Phosphatase: glucose-6-phosphatase. Glucose-6-phospha-
tase catalyzes the hydrolysis of G-6-P to produce glucose and
phosphate. The enzyme is expressed mainly in the liver and
kidney and is critical in providing glucose to other organs
during prolonged fast or starvation. This enzyme is absent in
muscle and other tissues, which therefore cannot release
glucose to the bloodstream. Activity is inhibited by both
insulin and glucose, which become elevated after feeding,
thereby reducing endogenous glucose production in the fed
state. Levels are increased by glucagon and glucocorticoids
(123, 124). The enzyme is membrane-bound, associated with
the endoplasmic reticulum. The enzyme glucose-6-phospha-
tase translocase acts to transport G-6-P from the cytoplasm
to the lumen of the endoplasmic reticulum.

Deficiencies in glucose-6-phosphatase and glucose-6-
phosphatase translocase cause glycogen storage disease type
1, characterized by growth retardation, hypoglycemia, hep-
atomegaly, kidney enlargement, hyperlipidemia, hyperuri-
cemia, and lactic acidemia (125). Moreover, the overexpres-
sion of glucose-6-phosphatase in liver (126) or pancreas (127)
induces insulin resistance in transgenic mouse models.

2. Implications of glucose phosphorylation for human
type 2 diabetes

a. Hexokinase family

i. Hexokinase II. Hexokinase II levels have been found to be
low in skeletal muscle of subjects with type 2 diabetes com-
pared with matched controls (128). The decreased expression
is muscle specific and is not seen in sc adipose tissue, im-
plicating tissue specific alteration (129). Moreover, in healthy
normal weight and obese persons evaluated after hyperin-
sulinemic clamp, hexokinase II gene expression is up-regu-
lated in muscle and adipose tissues, whereas in type 2 dia-
betic subjects this up-regulation is blunted (129, 130).
Although a polymorphic variant of hexokinase II has been
identified, there is no apparent link between variants of this
gene and type 2 diabetes (131, 132). Thus, it is unlikely that
this polymorphism is the etiology of type 2 diabetes, and
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regulation of protein expression or activity may be a conse-
quence of diabetes per se.

ii. Glucokinase. A loss of function mutation of glucokinase
was identified in some families with maturity onset diabetes
of the young (MODY) (133–135). These patients demonstrate
decreased glucose phosphorylation and decreased insulin
secretion (17). The diabetes is often diagnosed in the second
decade of life, is usually mild, and is often controlled by diet
with or without a sulfonylurea drug (133). In one study,
decreased liver glucokinase enzymatic activity was reported
in type 2 diabetes (136), and functionally decreased glucose
uptake and/or phosphorylation has been seen in several
studies in humans in vivo (77, 137). Recently, these findings
have been complemented by documented cases of hypogly-
cemia caused by an activating glucokinase mutation (138,
139). Although glucokinase regulatory protein has been pos-
tulated to be a candidate gene for type 2 diabetes, no mu-
tations have been found to date in this gene in diabetic
subjects (140), but its regulation is still under investigation.
Although allosteric activators of glucokinase are under de-
velopment (141), to date no drugs are yet available to spe-
cifically increase hexokinase activity, and the only current
alternative to improve enzyme activity is to increase physical
activity.

b. Phosphatase: glucose-6-phosphatase. In type 2 diabetic per-
sons, the lack of suppression of hepatic glucose production
in the setting of hyperglycemia and hyperinsulinemia is con-
sistent with deficient inhibition of glucose-6-phosphatase ac-
tivity or expression (142). Increased endogenous glucose pro-
duction is a consistent feature of type 2 diabetes, and
increased glucose-6-phosphatase activity has been demon-
strated in type 2 diabetic subjects (143).

Metformin acts in part by decreasing endogenous glucose
production (100). Although the mechanism of action of met-
formin is incompletely understood, it may involve the
inhibition of glucose-6-phosphatase activity, with a glycogen-
sparing effect (144). Some studies suggest that thiazolidine-
diones may share this property (145, 146). Because these drugs
have different molecular mechanisms of action, these effects
may be secondary to the altered metabolic environment or due
to a convergence in their signaling pathways.

III. Glucose Utilization Pathways

There are three major pathways for the cellular fate of
glucose, including: 1) oxidation to pyruvate, which may
undergo further oxidation in the citric acid cycle; 2) stor-
age as the polysaccharide glycogen for rapid utilization at
a later time; and 3) conversion to other sugars and inter-
mediates essential for other important biosynthetic
and/or metabolic pathways (Fig. 2), which can include the
generation of glycerol 3-phosphate used in triglyceride
and phospholipid synthesis, a major cellular fate of glu-
cose in adipose, muscle, and liver tissues. Glucose is an
efficient fuel in that more ATP is produced per O2 mole-
cule when compared with oxidation of fat and other fuel
sources. Moreover, glucose is unique in that its metabo-
lism can furnish ATP even in the absence of oxygen.

A. Glucose phosphorylation and glycolysis pathways

1. Description of the pathways. A balance between hepatic
gluconeogenesis and peripheral glycolysis is an important
homeostatic function, especially during a prolonged fast.
Glycolysis occurs with the oxidation of glucose to pyruvate
and lactate and occurs in virtually all living cells. A contin-
uous supply of glucose is necessary as a source of energy,
especially for the nervous system whose cells have minimal
storage capabilities and for erythrocytes, which are unable to
store glucose or use other substrates as fuel.

a. Pyruvate formation. G-6-P is phosphorylated by phos-
phofructokinase to form fructose 1,6-diphosphate. The reac-
tion is subject to allosteric control by cellular levels of ATP,
AMP, and phosphate.

b. Krebs cycle/aerobic glycolysis. Under aerobic conditions,
there can be complete oxidation of carbohydrates, fatty acids,
and proteins to carbon dioxide and water, although glucose
that enters the cycle can be released as lactate, pyruvate, and
alanine particularly during conditions of a prolonged fast.
Aerobic glycolysis yields the net production of 38 molecules
of ATP per molecule of glucose consumed. Pyruvate crosses
the mitochondrial membrane to supply fuel for the Krebs
cycle (tricarboxylic acid cycle, citric acid cycle) or for glu-
coneogenesis. The pyruvate dehydrogenase complex deter-
mines the transformation of pyruvate to acetyl-CoA (coen-
zyme A). This enzyme complex is inactivated by ATP when
cellular energy stores are high and by pyruvate dehydroge-
nase kinase (PDK) (147). PDK1-4 can regulate the pyruvate
dehydrogenase complex by inhibitory phosphorylation of
the complex. The enzymes PDK2 and PDK4 are expressed in
most tissues, whereas PDK1 and PDK3 distribution is more
limited. Levels of PDK4 are up-regulated during starvation,
thereby inhibiting the complex when glucose conservation is
necessary (148–150). Activity of the pyruvate dehydrogenase
complex is a major determinant of the glucose oxidation rate.
Glucose oxidation can then proceed though the Krebs cycle,
a sequence of reactions in which acetyl-CoA is metabolized
to CO2 and hydrogen atoms. In brief, acetyl-CoA is first
condensed with oxaloacetate to form citrate. In a series of
seven subsequent reactions, two CO2 molecules are split off,
regenerating oxaloacetate (151). Exercise can increase the
activity of pyruvate dehydrogenase (152), and pyruvate de-
hydrogenase activity is less responsive to insulin stimulation
both in patients with diabetes and in their offspring (153).
Because phosphorylated compounds are charged, most do
not cross membranes, and pyruvate dehydrogenase activity
remains within the mitochondria. Likewise, nicotinamide
adenine dinucleotide (NADH) is not diffusible across mem-
branes, so the reduction equivalents produced by Krebs cycle
oxidation must be transferred to the cytoplasm by complex
alternate reduction-reoxidation cycles involving a mem-
brane diffusible substrate such as malate. The inner mito-
chondrial membrane contains the respiratory chain proteins,
which consist of a series of electron acceptors that are re-
versibly reduced and then reoxidized as they receive elec-
trons and form ATP. Mitochondria are often located near
subcellular structures that require energy or provide a sub-
strate source (154). Moreover, mitochondrial processes are
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coupled to peripheral glucose uptake, phosphorylation, and
glycolysis by the spatial proximity to hexokinases (reviewed
in Ref. 155).

The Randle cycle provides an important link between glu-
cose and fatty acid metabolism (156) whereby fatty acid or
ketone oxidation leads to elevation of mitochondrial acetyl-
CoA and NADH, leading to increases in cytosolic citrate.
Increased cytosolic citrate could inhibit glycolysis at the level
of phosphofructokinase, thereby decreasing the use of glu-
cose as a fuel while increasing glucose incorporation into
glycogen (157, 158). Malonyl-CoA, which is involved in the
regulation of the transfer of long-chain fatty acids into the
mitochondria has been proposed to play a central role in this
process mediating fuel sensing, glucose metabolism, and
insulin action (159, 160).

Mitochondria and glycolytic processes are also coupled
with insulin secretion. As a result of glycolysis, rising ATP
levels lead to the closure of ATP-dependent potassium chan-
nels and opening of calcium channels, which triggers insulin
secretion. The role of mitochondria in insulin secretion is

highlighted by the finding of defective insulin secretion fol-
lowed by �-cell loss in transgenic rodents with pancreatic
�-cell-specific disruption of mitochondrial transcription fac-
tor A (161).

Krebs cycle activity is not regulated solely by the mito-
chondrial acetyl-CoA concentration. Pathway activity varies
over a wide range depending on the substrate source; for
example, acetyl-CoA levels may be 10-fold lower with glu-
cose compared with fatty acid as a substrate source for the
same cycle flux (162). Citrate synthase, isocitrate, and �-
ketoglutarate dehydrogenases are generally considered to be
important regulatory enzymes controlling flux through the
entire Krebs cycle (163). The pyridine nucleotide redox po-
tential (NADH/NAD� ratio), the matrix phosphorylation
potential (PI�ADP/ATP ratio), and the Ca2� concentration
act as key regulatory factors at several steps of the cycle
(163). Krebs cycle activity is further influenced by thyroid
hormone, adrenergic compounds, and glucocorticoids
(162, 163).

Few cases with primary disorders of enzymes of the Krebs

FIG. 2. Aerobic and anaerobic glycolysis and gluconeogenesis pathways are illustrated.
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cycle have been reported in humans. However, increased
PDK4 activity can be seen in insulin resistance and type 2
diabetes, may be a direct or indirect target of PPAR�, and
could represent an additional drug target for these medical
conditions (164, 165). Deficiency of �-ketoglutarate dehydro-
genase, succinate dehydrogenase, and fumarase has been
reported in rare patients and leads to neurological impair-
ment with or without muscular involvement (163). Germline
mutations of succinate dehydrogenase cause hereditary
paraganglioma and pheochromocytoma (166). More re-
cently, mutations of fumarate hydratase have been associ-
ated with uterine fibroids, skin leiomata, and, to a lesser
extent, papillary renal cell cancer (167). Because neural cells
are most dependent on glucose oxidation for fuel, it is not
surprising that disorders of these key enzymes are clinically
manifest in these tissues, without abnormalities in blood
glucose or insulin levels.

c. Anaerobic glycolysis: the Embden-Meyerhof-Parnas pathway.
In erythrocytes, the glycolytic pathway always terminates
in the formation of lactate, because these cells lack en-
zymes of the Krebs cycle. However, in other tissues under
anaerobic conditions, glucose is used to generate high-
energy ATP as fuel, with formation of lactate as a byprod-
uct. The reaction is catalyzed by lactate dehydrogenase,
and in contrast to the Krebs cycle, which occurs in both
cytosolic and mitochondrial compartments, all the en-
zymes of the Embden-Meyerhof-Parnas pathway are
found in the cytosol. Under anaerobic conditions, glucose
is the only fuel source that can be used by skeletal muscle,
and during muscle contraction a continuous supply of
ATP is necessary. Anaerobic glycolysis yields the net pro-
duction of only two molecules of ATP and only two mol-
ecules of reduced NADH per molecule of glucose con-
sumed. Thus, anaerobic metabolism is inefficient and
cannot be sustained for long intervals of time. In addition
to erythrocytes and skeletal muscle, other tissues that pro-
duce lactate include brain, gastrointestinal tract, renal me-
dulla, adipose tissue, and skin. Lactate can be converted
back into glucose by the gluconeogenesis pathway, re-
quiring ATP (168), or can be used in muscle to help restore
glycogen after intense exercise (169). The energy potential
of lactic acid can only be recovered in the presence of
oxygen with conversion back to pyruvic acid. In turn,
pyruvate can then be metabolized in the citric acid cycle.

d. Gluconeogenesis. Gluconeogenesis provides glucose to the
tissues of the body in the fasted state when dietary carbohy-
drates are not available, by formation of glucose or glycogen
from noncarbohydrate sources. In addition, the gluconeogenic
process clears metabolic products, such as lactate produced by
muscle and erythrocytes and glycerol produced by adipose
tissue, from the circulation. The regulation of endogenous glu-
cose production is central to the control of blood glucose con-
centrations, and the liver and kidney are the principal organs
responsible for gluconeogenesis.

Many of the enzymes of glycolysis and gluconeogenesis
are shared, including those from phosphoenolpyruvate to
fructose 1,6-diphosphate. In liver, glucose-6-phosphatase
catalyzes the rate-limiting step of gluconeogenesis. How-

ever, for gluconeogenesis to occur, the enzymes pyruvate
carboxylase and phosphoenol pyruvate carboxylase must be
present and can limit flux through the gluconeogenic path-
way (reviewed in Ref. 170).

2. Implications of altered glycolysis and gluconeogenesis in
type 2 diabetes

a. Formation of pyruvate and aerobic glycolysis. The rate of
glucose oxidation depends on glucose flux, which reflects
circulating levels of both glucose and insulin. In persons with
type 2 diabetes studied under euglycemic and moderately
hyperinsulinemic conditions, glucose oxidation is signifi-
cantly impaired when compared with nondiabetic subjects
(171). However, some studies performed under hyperglyce-
mic conditions demonstrate that a mass action effect of glu-
cose can partially compensate for the marked decrease in
insulin-stimulated glucose uptake, allowing for preservation
of glucose oxidation in persons with diabetes (172, 173).
However, other studies do not confirm these results (171),
perhaps due to different levels of glucose or insulin achieved.

�-cell glycolysis increases insulin secretion in a glucose
concentration-dependent manner and could provide a link
between impaired glucose metabolism and impaired insulin
secretion (174). Indeed, diminished glycolysis has been
directly implicated in specific cases of type 2 diabetes. De-
ficiency in phosphofructokinase activity due to a heterozy-
gous gene mutation has been reported in one Ashkenazi-
Jewish type 2 diabetic family (175). Increased PDK activity,
which would act to decrease activity of pyruvate kinase, has
been demonstrated in the setting of insulin resistance and
type 2 diabetes in obese and Pima Indian subjects (176, 177)
and could be involved in the pathogenesis of the disease or
represent a molecular target for therapeutic intervention
(149).

Many of the steps of the aerobic glycolysis process occur
in the mitochondria. Thus, mitochondrial alterations could
play an important role in the cellular fate of glucose and the
pathogenesis of diabetes. Indeed, mitochondria have been
demonstrated to play an important role in the pathogenesis
of several specific forms of diabetes including Wolfram’s
syndrome (DIDMOAD), Freidreich’s ataxia, and HIV lipo-
dystrophy. Their function is intimately related to both insulin
action and secretion (178, 179). Mutations in mitochondrial
DNA have been suggested to account for up to 1% of diabetes
(180). Diminished mitochondrial content in circulating cells
is associated with decreased insulin sensitivity (181) and
could be a marker of altered content in insulin-responsive
tissues. More specifically, mitochondrial area and function
are decreased in muscle of obese and diabetic persons (182),
and mitochondrial activity correlates closely to measures of
insulin sensitivity. Likewise, mitochondrial dysfunction and
decreased flux through the tricarboxylic acid cycle have been
demonstrated to play an important role in the insulin resis-
tance of aging (183). New molecular approaches using gene
expression profiling with high-density oligonucleotide ar-
rays have demonstrated reductions in the genes encoding
many of the key enzymes involved in glycolysis, oxidative
metabolism, and mitochondrial function associated with
progressive insulin resistance and diabetes (184–186) in di-
verse populations including the Pima Indians, Mexican-
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American, and European Caucasians. Transcription factors
that coordinately regulate genes encoding mitochondrial
function likely effect the altered expression of the genes
regulating oxidative phosphorylation. PGC-1� is one such
coactivator, discovered and named for its role in modulating
PPAR� activity (187), and levels are altered both in patients
with diabetes and in offspring of diabetic parents who are at
high risk for developing the disease (185, 186).

PGC-1� is a major coactivator of nuclear encoded mito-
chondrial genes. Overexpression of PGC-1� increases mito-
chondrial biosynthesis, nuclear and mitochondrial gene ex-
pression, and muscle oxidative fiber types (reviewed in Ref.
188). PGC-1� maps to chromosome 4p15, a locus associated
with obesity (189). Polymorphisms in the PGC-1� gene have
been associated with diabetes in Danish Caucasians (190),
although this has not been replicated in French populations
(191). Of interest, recent studies show decreased levels of
PGC-1� in muscle of persons with diabetes or a family his-
tory of diabetes, and levels correlate with insulin-mediated
glucose disposal (185, 186).

In addition, hyperglycemia-induced overproduction of
superoxide by the mitochondrial electron transport chain
may play a central role in mediating multiple mechanisms of
hyperglycemic complications of diabetes via inhibition of the
glycolytic protein glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH). In addition to its role in glycolysis, GAPDH
has many cellular functions. As a membrane protein,
GAPDH is involved in endocytosis; in the cytoplasm, it par-
ticipates in control of gene expression; and in the nucleus, it
is involved in DNA replication and repair, as well as tRNA
export (192). Recent work suggests that inhibition of GAPDH
could functionally divert upstream glycolytic metabolites
into three major pathways mediating hyperglycemic dam-
age, including activation of protein kinase C (PKC) isoforms,
hexosamine pathway flux, and advanced glycation end
product formation (193). In theory, pharmacological protec-
tion of GAPDH activity would have a protective role in
prevention of diabetic complications.

b. Gluconeogenesis. A gradual and progressive increase in
endogenous glucose production contributes to hyperglyce-
mia in persons with type 2 diabetes. In the fasted state,
gluconeogenesis is increased in diabetic compared with con-
trol persons and is incompletely suppressed by insulin in the
postprandial state (194). Thus, increased hepatic glucose pro-
duction contributes to hyperglycemia in both the fasting and
postprandial states. Although the basis of increased glucone-
ogenesis is not known, it is not due to genetic mutation or
polymorphism of the glucose-6-phosphatase gene or pro-
moter (195). Recent studies suggest an important role for
elevated free fatty acids, as may be seen in visceral obesity,
in the increased output of glucose from the liver (196, 197).

Metformin, commonly prescribed for the treatment of di-
abetes and other insulin-resistant conditions, reduces hepatic
glucose production. In addition to the effects on glycogen-
olysis previously discussed, it may also reduce gluconeo-
genesis, demonstrating the therapeutic benefit of manipula-
tion of this pathway (198, 199). The exact mechanism is still
unclear, and various mechanisms have been proposed,
including modification of lactate uptake (200) or pyruvate

kinase activity (201) and decreased flux through pyruvate
carboxylase-phosphoenolpyruvate carboxykinase (202). Multi-
ple studies support a direct role in activation of AMPK, a major
regulator of both glucose and lipid metabolism in both liver
and skeletal muscle (94, 203). Thiazolidinediones suppress
hepatic gluconeogenesis in vitro and in vivo in animal models
(204), with a decrease in lactate-stimulated gluconeogenesis
and elevations in fructose 2,6-biphosphate concentrations
(205), via decreased expression of phosphoenolpyruvate car-
boxykinase and glucose-6-phosphatase (146). However, thia-
zolidinediones appear to have more modest effects on he-
patic glucose production in type 2 diabetic humans (100).

Although sulfonylureas exert their principal hypoglyce-
mic effect through stimulation of insulin secretion, some
studies suggest that they are able to suppress endogenous
glucose production, acutely and chronically, by a potentia-
tion of insulin action (206–208). Although these effects could
be mediated by improvements in glucotoxicity, animal data
support a direct effect via inhibition of lactate gluconeogen-
esis (209).

c. Anaerobic glycolysis: the Embden-Meyerhof-Parnas pathway.
Elevated plasma lactate levels have been demonstrated to be
an independent risk factor for the development of type 2
diabetes in prospective epidemiological studies (210). In nor-
moglycemic first-degree relatives of type 2 diabetic subjects,
elevated lactate levels are generated by increased release
from adipose tissue (211). In type 2 diabetic patients, lactate
and pyruvate interconversion rates are greatly enhanced,
possibly due to concomitant impairment in the glucose ox-
idative pathway (212). This hyperlactinemia may lead to
insulin resistance by increased gluconeogenesis in liver and
decreased glucose uptake in muscle (213). Although animal
studies support this hypothesis (214), human studies eval-
uating the effect of lactate infusion do not support an insulin-
resistant effect (215–217). However, an alternate mechanism
to explain the correlation between increased hepatic glu-
coneogenesis and decreased glucose use by muscle seen
when plasma lactate levels are elevated could be the effect of
alterations in fatty acid oxidation, with increased glucone-
ogenesis from lactate (218, 219) and concomitant inhibition
of pyruvate dehydrogenase activity in muscle (220).

B. Glycogen synthesis and breakdown pathways

Glycogen, the primary storage form for glucose in mam-
malian cells, is critical to glucose homeostasis (Fig. 3).

1. Description of the pathway

a. Glycogen synthesis. Although many cells are capable of
synthesizing glycogen for storage for future needs, glucose
is converted into glycogen primarily in muscle, where it
provides energy for contraction, and in liver, from which it
can be exported to maintain constant blood glucose levels.

Mammalian glycogen is a branching treelike structure,
and biosynthesis involves two stages. The first step involves
the formation of glycoprotein by self-glucosylation of gly-
cogenin to form a covalently linked oligosaccharide. The
second step is elongation involving the bulk synthesis of
glycogen through the reaction catalyzed by glycogen syn-
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thase and branching enzyme (Fig. 3). Glycogen synthesis
releases pyrophosphate, which is immediately hydrolyzed
by pyrophosphatases, assuring the unidirectionality of the
reaction. The enzymes catalyzing the synthesis of glycogen
are separate from those catalyzing glycogenolysis, and both
are under control of phosphorylation-dephosphorylation cy-
cles. The phosphorylations are catalyzed by protein kinases
subject to cAMP regulation and consequently are subject to
hormonal control.

The storage polysaccharide glycogen is intimately linked
with insulin action and blood glucose homeostasis. Skeletal
muscle is the major site of insulin-simulated glucose uptake,
and most of the glucose that enters human muscle fibers in
response to insulin is deposited as glycogen (221, 222).

i. Phosphoglucomutase and uridine diphosphate (UDP)-glucose
pyrophosphorylase. After glucose enters cells, it is phosphor-
ylated by hexokinase to form G-6-P, as previously discussed
(Section II.B). Phosphoglucomutase promotes the isomeriza-
tion of G-6-P to glucose-1-phosphate. Glucose-1-phosphate is
then converted to uridine diphosphoglucose by UDP-glu-
cose pyrophosphorylase. There are four distinct isoforms of
phosphoglucomutase, which occur in varying proportions in
different tissues. In women, genetic polymorphisms of phos-
phoglucomutase are associated with recurrent spontaneous
abortion (223).

ii. Glycogen synthase. Glycogen synthase is the rate-limiting
enzyme in glycogen synthesis, and its activity is modulated
by phosphorylation/dephosphorylation, such that phos-
phorylation generally decreases activity. Glycogen synthase
is phosphorylated at nine or more sites by protein kinases,
including cAMP-dependent protein kinase A (PKA),
calmodulin-dependent kinases, glycogen synthase kinase 3
(GSK-3), PKC, and others. In addition to the phosphorylation
state, the activity of glycogen synthase also depends on allo-
steric regulation by substrates, principally G-6-P (224). UDP-
glucose serves as the glycosyl donor for the initial step of
glycogen formation, mediated by the initiator protein gly-
cogenin, and for the subsequent steps mediated by glycogen
synthase and the branching enzyme (224–226). UDP-glucose
is the scaffolding protein of glycogen synthesis. In mice,
glucose transport and hexokinases are not the rate-limiting
steps for glycogen synthesis as shown by constitutively ac-
tive glycogen synthase transgenic models (227). Mutations in
glycogen synthase are responsible for glycogen storage dis-
ease type 0 in humans, which is characterized by hypogly-
cemia in infancy (228).

Two different mechanisms exist to stimulate glycogen syn-
thesis: one in response to insulin, and the other acting in
response to glucose after glycogen depletion (229). The mo-
lecular mechanism by which insulin activates glycogen syn-

FIG. 3. Glycogen synthesis and glycogen breakdown.
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thase remains controversial (230). Insulin is thought to ac-
tivate glycogen synthase by causing its dephosphorylation,
involving the phosphatases protein phosphatase-1 (PP1) and
the glycogen-bound form of PP1. Initially, insulin was
thought to stimulate phosphatase activity by phosphoryla-
tion of the MAPK pathway, but further evidence suggests
that insulin may act via the protein kinase B (also known as
AKT) pathway, resulting in the inactivation of GSK-3. Fur-
thermore, glycogen synthase exhibits important spatial or-
ganization. In muscle and liver, glycogen synthase is trans-
located from an intracellular site to the membrane in
response to glucose and insulin (231, 232).

iii. PP1. The insulin-dependent dephosphorylation of gly-
cogen synthase is catalyzed by PP1 (233, 234). PP1 also cat-
alyzes the dephosphorylation and inactivation of glycogen
phosphorylase, which contributes to increased glycogen
deposition. PP1 interacts with a wide variety of protein reg-
ulatory subunits and targets glycogen via several glycogen-
targeting subunits (235). PP1R3A is the most abundant
glycogen-targeting subunit in rodent skeletal muscle, and
disruption of this gene in mice leads to obesity and glucose
intolerance (236).

iv. GSK-3. The enzyme GSK-3 is a highly regulated multi-
functional serine/threonine kinase that phosphorylates gly-
cogen synthase and PP1, permitting increased glycogen for-
mation. Activity of GSK-3 can be regulated through three
distinct signaling mechanisms (Fig. 4), with phosphorylation
of GSK-3 resulting in inhibition of its protein kinase activity.
Insulin, IGF-I, and platelet-derived growth factor all inhibit
GSK-3 via the phosphatidylinositol-3-kinase (PI3K)/protein
kinase B pathway (225, 237). Changes in intracellular levels
of cAMP regulate GSK-3 activity by cAMP-dependent PKA
phosphorylation; and PKC proteins (�, �, �, �, �) phosphor-
ylate GSK-3 by activation of PKC� by lysophosphatidic acid
(238).

Initially identified as a regulator of glycogen synthesis,
GSK-3 also plays an important physiological role in coupling
metabolism and protein synthesis in response to growth
factor stimulation. GSK-3 regulates several signal transduc-
tion pathways including PI3K (239), Wnt/wingless (240),

and nuclear factor-�B (241), which influence survival, pro-
liferation, and inflammatory processes, respectively.

v. Glycogen branching enzyme. The final step in glycogen
biosynthesis is catalyzed by glycogen branching enzyme
transferase that attaches short glycosyl chains in �-1,6-glu-
cosidic bonds to peripheral chains of nascent glycogen.
Branching enzyme deficiency (glycogen storage disease type
IV) is characterized by progressive liver cirrhosis occurring
in childhood (242).

vi. Glycogenin. Glycogenin is itself an enzyme that cata-
lyzes the transfer of glucose residues from UDP-glucose in a
self-glucosylation process that involves the modification of
one subunit by the other. The protein glycogenin is a spe-
cialized initiator protein, up to about 10 residues long, which
serves as a substrate for elongation by glycogen synthase and
the branching enzyme and leads to the formation of an oli-
gosaccharide chain. Humans express two forms of glycoge-
nin. Type 1 is widely expressed, whereas type 2 is predom-
inantly expressed in liver, but also in the heart and pancreas.
Overexpression of glycogenin-2 in rat fibroblast cells results
in increased glycogen accumulation (243). Glycogenin func-
tion can be regulated through protein–protein interactions
including autodimerization (244), complex formation with
glycogen synthase (245), colocalization with actin (246), and
activation by glycogenin-interacting protein (247).

b. Glycogen breakdown or glycogenolysis. Complete glycogen
breakdown provides glucose during fasting or exercise and
requires the concomitant action of both glycogen phosphor-
ylase and glycogen debranching enzyme. In contrast to liver,
which can export hexoses for the maintenance of blood glu-
cose, muscle glycogen provides fuel for glycolysis only
within muscle tissue itself.

i. Glycogen phosphorylase. There are three isoforms of gly-
cogen phosphorylase encoded by three different genes, each
with different expression levels in muscle, liver, and brain.
Glycogen phosphorylase catalyzes the degradation of gly-
cogen by phosphorolytic cleavage of �-1,4-glycosidic bonds
to form glucose-1-phosphate. Activity is regulated by allo-
steric ligands, such as AMP and G-6-P, and by phosphory-

FIG. 4. Mechanisms of GSK-3 inhibition.
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lation (248). Glycogen phosphorylase is activated by phos-
phorylation by phosphorylase kinase, which is controlled by
neural and hormonal signals. In turn, phosphorylase kinase
is activated by phosphorylation by cAMP-dependent protein
kinase. Glucagon is the principal activator in liver, whereas
in muscle it is adrenaline. Both hormones activate the mem-
brane protein adenylate cyclase through their respective re-
ceptors. The liberation of cAMP allows the activation of
cAMP-dependent protein kinase, resulting in glycogen phos-
phorylase activation (249). Deficiency of glycogen phosphor-
ylase in liver is responsible for glycogen storage disease type
VI, characterized by hepatomegaly and growth retardation
(250). Muscle glycogen phosphorylase deficiency leads to
glycogen storage disease type V, characterized by exercise
intolerance (251).

ii. Glycogen debranching enzyme. The debranching enzyme
possesses two catalytic activities, hydrolyzing the �-1,6 bond
during glycogen degradation and providing a small amount
of free glucose. Genetic defects of this enzyme cause glyco-
gen storage disease type III, characterized by hypoglycemia,
hepatomegaly, short stature, and myopathy (252).

2. Role of impaired glycogen synthesis and breakdown in human
type 2 diabetes. Insulin resistance is a major feature of type 2
diabetes and in vivo can be attributed largely to defects in
muscle glycogen storage.

a. Glycogen synthesis. In type 2 diabetic patients, in vivo
measurements of insulin resistance are largely attributed to
diminished glucose uptake in skeletal muscle and liver sec-
ondary to reduced insulin stimulated glucose transport, hex-
okinase activity, and glycogen synthesis. Nuclear magnetic
resonance studies, performed during hyperglycemic-hyper-
insulinemic clamps, suggest that impaired insulin-stimu-
lated glucose transport may underlie the decreased insulin-
stimulated muscle glycogen synthesis in type 2 diabetics (76).
Although glycogen synthase activity is impaired in type 2
diabetes, it remains uncertain whether these defects are pri-
mary or a consequence of hyperglycemia per se. Despite a
reduced activity in muscle of type 2 diabetes, glycogen syn-
thase expression is normal, suggesting altered regulation.
Normalization of plasma glucose concentration in type 2
diabetic patients by diet or insulin therapy improves insulin-
stimulated glycogen synthesis, suggesting that these abnor-
malities may be secondary to hyperglycemia per se (253, 254).
In an interesting study of monozygotic twin pairs discordant
for type 2 diabetes, insulin stimulation of glycogen synthase
expression was only impaired in muscle of the affected twin
(255). However, other studies suggest an impaired activation
of glycogen synthase in people at risk for developing type 2
diabetes, suggesting a primary defect in the pathogenesis of
the disease (256–258). One study reports an association be-
tween polymorphisms of the glycogen synthase gene and a
subgroup of type 2 diabetic subjects characterized by hy-
pertension and marked insulin resistance (259). However,
studies using mutational analysis of the glycogen synthase
gene do not provide evidence for a primary role in insulin
resistance or diabetes (260, 261). Furthermore, hyperglyce-
mia in the absence of hyperinsulinemia obtained by hyper-
glycemic-euinsulinemic clamp studies is capable of com-

pletely normalizing glycogen synthesis in type 2 diabetic
subjects (142, 173).

Despite the controversial primary or secondary role of
glycogen synthase in diabetes, the glycogenolysis pathway
remains under investigation for its role in diabetes patho-
genesis and as a potential molecular target for novel phar-
macological therapies. Metformin inhibits hepatic glucose
production, although the relative importance of its effects on
glycogenolysis (262) or suppression of gluconeogenesis (198)
remains controversial. Differences between studies may be
explained in part by the activity of the target enzyme AMPK
activity in response to differing cellular substrate availability
between the different studies (203, 263). Although sulfonyl-
ureas can activate glycogen phosphorylase and mobilize gly-
cogen stores through a calcium-dependent mechanism in
hepatocytes in vitro (209, 264), this action has never been
demonstrated in vivo.

GSK-3 protein levels and activity are elevated in muscle of
type 2 diabetic patients, and levels are inversely correlated
with both glycogen synthase activity and muscular insulin
resistance (265). However, no structural changes have been
detected in analysis of the coding region of the two isoforms
of GSK-3 (266). Inhibition of GSK-3 improves insulin action
and glucose metabolism when assessed in human skeletal
muscle in vitro, and in rodents in vivo, representing a prom-
ising target under development for future therapeutic inter-
vention in type 2 diabetes (267–269).

Of interest, mutations or polymorphisms of the glycogen-
associated regulatory subunit of PP1, PP1R3, have been
associated with insulin resistance in animal models and
some, but not all, human studies (270 –276). These findings
implicate PP1 as a potential therapeutic target for drug
development.

b. Glycogen breakdown. The lack of suppression of glycogen
synthase by glucagon in the liver may contribute to post-
prandial hyperglycemia in type 2 diabetes by maintaining
glycogen phosphorylase in an activated state resulting in
persistent glycogenolysis (277). Reductions in fasting blood
sugar during energy restriction in type 2 diabetic patients are
largely due to decreased glycogenolysis with little change in
absolute gluconeogenesis (278). Thus, glycogen phosphory-
lase or glycogenolysis inhibitors could prove useful in the
treatment of type 2 diabetes (279). The potential role of gly-
cogen phosphorylase inhibition as a therapeutic target is
further supported by the closely coupled enzymatic activity
of glycogen synthase and phosphorylase such that low levels
of phosphorylase expression can inhibit synthase activity,
and likewise phosphorylase inhibitors can enhance synthase
activity in hepatocytes (280).

C. Pentose phosphatase shunt/hexose
monophosphate pathway

The pentose phosphate shunt is an alternative pathway for
glucose metabolism that generates NADPH (Fig. 5) and is
useful in maintaining the integrity of red blood cell mem-
branes, in lipid and steroid biosynthesis, and in hydroxyla-
tion and anabolic reactions. This pathway is notably active in
liver, lactating mammary glands, and adipose tissue.
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The percentage of glucose catabolized through the hexose
monophosphate pathway varies between tissues, and this
fraction can be increased during oxidative stress. With in-
creased oxidative stress in diabetes, it is likely that this path-
way is more active in the disease state, although the pathway
has not been shown to participate directly in the pathogen-
esis of the disorder (281).

G-6-P dehydrogenase deficiency is responsible for a type
of X-linked hemolytic anemia, which is more common
among persons of Mediterranean descent (282).

D. Hexosamine biosynthesis pathway

With the exception of the first step in the hexosamine
biosynthetic pathway, the enzymatic reactions are irrevers-
ible and do not require ATP or the participation of any
cofactors (Fig. 6).

1. G-6-P isomerase. G-6-P isomerase is a dimeric enzyme that
catalyzes the reversible interconversion of G-6-P and fruc-
tose-6-phosphate (fructose-6-P). G-6-P isomerase deficiency
is responsible for nonspherocytic hemolytic anemia of vari-
able severity associated in some cases with neurological im-
pairment (283).

2. Glutamine fructose-6-P amidotransferase. The glucosamine
pathway diverts 2–3% of the fructose-6-P derived from glu-
cose into glucosamine-6-phosphate, thus giving rise to oblig-
atory substrates for the synthesis of glycoproteins and gly-
colipids (284).

Glutamine fructose-6-P amidotransferase (also called
synthase) is the first and rate-limiting enzyme in hex-
osamine biosynthesis and catalyzes an essentially irre-
versible reaction. This enzyme exhibits absolute specificity
for l-glutamine as an amino donor and for d-fructose-6-P
as an acceptor substrate to produce one molecule of glu-
tamate and one molecule of aminated product. Several
independent reports demonstrate that tissue enzyme ac-

tivity levels may be mediated by sex hormones, resulting
in increased activity with testosterone and estradiol, and
antagonism by progesterone and GnRH (285). The enzyme
is subject to feedback inhibition by UDP-N-acetylglu-
cosamine and can be experimentally inhibited by glu-
tamine analogs.

The final step in the hexosamine biosynthesis pathway
is the formation of UDP-N-acetylglucosamine and other
nucleotide hexosamines, which are major substrates for
glycosylation of proteins. Many cytoplasmic and nuclear
proteins are glycosylated on their serine and/or threonine
residues by the addition of a single molecule of O-linked
�-N-acetylglucosamine (286). In particular, several tran-
scription factors undergo this type of rapid modification,
causing alterations in their activity and/or stability.
Thereby the hexosamine pathway can mediate the effects
of glucose on the expression of several gene products and
thereby participate in glucotoxicity or glucose-induced
insulin resistance (284, 287, 288), and it is linked to
glucose-induced changes in cell growth.

The hexosamine pathway is a cellular sensor of energy
availability. It is able to modify the expression of a cluster
of nuclear-encoded mitochondrial genes involved in oxi-
dative phosphorylation in muscle and fat and the expres-
sion of leptin in adipocytes (289, 290). Activation of the
hexosamine biosynthesis pathway via these transcrip-
tional changes markedly decreases whole-body energy
expenditure (290).

In vivo, in rodents, increasing the amount of flux into the
hexosamine pathway by various means has been shown to
induce defects involved in insulin secretion and action, in-
cluding diminished insulin-stimulated glucose uptake (291),
GLUT4 translocation (292, 293), glycogen synthase activity
and glycogen synthesis (293–295), hepatic glucokinase ac-
tivity and endogenous glucose production (296), �-cell glu-
cokinase activity and insulin secretion (297), and pyruvate
kinase (298) and PI3K activity (299). Effectively, when ro-
dents are infused with glucosamine, there is reduced glucose
uptake as assessed by euglycemic-hyperinsulinemic clamp
(291).

Sequelae of hexosamine pathway activation are common
features involved in insulin resistance and the pathogenesis
of type 2 diabetes. Transgenic mouse models that overex-
press glutamine fructose-6-P amidotransferase (GFAT) in
skeletal muscle and fat demonstrate insulin resistance (300).
Furthermore, overexpression of GFAT in pancreatic �-cells
of transgenic mice leads to hyperinsulinemia, insulin resis-
tance, obesity, and the development of mild type 2 diabetes
in males (301).

3. Implications for type 2 diabetes in humans. The hexosamine
biosynthesis pathway may be the mechanism by which cells
sense ambient glucose levels, and when glucose flux is ex-
cessive, respond by down-regulating glucose transport, lead-
ing to insulin resistance (284). GFAT levels are markedly
elevated in skeletal muscle of human type 2 patients, and
chronic hyperglycemia is also associated with increased
enzyme activity (302). GFAT activity from muscle biopsy
studies is negatively correlated with measured glucose up-
take during euglycemic-hyperinsulinemic clamp studies and

FIG. 5. Review of pentose phosphate shunt.
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has also been shown to correlate with obesity. However,
differences in activity between diabetic and control subjects
disappear after culturing skeletal muscle cells from these
subjects under conditions of controlled glucose and insulin
concentrations, suggesting that the defects are acquired and
not primary (303). Consistent with data from muscle, there
is a good correlation between GFAT activity, body weight,
and leptin levels in human adipose tissue obtained by biopsy
(304). Moreover, in human cultured adipocytes, inhibition of
glucosamine production reduced glucose-stimulated leptin
release and ob-gene expression, implying that hexosamine
biosynthesis regulates leptin production in human adipose
tissue (304).

In studies of healthy humans, acute glucosamine infusion
appears to mimic many metabolic features of human diabe-
tes. High levels of glucosamine decreased insulin sensitivity
(assessed as the insulin sensitivity index) and SG during iv
glucose tolerance testing, resulting in a mild �-cell impair-

ment. However, no effect on insulin sensitivity was demon-
strated when assessed under euglycemic hyperinsulinemic
conditions (305).

The hexosamine pathway appears to mediate many of
the adverse effects of glucotoxicity, and enhanced flux
through this pathway could contribute to the development
of insulin resistance, insulin secretory dysfunction, dia-
betic complications, and obesity. In addition, the hex-
osamine pathway appears to be involved in the develop-
ment of diabetic complications (306). Glycosylation
modifies activity of nuclear and cytoplasmic proteins, for
example endothelial nitric oxide synthase (307), PKC (308),
and pathways involved in PKA (309) or insulin signaling
(310), all potentially contributing to endothelial dysfunc-
tion (307, 311). In glomerular epithelial and mesangial cells
from nephropathic kidneys (312) and in atherosclerotic
plaques of diabetic patients (310), there is increased gly-
cosylation. Thus, activation of the hexosamine pathway

FIG. 6. Hexosamine biosynthesis pathway.
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may explain, in part, the increased risk of vascular disease
in diabetic patients.

IV. Conclusion

There are both environmental and genetic factors that
must account for the epidemic increase in rates of type 2
diabetes occurring in the United States and worldwide. The
pathophysiology of the disorder clearly involves both insulin
resistance and relative insulin deficiency. Although exten-
sive efforts have been made in genomic searches and in the
evaluation of the structure and function of genes and pro-
teins involved in insulin secretion and action, no single gene
or protein appears to be causative in the development of
common type 2 diabetes. Monogenetic defects have only
been identified in rare syndromes of extreme insulin resis-
tance or patients with MODY. It is likely that the common
disorder is heterogeneous, such that multiple defects are
necessary and permissive to the development of hypergly-
cemia. It is now important to consider the contribution of
metabolic pathways other than direct insulin signaling and
the role of key regulators that coordinate metabolic pathways
in the development of hyperglycemia if we are to gain
additional insights into the disease and discover new targets
for primary preventative or therapeutic pharmacological
interventions.

Despite the important role of insulin resistance in the de-
velopment of diabetes, extensive research efforts over the last
decade have revealed much information on insulin signaling
without determining the cause of most cases of diabetes.
Because glycemia is determined by both insulin-dependent
and insulin-independent mechanisms of glucose clearance
from the circulation, to better understand the disease it is
important to carefully consider the cellular fates of glucose.
Dysregulation of multiple steps in glucose clearance could
then contribute in an additive or synergistic way to the de-
velopment of hyperglycemia. Much previous work focused
on the rate-limiting enzymes of a given pathway, and such
work did identify alterations of glucokinase to directly cause
diabetes in a small subset of patients with MODY. However,
the strategy of evaluating rate-limiting enzymes to identify
the molecular cause of diabetes in most cases has not been
productive in more typical or common diabetes. One pos-
sible mechanism for the coordinated dysregulation of several
pathways or components of a single pathway could be
through alterations in transcription factors or transcription
factor regulating proteins. If true, this could account for the
findings of any protein along a single metabolic pathway to
be altered in only a small and statistically insignificant way
when assessed through typical physiology studies. How-
ever, defects in the coordinated regulation of the entire met-
abolic pathway or several pathways simultaneously could
ultimately contribute in a meaningful way to the develop-
ment of type 2 diabetes. With the genomic and proteomic
tools now available, increasing numbers of transcription fac-
tors and regulators are being identified. Improved under-
standing of the pathways of glucose metabolism could per-
mit a greater understanding of the contribution that changes
in these proteins could have in the pathogenesis of this dis-

ease. Ultimately, a better understanding of the pathophysi-
ology of type 2 diabetes will aid the development of new and
complementary drug targets.
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Bouché et al. • Glucose Metabolic Pathways Endocrine Reviews, October 2004, 25(5):807–830 829

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/25/5/807/2355272 by guest on 10 April 2024



290. Obici S, Wang J, Chowdury R, Feng Z, Siddhanta U, Morgan K,
Rossetti L 2002 Identification of a biochemical link between energy
intake and energy expenditure. J Clin Invest 109:1599–1605

291. Baron AD, Zhu JS, Zhu JH, Weldon H, Maianu L, Garvey WT 1995
Glucosamine induces insulin resistance in vivo by affecting GLUT
4 translocation in skeletal muscle. Implications for glucose toxicity.
J Clin Invest 96:2792–2801

292. Hawkins M, Hu M, Yu J, Eder H, Vuguin P, She L, Barzilai N,
Leiser M, Backer JM, Rossetti L 1999 Discordant effects of glu-
cosamine on insulin-stimulated glucose metabolism and phospha-
tidylinositol 3-kinase activity. J Biol Chem 274:31312–31319

293. Robinson KA, Sens DA, Buse MG 1993 Pre-exposure to glu-
cosamine induces insulin resistance of glucose transport and gly-
cogen synthesis in isolated rat skeletal muscles. Study of mecha-
nisms in muscle and in rat-1 fibroblasts overexpressing the human
insulin receptor. Diabetes 42:1333–1346

294. Crook ED, Zhou J, Daniels M, Neidigh JL, McClain DA 1995
Regulation of glycogen synthase by glucose, glucosamine, and
glutamine:fructose-6-phosphate amidotransferase. Diabetes
44:314–320

295. Crook ED, Crenshaw G, Veerababu G, Singh LP 2000 Overex-
pression of glutamine:fructose-6-phosphate amidotransferase in
rat-1 fibroblasts enhances glucose-mediated glycogen accumula-
tion via suppression of glycogen phosphorylase activity. Endocri-
nology 141:1962–1970

296. Barzilai N, Hawkins M, Angelov I, Hu M, Rossetti L 1996 Glu-
cosamine-induced inhibition of liver glucokinase impairs the abil-
ity of hyperglycemia to suppress endogenous glucose production.
Diabetes 45:1329–1335

297. Balkan B, Dunning BE 1994 Glucosamine inhibits glucokinase in
vitro and produces a glucose-specific impairment of in vivo insulin
secretion in rats. Diabetes 43:1173–1179

298. Traxinger RR, Marshall S 1992 Insulin regulation of pyruvate
kinase activity in isolated adipocytes. Crucial role of glucose and
the hexosamine biosynthesis pathway in the expression of insulin
action. J Biol Chem 267:9718–9723

299. Hawkins M, Barzilai N, Liu R, Hu M, Chen W, Rossetti L 1997
Role of the glucosamine pathway in fat-induced insulin resistance.
J Clin Invest 99:2173–2182

300. Hebert Jr LF, Daniels MC, Zhou J, Crook ED, Turner RL, Sim-
mons ST, Neidigh JL, Zhu JS, Baron AD, McClain DA 1996
Overexpression of glutamine:fructose-6-phosphate amidotrans-
ferase in transgenic mice leads to insulin resistance. J Clin Invest
98:930–936

301. Tang J, Neidigh JL, Cooksey RC, McClain DA 2000 Transgenic
mice with increased hexosamine flux specifically targeted to �-cells
exhibit hyperinsulinemia and peripheral insulin resistance. Dia-
betes 49:1492–1499

302. Yki-Jarvinen H, Daniels MC, Virkamaki A, Makimattila S, De-
Fronzo RA, McClain D 1996 Increased glutamine:fructose-6-phos-
phate amidotransferase activity in skeletal muscle of patients with
NIDDM. Diabetes 45:302–307

303. Daniels MC, Ciaraldi TP, Nikoulina S, Henry RR, McClain DA
1996 Glutamine:fructose-6-phosphate amidotransferase activity in
cultured human skeletal muscle cells: relationship to glucose dis-
posal rate in control and non-insulin-dependent diabetes mellitus
subjects and regulation by glucose and insulin. J Clin Invest 97:
1235–1241

304. Considine RV, Cooksey RC, Williams LB, Fawcett RL, Zhang P,
Ambrosius WT, Whitfield RM, Jones R, Inman M, Huse J,
McClain DA 2000 Hexosamines regulate leptin production in
human subcutaneous adipocytes. J Clin Endocrinol Metab 85:
3551–3556

305. Monauni T, Zenti MG, Cretti A, Daniels MC, Targher G, Caruso
B, Caputo M, McClain D, Del Prato S, Giaccari A, Muggeo M,
Bonora E, Bonadonna RC 2000 Effects of glucosamine infusion on
insulin secretion and insulin action in humans. Diabetes 49:926–935

306. Brownlee M 2001 Biochemistry and molecular cell biology of di-
abetic complications. Nature 414:813–820

307. Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M 2001
Hyperglycemia inhibits endothelial nitric oxide synthase activity
by posttranslational modification at the Akt site. J Clin Invest 108:
1341–1348

308. Goldberg HJ, Scholey J, Fantus IG 2000 Glucosamine activates the
plasminogen activator inhibitor 1 gene promoter through Sp1 DNA
binding sites in glomerular mesangial cells. Diabetes 49:863–871

309. Singh LP, Andy J, Anyamale V, Greene K, Alexander M, Crook
ED 2001 Hexosamine-induced fibronectin protein synthesis in mes-
angial cells is associated with increases in cAMP responsive ele-
ment binding (CREB) phosphorylation and nuclear CREB: the in-
volvement of protein kinases A and C. Diabetes 50:2355–2362

310. Federici M, Menghini R, Mauriello A, Hribal ML, Ferrelli F,
Lauro D, Sbraccia P, Spagnoli LG, Sesti G, Lauro R 2002 Insulin-
dependent activation of endothelial nitric oxide synthase is im-
paired by O-linked glycosylation modification of signaling proteins
in human coronary endothelial cells. Circulation 106:466–472

311. Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh
F, Wu J, Brownlee M 2000 Hyperglycemia-induced mitochondrial
superoxide overproduction activates the hexosamine pathway and
induces plasminogen activator inhibitor-1 expression by increasing
Sp1 glycosylation. Proc Natl Acad Sci USA 97:12222–12226

312. Nerlich AG, Sauer U, Kolm-Litty V, Wagner E, Koch M,
Schleicher ED 1998 Expression of glutamine:fructose-6-phosphate
amidotransferase in human tissues: evidence for high variability
and distinct regulation in diabetes. Diabetes 47:170–178

Endocrine Reviews is published bimonthly by The Endocrine Society (http://www.endo-society.org), the foremost professional society
serving the endocrine community.

830 Endocrine Reviews, October 2004, 25(5):807–830 Bouché et al. • Glucose Metabolic Pathways
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