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PTH is a major systemic regulator of the concentrations of
calcium, phosphate, and active vitamin D metabolites in blood
and of cellular activity in bone. Intermittently administered
PTH and amino-terminal PTH peptide fragments or analogs
also augment bone mass and currently are being introduced
into clinical practice as therapies for osteoporosis. The amino-
terminal region of PTH is known to be both necessary and
sufficient for full activity at PTH/PTHrP receptors (PTH1Rs),
which mediate the classical biological actions of the hormone.
It is well known that multiple carboxyl-terminal fragments of
PTH are present in blood, where they comprise the major
form(s) of circulating hormone, but these fragments have long
been regarded as inert by-products of PTH metabolism be-
cause they neither bind to nor activate PTH1Rs. New in vitro
and in vivo evidence, together with older observations ex-
tending over the past 20 yr, now points strongly to the exis-
tence of novel large carboxyl-terminal PTH fragments in

blood and to receptors for these fragments that appear to
mediate unique biological actions in bone. This review traces
the development of this field in the context of the evolution of
our understanding of the “classical” receptor for amino-
terminal PTH and the now convincing evidence for these re-
ceptors for carboxyl-terminal PTH. The review summarizes
current knowledge of the structure, secretion, and metabo-
lism of PTH and its circulating fragments, details available
information concerning the pharmacology and actions of car-
boxyl-terminal PTH receptors, and frames their likely biolog-
ical and clinical significance. It seems likely that physiolog-
ical parathyroid regulation of calcium and bone metabolism
may involve receptors for circulating carboxy-terminal PTH
ligands as well as the action of amino-terminal determinants
within the PTH molecule on the classical PTH1R. (Endocrine
Reviews 26: 78–113, 2005)
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I. Introduction

DETERMINATION OF THE amino acid sequence of the
PTH molecule in 1970 in the bovine (1) and shortly

afterward in other species (2–4) was followed closely by the
finding that the major biological activities of PTH are sub-
served by the amino (N)-terminal 34 residues of the hormone
molecule (5–7). Indeed, by the 1980s, most physiological
studies of PTH action were carried out using commercially
available N-terminal fragments of PTH, usually bovine or
human (h)PTH(1–34) rather than intact 84-residue hormone.
During the last three decades, it has been the prevailing view
that the PTH residues located beyond position 34 were
largely irrelevant. This concept was solidified by the cloning
of the receptor for N-terminal PTH and PTHrP in 1991 (8, 9)
and related research leading to the conclusion that all of the
major biological activities of PTH are mediated by binding of
N-terminal hormone residues within the (1–34) region to this
receptor (5, 10). Over the same three decades, however, it has
been realized that carboxyl (C)-terminal PTH fragments are
present in the circulation in large amounts. These fragments
were presumed to be biologically inactive, because they have
no activity at the PTH/PTHrP receptor (PTH1R). Consider-
able evidence now has accumulated, however, for the pres-
ence in kidney and bone of distinct receptors specific for
C-terminal sequences within PTH. Very recently, convincing
evidence has emerged for biological actions related to these
C-terminal PTH (CPTH) receptors (CPTHRs), particularly in
the regulation of bone resorption and the serum calcium
concentration. Available data from experiments in rats, dogs,
cows, and humans indicate that a variety of C-terminal frag-
ments of PTH, derived via both direct secretion from the
parathyroid glands and postsecretory proteolysis of PTH,
normally circulate in blood at concentrations severalfold
higher than that of intact PTH, and at much higher levels in
renal failure. Furthermore, the concentrations of these frag-
ments in plasma are regulated by the level of serum calcium,
which controls the secretion of C-terminal PTH fragments
from the parathyroid glands and also may regulate cleavage
of intact hormone to fragments in the liver. This review
provides a critical summary of the currently available evi-
dence for the existence and nature of biologically relevant

C-terminal receptors for PTH and the regulated presence in
the circulation of the ligands for these receptors, PTH, and
C-terminal PTH fragments.

II. Structure of PTH

Mammalian PTH is an 84-amino acid single-chain poly-
peptide, the primary sequence of which was established first
by chemical analysis of highly purified bovine hormone (1,
11) and subsequently confirmed by isolation of complemen-
tary and genomic DNAs from several different species (2–4,
12–15) (Fig. 1). The intact, secreted form of the hormone is
generated by cleavage of a prohormone (proPTH) containing
a 6-amino acid N-terminal extension. proPTH, in turn, is
produced by proteolysis of a larger, short-lived precursor,
preproPTH, which is the initial translation product (16). Pre-
proPTH incorporates an additional 25-residue N-terminal
signal sequence, rich in hydrophobic amino acids, that, to-
gether with the 6-residue “pro” sequence, is necessary for
efficient transport into the endoplasmic reticulum and
subsequent cleavage to the mature hormonal form (17–20).
The C-terminal portion of PTH also is needed for efficient
processing of the hormone. Thus, in cells transfected with
cDNA encoding preproPTH(1–40) or preproPTH(1–52), the
proPTH forms were not cleaved but, instead, were degraded
intracellularly (21). These observations have suggested one
possible role for the C terminus of PTH, i.e., to ensure high-
fidelity processing and effective transport of the hormone
through the parathyroid secretory apparatus.

The primary amino acid sequence of PTH is highly con-
served among mammalian species (Fig. 1). The homology is
strongest in the N terminus of the molecule, where 32 of the
first 38 residues are identical and even those differences that
do occur are relatively conservative. The greatest evolution-
ary variation is evident in the middle region of the hormone,
between residues 39 and 52, whereas several stretches of high
homology can be found in the C-terminal region, i.e.,
PTH(53–84). For example, PTH(53–61) shows 100% identity
among mammals except for conservative exchanges of acidic
residues (Asp for Glu, or vice versa) at positions 56 and 61 in
the rodent sequences. Several residues are conserved also in

FIG. 1. Amino acid sequences of intact PTH from several mammalian species. Amino acids encoded by PTH cDNAs are denoted by the
single-letter abbreviation for each of the indicated species. Shading indicates residues in hPTH that are conserved in other species, and those
residues conserved in all species shown are indicated in bold.
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the chicken and zebrafish sequences. Furthermore, the 14-
residue sequence PTH(65–78) shows variation at only three
positions among mammals, and residues Lys80, Lys82, and
Gln84 are invariant as well. The extensive sequence conser-
vation at the PTH N terminus fits well with abundant evi-
dence that this region of the molecule is both necessary and
sufficient for full activation of the classical PTH1R (see Sec-
tion III), whereas the high homology in portions of the C
terminus of the hormone had remained enigmatic before the
emergence of more recent evidence of the existence of CPTH-
specific receptors.

Understanding of the structure of PTH, either alone in
solution or, perhaps more importantly, in direct association
with its receptor(s), remains incomplete. Early studies using
dark field electron microscopy or computational schemes
suggested that PTH in aqueous solution consists of two (N-
and C-terminal) linked globular domains (22, 23), whereas
nuclear magnetic resonance (NMR) and circular dichroism
analyses revealed no evidence of extensive secondary struc-
ture (24, 25). Considerable effort has been focused on the
structures of peptides comprising the N-terminal region of
PTH required for PTH1R activation. Thus, numerous solu-
tion-phase NMR studies support the presence of two �-
helical domains, especially within the regions PTH(3–11) and
PTH(21–30), that are joined by a more flexible “hinge” re-
gion, a structure permissive of a large number of overall
hormone conformations in solution (24, 26–34). A similar
secondary structure, involving N- and C-terminal �-helices,
was shown for hPTHrP(1–34) in solution by two-dimen-
sional NMR (35, 36). X-ray crystallography of hPTH(1–34),
however, predicted the presence of a single linear �-helix
extending from Ser3 to Asn33 (37). Analysis of the impact of
chemical substitutions that constrain peptide confirmation is
also most consistent with the concept that PTH(1–19) binds
to the PTH1R as an extended �-helix (38–40). Solution phase
two- and three-dimensional NMR analysis of the structure of
prolylhPTH(1–84) showed no evidence of secondary struc-
ture unless the solvent hydrophobicity was increased by
addition of trifluoroethanol (up to 70%) (41). Under these
conditions, extensive �-helicity was detected between Ser3

and Gly38, and this was strongest between Met18 and Gln29.
Interestingly, the PTH(39–53) region, least conserved at the
level of primary sequence (Fig. 1), appeared devoid of sec-
ondary structure, whereas evidence of limited structure, i.e.,
turns and short helices, was found within the C-terminal
hPTH(54–84) region. Furthermore, nuclear Overhauser ef-
fect analysis confirmed evidence of secondary structure in
regions 3–10, 17–27, 30–37, and 57–62, but not within region
40–52.

It is important to emphasize that these biophysical mea-
surements have been performed under experimental condi-
tions with uncertain analogy to the local environment in
which the ligand-receptor interaction actually takes place,
i.e., at the interface between the extracellular fluid compart-
ment and the cell surface. Given this proviso, one can con-
clude from available data that regions of PTH, especially
those most highly conserved genetically, exhibit some evi-
dence of ordered structure(s) that may be relevant to receptor
interaction. More definitive information must await further

technical advances, including the possible crystal structure of
the active hormone/receptor complex.

III. Classical Actions of PTH and the
PTH/PTHrP Receptor

A. Structural basis of PTH signaling and action

The classical actions of PTH, including phosphaturia via a
direct renal action (42–44) and elevation of blood calcium
(45) via a combined effect of increased osteoclastic bone
resorption (46–48), renal tubular calcium reabsorption (49),
and renal synthesis of 1,25-dihydroxyvitamin D3 [1,25-
(OH)2D3] (50, 51), had been well established. These actions
were clearly recognized, for the most part, before the struc-
ture of the hormone was known, through careful observa-
tions of the responses to parathyroidectomy, parathyroid
transplantation, and administration of crude parathyroid ex-
tracts (52) to experimental animals or to ex vivo organ cultures
(53–55). Other actions were noted as well, such as prolifer-
ative effects upon blood and liver cells (56–58), but the main
thrust of ongoing investigation focused on those biological
responses seemingly most directly relevant to maintenance
of bone and mineral ion homeostasis. The recognition by
Aurbach and colleagues that cAMP is involved as a second
messenger in PTH action in bone and kidney, both in vivo and
in vitro (59–65), was a major advance that led to the devel-
opment of sensitive in vitro bioassays and was followed
quickly by the isolation, sequencing, and characterization
of purified PTH from several species (1, 11, 66–68) and
subsequently, the molecular cloning of the corresponding
cDNAs (2, 12).

Although the natural hormone is 84 amino acids in length,
it was found that a synthetic N-terminal fragment, bovine
(b)PTH(1–34), could reproduce the major biological actions
attributed to full-length bPTH, including activation of ad-
enylyl cyclase in bone and kidney cells, increased urinary
excretion of cAMP and phosphate in rats, and elevation of
blood calcium in rats, dogs, and chicks (7, 69–73). Moreover,
it was found that synthetic carboxyl fragments such as
PTH(44–68), PTH(53–84), and PTH(39–84) did not compete
for binding with PTH(1–34) radioligands, nor did they ac-
tivate adenylyl cyclase in renal membranes or bone cells
(74–76). These observations, together with the practical dif-
ficulties at that time in reliably producing large quantities of
chemically pure PTH(1–84), led to widespread use of syn-
thetic PTH(1–34) as a surrogate for intact PTH in investiga-
tions of hormone action in vitro and in vivo. Detailed struc-
ture-function analysis of the PTH(1–34) ligand demonstrated
the importance of its extreme N terminus (especially residues
1 and 2) for activation of adenylyl cyclase (7, 77–79) and of
its C terminus (i.e., residues 15–34) for high-affinity receptor
binding (80–84). Other binding determinants must exist
within the N terminus of PTH(1–34), however, because N-
truncated peptides such as PTH(3–34) and PTH(7–34) bind
with affinities considerably lower than that of PTH(1–34) (74,
80, 85).

The abolition of bioactivity that accompanied progressive
N-terminal truncation of PTH suggested a strategy for de-
veloping effective PTH antagonists, but initial efforts based
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on the use of PTH(3–34) analogs were thwarted when re-
sidual agonism, not readily apparent during in vitro analyses,
was detected in vivo (86, 87). Additional truncation to analogs
lacking up to six N-terminal amino acids allowed effective
inhibition in vivo, as with [Tyr34]hPTH (7–34)NH2, although
potency was limited by low binding affinity (88). Subsequent
introduction of amino acid substitutions found to enhance
binding of such shortened analogs has led to design of even
more effective antagonists, such as [Nle8, d-Trp12,18,
Tyr34]bPTH(7–34)NH2, [Leu11, d-Trp12]PTHrP(7–34)NH2,
and [Ile5, Leu11, d-Trp12, Trp23]PTHrP(5–36)NH2 (77, 89, 90).

Use of cAMP generation as the exclusive measure of the
intracellular action of PTH subsequently became untenable
when studies of both bone- and renal-derived cells and tis-
sues demonstrated that PTH(1–34), as well as PTH(1–84),
could activate other signal transduction pathways, indepen-
dently of adenylyl cyclase, including those involving phos-
pholipase C (PLC), protein kinase C (PKC)(s), cytosolic free
calcium (Ca2�), phospholipase D, and phospholipase A2 (91–
110). PTH also regulates MAPKs, including p42/p44 ERKs,
p38 and c-Jun N-terminal kinase subtypes, although the di-
rection of this regulation and its mediation by more proximal
effectors such as cAMP/PKA and PKC, especially in the case
of p42/p44 ERKs, appears to depend on cell type and the
concentration of PTH (111–119).

Such extensive signaling diversity initially raised the pos-
sibility that PTH might interact with more than one type of
receptor in these target tissues, although subsequent studies
with cloned PTH receptors (see Section III.B) showed that
such multiple signaling, at least for adenylyl cyclase, PLC,
cytosolic Ca2�, and PKC, can be mediated by a single re-
ceptor species. Of particular interest were observations that
these cAMP-independent responses, notably PKC activation
and elevation of cytosolic Ca2�, could be induced by N-
truncated PTH fragments or analogs that were unable to
effectively stimulate adenylyl cyclase (96, 103–105, 120–123).
In particular, a short sequence comprising residues 29–32 of
hPTH was shown to be both necessary and sufficient for
activation of membrane-associated PKC(s) in osteoblastic
cells, whereas the fragment hPTH(1–31), lacking this domain,
could not elicit this PKC response (122, 123). Such observa-
tions are of interest in the context of the present review for
at least two reasons. First, they raise the possibility that
biological effects reported for certain C-terminal PTH frag-
ments, devoid of cAMP-stimulating activity but long enough
to include the PTH(29–32) domain (see Section III.B), might
involve activation of PKC via classical PTH1Rs, even if such
fragments cannot be shown to compete effectively with N-
terminal PTH radioligands for binding to target cells. Sec-
ond, they could provide a mechanism to explain cAMP-
independent biological actions (mitogenesis, regulation of
creatine kinase, regulation of other genes) reported for
certain midregional PTH fragments, such as PTH(25–39),
PTH(28–47), PTH(28–48), and PTH(29–47) (124–131). That
these latter actions may reflect interaction of these mid-
regional peptides with PTH1Rs is further supported by the
observation that excess PTH(28–48) inhibits the cAMP re-
sponse to PTH(1–84) (125) and that the PTH(28–42) and
PTH(28–48) fragments can activate PKC in CHO cells ex-
pressing transfected PTH1R cDNA (132). On the other hand,

the anabolic action of intermittently administered PTH via
the PTH1R is not seen with intermittent administration of
hPTH(28–48) (133). Thus, the in vitro mitogenic activity ob-
served in response to this midregion fragment is not linked
to stimulation of bone formation in vivo.

B. Identification, cloning, and signaling properties of the
PTH/PTHrP receptor

The discovery that PTH elicits activation of adenylyl cy-
clase and production of cAMP predicted that the responsible
receptor would be a member of the G protein-coupled re-
ceptor (GPCR) family. This concept was further supported by
evidence that PTH action could be modulated by guanyl
nucleotides (activation of adenylyl cyclase or PLC) or by
pertussis toxin (99, 134–138). Direct radioligand binding
analysis of the interaction of PTH with membranes or intact
cells of skeletal or renal origin demonstrated saturable bind-
ing with an affinity constant in the low nanomolar range (74,
75, 137, 139–145), and chemical cross-linking studies indi-
cated that the PTH receptor was likely to be a 60- to 80-kDa
membrane glycoprotein (146–152). After the discovery of
PTHrP as the cause of the humoral hypercalcemia of malig-
nancy syndrome, the recognition of the high sequence ho-
mology of its N terminus with that of PTH, and the dem-
onstration that the biological actions of N-terminal fragments
of PTH and PTHrP were equivalent in many different bio-
assays (153, 154), it was shown that both PTH and PTHrP
N-terminal fragments bind to the same receptor sites in kid-
ney and bone cells (155–157).

cDNA encoding the PTH1R was successfully isolated in
1991 by using photoemulsion autoradiography to screen for
binding of 125I-hPTHrP(1–36) radioligand by COS-7 cells that
were transfected with pcDNA1 plasmid pools from an opos-
sum kidney cell cDNA library (8). Subsequent comparison of
cDNAs encoding the opossum, rat, human, and porcine
PTH1Rs (8, 9, 158, 159) demonstrated that these specify
highly homologous (80–95% amino acid identity) single-
chain polypeptides approximately 590 amino acids in length,
each featuring an extended N-terminal extracellular domain,
the anticipated seven hydrophobic helical transmembrane
domains (TMDs), and an intracellular cytoplasmic “tail” con-
taining a number of serine residues that undergo phosphor-
ylation upon agonist interaction (160–163). The N-terminal
domain is glycosylated at four asparagine residues clustered
near the junction with the first TMD (164), and includes three
disulfide bonds involving six highly conserved cysteines
(165). The PTH1R is activated equivalently by intact and
N-terminal PTH and PTHrP peptides and, like other mem-
bers of the class II family of GPCRs (including secretin, cal-
citonin, vasoactive intestinal peptide, glucagon-like pep-
tide-1, GHRH, corticotropin-releasing factor, and glucagon,
among others), it is capable of coupling to several different
G proteins, thereby activating multiple signaling pathways
concurrently, including adenylyl cyclase/cAMP, PLC, cyto-
plasmic Ca2�, and PKC, when expressed in heterologous cell
systems (9, 159, 166–170). The intracellular tail of the receptor
seems also to be important for coupling to a pertussis toxin-
sensitive Gi protein that inhibits adenylyl cyclase (171). The
receptor tail recently was also shown to include a highly
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conserved PDZ interaction domain required for binding to
the sodium/hydrogen exchanger regulator factor (NHERF)
family of adapter/regulatory proteins, which may govern
the balance between the PLC of the receptor vs. adenylyl
cyclase signaling, at least in some cells (172).

The PTH1R is highly expressed in bone and kidney, but is
found also in a variety of tissues not regarded as classical
PTH target tissues (173, 174). This likely reflects the wide-
spread local paracrine role of PTHrP postulated in tissues
such as breast, skin, heart, blood vessels, pancreas, and oth-
ers (154, 174). Ablation of the PTH1R gene in mice [and
inactivating mutations in humans (175)] results in neonatal
lethality and a severe defect in endochondral bone formation
characterized by impaired proliferation and accelerated
chondrocyte maturation and mineralization (176). Such mice
have been “rescued” via chondrocyte-specific expression of
constitutively active PTH1Rs (177), but these animals display
other abnormalities in tooth development and bone, and
detailed analysis of mineral ion homeostasis has not yet been
possible. Because a phenotype similar to that of the receptor-
null animals results from PTHrP gene ablation (178), the
predominant endochondral defect likely reflects interruption
of the critical local paracrine role of PTHrP in the growth
plate (179). Ablation of the PTH gene (180, 181) does lead to
hypocalcemia and hyperphosphatemia, whereas activating
mutations in the PTH1R cause hypercalcemia and hypophos-
phatemia (182, 183), confirming the primary role of PTH per
se, and of the PTH1R, in maintaining normal mineral ion
homeostasis. Mice lacking the gene for PTH also exhibit
abnormalities in mineralization and formation of primary
spongiosa of long bones, which are not seen in PTHrP-null
animals and are presumed to reflect loss of PTH-specific
actions in bone, although the receptors involved have not
been defined (180, 181).

The manner in which the PTH ligand interacts with the
PTH1R has been deduced from an extensive series of studies
by several groups involving mutagenesis of both the receptor
and the ligand, use of hybrid receptors and ligands, and
direct chemical cross-linking of ligands bearing photoreac-
tive groups at specific locations within the peptide chain (84,
184–194). These analyses indicate that interaction of the
PTH(1–34) ligand with the PTH1R involves high-affinity
binding of the C terminus of the ligand with portions of the
receptor’s extracellular N-terminal domain and the extracel-
lular loops that connect the TMDs. The N terminus of the
ligand then interacts with the TMD domains to catalyze the
G protein activation(s) required for signal transduction (195,
196). The critical role in receptor activation of the juxtamem-
brane (“J”) domain, comprising the seven TMDs and their
connecting intra- and extracellular loops, is highlighted by
the fact that the several mutations identified as causing con-
stitutive (i.e., ligand-independent) receptor activation (Jans-
en’s metaphyseal chondrodysplasia) are located within the J
domain (182). Moreover, N-terminal PTH peptides as short
as PTH(1–14) or PTH(1–11) that incorporate substitutions
designed to promote �-helical structure, unlike PTH(1–34),
can activate truncated receptors lacking the N-terminal ex-
tracellular domain as effectively as wild-type receptors (38,
197).

Studies of the signaling properties of clonal PTH1Rs ex-
pressed in heterologous cell lines, such as LLC-PK1, COS-7,
or HEK 293 kidney cells or CHO cells, have shown that this
single receptor type can mediate activation of adenylyl cy-
clase, PLC, phospholipase D, PKC, and MAPK and can in-
crease the concentration of cytoplasmic Ca2� (9, 166, 169,
198–201). Thus, it is not necessary to invoke the existence of
other types of PTH receptors to explain the diversity of
signaling events that N-terminal fragments of PTH or PTHrP
can elicit in various target cells, although this possibility has
not been excluded completely. Mutational analysis has in-
dicated that different G proteins likely do not interact with
the PTH1R identically. For example, a clustered mutation
(EKKY3DSEL) in the second intracellular loop of the rat
receptor completely abrogates PLC signaling without affect-
ing adenylyl cyclase activation (202), and mice expressing
only this mutant receptor display subtle developmental de-
fects in endochondral bone formation (203). Although it is
clear that an intact N terminus of PTH or PTHrP is needed
for effective adenylyl cyclase activation via PTH1Rs (76, 132,
169, 204, 205), this does not appear to be true for activation
of PKC. Thus, as noted earlier, various N-truncated PTH
peptides have been shown to activate PKC(s) in cells ex-
pressing endogenous or transfected recombinant PTH1Rs
(96, 103–105, 120–123, 132, 206). At the same time, studies of
cells stably expressing the transfected PTH1R indicate that
activation of PLC, which can lead to activation of PKC via
generation of inositol trisphosphate and diacylglycerols, re-
quires that the N terminus of the ligand be intact (205). Also,
PTH(1–31), found to lack PKC activation in some systems
(122, 123), can nevertheless activate PKC, presumably via
PLC, in others (206–208). Although available data are not
fully congruent, one interpretation is that PTH1Rs can acti-
vate PKC(s) via at least two different mechanisms, one of
which involves PLC and requires that the ligand have an
intact N terminus, whereas the other, a PLC-independent
mechanism, is triggered by more carboxyl ligand determi-
nants, such as the region PTH(29–32) [or PTHrP(25–34)
(209)]. These mechanisms may not both be active in all target
cells.

Like other GPCRs, activated PTH1Rs appear to be phos-
phorylated by specific GPCR kinases, which then facilitate
association with �-arrestin proteins (161, 163, 210–213, 215).
�-Arrestins, in turn, may terminate receptor-G protein cou-
pling and promote receptor endocytosis, although in the case
of the PTH1R the specific role(s) of �-arrestin in receptor
endocytosis and either degradation or recycling back to the
surface remains unsettled and may differ in cells of different
types (161–163, 212, 213, 215–217). �-Arrestins, when asso-
ciated with certain GPCRs, also may support signaling func-
tions, independent of classical G protein-mediated second-
messenger generation, by serving as molecular scaffolds to
assemble and activate kinases such as MAPKs and nonre-
ceptor tyrosine kinases (218). It is not yet known whether
such �-arrestin-mediated signaling can occur via PTH1Rs
and contribute, for example, to the activation of MAPK ob-
served in some PTH target cells (112–115, 117). Of particular
interest are very recent observations that PTH1R internal-
ization can be dissociated from receptor activation and that,
in some cells, N-truncated PTH peptides such as PTH(7–34)

82 Endocrine Reviews, February 2005, 26(1):78–113 Murray et al. • PTH Carboxyl-Terminal Receptor

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/26/1/78/2355236 by guest on 10 April 2024



and PTH(7–84) may promote PTH1R endocytosis via a �-
arrestin-independent, dynamin-dependent mechanism that
is regulated (blocked) by interaction of the adapter protein
NHERF1 with the cytoplasmic domain of the PTH1R (219).
These novel findings raise the intriguing possibility that cer-
tain N-truncated PTH (CPTH) peptides, incapable of classi-
cal PTH1R second-messenger signaling but long enough to
bind in some way to the PTH1R, could antagonize the actions
of PTH1R agonists by inducing rapid receptor down-regu-
lation, at least in cells lacking NHERF1. Although the role
that this phenomenon plays in modulating PTH action in vivo
remains to be determined, these observations suggest the
possibility of a distinct cellular mechanism of action for at
least some CPTH peptides, in addition to activation of
CPTHRs.

C. Other members of the PTH/PTHrP receptor family

In 1995, Usdin et al. (220) reported that homology screen-
ing of a human brain cDNA library for other members of the
class II GPCR family had led to isolation of a novel receptor,
closely related to the PTH1R, which they named the “PTH2
receptor.” Homologs of this receptor subsequently were
identified in rat and zebrafish (221, 222). In rats, this receptor
is expressed in discrete areas of the central nervous system,
including hypothalamic, limbic, and sensory areas, espe-
cially in the spinal cord; parafollicular cells of the thyroid;
peptide-secreting cells of the gastrointestinal tract; soma-
tostatin-rich pancreatic islet cells; pancreatic exocrine cells;
cardiac and vascular endothelium; vascular smooth muscle;
lung; placenta; testis; and the vascular pole of the renal glo-
meruli but, unlike the PTH1R, not in renal tubules or bone
(220, 223, 224). Pharmacologically, the PTH2 receptor
(PTH2R) also differs strikingly from the PTH/PTHrP recep-
tor, now referred to also as the type-1 PTH receptor (PTH1R),
in that it is activated by PTH but not by PTHrP (90, 220, 221,
225–228). This PTH selectivity mapped to differences at po-
sition 5 of the ligand (Ile5 in hPTH vs. His5 in hPTHrP) and
position 23 (Trp23 in hPTH vs. Phe23 in hPTHrP), which
affected activation and binding, respectively (225, 226). Thus
when the PTH-specific residues at these two positions were
substituted into hPTHrP(1–36), activity at the PTH2R was
reconstituted. Photoaffinity cross-linking analyses suggest
that the overall orientation of the ligand relative to the re-
ceptor protein is similar for PTH binding to PTH1Rs and
PTH2Rs, although specific residues within the N terminus of
the ligand may play different roles in activating one receptor
vs. the other (90, 229).

Like the PTH1R, the PTH2R exhibits dual signaling in
response to PTH(1–34), with generation of both cAMP and
cytoplasmic Ca2� transients (227, 230). PTH(1–34) is a rela-
tively potent agonist for the hPTH2R, at least when this
receptor is expressed at high levels in cultured cells, but this
is not true of the rat PTH2R (221, 230). This suggested that
PTH may not be the endogenous ligand for the PTH2R.
Subsequent demonstration of a potent PTH2R-selective ac-
tivating factor in bovine hypothalamic extracts (231) was
followed by the isolation and identification of a 39-residue
peptide termed tuberoinfundibular peptide of 39 residues, or
TIP39, that shows limited amino acid sequence homology to

bPTH and activates PTH2Rs but not PTH1Rs (232). Later
isolation of human and mouse TIP39 genomic DNA and
tissue expression analysis in the mouse confirmed that this
is a secreted peptide that is highly expressed in testis and, at
lower levels, in various central nervous system nuclei, liver,
and kidney (233). On the basis of the localization of PTH2Rs
and TIP39 in the central nervous system and recent neu-
robehavioral studies, it appears likely that one of the impor-
tant actions of TIP39 is to facilitate the response to painful
stimuli (234). The selectivity of PTH2Rs vs. PTH1Rs for TIP39
is dictated by interaction of the first six amino acids of TIP39
with the J domain of the PTH2R, because chimeric receptors
consisting of the PTH2R J domain and the PTH1R N-terminal
extracellular domain, but not the reciprocal chimera, mediate
binding and activation by TIP(1–39), whereas an analog,
TIP(7–39), binds poorly to the PTH2R but well to the PTH1R
(235). In fact, TIP(7–39) and TIP(9–39) are highly effective
PTH1R antagonists (233, 235, 236). These surprising results
indicate that the C-terminal portion of TIP39 can bind well
to the PTH1R, presumably via interaction with its extracel-
lular domain (237), but that this affinity is overridden by a
conformational incompatibility between the J domain of the
PTH1R and the N-terminal six residues of TIP39.

A third type of PTH receptor, termed the “type-3 zPTH
receptor” or “zPTH3R”, was cloned from a zebrafish cDNA
library (222). At the level of amino acid sequence, this re-
ceptor is more closely related to mammalian PTH1Rs than
PTH2Rs yet clearly is different from the zebrafish PTH1R,
which was isolated concurrently (222). When expressed in
mammalian (COS-7) cells, the zPTH3R activates adenylyl
cyclase but not PLC and exhibits 20-fold higher affinity and
potency with hPTHrP(1–36) than hPTH(1–34). Subsequent
analysis, however, indicated that rat PTH activates the
zPTH3R with higher potency than PTHrP, suggesting that
this receptor probably is not preferentially responsive to
PTHrP peptides (238). The importance of the PTH3R to hu-
man physiology is uncertain, however, because no evidence
has been produced to date for the existence of a mammalian
homolog of this receptor.

Evidence exists for other types of receptors that recognize
N-terminal peptides of PTH or PTHrP but are less well char-
acterized. Thus, Orloff et al. (239) reported sensitive cytosolic
Ca2� responses to both hPTHrP(1–36) and hPTH(1–34) (EC50
� 50–80 pm), without corresponding activation of adenylyl
cyclase, in a series of human squamous cell carcinoma and
keratinocyte cell lines. Specific binding of radioiodinated
[Tyr36]hPTHrP(1–36), competed similarly by hPTHrP(1–36),
hPTHrP(1–74), hPTH(1–34), and bPTH(1–84) and of rela-
tively low affinity (IC50 � 100–300 nm), was observed also,
but only in some of the squamous cell lines. Efforts to identify
receptor mRNA transcripts using PTH1R probes revealed
atypical hybridizing bands but no clear evidence for PTH1R
expression. Moreover, PTH1Rs transfected into squamous
cells did elicit the expected cAMP response (240). Similar
findings were obtained using a rat insulinoma cell line (241).
Evidence of a brain receptor specific for PTHrP has been
provided by Yamamoto et al. (242, 243), who observed that
PTHrP(1–34), but not rat or human PTH(1–34), PTHrP(7–34),
or hPTH(13–34), stimulated release of arginine vasopressin
from slices of rat supraoptic nucleus. This effect was dose
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dependent (0.1–1000 nm) and associated with a modest in-
crease in cAMP [not seen with PTH(1–34)]. Both responses
were blocked by PTHrP(7–37). PTHrP, but not PTH, showed
specific binding to membranes that was of relatively low
affinity (IC50 � 100 nm) and was competed by PTHrP(7–37)
but not by PTH. None of these responses are readily ex-
plained by the known properties of the cloned PTH receptors
isolated to date.

IV. PTH Secretion and Metabolism

A. Immunochemical heterogeneity of PTH in plasma

The first observation that different forms of PTH are
present in blood was published in 1968 in a prescient paper
by Berson and Yalow (244). These authors demonstrated that
estimates of the concentration of PTH immunoreactivity
present in human plasma and of the disappearance half-time
of immunoreactive PTH from plasma after parathyroidec-
tomy differed strikingly depending on the particular anti-
serum used in the immunoassay. They also observed that
clearance of hormone was slower in patients with renal in-
sufficiency and suggested that metabolic alteration of the
hormone might account for the immunochemical heteroge-
neity (244). Shortly afterward, gel filtration experiments re-
vealed that immunoreactive PTH present in human and bo-
vine parathyroid gland extracts coeluted with native intact
bPTH, as did hormone secreted in vivo from bovine para-
thyroids or human parathyroid adenomas, in contrast to
PTH found in the peripheral circulation, much of which
eluted from Biogel P-10 at a smaller molecular weight (245).
This was the first direct evidence for the presence of PTH
fragments in human and bovine blood, and the collective
observations suggested that these fragments were produced
mainly by cleavage of intact hormone after its release from
the parathyroid glands. Closer analysis of venous effluent
from patients with parathyroid adenomas, however, using
fractionation by Biogel P-100 gel filtration and region-
specific RIAs, provided evidence for the direct release of PTH
fragments by the parathyroid glands (246). Moreover, the
majority of secreted PTH fragments detected in the parathy-
roid venous blood samples were reactive in a RIA specific for
the C-terminal region of PTH, whereas relatively little frag-
ment immunoreactivity was detected in the same low-
molecular weight fractions by a RIA specific for the N-ter-
minal region (246, 247). Other laboratories quickly verified
that hormonal fragments could be detected in human blood
and, indeed, that multiple immunoreactive forms of PTH
were detectable in plasma (248–250). It was noted also that
immunoreactivity eluting from gel-filtration columns in the
position of intact PTH disappeared rapidly after parathy-
roidectomy, whereas that eluting as smaller fragments per-
sisted for longer periods (248). Silverman and Yalow (249)
noted the presence of three hormone peaks on Sephadex
G-100 filtration that were detected differentially by various
antisera. They also observed that the fraction containing the
smallest PTH fragments exhibited a much longer half-life in
uremia, and that the antiserum detecting this material was
most advantageous for the diagnosis of primary hyperpara-
thyroidism. This latter observation ushered in a period of

several years during which RIAs directed against different
portions of the PTH molecule were tested for their respective
clinical advantages, a detailed discussion of which is beyond
the scope of this review. Direct iv infusion of exogenous
intact bPTH into calves to constant plasma concentrations
also revealed the accumulation of relatively long-lived C-
terminal fragments that were generated by peripheral me-
tabolism of the administered intact hormone (251). Thus,
early evidence revealed that hormonal fragments in plasma
could arise either by direct secretion from the parathyroid
glands, or by peripheral metabolism of the hormone.

A different question was raised by the detection, in 1973,
of N-terminal fragments in the circulation that were biolog-
ically active, as determined by monitoring renal adenylate
cyclase activity (252). This and other immunochemical evi-
dence for such circulating, short-lived N-terminal fragments
(249, 250, 253, 254) led to the hypothesis that secreted PTH
might have to be cleaved into fragments in the periphery
before its ultimate actions in target tissues. A similar con-
clusion had been reached by Parsons and Robinson (255) in
their studies of perifused feline bone. This theory subse-
quently was disproven, however. Thus, Goltzman et al. (256)
demonstrated that intact bPTH could activate adenylate cy-
clase in renal cortical membranes and fetal rabbit calvarial
bone without prior cleavage to fragments (73). The same was
later shown with respect to release of cAMP and osteocalcin
by intact bPTH from isolated perfused rat hindquarters (257).
Intact biologically active radioiodinated bPTH also was
shown to bind to canine renal membranes (140) and rat
osteosarcoma cells (258) without prior cleavage to fragments.
Thus, although synthetic N-terminal fragments such as
hPTH(1–34) are highly active at PTH1Rs, conversion of PTH
to such smaller fragments is not required for activity, nor is
there any direct evidence that such fragments are produced
in vivo by metabolic cleavage or gland secretion (see Section
IV.E.1). Thus, such N-terminal fragments are not physiolog-
ical agonists of the PTH1R.

B. Sources of circulating C-terminal PTH fragments

1. Secretion by the parathyroid glands. It has been firmly es-
tablished that the parathyroids secrete C-terminal fragments
of PTH as well as the intact hormone. The initial evidence for
this came from use of assays specific for different regions of
the hormone molecule to demonstrate C-terminal PTH frag-
ments in venous effluent of parathyroid tumors (246, 259).
Subsequently, Mayer et al. (260) determined by direct sam-
pling of parathyroid venous blood of calves that, similar to
the finding in patients with hyperparathyroidism, venous
effluent from normal calves contained not only PTH, but also
a major amount of C-terminal fragments. Indeed, these
CPTH fragments were secreted in greater amounts than in-
tact hormone, and the relative amounts of C-fragments in-
creased with induced hypercalcemia (260). These results
were consistent with earlier in vitro studies showing that
most initially synthesized PTH is degraded intracellularly
(261, 262), although neither PTH mRNA translation nor con-
version of prePTH to proPTH is regulated by calcium (261,
263–265). Studies of cultured or perifused bovine parathy-
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roid tissue in vitro also showed that CPTH fragments are
present in parathyroid cells and are secreted directly from the
glands (266–272). This was further supported by extensive
chemical analysis of specific CPTH fragments produced by
organ-cultured parathyroid tissue (273, 274). The ability of
high extracellular calcium to augment release of CPTH frag-
ments relative to that of intact PTH also has been repeatedly
confirmed (272, 273, 275–278).

2. Hepatic proteolysis of intact PTH. Early work by Fang and
Tashjian (279) showed that the liver contributes substantially
to the clearance of circulating intact PTH, and this was con-
firmed by numerous subsequent analyses in several species,
including humans (280–285). The liver can extract biologi-
cally active PTH(1–34) as well (286–288), when this peptide
is administered exogenously. PTH has been shown to acti-
vate adenylate cyclase in liver (286, 289, 290), but direct
hepatic actions of PTH are not known to be involved in
systemic calcium homeostasis. Such hepatic actions of PTH,
presumably mediated by the PTH1R, could reflect physio-
logical autocrine actions of PTHrP. A more likely hepatic role
in calcium and bone homeostasis, for which there now is
considerable supporting evidence, relates to the uptake of
intact PTH and its proteolysis by Kupffer cells to generate
various circulating CPTH fragments (284, 291–293). Hepatic
production of CPTH fragments (282) requires initial uptake
of intact hormone by a mechanism that recognizes determi-
nants present within PTH(28–48) but not PTH(1–34) (294).
This fits with autoradiographic studies showing that intact
PTH(1–84) binds to Kupffer cells, whereas PTH(1–34) does
not (295). On the other hand, both PTH(1–84) and PTH(1–34)
do bind to hepatocytes and sinusoidal cells (295). Some of the
CPTH fragments generated by Kupffer cells are released
back into the bloodstream, where they are not subject to
further hepatic clearance (294) but rather are removed
mainly by the kidneys (282) (see Section IV.C). Studies in
hepatectomized vs. nephrectomized rats showed that the
liver is the principal source of circulating CPTH fragments
that result from peripheral metabolism of intact PTH (296).

Canterbury et al. (297) were the first to study liver metab-
olism of intact PTH in perfused rat liver, and they detected
generation of N-terminal PTH fragments by using RIA after
Biogel P-10 gel filtration. A fragment peak with a molecular
weight of approximately 3500 Da was detected that was
relatively enriched in N-terminal PTH immunoreactivity and
could activate adenylate cyclase, similar to eluted peaks of
intact bPTH or bPTH(1–34) (297). Subsequently, however,
Daugaard et al. (298, 299) found in similar experiments that
only C-terminal, biologically inactive fragments were gen-
erated during liver perfusion, as analyzed using HPLC frac-
tionation. Daugaard suggested that differences in the purity
of hormone preparations and the methods for analysis of
fragments may have been responsible for the discrepant re-
sults. As discussed further below (Section IV.E.1), available
evidence indicates that the N-terminal portion of the hor-
mone is degraded locally by Kupffer cells and that N-PTH
fragments do not reemerge from the liver into the circulation
(292, 300, 301).

C. Renal clearance of PTH and PTH fragments

PTH immunoreactivity disappears more slowly from
blood in humans with renal insufficiency (244, 302–304) and
in nephrectomized animals (282, 284, 305, 306), and direct
analysis of the fate of radiolabeled or immunoreactive PTH
has confirmed the crucial role of the kidneys in clearance
from blood of both intact hormone and, especially, CPTH
fragments (248, 249, 282, 302, 306–310). A portion of intact
PTH is cleared from blood by renal mechanisms that do not
involve glomerular filtration, termed “peritubular uptake”
by Martin et al. (306). This route is selective for PTH or PTH
fragments capable of binding to the PTH1R (306, 311) and
may involve receptor-triggered endocytosis at the basolat-
eral surfaces of renal epithelial cells (145). The bulk of the
hormone, however, is cleared by glomerular filtration and
then is actively reabsorbed by the tubules (298, 306, 308).
Recent studies implicate the megalin/cubilin endocytic sys-
tem in the apical renal tubular epithelial clearance of PTH
from tubular urine (312); this system is an important renal
tubular scavenger receptor mechanism responsible for lim-
iting renal clearance of low-molecular weight proteins. This
PTH1R-independent mechanism is consistent with observa-
tions that overall clearance of biologically active PTH prep-
arations does not differ from that of biologically inactive
preparations (313, 314).

Although the involvement of the kidneys in clearance of
PTH from the circulation is unequivocal and explains the
disproportionate elevation of CPTH fragments observed in
renal failure, it is unlikely that the kidneys are an important
source of circulating CPTH fragments. Analysis of PTH me-
tabolism by isolated perfused kidneys has produced con-
flicting results on this point (298, 299, 309, 315), but studies
of acutely hepatectomized vs. nephrectomized rats demon-
strated that the liver, not the kidneys, is the principal source
of CPTH fragments in blood (296, 300).

Thus, both the liver and kidneys participate in clearance
of circulating intact PTH, but only the liver generates, via the
action of endopeptidases expressed by Kupffer cells, CPTH
fragments that can then reenter the circulation (without ac-
companying N-PTH fragments). These CPTH fragments, like
those secreted from the parathyroid glands, then undergo
predominantly renal clearance.

D. Regulation of circulating C-terminal PTH fragment
concentrations by serum calcium

By 1979 it was known from experiments in animals and
humans that the relative contributions of intact PTH and
hormonal fragments to PTH immunoreactivity in blood are
regulated by calcium and influenced by renal failure (260,
304). Mayer et al. (260) provided the most definitive early
data regarding the effect of blood calcium on secretion of
PTH fragments by studying catheterized calves, where para-
thyroid effluent could be directly sampled under highly con-
trolled conditions. These workers showed that C-terminal
fragment secretion was responsible for the major portion of
PTH immunoreactivity in hypercalcemia, whereas intact
hormone was by far the major species of glandular output in
hypocalcemia. As already noted above, this was subse-
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quently confirmed by direct in vitro analysis of PTH peptide
content and secretion from cultured or perifused parathyroid
tissue (272, 273, 275, 276, 278).

At the same time, immunochemical analysis of circulating
PTH in humans also documented that the ratio of CPTH
fragments to intact hormone in peripheral blood is directly
related to the calcium concentration (304, 316). Subsequent
detailed analyses, using region-specific antibodies, have
been carried out for the most part by the laboratory of
D’Amour (317–323). In studies of normal human subjects in
which parathyroid function was stimulated acutely by
EDTA-induced hypocalcemia or suppressed by calcium in-
fusion, these investigators, using RIAs specific for intact hor-
mone vs. mid- or late-carboxyl PTH fragments, found that the
regulation of intact hormone and hormonal fragments dur-
ing hypo- and hypercalcemia differed (317–319). During
acute hypocalcemia, intact PTH increased in serum 5- to
6-fold, and mid- and late-CPTH to a lesser extent, but these
same CPTH fragments remained the predominant forms of
PTH in blood. In response to acute hypercalcemia, intact PTH
was suppressed 4- to 5-fold, whereas mid- and late-CPTH
fragments declined only 30–50%, such that the latter became
even more predominant relative to intact PTH (i.e., 10-fold or
higher in relative molar concentrations). Directionally sim-
ilar calcium-dependent changes in ratios of mid- and late-
CPTH fragments to intact hormone were observed in pa-
tients with primary hyperparathyroidism, but the apparent
set point for calcium regulation was higher, such that higher
serum calcium levels were required than in normal subjects
to achieve the same ratios of CPTH/intact PTH (320). One
notable aspect of this work was the finding that the ratio of
mid-CPTH fragments to late-CPTH fragments was directly
related to blood calcium concentration (318). This suggests
that calcium may regulate the pattern of PTH proteolysis to
produce relatively more CPTH fragments that are truncated
at both their N and C termini. Experiments performed in
dogs, designed to apply chronic stimulation or suppression
of parathyroid function, have shown that CPTH fragments
are more readily generated during hypercalcemic challenge
after the glands have adapted to a chronic suppressive in-
fluence [such as 1,25-(OH)2D3 administration] (321, 322).
Conversely, CPTH fragments are less easily produced, fol-
lowing the same acute hypocalcemic challenge, after a pro-
longed interval of parathyroid stimulation (as by calcium
and vitamin D deficiency or after partial parathyroidec-
tomy), consistent with time-dependent adaptation of in-
traparathyroidal peptidase activity (322, 323). In all of these
investigations, a component of nonsuppressible intact PTH
was noted during hypercalcemia, although it now is clear
that immunoassays previously thought to be specific for the
intact hormone may also detect long CPTH fragments [such
as PTH(7–84)] (see Section IV.E). Thus, calcium-dependent
excursions in ratios of secreted CPTH fragments:intact PTH
may be even greater than suggested by these studies.

It seems clear that the secretion of CPTH fragments rela-
tive to intact PTH is regulated positively by extracellular
calcium and that this likely contributes to the altered patterns
of immunoreactive PTH peptides present in peripheral blood
at different levels of blood calcium. However, the possibility
that peripheral metabolism of PTH also may be regulated by

changes in blood calcium remains unsettled. Work in rats
and dogs has shown that the overall clearance rate of exog-
enously administered PTH is not affected by blood calcium
(301, 314, 324, 325). Similarly, Oldham et al. (283) found no
relation between serum calcium and the transhepatic arte-
riovenous gradient of PTH immunoreactivity in a small
group of patients with primary hyperparathyroidism, al-
though there was evidence of a calcium-dependent increase
in renal extraction. Daugaard et al. (326), on the other hand,
reported that hepatic extraction of intact PTH was acceler-
ated 60% by increasing calcium concentration in the perfused
rat liver system, but there was no evidence of a change in the
efficiency of proteolysis to CPTH fragments. Earlier exper-
iments performed by Canterbury et al. (297), in contrast, had
indicated that the rate of cleavage of PTH by perfused rat
livers was accelerated at low perfusate calcium concentra-
tions. In intact anesthetized dogs, D’Amour et al. (327) found
evidence of hepatic extraction of CPTH fragments that was
suppressed by induced hypercalcemia. These authors con-
cluded, however, that the elevated ratio of CPTH to intact
PTH seen during hypercalcemia was due mainly to corre-
sponding differences in rates of secretion rather than differ-
ences in metabolic clearance. With respect to renal clearance
and proteolysis of PTH, Daugaard et al. (326) observed no
relation between perfusate calcium and extraction of PTH by
isolated perfused rat kidneys, nor were any CPTH fragments
delivered into the perfusate. Hruska et al. (309), in contrast,
found increased fragment production at low calcium in per-
fused canine kidneys. As noted by Daugaard, however, the
latter observations may have been due to decreased glomer-
ular filtration rates at higher calcium levels. Regulation of
renal PTH proteolysis is of uncertain significance, however,
because renal metabolism of PTH does not contribute sig-
nificantly to the circulating pool of CPTH fragments (296,
300), which are derived principally from hepatic cleavage
and parathyroid secretion.

In summary, whereas total immunoreactive PTH concen-
trations decline during hypercalcemia, the ratio of CPTH
fragments to PTH in blood is positively correlated with se-
rum calcium. This is associated with a calcium-dependent
increase in secretion by the parathyroid glands of CPTH
fragments relative to intact PTH. Although the overall met-
abolic clearance rate of PTH is not altered by changes in
blood calcium, the possibility that calcium may regulate the
rate or nature of hormonal proteolysis in the liver, and
thereby contribute to an altered pattern of circulating PTH
fragments, has not been excluded.

E. Nature of PTH fragments in blood

1. Circulating forms of N-terminal PTH. The almost exclusive
form of circulating PTH capable of activating PTH1Rs and
thereby exerting the classical actions on calcium homeostasis
in kidney and bone is the intact hormone, as shown by
experiments in humans, rat, and bovine species. Some stud-
ies, involving the use of region-specific immunoassays, chro-
matography of serum, or both, have pointed to the presence
of low levels of circulating N-terminal PTH fragments,
mainly in subjects with hyperparathyroidism, renal insuffi-
ciency, or both (249, 250, 252–254, 304, 305, 328, 329). Small
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amounts of immunoreactive or bioactive PTH N-fragments
have been reported also in parathyroid venous effluent or
perfusate (246, 259, 260, 268, 328), again mainly with adeno-
matous or hyperplastic parathyroid tissue. Others, however,
using direct chemical or radiochemical methods, have ob-
served no secretion of N-terminal PTH fragments from para-
thyroid tissue (273, 274). All of these analyses have been
plagued, to a greater or lesser extent, by issues of assay
sensitivity and specificity, and in most cases the possibility
of postcollection proteolysis ex vivo was not rigorously ex-
cluded. Thus, small PTH fragments reported in one study
were observed also in hypoparathyroid serum in which in-
tact PTH was entirely absent (304). In another well-controlled
study involving use of a renal cytochemical bioassay and an
immunoassay with predominant (but not exclusive) N-
terminal specificity, low-molecular weight bioactivity was
detected in uremic (but not normal) plasma and in parathy-
roid venous effluent, but there was no coeluting PTH im-
munoreactivity (328). The latter study did indicate that in
normal subjects, at least 85% of plasma bioactivity coeluted
with intact PTH.

The possibility that circulating bioactive N-terminal PTH
fragments might result from postsecretory cleavage in pe-
ripheral tissues was raised by studies showing production of
such fragments by perfused liver (297) or kidney (309), al-
though others have not successfully replicated these results
(299, 326, 330). Using bPTH(1–84) labeled to high specific
activity at N-terminal methionines (positions 8 and 18) and
HPLC resolution of radioactive peptides, Bringhurst et al.
(292) showed that N-terminal fragments are produced dur-
ing the endopeptidic cleavage of PTH by isolated rat Kupffer
cells, but, unlike the corresponding CPTH fragments, are
rapidly degraded. Moreover, subsequent studies in vivo us-
ing the same tracer, administered by continuous iv infusion
to steady-state plasma concentrations, showed no accumu-
lation of 35S-labeled N-terminal PTH fragments in blood of
normal, nephrectomized, hepatectomized, nephrectomized/
hepatectomized, thyroparathyroidectomized/hypocalcemic
or vitamin D-intoxicated/hypercalcemic rats, or in rats
chronically maintained on either low- or high-calcium diets,
under circumstances where the limit of detection of such
fragments was 0.1 pm (300). These authors concluded that
peripheral metabolism of PTH does not result in formation
of measurable quantities of circulating PTH N-fragments
under physiological or pathological circumstances. Thus, al-
though yet to be proven definitively, it seems likely that,
under physiological conditions, the holohormone, PTH(1–
84), is the only circulating form of PTH with an intact N
terminus and PTH1R bioactivity, as assessed by adenylate
cyclase or cytochemical bioassay, or by known structural
PTH sequences that interact with the N-terminal receptor. In
particular, there is no direct evidence that N-fragments such
as the PTH(1–34) peptide, widely used as a laboratory ag-
onist for the PTH1R and as a pharmaceutical therapy for
osteoporosis, exist naturally in vivo. In renal failure, espe-
cially with concomitant hyperparathyroidism, it is possible
that low levels of N-terminal PTH fragments are produced
and persist in the circulation in association with delayed
renal clearance of hormone.

2. Circulating C-terminal fragments of PTH. As already re-
viewed, numerous analyses of human, rat, bovine, and por-
cine plasma have indicated that relatively high concentra-
tions of circulating heterogenous C-terminal fragments exist
under steady-state conditions. These fragments do not in-
teract with the PTH1R and are therefore inactive in classical
terms. It is likely that many of these fragments do possess
biological activity, however, as discussed below.

Most available data concerning the nature of circulating
CPTH fragments have been obtained using region-specific
immunoassays (with or without preliminary gel-filtration
chromatography) for which the reactive epitope(s) within the
PTH molecule have been only crudely characterized. Efforts
to more precisely define the structures of CPTH fragments in
blood were initiated by Segre et al. (331, 332), who admin-
istered bPTH(1–84), radioiodinated at Tyr43, to dogs and rats,
isolated the resulting large radiolabeled CPTH fragments by
gel filtration of plasma, and subjected these fractions to au-
tomated sequential Edman degradation to define the N ter-
mini of these CPTH peptides. These experiments demon-
strated the presence in blood and liver (284) of multiple
CPTH fragments, initially corresponding to those with N
termini at positions 34 and 37 and followed by the appear-
ance of additional fragments with N termini at positions 38,
40, and 43 of the bPTH sequence. Using organ ablation, this
group also showed that these fragments arose exclusively
from the liver and not from the kidneys, the other major site
of clearance of PTH (296, 300). Although the 125I-bPTH used
by Segre et al. was biologically inactive (due to oxidation of
N-terminal methionines during the iodination reaction), sub-
sequent studies, using biologically active [3H-Tyr43]bPTH(1–
84), documented major large circulating CPTH fragments
with N termini at positions 34, 37, 41, and 43, with small
amounts of additional fragments ending at positions 35 and
38 (300). Analogous fragments were found in rat liver ex-
tracts and could be produced by incubation of 125I-bPTH or
[3H-Tyr43]bPTH with isolated hepatic Kupffer cells in vitro
(284, 291, 292). It was clear from the studies with Kupffer cells
that these N termini corresponded in most cases to more than
one peptide structure, because, for example, peptides with
the same N termini (at positions 34, 35, 37, 38, and 41) could
be found in different, widely separated HPLC fractions, the
most likely explanation for which would be CPTH fragments
with the same N termini but with different C termini (300).
Other workers, using biologically active 125I-bPTH and
Kupffer cells prepared by different methods, identified the
major CPTH fragments generated as having N termini at
positions 35 and 38 (293), fragments which they also showed
could be generated by incubation of the labeled PTH with
purified cathepsin D (333). Clearance of CPTH fragments
occurs mainly via glomerular filtration, as first inferred from
very early studies (244) and later shown using purified 125I-
CPTH fragments (310). The clearance of C-terminal frag-
ments from plasma has been studied in the rat (310). In
normal rats radioiodinated C-terminal fragments were ex-
tracted by kidneys (33%), muscle (16%), bone (7%), liver
(�3%), and other tissues (�1%). In nephrectomized rats, 25%
of C-terminal fragments were cleared in muscle, 10% in bone,
and 7% in liver, with less than 1% in other tissues. Thus,
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nonrenal tissues can increase their ability to remove C-ter-
minal PTH fragments in renal failure (310).

Analogous studies of the chemical nature of CPTH pep-
tides secreted by porcine, bovine, or human parathyroid
tissue have identified, remarkably, very similar N termini to
those produced by hepatic proteolysis of intact PTH. Thus,
Morrissey et al. (273), using a combination of microsequenc-
ing of radiolabeled peptides and tryptic peptide analysis,
identified porcine (p)PTH(34–84) and pPTH(37–84) as se-
cretory products of cultured porcine parathyroid cells, with
pPTH(37–84) as the major moiety (2:1 molar ratio). Using
N-terminal radiosequencing, MacGregor et al. (274) subse-
quently reported production by cultured bovine parathyroid
cells of CPTH fragments having N termini at positions 24, 28,
34, 37, and 43 of bPTH, of which the putative cleavage at
23–24 was the earliest observed (within minutes) and the
least suppressed by high medium calcium concentrations.
The same group also reported secretion by human parathy-
roid cells of CPTH fragments with N termini at positions 24,
28, and 34 (334).

Thus, work performed more than 10 yr ago had identified
the N termini of the principal CPTH fragments secreted by
the parathyroid glands and shown that they were very sim-
ilar, if not identical, to those generated by hepatic metabolism
of circulating intact hormone and released back into the
blood. It is important to recognize, however, that the precise
structures of all circulating CPTH fragments have not yet
been fully defined in any species. Differences in immuno-
reactivity registered in assays with predominantly mid- or
late-carboxyl reactivity strongly suggest the presence of mul-
tiple CPTH fragments, some of which may extend to, or close
to, the C terminus of intact PTH, whereas others may have
undergone substantial C-terminal cleavage to produce
bitruncated “mid-carboxyl” fragments (270, 318). Although
most of the CPTH fragments characterized to date are at least
50–70% as large as PTH(1–84), some small “late carboxyl-
terminal” fragments also may exist in human plasma (335).

More recently, strong evidence emerged for the presence
in human plasma of N-truncated CPTH fragments that are
long enough to register in conventional two-site immuno-
assays for intact PTH but that lack the N-terminal serine
necessary for both full bioactivity at PTH1Rs and reactivity
in a novel two-site immunoassay that stringently requires an
intact N terminus (336–338). These fragments likely were not
detected in previous studies because of poor chromato-
graphic resolution from intact PTH and the limited sensi-
tivity of repetitive Edman degradation when the N terminus
is far removed from the radiolabel being monitored. They
accumulate disproportionately to intact PTH in renal failure
where they may constitute up to 50% or more of total intact
PTH immunoreactivity, vs. 15–20% in normal subjects (336).
Neither the sizes nor precise structures of these fragments
have yet been ascertained directly. They do elute from re-
verse-phase HPLC columns just before PTH, in the same
position as hPTH(7–84), which has been used to model their
possible biological properties (see Section VII.D). It is known
that these extended CPTH fragments can arise both from
peripheral metabolism of iv administered hPTH(1–84) in rats
and via secretion from human parathyroid adenomas in vitro
(339), properties they share with other CPTH fragments pre-

viously described. The ability to measure intact PTH sepa-
rately from these long CPTH fragments that interfere in
conventional two-site assays may be of increased clinical
value in assessing parathyroid and bone status in patients
with renal failure (340, 341).

V. Nonclassical Actions of PTH

A. Actions on the intestine

PTH has been shown to promote intestinal absorption of
calcium (342). Since the discovery of regulated renal 1-
hydroxylation of vitamin D and the hormonal nature of
1,25-(OH)2D3 (343, 344), it has been the prevailing view that
the action of PTH on intestinal calcium absorption that can
be observed in vivo is indirect, via regulation of the renal
vitamin D 1-hydroxylase, and that parathyroid stimulation
of 1,25-(OH)2D3-mediated calcium absorption is the only
mechanism whereby calcium gain from the environment can
be promoted (345).

However, in addition to the classical actions of PTH on
kidney and bone, PTH may also act, at least in pathological
or pharmacological situations, to regulate calcium metabo-
lism via direct stimulation of intestinal calcium absorption.
Recent experiments have provided evidence in support of a
more direct action of PTH on the intestine, as recently re-
viewed by Nemere and Larsson (346). Thus, whereas normal
blood concentrations of 1,25-(OH)2-vitamin D are a prereq-
uisite for such action, PTH can increase calcium absorption
more rapidly than would be expected from its ability to
induce the renal 1�-hydroxylase. Rapid stimulation of cal-
cium transport by PTH has been observed in cultured cells
and in perfused loops of chicken duodenum (346). Although
yet to be proven directly, it is likely that these responses
reflect activation of classical PTH1Rs, expression of which
has been documented in intestinal cells (346). These recently
appreciated direct effects of PTH on calcium absorption have
not been as well studied as those on bone and kidney, and
their role under physiological conditions remains unclear.
These effects may reflect paracrine actions of PTHrP in the
intestine; alternatively, or in addition, they could represent
a physiological pathway complementary to the indirect re-
nally mediated action of PTH on the intestine that could
operate systemically in the presence of sufficient vitamin D
and a functional renal 1-hydroxylase.

B. Actions on osteoclasts

The prevailing view of the action of PTH in stimulating
bone resorption is that PTH acts indirectly via PTH1Rs ex-
pressed on osteoblasts and stromal cells to enhance produc-
tion of receptor activator of nuclear factor-�B ligand,
macrophage colony-stimulating factor and possibly other
cytokines (i.e., IL-1, IL-6, and TNF-�) and to reduce produc-
tion of the antiresorptive protein, osteoprotegerin (347–351).
Then, according to this view, these actions promote differ-
entiation of osteoclast precursors and stimulate the resorbing
activity of mature differentiated osteoclasts (348). This mech-
anism, involving an indirect action of PTH on osteoclastic
bone resorption, does not require the expression of PTH
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receptors on osteoclasts. As early as 1983, however, evidence
was presented for the binding of intact PTH to osteoclasts.
Thus, Rao et al. (352), using immunoperoxidase staining,
observed binding of unlabeled bPTH(1–84) to multinucle-
ated osteoclasts in rat bone. Binding of labeled bPTH(1–84)
to isolated avian osteoclasts was reported by Teti et al. (353)
and Agarwala and Gay (354); the former used an iodinated
radioligand, and the latter a biotinylated probe. Further-
more, biological effects of PTH have been demonstrated in
osteoclasts. Thus, May and Gay (355) observed stimulation
of acid production by highly enriched osteoclast prepara-
tions at concentrations as low as 10�11 m bPTH(1–84). The
foregoing studies were carried out with intact PTH probes,
but one study demonstrated binding of radioiodinated
hPTH(1–34) to isolated avian and rat osteoclasts (356). An-
other report demonstrated high-affinity binding of a 125I-
PTH(1–34) analog to granulocyte-macrophage colony-stim-
ulating factor-dependent hematopoietic blast cells capable of
differentiating into multinucleated osteoclasts (357). Further-
more, recent studies have detected PTH1R mRNA expres-
sion in mature osteoclasts, although here the translated pro-
tein may reside predominantly in a perinuclear location (358,
359). Finally, it has very recently been demonstrated by con-
focal microscopy that almost all tartrate-resistant acid phos-
phatase-positive osteoclasts in rat metaphyseal immunostain
for PTH1R (360).

The possible functional role of PTH1Rs detected on oste-
oclasts and their precursors remains uncertain, however,
because few have reported direct biological actions of
PTH(1–34) on such cells (357, 361–363) and most available
evidence indicates that the effects of PTH(1–34) on osteoclast
differentiation and activity are indirect, as noted above for
PTH(1–84) (347, 348). On the other hand, May and Gay (355)
suggested that the early observations of PTH(1–84) binding
to osteoclasts, especially those of Teti et al. (353), in which the
observed binding affinity was much lower than expected for
a PTH1R interaction, could have represented binding of PTH
to osteoclast PTH receptors specific for the C-terminal por-
tion of the hormone. This is of particular interest now, given
the recent finding that CPTH fragments can interact directly
with hematopoietic precursors to reduce their differentiation
to osteoclasts (see Section VII.D).

C. Unique nonclassical actions of intact PTH

With respect to the classical PTH1R-mediated actions of
PTH on calcium and bone metabolism, there is general agree-
ment that the activity of PTH(1–84) is equivalent to that of
synthetic N-terminal fragments such as PTH(1–34) (7, 69–
73). This equivalence appears to pertain also to the anabolic
effects of intermittently administered PTH and PTH(1–34) on
bone (364–366). Indeed, the latter has recently been adopted
for use in therapy of osteoporosis (367); hPTH(1–84) is also
presently in clinical trials (368). On the other hand, certain
nonclassical actions of PTH have been described in which the
effects of the intact hormone seem to be distinctly different
from those of PTH(1–34). Among the first of these was a
report by Hruska et al. (369) that iv bPTH(1–84) (2.5 mg/kg)
stimulated hepatic gluconeogenesis and alanine uptake in
dogs within minutes, whereas bPTH(1–34) administered at

the same dose exerted no effect. Later, in thyroparathyroid-
ectomized dogs, Puschett et al. (370) found that PTH(1–34),
but not a 3-fold molar excess of PTH(1–84), exerted an acute
natriuretic and calciuric effect. In both of these studies, pep-
tide bioactivity had been confirmed—i.e., each peptide was
shown to stimulate cAMP production in isolated canine renal
tubules and cause phosphaturia in vivo. Martin et al. (371)
reported that bPTH(1–84), unlike bPTH(1–34), could not ac-
tivate adenylyl cyclase in the perfused canine hindlimb. This
was somewhat reminiscent of earlier experiments performed
by Parsons and Robinson (255), who found that bPTH(1–84)
could not elicit rapid calcium release from an isolated per-
fused cat tibia if it was injected directly into the blood sup-
plying the bone but could do so if administered to the animal
whose circulation was being diverted to perfuse the bone.
These latter experiments have not been explained but seem
consistent with a need for preliminary processing or cleavage
of the intact hormone or the possibility of differential access
to cellular receptors via the capillary epithelium.

In an extensive series of studies directed at the contribu-
tion of PTH to the uremic syndrome, Massry and colleagues
described various actions of PTH(1–84) that were not shared
by PTH(1–34) (372–377). For example, Meytes et al. (372)
observed that bPTH(1–84), but not bPTH(1–34), inhibited
erythroid burst colony formation in cultured murine bone
marrow, although both preparations were biologically ac-
tive, as measured by cAMP stimulation in renal tissue. Sim-
ilarly, PTH(1–84) but not PTH(1–34) was found to enhance
neutrophil random migration (373) and elastase release (374)
to elicit cytoplasmic Ca2� transients in rat thymocytes (375)
and adipocytes (376) and to stimulate the volume of pan-
creatic secretions (377). In other systems, PTH(1–34) was
found to be active but significantly less potent than PTH(1–
84). These included induction of chronotropic effects in rat
cardiomyocytes (378); stimulation of cytoplasmic Ca2� re-
sponses in rat pancreatic islets (379), cardiomyocytes (380),
hepatocytes (381), and proximal tubular cells (382); and in-
hibition of human B cell proliferation (383). In many of these
studies of Massry et al., however, the action of PTH(1–84)
could be inhibited by standard PTH1R antagonists, such as
analogs of PTH(7–34), or by oxidation of the PTH(1–84),
which destroys the two N-terminal methionines required for
PTH1R bioactivity. Thus, the selective effects of PTH(1–84)
observed in these studies seem most consistent with its action
via PTH1Rs, although the absence of a comparable response
to PTH(1–34) in these systems remains unexplained. It is
noteworthy, however, that PTH(19–84), which cannot bind
effectively to PTH1Rs, nevertheless did mimic the action of
PTH(1–84) on neutrophil elastase, an assay in which PTH(1–
34) was inactive (374).

Sun et al. (384), in 1997, reported that hPTH(1–84), con-
tinuously infused into rats for 3 d at a dose (7 pmol/h) that
did not cause hypercalcemia, elicited a much greater increase
in circulating fibronectin (6.4-fold vs. 2.2-fold) than did the
same molar dose of infused hPTH(1–34). This was true al-
though the two peptides reached the same steady-state molar
concentration in plasma. A similar difference in fibronectin
levels was seen in medium from ROS 17/2.8 cells cultured
with these peptides for 3 d at concentrations between 10 pm
and 100 nm. The hPTH(1–84) also augmented 1,25-(OH)2D3
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levels in vivo more effectively than hPTH(1–34) (81 � 2 vs.
65 � 1 pg/ml), although the two peptides were equipotent
in stimulating cAMP production by ROS 17/2.8 cells (384).

In summary, these various observations, involving diverse
experimental systems and responses, have provided some
evidence for differences in biological activity between intact
PTH and synthetic N-terminal fragments such as PTH(1–34)
that otherwise are believed to be fully equivalent agonists at
the PTH1R. Whether these differences reflect involvement of
multiple PTH receptor species, atypical preferential activa-
tion of PTH1Rs (or other PTH1R family members) by one or
the other peptide in certain cell types, differences in in vivo
or in vitro bioavailability or pharmacokinetics or technical
issues has not been established. Nevertheless, these collective
findings suggest that intact PTH and PTH(1–34) may not be
bioequivalent in all cells or tissues.

VI. Receptors that Bind Specifically to the
C-Terminal Region of PTH

A. Early studies of PTH binding to target tissues

During the late 1970s, there was increasing interest in
studying PTH receptors by measuring hormone binding to
target tissue membranes. In view of the emerging belief that
PTH bioactivity resided in the N terminus of the hormone
molecule, initial studies of PTH receptors used radiolabeled
ligands based on PTH(1–34). Because conventional radioio-
dination methods resulted in loss of biological activity, ra-
dioligands were needed that retained full biological activity
of the hormone with high specific radioactivity. Zull and
Repke (385) used an acetamidation reaction to produce a
biologically active tritiated derivative of bPTH(1–84). Ra-
dioiodinated ligands were preferred, however, because of
their significantly higher specific radioactivity. Gentler ra-
dioiodination methods were either electrolytic (386, 387) or
used the peroxidase reaction (388). With any of these radio-
iodination methods, the labeled hormones had to undergo
final purification, either by adsorption to chicken renal mem-
branes or by HPLC, for full receptor binding activity. The
method of Rosenberg et al. (387) had the advantage of spe-
cifically targeting a 1:1 molar ratio of radioiodine to hormone.
Also, with that method radioiodinated hormone was shown
to retain full hormonal bioactivity in the conventional rat
renal adenylate cyclase assay, the rat calvarial calcium re-
lease assay, and the chicken hypercalcemia bioassay (387).

Initial studies of renal receptors detected saturable high-
affinity binding of N-terminal PTH ligands with dissociation
constants in the low nanomolar range, tightly linked to ad-
enylate cyclase [reviewed by Nissenson (389)]. Similar re-
sults were found in chicken renal plasma membranes (75),
canine renal cortical membranes (74, 390), and rat renal mem-
branes (391, 392). Analogous results were obtained with
chicken calvarial osteoblasts (390, 393) and rat osteosarcoma
cells (394).

B. Evidence for distinct binding sites for C-terminal PTH

1. Initial detection of PTH C-terminal binding using intact hor-
mone radioligands. In 1980, using a cytochemical bioassay of

guinea pig renal slices, Arber et al. (395) discovered that
hPTH(53– 84) elicited a unique late-occurring peak of
glucose-6-phosphate dehydrogenase activity, whereas that
produced by PTH(1–34) occurred much earlier. This obser-
vation, published in abstract only, went largely unnoticed.
More interest in the activity of the carboxyl-terminal region
of the hormone was aroused, however, when receptor bind-
ing experiments were carried out using intact hormone ra-
dioligands comprising the entire hPTH(1–84) sequence. A
number of such experiments revealed that the competition
for binding of intact hormone radioligand by unlabeled
PTH(1–34) was incomplete. High concentrations of the bio-
logically active N-terminal fragment could only partially
displace binding of intact hormone, which implied that not
all of the binding of intact hormone to target tissues involved
the receptor for the N-terminal 34 residues of PTH and sug-
gested the presence of functional binding determinants C-
terminal to residue 34 of the hormone (140, 141, 258, 396).

2. PTH C-terminal binding sites in kidney. More direct evidence
for the presence of distinct C-terminal PTH binding sites was
first provided by McKee and Murray (142), who studied the
binding of biologically active 125I-bPTH(1–84) to chicken re-
nal plasma membranes and directly tested the competition
for intact hormone binding with a C-terminal fragment of
PTH. Whereas binding studies of PTH(1–34) radioligands
uniformly exhibited a single class of binding sites, kinetic
analysis of intact hormone radioligand binding revealed a
clearly biphasic Scatchard plot, indicating the presence of
two distinct classes of binding sites. Competition curves with
either unlabeled bPTH(1–34) or hPTH(53–84) clearly probed
an N-terminal binding site on the one hand and a C-terminal
site on the other. The N-terminal site was of high affinity (Kd
� 1.21 nm), similar to previously published studies using
specific N-terminal radioligands, and was tightly linked to
adenylate cyclase activation. On the other hand, the C-ter-
minal site was of lower affinity (Kd � 333 nm). Binding to the
low-affinity C-terminal site differed in several other respects
from that of the high-affinity N-terminal binding: it was
specifically inhibited by 10 mm Mg2�, it was reduced dis-
proportionately after storage of membranes for 1 month at
�70 C, and it took a significantly longer time for competition
by unlabeled fragments to occur. Furthermore, it was not
linked to adenylyl cyclase activation (142). Subsequent stud-
ies from the same laboratory using an intact cell system, the
OK opossum kidney cell line, also indicated the presence of
two distinct sites for the biologically active intact hormone
radioligand, a high-affinity N-terminal binding site (Kd � 3.4
nm) linked to adenylyl cyclase activation and a lower-affinity
C-terminal binding site not so linked [Kd � 623 nm (397)]. In
both the broken cell chicken plasma membrane study and the
intact OK cell system, ligand binding to the C-terminal sites
could be specifically competed by hPTH(53–84) fragment.
These C-terminal sites were numerous, because up to 50% of
labeled intact hormone could be displaced from OK cells by
unlabeled hPTH(53–84). In OK cells, the N-terminal frag-
ment was a more potent activator of adenylyl cyclase than the
intact 84-residue hormone by two orders of magnitude, con-
sistent with competition between N- and C-terminal binding
sites for intact hormone but not N-fragment; hPTH(53–84)
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did not activate adenylate cyclase (397). The biological rel-
evance of the renal binding sites for C-terminal PTH remains
unknown, because additional analysis of possible renal ac-
tions of defined CPTH peptides has not been pursued di-
rectly since the early report of Arber et al. (395) in the renal
cytochemical bioassay.

3. PTH C-terminal binding sites in bone. These studies in renal
cells were quickly followed by experiments in bone cell lines
using biologically active intact PTH radioligands. The To-
ronto group undertook analyses in the osteoblastic rat os-
teosarcoma cell line ROS 17/2.8. As in the kidney systems,
kinetic analysis of the binding of intact biologically active
bPTH to the ROS 17/2.8 cells revealed two classes of binding
sites. However, there was one sharp difference between the
kidney and skeletal data; in the ROS 17/2.8 cells, much more
of the intact hormone binding to these cells of skeletal origin
involved the C-terminal binding sites, as indicated by the
ability of saturating doses of hPTH(53–84) to compete for as
much as 72% of radioligand binding (Fig. 2) (398). Again, the
N-terminal sites had higher affinity (Kd � 19 nm) than the

C-terminal binding sites (Kd � 210 nm). Whereas N-terminal
PTH binding was linked to adenylyl cyclase activation, C-
terminal binding was not. Rao and Murray suggested that
the C-terminal sites might be coupled to an unknown bio-
logical activity and suggested that additional studies with
defined C-terminal fragments of PTH other than hPTH(53–
84) be carried out (398). A later study of binding to ROS
17/2.8 cells of [35S]hPTH(1–84), prepared by in vitro trans-
lation, largely confirmed the findings of Rao et al. Thus,
Takasu et al. (399) observed an apparent Kd of approximately
200 nm for specific binding that was inhibited completely by
hPTH(1–84), 70% by hPTH(53–84), but only 30% by hPTH(1–
34). In these studies, in which the binding affinity of the intact
hormone radioligand was somewhat lower, CPTH frag-
ments hPTH(35–84) and hPTH(69–84), but not hPTH(70–
84), hPTH(71–84), or hPTH(53–83), when present at 3300 nm,
also significantly inhibited [35S]hPTH(1–84) binding and
showed additivity with displacement caused by high con-
centrations of hPTH(1–34).

Demay et al. (141), in comparing binding of lactoperoxi-
dase-labeled 125I-bPTH(1–84), before and after oxidation of
the N-terminal methionines required for PTH1R binding,
also suggested that UMR 106 rat osteosarcoma cells ex-
pressed binding sites with specificity for the C terminus of
PTH, although, curiously, hPTH(53–84) could not displace
the 125I-bPTH(1–84) radioligand, unlike the studies of Rao et
al. (398) in ROS 17/2.8 cells. Later studies from the Toronto
laboratory (400) found that with UMR-106 cells, hPTH(53–
84) did compete for binding of 125I-bPTH(1–84) but to a lesser
degree than in their experiments with ROS 17/2.8 cells. The
discrepancies between these reports may be explained by
differences between these two osteosarcoma cell lines.

A significant advance was reported by Inomata et al. (401),
who generated recombinant analogs of hPTH, [Tyr34]-
hPTH(19–84) and [Leu8,18, Tyr34]hPTH(1–84), which interact
weakly or not at all with the PTH1R. When radioiodinated
(at the Tyr34 residue substituted for Phe34), each of these
peptides exhibited specific binding to sites highly expressed
on ROS 17/2.8 and on rat parathyroid-derived (PT-r3) cells
that could be fully displaced by hPTH(1–84) or [Tyr34]-
hPTH(19–84) but not at all by PTH(1–34) (1 �m). Shorter
CPTH fragments, such as hPTH(39–84) and hPTH(53–84),
also displaced the CPTH radioligands, but with 10- to 50-fold
lower affinity, whereas several other peptides, includ-
ing hPTH(44–68), hPTHrP(37–74), and hPTHrP(109–141),
showed no measurable binding. These data suggested that
the CPTH receptor, unlike the PTH1R, was specific for PTH
(vs. PTHrP) and that residues located in the 19–38 portion of
the PTH ligand were important for binding. Interestingly,
these binding sites, specific for the C-terminal portion of the
hormone, were up-regulated on ROS 17/2.8 cells by expo-
sure for 48 h to PTH(1–34), hPTH(1–84), or 8-bromo-cAMP,
whereas treatment with either dexamethasone (which in-
creases PTH1R expression in these cells) or hPTH(39–84) had
no effect. Evidence of CPTH-specific binding, at lower levels,
was found in UMR 106-01 cells and OK opossum kidney
cells, but not in YCC squamous cell carcinoma cells, LLC-PK1
renal epithelial cells, or SaOS-2 or MG63 human osteosar-
coma cells. In a subsequent study, Divieti et al. (402) found
no significant specific CPTH binding (�0.6%) in NIH-3T3,

FIG. 2. Inhibition of 125I-bPTH(1–84) binding by N-terminal and C-
terminal PTH fragments. Competitive inhibition of [125I]bPTH(1–84)
binding to ROS 17/2.8 cells by unlabeled bPTH-(1–84) (‚), hPTH-(53–
84) (x), bPTH-(1–34) (�), and hPTH-(53–84) � bPTH-(1–34)(�). The
labeled hormone was added to the confluent cultures of ROS 17/2.8 cells
together with unlabeled hormones. Incubations were carried out at 22 C
with constant shaking for 2 h. The washed cells were solubilized with
NaOH-0.08% sodium dodecyl sulfate, and the radioactivity was counted
in an automatic �-counter. Each point represents the mean � SEM of four
determinations from at least two to three experiments. [Reprinted with
permission from L. G. Rao and T. M. Murray: Endocrinology 117:1632–
1638, 1985 (398). © The Endocrine Society.]
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HeLa, and BHK21 cells. The study of Inomata et al. (401) was
particularly important also because it provided, for the first
time, direct physical evidence of these CPTH binding sites.
Thus, when the CPTH-specific radioligands were chemically
cross-linked to plasma membranes of ROS 17/2.8 cells and
analyzed by gel electrophoresis, two discrete bands were
observed having molecular weights of approximately 90 and
40 kDa, respectively (including the radioligand mass of �10
kDa). These were coordinately displaced by added nonra-
dioactive PTH(1–84) at the same concentrations that were
effective in the direct noncovalent equilibrium binding anal-
yses. The significance of the smaller protein band observed
in the ROS 17/2.8 cells is unclear, because only the larger
band was observed in similar studies performed with the
PT-r3 cells.

C. Demonstration of C-terminal PTH binding in the absence
of PTH/PTHrP receptors

In 1996, the generation of mice with genetically ablated
PTH1Rs (176) allowed, for the first time, a definitive ap-
proach to the question of whether binding of CPTH-specific
radioligands and fragments to putative CPTH receptors
(CPTHRs) requires the PTH1R in any way. Thus, starting
with collagenase-digested bone cells from embryonic
PTH1R-null mice, Divieti et al. (402) selected a series of con-
ditionally immortalized clonal cell lines on the basis of their
high expression of specific binding sites for the 125I-
[Tyr34]hPTH(19–84) radioligand. The resulting cell lines ex-
hibited a uniform, stellate appearance and a pattern of gene
expression consistent with an osteocytic phenotype. As an-
ticipated, ligand binding analysis with 125I-[Tyr34]hPTH(19–
84) confirmed the presence, in these osteocytic cells, of high
numbers of C-terminal binding sites, in the range of 1–3 �
106 per cell. The CPTHR density on these cells was 4- to 5-fold
higher than in ROS 17/2.8 cells or other (osteoblastic) clonal
PTH1R-null cell lines that previously had been isolated from
the same embryonic bone digests on the basis of high ex-
pression of alkaline phosphatase (403). Analysis of shorter
CPTH fragments also confirmed the presence of important
binding determinants within the 19–39 region of PTH, as
previously reported (401). In addition, binding affinity of
hPTH(28–84) was found to be similar to that of hPTH(39–84)
and hPTH(53–84), i.e., 20- to 30-fold lower than that of
hPTH(1–84), hPTH(19–84), or hPTH(24–84), which showed
IC50 values in the 10–30 nm range (404) (Fig. 3). This indicated
that the basic sequence Leu24-Arg25-Lys26-Lys27, which is
highly conserved among mammalian species (Fig. 1), con-
tributes significantly to the binding affinity of PTH to the
CPTHRs on these cells. Moreover, additional analyses
showed that, whereas hPTH(53–84) binds to CPTHRs with
reduced affinity (IC50 � 500 nm), the slightly shorter peptide
hPTH(55–84) could not displace the radioligand at all, even
at concentrations as high as 10 �m. Thus, the dibasic se-
quence Lys53-Lys54, also highly conserved (Fig. 1), consti-
tutes a second important ligand domain necessary for opti-
mal CPTHR binding. The same group also reported that a
short fragment of PTH, PTH(24–54), comprised of these two
“binding domains” and the intervening sequence, still could
bind to CPTHRs on osteocytes and fully displace the iodin-

ated PTH(19–84) tracer, although the affinity was quite low
(IC50, 10–20 �m) (404). Notably, the apparent affinity of this
PTH(24–54) peptide was approximately 1000-fold lower
than that of hPTH(24–84) (20 nm). This comparison high-
lights the fact that the region comprised by hPTH(55–84)
must contain at least one critical determinant of ligand bind-
ing affinity to CPTHRs, although the hPTH(55–84) peptide
itself displays no binding at all in the absence of more N-
terminal contiguous sequence.

These key features of ligand selectivity are shared in com-
mon by CPTHR sites expressed on several different clonal
cell lines, including PTH1R-null osteoblasts (403) and chon-
drocytes (405) and PTH1R-expressing marrow stromal cells
(406) (Fig. 4). Such observations suggest that CPTHRs ex-
pressed by skeletally derived cells are either identical or very
similar, at least in terms of ligand selectivity. One disparity
with previous work in PTH1R-expressing cells concerns the
observation of Takasu et al. (399) that [35S]hPTH(1–84) could
be displaced from sites on ROS 17/2.8 cells by the peptide
hPTH(69–84), whereas Divieti et al. (404) observed no dis-
placement of 125I-[Tyr34]hPTH(19–84) from clonal bone cells,
regardless of PTH1R expression, by peptides as short as
hPTH(55–84) or hPTH(60–84). It remains possible that
hPTH(69–84) will be found to displace 125I-[Tyr34]hPTH(19–
84) from the PTH1R-null cell lines, because this peptide has not
been directly tested [i.e., perhaps the hPTH(60–68) domain is
inhibitory to binding]. Alternatively, differences in cell systems
or in features of the radioligands used (specific activity, pres-
ence of the Tyr34 residue or N-terminal extent) may underlie the
apparent discrepancy. As noted below, the expression of
CPTHRs on PTH1R-null bone-derived cell lines is associated
with biological responses to PTH peptides that are observed at
concentrations similar to those required for binding, consistent
with the classical pharmacological definition of a receptor.

FIG. 3. Binding of N-terminally truncated hPTH fragments to
CPTHRs on clonal PTH1R-null osteocytes. The hPTH peptides shown
were tested for their ability to displace 125I-[Tyr34]hPTH(19–84) ra-
dioligand from OC59 osteocytic cells. Results are shown as mean �
SD of the percentage of maximal specific binding observed in the
absence of competing ligand (n � 3). [Reprinted with permission from
P. Divieti et al.: Endocrinology 142:916–925, 2001 (402). © The En-
docrine Society.]
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VII. Distinct Biological Activities of PTH
C-Terminal Fragments

A. Initial evidence for biological activity of C-terminal PTH
fragments in bone

During the late 1980s, the evidence from receptor binding
experiments for distinct C-terminal PTH binding sites in both
kidney and bone was not sufficiently compelling to engender
wide acceptance of the concept of a biologically relevant
CPTHR in PTH target tissues, especially because the C-
region of the molecule was generally thought to be biolog-
ically inactive. It thus was of seminal importance that a
biological activity in bone was discovered in 1989 by Murray
et al. (407), who showed that the C-terminal fragment
hPTH(53–84), the only synthetic CPTH fragment commer-
cially available at the time, regulated alkaline phosphatase
activity in rat ROS 17/2.8 osteosarcoma cells and did so in
a manner opposite to that of bPTH(1–34). The enzyme ac-
tivity was stimulated by doses of hPTH(53–84) as low as 0.01
nm (408), and the effect was only noted when the ROS cells
were cultured in the presence of dexamethasone. Increasing
doses of dexamethasone greater than 1 nm resulted in a
dose-related increase in the stimulatory effect of hPTH(53–
84) on enzyme activity, whereas a concomitant dose-related
inhibition was seen with bPTH(1–34) treatment (Fig. 5) (408).
Alkaline phosphatase stimulation in osteoblastic cells was
the first specific biological activity attributed to a CPTH
fragment. Additional work by the Toronto group demon-
strated that hPTH(53–84) could regulate the expression of
the alkaline phosphatase gene as well as that for osteocalcin,
whereas hPTH(1–34) did not (409, 410). On the other hand,

hPTH(1–34) stimulated expression of the gene for type I
collagen, whereas hPTH(53–84) did not (410).

B. Structure vs. function of PTH C-terminal fragments on
bone cells

These initial findings of Murray et al. (407) subsequently
were confirmed and extended by Nakamoto et al. (411), who
used the same cell system and observed that hPTH(53–84)
(10�9 to 10�7 m), but not hPTH(39–68) or hPTH(71–84),
augmented alkaline phosphatase activity. This suggested
that the stimulatory effect of hPTH(53–84) could not be as-
signed to either its N- or C-terminal half, although neither of
the two inactive peptides has been shown to bind effectively
to CPTHRs. Interestingly, the hPTH(69–84) fragment was
slightly inhibitory in these experiments, an effect that ap-
parently requires the dipeptide moiety Glu69-Ala70 [given
that hPTH(71–84) was inactive]. Although the results of
Murray et al. (407) with the corresponding bovine peptides
showed that bPTH(1–34) and bPTH(1–84) inhibited alkaline
phosphatase activity to the same extent, Nakamoto et al. (411)
found that synthetic hPTH(1–84) inhibited alkaline phos-
phatase with slightly greater potency than did hPTH(1–34)
and, furthermore, that the combination of the inhibitory
hPTH(69–84) and hPTH(1–34) fragments mimicked the en-
hanced suppressive effect of the intact hormone. This addi-
tivity was not observed with hPTH(39–68) or hPTH(71–84).
Moreover, the combination of hPTH(1–34) and hPTH(53–84)
produced a response (modest inhibition) that was interme-
diate between the inhibitory and stimulatory effects, respec-
tively, of either peptide alone (411). Many of these observa-

FIG. 4. Ligand selectivity of CPTHRs expressed by
different cells of skeletal origin. Cells were incubated
at 4 C overnight with 125I-[Tyr34]hPTH(19–84) ra-
dioligand, with or without various synthetic hPTH
peptides present at the indicated concentrations
(nanomoles), as previously described (402). Binding
is shown as a percentage of the specific binding ob-
served with radioligand alone in clonal PTH1R-null
HC-1 hypertrophic chondrocytes (A) (405), F1–14
PTH1R-null osteoblasts (B) (403), and MS1 marrow
stromal cells (C) (406).
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tions, including the inhibitory effect of hPTH(69–84), on
alkaline phosphatase activity were later reconfirmed in the
ROS 17/2.8 cell system by Takasu et al. (399), who also
reported new observations that hPTH(35–84) stimulated
alkaline phosphatase, whereas both hPTH(70–84) and
hPTH(53–83) were inactive. Collectively, these rather com-
plex findings seem consistent with either the expression by
the osteosarcoma cells of different classes of CPTHRs with
discrete ligand selectivity, perhaps associated with changes
in the clonal cell line after many additional passages, or the
possibility that a single species of CPTHRs can be activated
differently depending on the sequence and length of the
particular CPTH peptide ligand applied or cell differentia-
tion (see following paragraph).

Additional evidence of specific bioactivity of CPTH
fragments in bone cells was reported by Fukayama et al.
(412), who observed that hPTH(39–84), hPTH(44–68), and
hPTH(53–84), each at 2.5 � 10�8 m, stimulated the uptake of

extracellular 45Ca2� within 15 min of the addition to SaOS-2
human osteosarcoma cells. Nasu et al. (413) then reported,
using UMR 106 rat osteosarcoma cells, that N-terminally
truncated PTH fragments, such as PTH(35–84), PTH(53–84),
and PTH(69–84) could increase the expression of type-1 pro-
collagen mRNA. Notably, whereas PTH(1–34) inhibited
procollagen-1 mRNA expression, the intact hormone had no
effect, a finding at least consistent with the possibility that
simultaneous activation of the two receptor sites (PTH1R and
CPTHR) could lead to summation of the opposite biological
responses to activation of each alone. In contrast to previous
reports in ROS 17/2.8 cells (408, 410, 411), Nasu et al. (413)
found that PTH(53–84) did not augment alkaline phospha-
tase activity in UMR 106 cells, although different experimen-
tal conditions were used (shorter exposure to peptides and
no dexamethasone treatment). These investigators also re-
ported an increase in mRNA encoding IGF binding protein-5
in UMR 106 cells in response to PTH(1–84), PTH(35–84), and
PTH(53–84), although the shorter fragment PTH(69–84) was
inactive. Stimulation of IGF binding protein-5 mRNA was
seen also with hPTH(1–34), which indicated that this par-
ticular response is regulated similarly by CPTHRs and
PTH1Rs in these cells (413). Differences between these find-
ings and those of earlier reports may be explained by the
likelihood that UMR-106 cells represent an earlier stage of
osteoblastic differentiation than do ROS 17/2.8 cells. Fur-
thermore, the studies of Nasu et al. (413) were conducted in
the absence of dexamethasone, whereas Murray et al. (407,
408) observed the stimulatory effect of PTH(53–84) on alka-
line phosphatase in ROS 17/2.8 only in the presence of this
steroid. Corticosteroids are known to promote osteoblast
differentiation and may strikingly alter osteoblast phenotype
(414). Furthermore, PTH actions on osteoblasts in vitro may
be strongly influenced by their state of differentiation, and
even opposite effects may appear as the cells differentiate
(415, 416). In this regard, Tsuboi and Togari (417) described
striking and opposite effects of hPTH(1–34) and hPTH(53–
84) (10�7 m each) on alkaline phosphatase expression and
dentine enamel formation in organ-cultured embryonic
mouse tooth germ in which the opposing effects of the two
hormone fragments were reversed at different stages of em-
bryonic development.

Other biological effects of CPTH fragments not attribut-
able to activation of the PTH1R have been reported in skeletal
cell systems as well. Thus, Erdmann et al. (130) described
selective activation of cytoplasmic Ca2� transients by
PTH(52–84) in isolated human fetal chondrocytes that oc-
curred several minutes after addition of the peptide. Subse-
quent structure-function work from the same group nar-
rowed the hPTH domain required for eliciting this effect to
the Ala-Asp-Val-Asn sequence at residues 73–76, in that
hPTH(52–84), hPTH(57–76), hPTH(61–80), and hPTH(64–
84) all were active whereas hPTH(53–72) was not (418). These
workers also observed that the increase in cytoplasmic Ca2�

concentrations in these chondrocytes was blocked by deple-
tion of extracellular calcium but not by various inhibitors of
intracellular calcium release; this suggested a mechanism
involving augmented calcium influx that is triggered by ac-
tivated CPTHRs but that likely requires one or more addi-
tional signaling events, given the relatively delayed nature of

FIG. 5. Regulation of alkaline phosphatase activity in ROS 17/2.8
osteosarcoma cells. Stimulation and inhibition of alkaline phospha-
tase activity in dexamethasone-treated ROS 17/2.8 cells by increasing
doses of PTH peptides. hPTH-(53–83) (Œ) stimulated enzyme activity,
whereas bPTH-(1–34) (F) and bPTH-(1–84) (x) inhibited it. Cells were
plated in multiwell dishes and cultured for 3 d. The medium was then
changed to fresh medium containing 2% fetal calf serum and varying
doses of PTH peptides. Data were pooled from three experiments
performed in triplicate. Significance of difference from control group:
*, P � 0.01; **, P � 0.001. [Reprinted with permission from T. M.
Murray et al.: Endocrinology 124:1097–1099, 1989 (407). © The En-
docrine Society.]
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the response. This conclusion is consistent with the previ-
ously described increased uptake of 45Ca into SaOS-2 cells
observed by Fukayama et al. (412). Zaman et al. (419) also
observed that substitution of an aspartate for the native as-
paragine at position 76 of hPTH(1–84) greatly reduced bio-
activity in cytochemical bioassays that measure glucose-6-
phosphate dehydrogenase activity in either hypertrophic
chondrocytes of rat metatarsals or distal convoluted tubular
epithelia of guinea pig kidney slices. In fact, the Asp76-
substituted hPTH(1–84), as well as [Asp76]hPTH(39–84),
both functioned as antagonists of cytochemical bioactivity
stimulated by native hPTH(1–84), hPTH(1–34), or cAMP,
and these authors provided some evidence that the
[Asp76]hPTH may have exerted this antagonism by inducing
phosphodiesterase activity (419). Because the extreme C ter-
minus of PTH is not known to interact directly with PTH1Rs,
the difference in bioactivity seen with Asp76- vs. Asn76-sub-
stituted PTH peptides may reflect differences in their inter-
actions with CPTHRs, a conclusion supported by the similar
findings with the [Asp76]hPTH(39–84) peptide.

C. Actions of intact PTH and PTH C-terminal fragments in
bone cells that lack PTH/PTHrP receptors

The studies of CPTH bioactivity described so far were
performed in cells or tissues that endogenously express
PTH1Rs. More direct evidence of bioactivity mediated by an
independent class of CPTHRs was provided by experiments
using PTH1R-null clonal cell lines. Thus, Divieti et al. (402)
demonstrated that activation of CPTHRs in PTH1R-null os-
teocytes could affect cell survival and expression of the gap-
junction protein connexin-43, thought to be important for
intercellular communication among osteocytes and osteo-
blasts. In clonal conditionally immortalized PTH1R-null os-
teocyte-like cells already acclimated to nontransforming cul-
ture conditions for 5–7 d, hPTH(1–84), in a dose-dependent
manner at concentrations ranging from 10�9 to 10�7 m, pro-
moted apoptosis by up to 2-fold within 16 h of addition (Fig.
6) (402). This proapoptotic effect contrasts with the antiapop-
totic response to PTH1R activation by hPTH(1–34) described
in another clonal osteocyte-like cell line and in osteoblasts in
vitro and in vivo (420). This proapoptotic effect in PTH1R-null
clonal osteocytes was exerted not only by the full-length
hormone, but also by hPTH(24–84) and by the shorter frag-
ment PTH(39–84) (Fig. 6). In these cells, treatment for 2 h
with PTH(1–84) (10�7 m) or PTH(39–84) (10�6 m) also in-
duced an increase in connexin-43 staining that was especially
prominent in a perinuclear location (402). Using clonal
PTH1R-null osteoblastic and osteocytic cells, D’Ippolito et al.
(421) also observed that hPTH(1–84), but not hPTH(1–34),
could promote gap-junctional communication among these
cells, as assessed by dye-transfer techniques.

D. Regulation of serum calcium and bone resorption by
PTH C-terminal fragments

As noted earlier (see Section IV.E.2), novel two-site immu-
noassays for “intact PTH” now can distinguish certain long
CPTH fragments from intact hPTH(1–84) per se (337, 338).
These previously unrecognized extended CPTH fragments,

indistinguishable from intact PTH by conventional two-site
assays, behave chromatographically like hPTH(7–84) during
reverse-phase HPLC (422). The actual chemical structures of
these fragments have not been determined, but these obser-
vations prompted recent investigation of the possible bio-
logical actions of long N-truncated PTH fragments, for which
the synthetic peptide hPTH(7–84) was selected as a model.

Thus, in 2000, Slatopolsky et al. (423) reported lowering of
serum calcium over 2 h by ip administration of hPTH(7–84)
(0.5 nmol every 30 min, or 2 nmol total) to hypocalcemic
female rats that had been parathyroidectomized within the
preceding 24 h and subsequently maintained on a low-cal-

FIG. 6. Proapoptotic effect of CPTHR activation in clonal PTH1R-
null osteocytes. Clonal OC59 cells were plated, cultured at 33 C for 3 d,
and then incubated at 37 C (hatched bars in A) or 39 C (solid bars) for
5–7 d before addition of PTH peptides for an additional 16 h, followed
by trypan blue staining. Because the cells are conditionally trans-
formed with a temperature-sensitive SV40 T antigen that remains
active at 33 C and partially so at 37 C, the higher temperature (39 C,
solid bars) may permit greater rates of stimulated apoptosis. Re-
sponses shown are means � SD (n � 4) of the percentage of trypan
blue-positive cells for controls (“C”) vs.: A, hPTH(1–84), 100 nM; B,
hPTH(1–84) at indicated concentrations (nanomoles); C, hPTH(1–84)
100 nM, or hPTH(39–84) 1000 nM; D, hPTH(24–84), 100 nM; or E, 100
nM PTH(1–84) (“P”) with or without the caspase-3 inhibitor peptide
DEVD (“D”) added 1 h earlier. *, P � 0.05; **, P � 0.01. [Reprinted
with permission from P. Divieti et al.: Endocrinology 142:916–925,
2001 (402). © The Endocrine Society.]
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cium diet. Moreover, this regimen of hPTH(7–84) treatment
also blocked, almost completely and within 60 min, the rise
in serum calcium otherwise induced by hPTH(1–84) when
this peptide was coadministered at an equimolar dose (Fig.
7). In the same study, the phosphaturic effect of an 80-min
infusion of hPTH(1–84) was reduced approximately 50% by
administration of a 4-fold molar excess of hPTH(7–84).
Nguyen-Yamamoto et al. (424) subsequently reported similar
results in acutely thyroparathyroidectomized male rats, ex-
cept that the animals were studied only 2 h after parathy-
roidectomy, had been maintained on a normal diet and re-
ceived the PTH peptides via continuous iv infusion rather
than as evenly spaced, ip bolus injections. In this study,
PTH(7–84), infused at 10 nmol/h for 2 h, also reduced serum
calcium (to 16% below controls) and blocked the calcemic
response to hPTH(1–34) or hPTH(1–84) administered at 1
nmol/h. Interestingly, this anticalcemic effect was seen also
with 10 nmol/h of a mixture of CPTH fragments, composed
of 45% hPTH(39–84), 45% hPTH(53–84), and 10% hPTH(7–
84), but only when coinfused with hPTH(1–34). The CPTH
fragment mixture slightly potentiated the effect of hPTH(1–
84), a response interpreted as consistent with competition by
the CPTH fragments for CPTHR-mediated binding or enzy-
matic clearance of the intact hormone. Less potent antago-
nism of the hPTH(1–34) response by 3 nmol/h of hPTH(7–
84), compared with 10 nmol/h of CPTH mixture, pointed
also to a biological effect of the shorter CPTH fragments,
although these clearly were less potent than hPTH(7–84).
The infused CPTH fragments (unlike the N-intact peptides)
also lowered serum phosphate slightly. Because the renal
excretion of neither phosphate nor calcium was increased in
a sustained manner by these fragments, the results were most
consistent with decreased fluxes of these ions out of bone.
Experiments with rat osteosarcoma cells in vitro showed that
the hPTH(7–84) could not bind to PTH1Rs even at concen-
trations 100-fold higher than those required for displacement
by PTH(1–34) or PTH(1–84), nor did it antagonize the cAMP
response to hPTH (424). The hPTH(7–84) did bind to

CPTHRs on these cells, however, as illustrated using 125I-
[Tyr34]hPTH(19–84) radioligand (424). In a preliminary
report, Faugere et al. (425) noted that coadministration
of hPTH(7–84) by continuous infusion for 2 wk to thyro-
parathyroidectomized rats with chronic renal failure antag-
onized the increase in bone turnover, as well as in serum
calcium levels, otherwise produced by continuously infused
PTH(1–84).

These important in vivo experiments indicate that large
N-truncated PTH fragments such as PTH(7–84) can exert
hypocalcemic effects and also effectively antagonize the cal-
cemic response to PTH1R activation, at least in parathyroid-
ectomized animals. Such effects are not seen with PTH(3–84),
a more effective PTH1R antagonist than PTH(7–84) (424,
426–428), which suggests that they likely result from actions
at receptors different from the PTH1R. This is supported by
the apparent bioactivity of the shorter CPTH fragments
hPTH(39–84) and hPTH(53–84), which cannot bind to
PTH1Rs and, when coinfused with PTH(1–84), actually ac-
centuated rather than inhibited the PTH1R-mediated re-
sponse (424). Furthermore, the fact that the anticalcemic ef-
fect occurs in the absence of a calciuric response and is seen
in animals on a low-calcium diet strongly points to bone as
the source of the calcium and, thus, the target of CPTH action,
in these experiments.

The possibility that CPTH fragments may act directly on
bone to inhibit bone resorption was addressed by measuring
the liberation of previously incorporated radiocalcium from
neonatal murine calvarial bones over 72 h in organ culture
(428). This work showed that hPTH(7–84) lowered the basal
rate of bone resorption as effectively as calcitonin and
strongly inhibited accelerated resorption induced by any of
several agonists, including both PTH(1–34) and PTH(1–84)
but also others that act independently of the PTH1R [1,25-
(OH)2D3, prostaglandin E2, and IL-11] (Fig. 8). These effects
were dose-dependent and required relatively high concen-
trations of hPTH(7–84) (100–300 nm), although the bioavail-
ability of the peptide over several days in the in vitro system
was not addressed. Importantly, the antiresorptive effect was
not mimicked by peptides such as hPTH(3–34)NH2 or [Leu11,
D-Trp12, Trp23]hPTHrP(7–36)NH2, both of which are effec-
tive PTH1R antagonists [whereas hPTH(7–84) is not] (428).
The hPTH(7–84) peptide, but not the PTH1R antagonists,
also inhibited formation of osteoclasts induced by 1,25-
(OH)2D3 in 12-d cultures of normal murine bone marrow. In
subsequent work, this antiosteoclastogenic effect of hPTH(7–
84) was observed using receptor activator of nuclear
factor-�B ligand/macrophage colony-stimulating factor-
stimulated purified hematopoietic osteoclast precursors,
which were found to exhibit specific binding of the CPTH
radioligand, 125I-[Tyr36]hPTH(19–84), but not of the 125I-rat
PTH(1–34) PTH1R radioligand (429). These findings are com-
patible with earlier reports of the binding of intact 125I-PTH
to cells of the osteoclast lineage (352–354), as described above
(see Section V.B). Although the mechanism of the anticalce-
mic effect of PTH(7–84) in vivo remains uncertain, it seems
that CPTH fragments, acting directly through CPTHRs ex-
pressed on osteoclast precursors of the hematopoietic lineage
and possibly also on marrow stromal cells that support os-
teoclast formation and activity (Fig. 4C), can inhibit bone

FIG. 7. Comparison of the calcemic effects of PTH isoforms. Para-
thyroidectomized rats fed a 0.02% calcium diet show a significant
increase in plasma calcium after treatment with hPTH(1–84). In
contrast, hPTH(7–84) produced a slight but significant decrease in
plasma calcium. When both peptides were given together in a 1:1
molar ratio, the calcemic response induced by hPTH was reduced by
94% (P � 0.001). E, hPTH(1–84), n � 9; �, hPTH(1–84) � hPTH(7–
84), n � 6; ‚, control, n � 5; �, hPTH(7–84), n � 5. [Reprinted with
permission from E. Slatopolsky et al.: Kidney Int 58:753–761, 2000
(423). © The International Society of Nephrology.]
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resorption, at least in part by reducing the rate of formation
of new osteoclasts.

One paradoxical aspect of these in vitro analyses was the
finding that whereas shorter CPTH peptides such as
hPTH(39–84) also can inhibit osteoclast formation induced
in whole bone marrow cultures by 1,25-(OH)2D3, they exert
weak stimulation of osteoclast formation when added alone,
in the absence of stronger agonists (428). Such dichotomous
effects were not seen with hPTH(7–84), which caused no
osteoclast formation when added alone. A weak agonist ac-
tion also was observed with hPTH(53–84) in a coculture
system in which clonal, conditionally immortalized MS1 mu-
rine marrow stromal cells support osteoclast formation from
precursors present among normal murine spleen cells (406,
430). Stimulation of osteoclast formation by CPTH fragments
[hPTH(35–84) � hPTH(53–84) � hPTH(69–84)], introduced
at concentrations of 1 and 10 nm, also was reported previ-
ously in 7-d cultures of mixed bone cells isolated from long
bones of young mice (431). Osteoclasts could be induced by
these CPTH peptides as well within 4 d of their addition to
cultures of GM-CSF-dependent splenic hematopoietic blast

cells or by incubation of untreated osteoclast progenitors in
conditioned medium collected from UMR-106 rat osteosar-
coma cells that previously had been exposed to these frag-
ments (431). Interestingly, whereas both hPTH(1–34) and
hPTH(1–84) were powerful agonists in these in vitro systems,
hPTH(1–84) was significantly more potent than hPTH(1–34)
at higher concentrations (10 nm), which was felt to be con-
sistent with the possibility that hPTH(1–84) might access
CPTHRs not available to hPTH(1–34). These investigators
also showed that neither hPTH(1–34), hPTH(1–84), nor
CPTH fragments exerted any effect on survival of, or bone
resorption by, isolated mature osteoclasts (431).

Thus, the available evidence concerning actions of CPTH
fragments on osteoclast formation and bone resorption sup-
ports a complex scenario in which CPTHRs may be ex-
pressed by both osteoblastic stromal cells of mesenchymal
origin and by osteoclast progenitors or precursors of the
hematopoietic lineage. Moreover, there appear to be length-
dependent differences in bioactivity among different CPTH
fragments, in that hPTH(7–84) acts only to inhibit osteoclast
formation, whereas shorter peptides such as PTH(39–84)
and PTH(53–84) both can antagonize stronger agonists and
also exert a (weak) intrinsic agonist effect. Whether these
disparate responses reflect actions at CPTHRs coupled to
different intracellular effector mechanisms in different target
cells (i.e., marrow stromal vs. hematopoeitic cells) or different
patterns of signaling elicited via one class of CPTHRs on a
single target cell type, or both, remains to be established.

VIII. Summary of Evidence for Distinct Receptors for
the C Terminus of PTH

Available evidence supporting the existence of an inde-
pendent class of receptors with specificity for the C-terminal
region of PTH is now compelling. Analysis of radioligand
binding to these CPTHRs has evolved from the initial rec-
ognition that radiolabeled PTH(1–84) can access renal and
osseous binding sites unavailable to PTH(1–34), through the
finding that modified N-truncated PTH radioligands inca-
pable of effectively interacting with PTH1Rs nevertheless can
exhibit specific binding to osteosarcoma cells, to the defin-
itive demonstration of identical specific binding of such a
modified radioligand to clonal bone cells that genetically lack
PTH1Rs. Observations of similar patterns of ligand selectiv-
ity of these binding sites among diverse cell lines provide
additional evidence for expression of similar or identical
species of CPTHRs. These demonstrations of CPTH-specific
binding sites have been accompanied by a growing body of
evidence showing that peptides capable of interacting with
these sites also can exert unique biological actions on cells
and tissues of skeletal origin (Tables 1 and 2). Early evidence
of differences in biological activity between PTH and the
N-terminal fragment PTH(1–34), both full agonists for the
PTH1R (Table 1), was followed by direct demonstrations of
unique actions on bone cells of hormone fragments com-
prising portions of the C terminus that cannot bind or acti-
vate PTH1Rs (Table 2). The finding that such CPTH frag-
ments, as well as intact PTH, can regulate the behavior of
clonal osteocytes that genetically lack PTH1Rs provides par-

FIG. 8. Inhibition of osteoclast generation by hPTH(7–84) and
hPTH(39–84). Normal murine bone marrow cells were cultured for
12 d, indicated agents were added three times weekly, and cells then
were fixed and stained for tartrate-resistant acid phosphatase
(TRAP). Bars depict mean � SD of the numbers of TRAP-positive cells
with three or more nuclei in each group (n � 3 wells/group). Cultures
were treated with vehicle alone (“C”) or with indicated combinations
of 1,25-(OH)2D3 (“D”), 10 nM; hPTH(7–84), 300 nM; hPTHrP(7–36)
analog, 300 nM; or hPTH(39–84), 3000 nM. *, P � 0.05 vs. D alone. **,
P � 0.05 vs. control. [Reprinted with permission from P. Divieti et al.:
Endocrinology 143:171–176, 2002 (428). © The Endocrine Society.]
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ticularly strong evidence for the presence in these cells of
CPTHRs that can operate independently of the PTH1R. At
the same time, convincing evidence for in vivo anticalcemic
actions of hPTH(7–84) and of other shorter CPTH fragments
incapable of activating PTH1Rs, together with the finding
that such peptides also can exert antiresorptive and antios-
teoclastogenic effects in vitro, further suggests the presence
of functional CPTHRs in bone with potentially important
physiological roles, although part of these effects could be
accounted for by PTH1R down-regulation induced by CPTH
fragments, as mentioned above in Section III.B (219). More
work clearly is required, but a strong case now can be made
that functional CPTHRs exist on the surfaces of many cell
types in bone and that these receptors may be involved in
mediating novel regulatory actions of PTH.

IX. Biological, Pharmacological, and Clinical
Implications of Current Knowledge

Appreciation of the existence of CPTHRs on bone cells,
together with the presence of their potential ligands in the
form(s) of circulating CPTH fragments, has opened a new
window into the physiology of PTH and the pathophysiol-
ogy of disorders that involve abnormalities in PTH secretion,
peripheral metabolism and clearance, or both. The earlier
misconception that CPTH fragments are “biologically inac-
tive”, which is true only with respect to activation of classical
PTH1Rs, has been supplanted by the recognition that pep-
tides comprising the C-terminal portion of PTH can exert
unique biological effects in appropriately selected bioassays,
both in vitro and in vivo. The potential physiological role of
the CPTH/CPTHR system can only be dimly perceived at
present, but important clues are accumulating, and some
speculation is appropriate.

It has been convincingly shown that parathyroid gland
secretion of PTH is stimulated by hypocalcemia, whereas
secretion of CPTH fragments is promoted by hypercalcemia
(see Section IV.D). A metabolic schema depicting the regu-
lated production of PTH and CPTH fragments and their
interaction with PTH1Rs and CPTHRs in bone is presented

in Fig. 9. Evidence that parathyroidal secretion of CPTH
fragments is favored by hypercalcemia and that certain
CPTH fragments inhibit osteoclast formation and bone re-
sorption via direct effects on cells of the hematopoietic lin-
eage suggests the possibility of a negative feedback loop that
could serve physiologically to restrain release of calcium
from bone into blood when it is not needed. Thus, CPTHRs
may mediate a protective effect on the skeleton, by limiting
bone resorption and tipping the balance in favor of net bone
formation, during states of relative hypercalcemia, or even
normocalcemia, when CPTH levels greatly exceed those of
intact PTH. In this respect, the CPTH/CPTHR system may
be seen as antagonistic to the actions of N-terminal PTH via
the PTH1R, which increases osteoclastic activity in response
to hypocalcemia. In addition to reducing hypercalcemia by
slowing bone resorption, CPTH secreted by the parathyroid
could also be postulated to play a physiological role as a
bifunctional regulator of skeletal calcium stores. Thus, the
parathyroids could operate to replete skeletal calcium stores
when serum calcium concentration is normal or high during
times of adequate calcium availability, via CPTHR restraint
of bone resorption, but to call on them via predominant
PTH1R activation when dietary calcium or vitamin D avail-
ability is restricted, as sensed by a downward trend in ex-
tracellular calcium concentrations via the parathyroid calci-
um-sensing receptor.

Such functional antagonism between PTH1Rs and
CPTHRs has been observed as well for several other re-
sponses in cells of the osteoblastic lineage, including regu-
lation of alkaline phosphatase, procollagen I, and apoptosis
(Table 2). The proapoptotic response of clonal osteocytes,
which has been observed also in marrow stromal cells and
osteoblasts (P. Divieti, unpublished observations), could re-
flect a more general role for CPTHRs in limiting the life span
of cells in the osteoblastic lineage and in modulating the
antiapoptotic effect of PTH1R activation reported in such
cells.

The extraordinarily high density of CPTHRs on osteocytes,
by far the most abundant of bone cells, is of particular in-
terest. This finding, coupled with preliminary evidence that

TABLE 1. Systems in which biological responses to intact PTH differ from those to PTH(1–34)

Biological response Experimental system PTH(1–34) PTH(1–84) First author (ref.)

Gluconeogenesis Normal dogs NE �� Hruska (369)
Natriuresis and calciuria TPTX dogs �� NE Puschett (370)
cAMP production Perfused canine tibia �� NE Martin (371)
Erythroid burst formation Murine bone marrow NE �� Meytes (372)
Leukocyte migration, elastase

release
Rat peripheral blood cells NE �� Doherty (373); Massry (374)

Cytosolic free Ca2� Rat thymocytes, adipocytes NE �� Stojceva-Taneva (375); Ni (376)
Volume of pancreatic secretions Rats NE �� el-Shahawy (377)
Rate of beating Rat cardiomyocytes �� ��� Bogin (378)
Cytosolic free Ca2� Rat islets, cardiomyocytes,

hepatocytes, renal cells
�� ��� Fadda (379); Smogorzewski (380);

Klin (381); Tanaka (382)
Proliferation Human B cells �� ��� Alexiewicz (383)
Serum fibronectin and 1,25-

(OH)2D
Rats � ��� Sun (384)

Secreted fibronectin ROS 17/2.8 cells � ��� Sun (384)
Osteoclast formation Mixed long bone cells, splenic

blast cells
�� ��� Kaji (431)

�, Stimulation; �, inhibition; NE, no significant effect observed; TPTX, thyroparathyroidectomized.
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CPTHRs regulate gap-junctional communication, could
place the CPTH/CPTHR system at center stage in the crucial
mechanosensory function of the osteocyte network. It also
seems possible that osteocytes (which normally express
PTH1Rs) may be involved, at least in part, in mediating the
acute calcemic response to PTH observed in parathyroidec-
tomized rats in vivo. The mechanism involved could repre-
sent a form of osteocytic osteolysis, which has been sug-
gested on the basis of very rapid compatible ultrastructural
changes in bone after PTH administration (432, 433). Indeed,
the antagonism of the PTH calcemic response by PTH(7–84)
occurs so quickly that it seems unlikely to be explained
entirely by inhibition of osteoclast formation alone, and ma-
ture osteoclasts occupy a very limited surface of bone. Thus,
it may be appropriate to consider further the possibility that
CPTHRs could diminish the stimulation of local osteolysis by
PTH1Rs.

Although more information is needed, experiments to date
indicate that CPTHRs do not recognize sequences within
PTHrP. This could provide target cells with a means to dis-
criminate between PTH and PTHrP acting on adjacent
PTH1Rs. Because the affinity of CPTHRs for PTH is at least
10-fold lower than that of PTH1Rs, however, the efficiency

of a CPTHR-dependent parallel signal may be limited when
PTH interacts with both the PTH1R and the CPTHR. On the
other hand, CPTH fragments circulate at molar concentra-
tions that exceed those of PTH by at least 3- to 10-fold, and
perhaps more, depending on renal function and the ambient
serum calcium concentration (see Section IV.D). Moreover,
CPTH fragments longer than PTH(24–84) bind to CPTHRs
with the same affinity as PTH. Thus, it seems likely that
circulating CPTH fragments, whether secreted by the glands
or generated by hepatic metabolism of PTH, are the primary
physiological ligands for CPTHRs. Furthermore, as reviewed
in Sections IV and V, CPTH fragments of different lengths
exist in blood and may exhibit substantial differences in
CPTHR binding affinity and in biological actions attributed
to CPTHR activation. This raises the possibility that the rate
at which specific CPTH fragments of various lengths are
generated could be regulated physiologically to adjust the
availability of active CPTHR ligands in the bloodstream.

Better understanding of the roles of the CPTH/CPTHR
system in bone biology and calcium metabolism is especially
timely in light of the fact that PTH peptides currently are
being introduced as therapeutics for osteoporosis and, po-
tentially, other disorders of bone. Moreover, calcimimetics

TABLE 2. Biological responses to PTH, PTH(1–34), and C-terminal PTH fragments

Biological response Experimental system PTH(1–34) PTH(1–84) CPTH
fragments First author (ref.)

Transient activation of
G6PD

Guinea pig renal slices Early Late Arber (395)

Alkaline phosphatase
regulation

ROS 17/2.8 cells �� ��� �� Murray (407, 408);
Nakamoto (411);
Takasu (399)

Osteocalcin gene expression ROS 17/2.8 cells NE �� Kung-Sutherland (410)
Collagen 1 gene expression ROS 17/2.8 cells �� NE Kung-Sutherland (410)
Osteocalcin gene expression UMR 106-01 cells �� NE �� Nasu (413)
IGFBP-5 gene expression UMR 106-01 cells �� �� �� Nasu (413)
45Ca influx SaOS-2 cells �� �� Fukayama (412)
Cytosolic free Ca2� Fetal chondrocytes �� �� Erdmann (130)
Collagen type II and X gene

expression
Fetal chondrocytes �� �� Erdmann (130)

Osteoclast formation Whole murine marrow �� � Liu (406)
Alkaline phosphatase and Embryonic tooth germ �� �� Tsuboi (417)

enamel formation Early stage
Late stage �� ��

Connexin 43 expression PTH1R-null osteocytes NE �� �� Divieti (402)
Apoptosis PTH1R-null osteocytes NE �� �� Divieti (402)
Apoptosis Clonal PTH1R� osteocytes �� Jilka (420)
Dye transfer via gap

junctions
PTH1R-null osteocytes NE �� D’Ippolito (421)

Serum calcium TPTX rats-controls �� � Slatopolsky (423)
Increase due to PTH(1–84) ��

Serum calcium TPTX rats-controls �� �� �
Increase due to PTH(1–34) �� Nguyen-Yamamoto (424)

Serum calcium and bone TPTX rats with renal failure �� Faugere (425)
turnover Increase due to PTH(1–84) ��

45Ca release from bone Mouse calvariae in vitro �� �� � Divieti (428)
Osteoclast formation Mixed long bone cells �� ��� �� Kaji (431)

Splenic blast cells �� ��� ��
Osteoclast formation Whole murine marrow, agonist-

stimulated
�� Divieti (428)

Basal ��
Stimulated osteoclast

formation
Purified osteoclast precursors NE �� Divieti (429)

�, Stimulation; �, inhibition; NE, no significant effect observed; blank cell, not tested; G6PD, glucose-6-phosphate dehydrogenase; TPTX,
thyroparathyroidectomized.
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and calcilytics, small molecules developed as agonists and
antagonists, respectively, of the parathyroid calcium-sensing
receptor, also are undergoing clinical trials to assess their
utility in managing primary or secondary hyperparathyroid-
ism (calcimimetics) (434–436) or as surrogates for injectable
PTH in osteoporosis therapy (calcilytics) (435, 437, 438).
Given that CPTH fragments arise both by direct glandular
secretion (in a calcium-sensitive manner) and by peripheral
proteolysis of intact hormone (the role of calcium in which
is unsettled), effects of these therapeutics on levels of specific
CPTH fragments in blood could become important in their
actions on bone. For example, administration of PTH(1–34)
or a calcimimetic agent would be expected to reduce endog-
enous parathyroid secretion and, as well, the absolute rate at
which CPTH fragments are generated via secretion or he-
patic proteolysis of intact PTH. Administration of PTH(1–84)
or a calcilytic, on the other hand, could engender higher
levels of circulating CPTH fragments produced by periph-
eral metabolism. In such scenarios, individual differences in
CPTH regulation, as well as the functional interactions be-
tween PTH1Rs and CPTHRs in bone, could prove to be
important predictors of the therapeutic result.

Another important clinical implication of the new knowl-
edge concerning circulating CPTH fragments and their re-
ceptors relates to the use of immunometric assays to assess
serum PTH levels in patients with primary or secondary
hyperparathyroidism and in those with chronic renal dis-
ease. With recognition that so-called first-generation immu-

nometric assays may detect not only intact PTH but also long
CPTH fragments, it now is clear that much of the signal
interpreted hitherto as intact PTH, especially in uremia, is in
fact due to CPTH fragments that may well have biological
activities that are functionally opposite those of the intact
hormone, as it acts via PTH1Rs. This certainly could explain
why attempts to suppress intact PTH into the normal range
with vitamin D and calcium therapy may be accompanied by
low turnover or aplastic bone disease (439, 440). It is likely
that patients with primary or secondary hyperparathyroid-
ism will be found to exhibit considerable individual variation
with respect to the relative amounts of intact hormone and
CPTH fragments in their blood (338). Whether, as suggested
by some early reports (340), this will translate into improved
assessment of skeletal status through use of second-gener-
ation immunometric assays to distinguish PTH from long
CPTH fragments remains to be seen. Complete understand-
ing of the significance of these long circulating CPTH frag-
ments in human disease must await more information con-
cerning their biochemical structure(s) and possible biological
activities.

X. Directions for Future Research

Many questions remain to be answered in future research.
Perhaps the most immediate questions relate to our knowl-
edge of the structure of the C-terminal receptors, which is
rudimentary, and our knowledge of the signaling mecha-

FIG. 9. Secretion and metabolism of PTH. Secretion of intact PTH by the parathyroid glands is accompanied by release of a family of CPTH
fragments (stippled shading), the amount of which, relative to intact PTH, increases at higher serum calcium concentrations. Intact PTH acts
directly on PTH1Rs via its N-terminal sequence (black shading) in target tissues (i.e., bone) or is directly cleared by liver or kidney. Hepatic
clearance of PTH involves rapid proteolysis by Kupffer cells to N-terminal fragments (degraded in situ) and a series of C-terminal fragments,
some of which reappear in the circulation (see Sections IV.B and IV.C). CPTH fragments produced by the parathyroids and the liver are
chemically similar or identical and include minimally N-truncated, long forms and some midregion fragments truncated at both ends. Like intact
PTH, CPTH fragments can exert direct effects on bone cells via a novel class of CPTH receptors. CPTH fragments normally circulate at 5-fold
higher concentrations than intact PTH but are cleared predominantly by the kidney and thus accumulate disproportionately during renal failure.
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nisms of the receptors, which so far is almost nonexistent; the
only intracellular signaling responses identified to date have
been changes in cytosolic calcium (in chondrocytes) and in
calcium uptake (osteosarcoma cells) (see Section VII.B). As
reviewed in Section III.A, CPTH fragments do not activate
adenylyl cyclase, so CPTHRs presumably are not coupled to
adenylate cyclase.

The agenda for research in this field is indeed full and
unquestionably will be greatly accelerated by the molecular
cloning of cDNA(s) encoding the CPTHR(s), efforts toward
which are well under way at present. Such an advance would
enormously facilitate analysis of the pharmacology and cell-
and tissue-specific expression of these receptors, the possi-
bility that they exist in multiple forms, their likely modes of
signal transduction, and their associated patterns of regula-
tion of gene expression in target cells. A potent probe of their
role in normal physiology will be the use of gene-ablation
technology to eliminate CPTHR expression in selected target
tissues, to determine the relative importance of the CPTHRs
vs. PTH1R down-regulation in mediating the antiresorptive
and hypocalcemic effects of CPTH fragments. More work is
needed to define the cellular actions of CPTHRs in vitro and
in vivo, particularly in bone, and to define the actions of
CPTHRs on bone remodeling in vivo. CPTHR effects also
need to be investigated further in renal epithelial cells where
they first were identified. Evidence from in vitro systems that
CPTHRs are expressed at much higher levels in osteocytes
than in other cells of the osteoblastic lineage must be con-
firmed in vivo, and the likely special role these receptors play
in osteocyte biology must be elucidated further. A fuller
understanding of the biological responses to CPTHR activa-
tion is required, in osteoblastic cells as well as in osteoclasts
and their progenitors, to enable more effective exploration of
the apparent complexity of bioactivities among various
CPTH ligands already glimpsed in the early experiments
reviewed here. With respect to these ligands, the enormous
current void in knowledge of the precise structures of cir-
culating conventional, mid, late, and long CPTH fragments
must be filled before it will be possible to accurately measure
blood levels of these fragments or to assess their specific
activities at CPTHRs. Additional work must be done to as-
certain the extent to which individual CPTH fragments in
blood arise from glandular secretion vs. peripheral proteol-
ysis of intact hormone and whether the distribution of bio-
chemically defined fragments derived from either source is
controlled by extracellular calcium or other physiological
regulators. The fact that CPTHRs are expressed on cells of
both the osteoclast and osteoblast lineages, exhibit striking
ligand specificity, and may be capable of transducing diverse
functional responses in a highly ligand-selective manner
makes them potentially attractive therapeutic targets in the
management of bone disease. Accordingly, more basic efforts
directed at understanding the molecular events initiated by
CPTHR activation in appropriate target cells, including spe-
cific signaling events and regulated genes, and the possibility
of modulating these responses through ligand design should
be an important priority as well.

Clinical research must focus on the development and uti-
lization of new assays to assess the contributions of different
circulating forms of PTH to the heterogeneity of circulating

PTH. This may have significance in assessing skeletal status
and predicting responses to novel therapies for bone or para-
thyroid disease, including PTH itself. The expectation that
CPTHR activation could modulate the response to calcilytic
agents or intermittently administered PTH(1–84), as com-
pared with PTH(1–34), should be tested using careful mea-
sures of bone quality and microarchitecture together with
specific assays of generated CPTH fragments. Although
clearly a strong possibility, it is not known whether high
circulating CPTH fragments contribute to any form(s) of
renal osteodystrophy. Interest in these issues should fuel
efforts to better define circulating PTH peptides, using avail-
able highly sensitive analytical techniques to assess the po-
tential utility of CPTHR antagonists in this setting.

The possibility that the proapoptotic effect of CPTHRs, as
seen in osteocytes, might afford protection against the de-
velopment of skeletal neoplasms, as observed in rat toxicol-
ogy studies with PTH(1–34) (214), is of particular interest and
should be assessed. In clinical trials of hPTH(1–84) therapy
of osteoporosis, concomitant activation of PTH1R and
CPTHRs by PTH(1–84) might, via inhibition of bone resorp-
tion, modify dose-response curves, or modify side effects
such as hypercalcemia or hypercalciuria. These questions are
being explored by clinical trials currently in progress (368).

Clearly, this rapidly evolving field presents many oppor-
tunities for future research at both the fundamental and
clinical level. In view of the finding of regulated secretion of
both intact PTH and CPTH fragments by the parathyroids,
it will be necessary, particularly when interpreting physiol-
ogy, to consider the involvement of CPTH fragments, to-
gether with PTH itself, as potential contributors to regulation
of calcium and bone metabolism.
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