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The 3�-hydroxysteroid dehydrogenase/�5-�4 isomerase (3�-
HSD) isoenzymes are responsible for the oxidation and
isomerization of �5-3�-hydroxysteroid precursors into �4-
ketosteroids, thus catalyzing an essential step in the for-
mation of all classes of active steroid hormones. In humans,
expression of the type I isoenzyme accounts for the 3�-HSD
activity found in placenta and peripheral tissues, whereas the
type II 3�-HSD isoenzyme is predominantly expressed in the
adrenal gland, ovary, and testis, and its deficiency is respon-
sible for a rare form of congenital adrenal hyperplasia. Phy-
logeny analyses of the 3�-HSD gene family strongly suggest
that the need for different 3�-HSD genes occurred very late in
mammals, with subsequent evolution in a similar manner in
other lineages. Therefore, to a large extent, the 3�-HSD gene
family should have evolved to facilitate differential patterns
of tissue- and cell-specific expression and regulation involv-
ing multiple signal transduction pathways, which are acti-
vated by several growth factors, steroids, and cytokines.
Recent studies indicate that HSD3B2 gene regulation involves
the orphan nuclear receptors steroidogenic factor-1 and dosage-
sensitive sex reversal adrenal hypoplasia congenita critical re-
gion on the X chromosome gene 1 (DAX-1). Other findings
suggest a potential regulatory role for STAT5 and STAT6 in

transcriptional activation of HSD3B2 promoter. It was shown
that epidermal growth factor (EGF) requires intact STAT5; on
the other hand IL-4 induces HSD3B1 gene expression, along
with IL-13, through STAT 6 activation. However, evidence sug-
gests that multiple signal transduction pathways are involved in
IL-4 mediated HSD3B1 gene expression. Indeed, a better under-
standing of the transcriptional factors responsible for the fine
control of 3�-HSD gene expression may provide insight into
mechanisms involved in the functional cooperation between
STATs and nuclear receptors as well as their potential interac-
tion with other signaling transduction pathways such as GATA
proteins. Finally, the elucidation of the molecular basis of 3�-
HSD deficiency has highlighted the fact that mutations in the
HSD3B2 gene can result in a wide spectrum of molecular reper-
cussions, which are associated with the different phenotypic
manifestations of classical 3�-HSD deficiency and also provide
valuable information concerning the structure-function rela-
tionships of the 3�-HSD superfamily. Furthermore, several re-
cent studies using type I and type II purified enzymes have
elegantly further characterized structure-function relation-
ships responsible for kinetic differences and coenzyme
specificity. (Endocrine Reviews 26: 525–582, 2005)
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I. Introduction

STEROID HORMONES PLAY a crucial role in the differ-
entiation, development, growth, and physiological

function of most vertebrate tissues. The major pathways of
steroid hormone synthesis are well established, and the se-
quence of the responsible steroidogenic enzymes has been
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elucidated (Refs. 1–7 and references therein) (Fig. 1). For
example, in the human, after the conversion of cholesterol to
pregnenolone (PREG) by the mitochondrial side-chain cleav-
age system, the adrenal cortex may direct PREG toward one
of three different pathways. First, PREG may remain as a
C21,17-deoxysteroid and proceed down the pathway to pro-
duce the mineralocorticoid, aldosterone. Second, it may un-
dergo 17�-hydroxylation and proceed down the C21,17-hy-
droxy pathway to form the principal glucocorticoid, cortisol.
The third option is that, after 17�-hydroxylation, it may
undergo cleavage of the C17–20 bond to become a C19–17-
ketosteroid, leading to the formation of androgens and es-
trogens. As can be seen in Fig. 1, whichever pathway is
followed, the subsequent formation of all classes of steroid
hormones relies upon the action of the enzyme 3�-hydrox-
ysteroid dehydrogenase/�5-�4-isomerase (3�-HSD) (8–10).

It is also well recognized that humans and certain other
primates are unique among animal species in having adre-
nals that secrete large amounts of the inactive steroid pre-
cursors, dehydroepiandrosterone (DHEA) and its sulfate
(DHEA-S). These steroids do not bind to the androgen re-
ceptor (11) but exert either estrogenic or androgenic action
after their conversion into active estrogens and/or andro-
gens in target tissues (12, 13). Indeed, in postmenopausal
women, almost all sex steroids are synthesized from precur-
sors of adrenal origin except for a small contribution from
ovarian testosterone (T) and �4-androstenedione (�4-
DIONE), whereas in adult men, approximately half of an-
drogens are made locally in target tissues (12). Thus, the
various types of human enzymes catalyzing 3�-HSD, 17�-
hydroxysteroid dehydrogenase (17�-HSD)/ketosteroid re-

ductase (KSR), 5�-reductase activities, and the alternative
promoter usage of the aromatase gene, because of their
tissue- and/or cell-specific expression and substrate speci-
ficity, provide each cell with necessary mechanisms to con-
trol the level of intracellular active estrogens and androgens
(12, 14–16).

A. The role of 3�-hydroxysteroid dehydrogenase activity in
steroid formation and degradation

The nicotinamide adenine dinucleotide (NAD)�-depen-
dent membrane-bound enzyme 3�-HSD, was first described
in 1951 by Samuels et al. (17). It is located in the endoplasmic
reticulum (ER) and mitochondria (18–23), and it catalyzes the
sequential 3�-hydroxysteroid dehydrogenation and �5 to
�4-isomerization of the �5-steroid precursors PREG, 17�-
hydroxypregnenolone (17OH-PREG), DHEA, and androst-5-
ene-3�,17�-diol (�5-DIOL) into their respective �4-ketosteroids,
namely progesterone (PROG), 17�-hydroxyprogesterone
(17OH-PROG), �4-DIONE, and T. Therefore, this bifunctional
dimeric enzyme is required for the biosynthesis of all classes of
steroid hormones, namely glucocorticoids, mineralocorticoids,
PROG, androgens, and estrogens (Fig. 1). In addition, enzymes
of the 3�-HSD family also catalyze the formation and/or deg-
radation of 5�-androstanes and 5�-pregnanes, such as dihy-
drotestosterone (DHT) and dihydroprogesterone (DHP) (8–
10). The 3�-HSD isoenzyme therefore controls critical
steroidogenic reactions in the adrenal cortex, gonads, placenta,
and a variety of peripheral target tissues (24).

Transient expression of human 3�-HSD isoenzymes pro-
vided the first direct evidence that the 3�-HSD and �5-�4-
isomerase activities reside within a single protein (25–27).
However, data obtained from affinity alkylation (28) and
inhibition experiments (29) that suggested separate 3�-HSD
and isomerase sites are also consistent with a bifunctional
catalytic site adopting a different conformation for each ac-
tivity, as suggested by tryptic peptides associated with both
catalytic activities localized using affinity radiolabeled ste-
roids (30–32). Additional studies have supported the hy-
pothesis that reduced NAD (NADH), the coenzyme product
of the rate-limiting 3�-HSD reaction, induces a conforma-
tional change around the bound 3-oxo-�5-steroid (the 3�-
HSD product and the isomerase substrate) to activate the
isomerase step (33). Finally, as revealed by site-directed mu-
tagenesis of the human type I (placental) enzyme, His261

appears to be a critical amino acid residue for 3�-HSD ac-
tivity, whereas Tyr253 or Tyr254 participate in the isomerase
activity (23).

B. Subcellular localization

Many of the enzymes of the steroidogenic pathway are
localized to the smooth ER with the notable exceptions of
P450scc (P450 cholesterol side-chain cleavage; CYP11A1),
P450c11 (CYP11B1), and aldosterone synthase (CYP11B2).
3�-HSD subcellular localization patterns are unique in that
they show various degrees of ER and mitochondrial distri-
bution. The relevance of dual localization is unclear, yet it can
be hypothesized that substrate accessibility could be limited
with higher degrees of mitochondrial expression due to re-
duced mitochondrial transport. This would be analogous to
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the inability of high-efficiency catalysis of cholesterol by
P450scc in the absence of the protein controlling cholesterol
shuttling, steroidogenic acute regulatory protein (StAR) (34).
Smooth ER localized 3�-HSD presumably would have a
greater access to cytosolic steroid precursors, such as DHEA
and �5-DIOL.

3�-HSD activity was detected using histochemical tech-
niques as early as 1965 (35, 36). Similar techniques isolated
this activity to the smooth ER and mitochondrial cristae (37).
Its membrane localization was not known until studies lo-
calized 3�-HSD to the microsomal fraction of human adrenal
(38) and chorion/amnion fetal membranes (39), suggesting
that 3�-HSD is a membrane-associated enzyme. With the
development of antibodies against 3�-HSD, the resolution of
its localization increased, and it was verified that it is asso-
ciated with the ER and mitochondria in human placenta (18,

40, 41), bovine adrenocortical cells (20), and rat adrenal tissue
(21).

Submitochondrial fractionation studies show that bovine
adrenal 3�-HSD is associated with the inner membrane and
with a particulate fraction characterized by contact sites be-
tween the two membranes. 3�-HSD activity was higher in
this fraction than in the inner mitochondrial membrane, sug-
gesting that intermembrane contact sites may facilitate both
the access of cholesterol to the inner membrane where
P450scc is localized and the rapid conversion of PREG to
PROG by 3�-HSD (19). Elegant biochemical studies have
confirmed that a significant amount of adrenocortical 3�-
HSD is present in the inner mitochondrial membrane (42).
Coprecipitation studies have shown that 3�-HSD is in a
functional steroidogenic complex with P450scc in the inner
mitochondrial membrane (43), which provides the enzyme

FIG. 1. Schematic representation of the major mammalian steroidogenic pathways. All P450s are cytochrome enzymes. P450c18, This enzyme
mediates 11�-hydroxylation and subsequent reactions involved in the biosynthesis of aldosterone; P450c11, 11�-hydroxylase; P450aro, P450
aromatase.
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with immediate substrate metabolized from cholesterol
transported across the mitochondrial membrane. Other work
has shown that subcellular distribution in bovine and murine
adrenal tissues demonstrated a higher degree of microsomal to
mitochondrial localization (44, 45). A similar subcellular dis-
tribution was also recently reported in rat ovary, as revealed by
immunoelectron microscopic localization, whereas in the testis,
the 3�-HSD was restricted to the mitochondria (45).

Although the functional significance of differential 3�-
HSD subcellular localization is unknown, studies have been
performed to determine whether the dynamics of 3�-HSD
subcellular localization can be altered by regulation. Because
Ca2� flux mediates K� and A-II increases in aldosterone
production by zona glomerulosa (ZG) (46), it is possible that
Ca2� could affect the mitochondrial to ER ratio of 3�-HSD.
However, bovine ZG cells showed that neither Ca2� nor A-II
had any effect on the subcellular distribution of 3�-HSD and
P450scc, but it did affect StAR localization (22). Another
report showed that microsomal 3�-HSD activity in the ovary
was unchanged during mouse estrous, yet mitochondrial
3�-HSD activity increased and doubled during diestrous in
the mouse (47). These results suggest that 3�-HSD activity
could be preferentially distributed to the mitochondria under
certain physiological conditions, but this may not be a gen-
eral phenomenon.

II. Human Type I and II 3�-HSD Genes and
Pseudogenes

During the past decade, the structure of the isoenzymes of
the 3�-HSD family has been characterized in the human and
several other vertebrate species (Fig. 2). Human type I 3�-
HSD cDNA was isolated and characterized by Luu-The et al.
(18, 48, 49) after purification of the 3�-HSD enzyme from
human placenta, and this sequence was later confirmed by
other workers (25, 50). The second human 3�-HSD isoen-
zyme, chronologically designated as type II, was isolated
from a human adrenal cDNA library (27). The type I 3�-HSD
gene (HSD3B1) encodes an enzyme of 372 amino acids pre-
dominantly expressed in the placenta and peripheral tissues,
such as the skin (principally in sebaceous glands), mammary
gland, prostate, and several other normal and tumor tissues
(27, 51–54). The purified enzyme has a Michaelis constant
(Km) of 3.7 �m and maximal velocity (Vmax) of 43 nmol/
min�mg for 3�-HSD substrate (DHEA) and a Km of 28 �m and
Vmax of 598 nmol/min�mg for the isomerase substrate (5-
androstene-3,17-dione) (54). In comparison, the type II gene
(HSD3B2), which encodes a protein of 371 amino acids,
shares 93.5% identity with the type I and is almost exclu-
sively expressed in the adrenals, the ovary, and testis (27, 54,
55). The purified enzyme has a Km of 47 �m and Vmax of 82
nmol/min�mg for 3�-HSD substrate (DHEA) and a Km of 88
�m and Vmax of 970 nmol/min�mg for the isomerase sub-

strate (5-androstene-3,17-dione). The higher affinity of type
I 3�-HSD could facilitate steroid formation from relatively
low concentrations of substrates usually present in periph-
eral tissues. Based on their differential tissue-specific expres-
sion pattern, it is not surprising that classical 3�-HSD defi-
ciency, which will be discussed further in Section VII, results
from mutations in the HSD3B2 gene, whereas the HSD3B1
gene is normal in affected individuals (56–59).

The structure of each of the HSD3B1 and HSD3B2 genes
consists of four exons which are included within a DNA
fragment of 7.8 kb and which share 77.4, 91.8, 94.5, and 91.0%
identity, respectively (26, 60, 61). The genes are assigned to
chromosome 1p13.1, 1–2 cM from the centromeric marker
D1Z5 (Fig. 3) (62, 63). Our initial data suggested that the
HSD3B1 and HSD3B2 genes and three related pseudogenes
(64) are included within a 0.29 megabase SacII DNA frag-
ment, suggesting that the human 3�-HSD gene family exists
as a tandem cluster of related genes (63) as observed for the
mouse �-HSD genes (65). In support of these findings, in
addition to the two expressed genes in the human, five pseu-
dogenes have also been recently cloned and physically
mapped (66) (Fig. 3). HSD3B�1–5 are unprocessed pseudo-
genes that are closely related to HSD3B1 and HSD3B2 genes,
but contain no corresponding open reading frames. Al-
though mRNA is expressed from �4 and �5 in several tissues,
altered splice sites disrupt the reading frames. The two ex-
pressed genes, HSD3B1 and HSD3B2, are located in direct
repeat, 100 kb apart; however, separation by two pseudo-
genes, �1 and �2, prevents them from sharing common pro-
moter elements (66).

III. Structure-Function Relationships

The two-step reaction of the 3�-HSD/isomerase involves
the reduction of NAD� to NADH by the rate-limiting 3�-
HSD activity and the requirement of this NADH for the
activation of the isomerase on the same enzyme (41, 67).
Stopped-flow spectroscopy studies show that NADH acti-
vates the isomerase activity by inducing a time-dependant
conformational change in the enzyme, suggesting that the
3�-HSD and isomerase domains of the enzyme are linked by
a shared coenzyme domain that functions both as the binding
site for NAD� during the 3�-HSD reaction and as the co-
enzyme domain for the allosteric activation of the isomerase
reaction (33).

The 3�-HSD isoenzymes belong to the short-chain alcohol
dehydrogenase superfamily, mainly determined by the nu-
cleotide-binding site sequence located at the amino terminus.
It consists of a �-strand, �-helix, �-strand in a fold that
provides a hydrophobic pocket for the AMP part of the
nucleotide factor. The turn between the first �-strand and the
�-helix is a glycine-rich segment, Gly-X-X-Gly-X-X-Gly, sim-
ilar to the common Rossmann fold sequence Gly-X-Gly-X-

FIG. 2. Comparison of the amino acid sequences of members of the 3�-HSD gene family: human types I and II; macaque; bovine; rat types I,
II, III, and IV; mouse types I, II, III, IV, V, and VI; hamster types I, II, and III; horse; pig; chicken; rainbow trout; catfish; and eel types I and
II. Residues common to the human type I 3�-HSD are represented by a dot. The members of the mammalian 3�-HSD family have been
chronologically designated according to their order of elucidation in each species. The numbers indicated above refer to the human type II
sequence. The missense mutations associated with 3�-HSD deficiency are shown by an arrow indicating their position in the human type II
sequence. [Adapted from Ref. 576.]
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X-Gly conserved among most NAD(H)-binding enzymes
(68). This well-conserved glycine-rich fragment forms a hy-
drophobic pocket that allows close association of the AMP
part of the cofactor. A preliminary study of rat type III en-
zyme has targeted Asp (36) as the amino acid that may be
responsible for the strict NAD� specificity of the enzyme (8).
More recent mutagenesis studies in human type I enzyme
demonstrate that the D36A/K37R mutant shifts cofactor
preferences of both 3�-HSD and isomerase activities from
NAD(H) to NADP(H), thus showing that the two activities
utilize a common coenzyme domain (69).

Affinity labeling of purified human type I identified two
tryptic peptides, comprising amino acids Asn176 to Arg186

and Gly251 to Lys274 that contain residues involved in the
putative substrate-binding domain (30). These studies have
shown that the Gly251 to Lys274 peptide was associated with
the site of isomerase activity, whereas Tyr253 appears to func-
tion as the general proton donor in the isomerase reaction
(24). His261 also appears to be a critical residue for the 3�-
HSD activity (23). Additional kinetic analyses of D257L and
D258L mutants suggest that this region is part of the isomer-
ase substrate domain (69).

In contrast to other short chain dehydrogenases with a
single catalytic Y-X-X-X-K motif (5, 70, 71), there are two
potential catalytic motifs (Y154-X-X-X-K158 and Y269-X-X-X-
K273) in the primary structure of all 3�-HSDs. Human type
I and type II only differ at position 156 in this motif, type I
having a tyrosine whereas type II has a histidine residue. The
H156Y mutant form of the type I enzyme shifts the substrate
kinetics for DHEA and PREG to the same Km and Vmax values
exhibited by the type II enzyme; thus, H156 in the type I vs.
Y156 in type II 3�-HSD accounts for the substantially higher

affinity of the type I 3�-HSD activity for these substrates and
inhibitor epostane relative to the type II enzyme (72).

Two membrane-binding domains lying between residues
72 and 89 in the NH2-terminal region and between residues
283 and 310 in the COOH-terminal region were identified.
Indeed, deletion of the 283–310 region causes the enzyme to
localize in the cytosol without affecting its activities (73). The
region is therefore a critical membrane domain of 3�-HSD
that can be deleted without compromising enzyme function
(54, 73). Deletion of residues 72–89 in the NH2-terminal re-
gion produces a mutant protein that is distributed among the
microsomes, mitochondria, and cytosol (73). Because 28% of
the 3�-HSD and isomerase activities remain in the mem-
branes of microsomes and mitochondria, the presence of the
283–310 domain in this mutant allows the protein to retain
significant hydrophobicity. However, a majority (72%) of the
protein is shifted into the cytosol, so the 72–89 region does
contribute to membrane association. The 8-fold loss of both
3�-HSD and isomerase activity that results from the 72–89
deletion underscores the importance of this region to enzyme
function (73). The data obtained by Thomas’ group (73) with
the human type I enzyme are consistent with one of our
previous studies in which the increased polarity of the do-
main between residues 75 and 91 in the rat type II 3�-HSD/
isomerase was responsible for its having much lower activity
than the rat type I enzyme (74). Thus, the presence of this
highly conserved hydrophobic domain may be crucial to
activity in the entire 3�-HSD gene family. The expression of
an active soluble 283–310 deletion mutant of the type I en-
zyme in a baculovirus expression system provides a valuable
tool for crystallographic studies that may ultimately deter-
mine the tertiary/quaternary structure of the enzyme (73). A

FIG. 3. Chromosomal localization showing the two expressed genes HSD3B1 and HSD3B2, and five pseudogenes, �1–5. The orientation of four
genes is shown by the arrow that points toward the stop codon or its homolog. Clones of yeast artificial chromosomes (alphanumeric
identification) are shown as a contig. The information regarding the order of the markers was obtained from the Whitehead Institute/MIT Center
for Genome Research, Cambridge, Massachusetts (http://www-genome.wi.mit.edu/). Structure of human type I and type II 3�-HSD genes, mRNA
species, and the corresponding proteins. Exons are represented by boxes in which hatched lines demarcate the coding regions, whereas open
boxes represent the noncoding regions. Introns are represented by black bold lines. [Adapted from Ref. 576.]
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three-dimensional ribbon model has been constructed by
Thomas’ group (69), based on the homology data for human
type I 3�-HSD and UDP-galactose-4-epimerase. This also
represents a useful tool for interpreting biochemical data and
designing inhibitors (Fig. 4) (69).

IV. Evolution of the 3�-HSD Gene Family

Multiple 3�-HSD isoenzymes have been cloned from sev-
eral other species, further illustrating that the 3�-HSD gene
family is conserved in vertebrate species (Fig. 2 and Table 1).
The tissue-specific expression of multiple members of the
3�-HSD family was first demonstrated in the rat (75). Other
3�-HSD cDNAs have been cloned using adrenal/gonadal
cDNA libraries from six other species, namely the macaque
ovary (76), bovine ovary (77), chicken adrenal (78), horse
testis (79), rainbow trout ovary (80), and eel ovary (81). It is
important to note that in contrast to the human, which is
designated as type II, the adrenal/gonadal 3�-HSD isoen-
zymes in all other vertebrate species have been designated as
type I, due to the chronological order in which they were
cloned. The only 3�-HSD sequence available from the pig
was obtained using a cDNA library from adipose tissue (616).

A. The rat 3�-HSD gene family

The secretion of sex steroids originates exclusively from
the gonads in rodents and domestic animals, which is in
contrast to humans who in addition to secreting sex steroids
from the gonads, secrete the sex precursors DHEA and
DHEA-S from the adrenal gland. The structures of four mem-
bers of the rat 3�-HSD family have been characterized (75, 82,
83). With the exception of type III, all isoenzymes catalyze the
transformation of 5-pregnen-3�-ol and 5-androsten-3�-ol
steroids into the corresponding �4-3-ketosteroids as well as
the interconversion of 3�-hydroxy- and 3-keto-5�-andro-
stane steroids. The various isoenzymes show differences in
tissue-specific expression (84) (Fig. 5). The rat type I and II
3�-HSD proteins are expressed in the adrenals, gonads, kid-

ney, placenta, adipose tissue, and uterus and share 93.8%
identity. The type III protein shares 80% identity with the
type I and II proteins but, in contrast to other types, is a
specific 3-KSR. The type III gene is exclusively expressed in

TABLE 1. Kinetic parameters and major expression sites of 3�-HSDs from human, rat, mouse, hamster, macaque, bovine, and
rainbow trout

Species Type Km PREG/DHEA (�M) Cofactor Major sites of expression First cloning (Ref. no.)

Human I
II

�1
1 to 4

NAD�

NAD�
Placenta, skin and mammary gland
Adrenals and gonads

18
27

Rat I
II

�1
�10

NAD�

NAD�
Adrenals and gonads
Adrenals and gonads

82
82

III
IV

3-KSR
�1

NADPH
NAD�

Male liver
Placenta and skin

75
83

Mouse I
II
III
IV

�1
nd
�1
3-KSR

NAD�

nd
NAD�

NADPH

Adrenals and gonads
Kidney and liver
Liver � kidney
Kidney

87
87
87
88

V
VI

3-KSR
�1

NADPH
NAD�

Male liver
Placenta and skin

91
593

Hamster I
II
III

2 to 5.5
2 to 9
3-KSR

NAD�

NAD�

NADPH

Adrenals and gonads
Kidney and liver
Male liver

96
96
96

Macaque nd nd Adrenals and gonads 76
Bovine �10 NAD� Adrenals and gonads 77
Rainbow trout DHEA � PREG NAD� Ovary 80

nd, Not determined.

FIG. 4. Ribbon structure of human type I 3�-HSD/isomerase based on
homology modeling with key amino acids identified. The primary
sequences of 3�-HSD/isomerase (green) and UDP-galactose-4-epim-
erase (yellow) were aligned using ClustalX. The NAD and DHEA
structures are included. The key Asp36 residue is shown hydrogen
binding (gray dotted lines) to the 2�, 3�-hydroxyl groups of the adenosyl
ribose group of NAD. The catalytic Tyr154 and Lys158 residues for
human type I 3�-HSD activity, the catalytic Tyr253 and Asp257 res-
idues for isomerase activity, and the Asp241 residue that bridges the
upper isomerase domain with the lower coenzyme domain are also
shown. This ribbon model represents the 3�-HSD/isomerase struc-
ture in the 3�-HSD conformation. The oxygen atoms are red, nitrogen
atoms are blue, carbon atoms are gray, and phosphorus atoms are
pink. [Reproduced from J.L. Thomas et al.: J Biol Chem 278:35483–
35490, 2003 (69), copyright 2003, with permission from The American
Society for Biochemistry and Molecular Biology.]
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male liver, and there is marked sexual dimorphic expression,
which results from pituitary hormone-induced gene repres-
sion in the female rat liver (75, 85). The rat type IV protein
shares 90.9, 87.9, and 78.8% identity with that of types I, II,
and III proteins, respectively, and is the prominent mRNA
species detectable in the placenta and the skin (83). In this
respect, it is therefore possible that the rat type IV and the
human type I proteins have conserved cis-acting elements in
their promoter regions, involved in tissue-specific transcrip-
tional control common to skin and placenta (8). The activities
of rat types I and IV are similar (83), whereas there is much
lower enzyme activity for the type II compared with the type
I, which could be due to a change in four amino acid residues
located in a putative membrane-spanning domain, between
residues 75 and 91 as described in the previous section (74).
Furthermore, types I and IV possess a 17�-HSD activity
specific to 5�-androstane-17�-ol steroids, thus suggesting a
key role in controlling the bioavailibility of the active an-
drogen DHT (84, 86).

B. The mouse 3�-HSD gene family

To date, six distinct cDNAs encoding murine members of
the 3�-HSD family have been cloned (87–92), all of which are
highly homologous and encode a protein of 372 amino acids.
The murine family of 3�-HSD enzymes has been extensively

reviewed in the literature (9, 93) and references therein. The
genes encoding the different isoenzymes are found closely
linked on mouse chromosome 3 (65). Hybridization by
Southern blot analysis of restriction enzyme-digested yeast
artificial chromosome DNA using an 18-base oligonucleotide
that hybridizes without mismatch to all known Hsd3b se-
quences indicates that there are a total of seven Hsd3b genes
or pseudogenes in the mouse genome. Additional analysis of
mouse genomic DNA by pulse field gel electrophoresis sug-
gests that all of the Hsd3b gene family is found within a
400-kb fragment (9, 94). The different forms are expressed in
a tissue-specific and developmentally specific manner and
fall into two functionally distinct classes of enzymes (92).
3�-HSD types I and III, and most probably type II, function
as dehydrogenase/isomerases, and are essential for the bio-
synthesis of active steroid hormones, whereas 3�-HSD type
IV and type V, analogous to rat type III, function as 3-KSRs
and are therefore involved in the inactivation of active ste-
roid hormones (88, 91). 3�-HSD I in the adult mouse is
expressed in the gonads and the adrenal gland (87), whereas
3�-HSD II and III are expressed in the liver and kidney (87),
with much greater expression of type III in the liver than in
the kidney. The major site of expression of 3�-HSD IV is in
the proximal tubules of the kidney in both the male and
female mice (89), with minor expression in the testis (91). The

FIG. 5. Enzymatic 17�-HSD and 3�-HSD activities of
rat types I and IV 3�-HSD expressed in intact cells.
Reaction 1 corresponds to the androgenic 17�-HSD ac-
tivity measured in cells expressing the rat type I and IV
3�-HSD isoenzymes. Reaction 2 corresponds to the 3�-
HSD activity present in cells expressing rat type I or IV
3�-HSD enzymes. Reaction 3 corresponds to 3�-HSD
present in some cells. Reaction 4 corresponds to the
3-KSR activity present in liver cells expressing the rat
3-KRS (type III) enzyme. The hatched arrows indicate
predominant reactions expected to use primarily NAD�

as cofactor, whereas the black arrows indicate the pre-
dominant reactions expected to use primarily NADPH
as cofactor. [Adapted from Ref. 84.]
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type V isoenzyme appears to be expressed only in the liver
of the male mouse, with expression starting during the latter
half of pubertal development (91, 95). The type VI isoenzyme
functions as a NAD�-dependent 3�-HSD and is the earliest
isoform to be expressed during the first half of pregnancy in
cells of embryonic origin and in uterine tissue (92). In the
adult mouse, 3�-HSD type VI appears to be the only isoen-
zyme expressed in the skin and is also expressed in Leydig
cells of the testis, although to a lesser extent than type I
3�-HSD.

It is hypothesized that mouse 3�-HSD type VI cDNA is
orthologous to human 3�-HSD type I cDNA, which has been
shown to be the only isoenzyme expressed in the placenta
and the skin. The demonstration that the type VI isoenzyme
in the mouse functions as a 3�-HSD and is the predominant
isoenzyme expressed during the first half of pregnancy in
uterine tissue and embryonic cells, suggests that this isoen-
zyme may be involved in the local production of PROG,
which is required for the successful implantation of the blas-
tocyst and/or maintenance of pregnancy (92).

C. The hamster 3�-HSD gene family

The hamster is a rodent species, but in contrast to the rat
and mouse, in which the principal corticosteroid is cortico-
sterone, the principal corticosteroid in the hamster is cortisol.
A study on the regulation of adrenal steroidogenic enzymes
suggested that the hamster could be a good model for study-
ing human steroidogenesis. With this in mind, three isoen-
zymes of 3�-HSD were characterized in the hamster (96, 97).
The type I isoenzyme was isolated from an adrenal cDNA
library and was identified as being a low Km 3�-HSD (Km:
PREG, 5.5 �m; DHEA, 2.4 �m). A separate isozyme, desig-
nated type II was isolated from the kidney and was also
found to be a low Km 3�-HSD (Km: PREG, 8.8 �m; DHEA, 2.9
�m). Two cDNAs were isolated from the liver, one which was
identical to the type II sequence found in the kidney, and a
distinct cDNA encoding an isoform designated as type III,
which does not possess any steroid dehydrogenase activity
but functions as a 3-KSR. There is sexual dimorphic expres-
sion of this liver-specific type III 3�-HSD in the hamster, as
seen for the rat liver-specific type III KSR. As is the case for
both the rat and mouse, a high affinity 3�-HSD is expressed
in the adrenal and gonad of the hamster, consistent with the
steroidogenic role of these tissues (96).

D. Phylogeny of the 3�-HSD gene family

McBride et al. (66) indicated no evidence for the presence
of other members of the human 3�-HSD family within the
physical contig of 0.5 Mb by Southern blot analysis, thus
suggesting that in humans there is no comparable liver-
specific 3-KSR sharing a high percentage of identity with
other members of the HSD3B cluster. Such a conclusion is
also well supported by phylogenetic analysis of the mam-
malian 3�-HSD gene family. Unexpectedly, the phylogenetic
tree strongly suggests that independent gene duplications
occurred in different species (66, 91), (V. Laudet, personal
communication). As illustrated in Fig. 6, our recent analysis
shows a first complex of three genes from primates and
suggests that an ancestral gene duplicated specifically in the

primate lineage to give rise to human types I and II, whereas
the macaque gene is the homolog of human type II. It is very
likely that an ortholog of the human type I exists in the
macaque genome, but yet remains to be identified. The sec-
ond complex clusters together the single 3�-HSD species
characterized in bovine, pig, and horse. The third complex
clusters together three clear classes of rodent 3�-HSD genes;
firstly, the rat type I, II, and IV as well as the mouse type I,
II, III, and VI; secondly, the mouse type IV and V and rat type
III, the specific 3-KSRs; and thirdly the hamster type I, II, and
III. Because the hamster type III is a liver-specific 3-KSR (97),
it is surprising that it is not included in the second class of
rodent genes. These findings strongly suggest that the 3�-
HSD genes were independently duplicated or triplicated
three times in the lineage of the rat, the mouse, and the
hamster. It is difficult to understand why the duplication
failed to occur earlier in mammalian evolution if there are
physiological needs and/or advantages for the presence of
multiple isoenzymes. These data may indicate that the need
for different 3�-HSD genes occurred very late in mammals,
with subsequent evolution in a similar manner in other
lineages.

FIG. 6. Unrooted phylogenetic tree constructed by the Neighbor-
Joining method using 1000 bootstrap replicates. Multiple nucleotide
alignments of 3�-HSDs from different species were obtained using
PILEUP (Wisconsin GCG package), and the phylogenetic analysis
was performed by PAUPsearch, which provides a GCG interface to the
tree-searching options in the PAUP program, version 4.0.0d55 (Phy-
logenetic Analysis Using Parsimony) (590). [Adapted from Ref. 576.]
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It is also of interest to note that although the N-terminal
amino acid sequences of the pig hepatic 3�-hydroxy-�5-C27-
steroid dehydrogenase and the vertebrate 3�-HSD enzymes
show some similarities, substrate specificities differ. Al-
though vertebrate 3�-HSD/�5-�4 isomerase enzymes are ac-
tive on C19/C21 steroids, porcine hepatic 3�-hydroxy-�5-C27-
steroid dehydrogenase is active on C27 steroids such as
7�-hydroxycholesterol, 7�-25-dihydroxycholesterol, 7�-27-
dihydrocholesterol, and 3�-7�-dihydroxy-5-cholestenoic
acid, and participates in bile acid biosynthesis (98, 99) (Fig.
7). Furthermore, genetic studies of a kindred affected with
3�-hydroxy-�5-C27-steroid dehydrogenase deficiency, which is
associated with hepatic failure in childhood, showed no ge-
netic linkage to the HSD3B cluster (100). In fact, such hepatic
and extrahepatic activity was practically unaffected by
trilostane, a well-known C19/C21 3�-HSD inhibitor (99).
Gene structure of HSD3B7, as well as positioning of disease-
associated mutations on corresponding nucleic and amino
acid sequences, is represented in Fig. 8. Moreover, it has
recently been suggested that the alcohol dehydrogenase ��

isoenzyme is the sole 3�-HSD using bile acids as a substrate
in human liver cytosol (101). Also, it has been demonstrated
that the X-linked dominant male-lethal phenotype gene mu-
tated in bare patches and striated mice encodes a novel
3�-HSD (102). This gene encodes an NADPH enzyme, which
is likely to be involved in cholesterol biosynthesis and shares
only 30% identity with other mammalian 3�-HSD enzymes,
thus supporting the phylogenetic divergence between the
C19/C21 3�-HSD/�5-�4 isomerase and the other enzymes
involved in bile acid metabolism and/or biosynthesis of
cholesterol.

E. Enzymatic characteristics of the 3-KSRs (rat liver-
specific type III, mouse types IV and V, and hamster
type III)

As mentioned briefly above, the rat type III protein (75)
does not display oxidative activity for the classical substrates
PREG, DHEA, �5-DIOL, and 3�-DIOL, but instead is a spe-
cific 3-KSR responsible for the conversion of 3-keto saturated

FIG. 7. Major bile acid biosynthesis pathways. Two major bile acid biosynthesis pathways are shown. Only major enzymes and intermediates
are shown.
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steroids, such as DHT and DHP, into inactive steroids using
NADH phosphate (NADPH) as cofactor instead of NADH
(86). In addition to using 5�-androstane steroids such as DHT
and androstanedione as substrates, the expressed rat 3-KSR
also catalyzes the 3�-reduction of DHP into 5�-pregnane-
3�,20�-diol (84). The Km and Vmax values of the expressed
3-KSR protein using DHP as substrate and NADPH as co-
factor were calculated to be 0.24 �m and 0.83 nmol/min�mg
protein, respectively. In comparison, the Km value of the
expressed type I 3�-HSD isoenzyme, also using DHP as the
substrate in the presence of NADH as cofactor, was 0.55 �m,
whereas the calculated Vmax value was 0.18 nmol/min�mg
protein (84).

Examination of the 3�-HSD isoenzymes shows a typical
��� dinucleotide-binding fold with Asp (36) located in the
position predicted for the acidic residue that participates in
hydrogen bond formation with the 2�-hydroxyl moiety of the
adenosine ribose of all known NAD-dependent dehydroge-
nases (Fig. 2). Using site-directed mutagenesis, it has been

shown that the presence of a Tyr residue instead of an Asp
residue at position 36 in the typical ��� dinucleotide-binding
fold of the cofactor binding domain of rat type III is respon-
sible for the difference in cofactor specificity of the rat 3-KSR
(type III) protein, but this alteration is not sufficient to explain
the low activity of the enzyme with �5-3�-hydroxysteroid
substrates (103). The physiological importance of this pecu-
liar member of the rat 3�-HSD family is well supported by
the finding that mouse types IV and V and hamster type III
also possess this specific 3-KSR activity (88, 91, 96). The
3-KSR activity of these three latter enzymes is most likely due
to the presence of Phe (36) in place of Arg (36), as suggested
by the data resulting from the study on Asp (36) in the rat
type III sequence.

F. 17�-HSD activity of rat type I and IV 3�-HSDs

Using cell homogenate preparations, it was first noted that
the rat type I 3�-HSD protein has androgenic 17�-HSD-like

FIG. 8. Top, Schematic representation of HSD3B7 gene, mRNA, and corresponding protein. Exons are represented by hatched boxes indicating
coding region, whereas open boxes represent noncoding regions. Asterisk represents an alternative noncoding exon. Introns are represented by
black bold lines. Mutations causing progressive intrahepatic cholestasis are identified on the gene. The nucleotide numbers indicating the
positions of individual mutations refer to C27 3�-HSD cDNA (GenBank accession no. AF277719). Bottom, Alignment of amino acid sequences
of human type I and type VII 3�-HSD. Residues common to both types are identified by black areas, whereas similar residues are identified
by gray areas. Positions of mutations causing progressive intrahepatic cholestasis are identified by an arrow in reference to amino acid sequences
on the primary structure. [Adapted from Ref. 591.]
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activity. It was found that the affinity for the DHT substrate
by the enzyme is similar to that of the substrates for 3�-HSD
activity, although with a much lower velocity (86). However,
using intact cells transfected with the rat type I, it was found
that the enzyme catalyzed almost exclusively the conversion
of DHT into androstanedione via the 17�-HSD-like activity.
The intrinsic 17�-HSD activity of rat types I and IV 3�-HSD
is specific to 5�-androstane-17�-ol steroids, therefore sug-
gesting that it plays a key role in controlling the bioavail-
ability of the active androgen DHT.

The predominance of this secondary 17�-HSD activity
over the primary 3�-HSD activity in intact cells most likely
results from the high bioavailability of NAD� in mammalian
cells relative to the low levels of the intracellular pool of
NADH. The apparent discrepancy between the oxidoreduc-
tase activity of the rat type I and IV proteins, as revealed by
the interconversion of DHT and 3�-DIOL using homogenate
preparations from mammalian cells expressing the recom-
binant isoenzymes, and the lack of significant 3-KSR activity,
measured in intact cells in culture expressing the same re-
combinant enzymes, can also be explained by the low levels
of the intracellular pool of NADH relative to the high bio-
availability of NAD� in mammalian cells. In agreement with
this explanation, in cultured HeLa, JEG-3, and SW-13 cells
expressing rat types I and IV 3�-HSDs, �5-hydroxysteroid
precursors are efficiently converted into their corresponding
�4-3-keto steroids, which is well known to require NAD� as
the allosteric cofactor. The highly efficient conversion of DHT
into 3�-DIOL in cultured HeLa cells expressing rat 3-KSR
(type III) also argues in favor of the bioavailability of
NADPH within the cells (84, 86). It is also of interest that
3�-HSD is known to use NADPH as a cofactor, which is in
agreement with the predominant metabolic pathways using
NAD� or NADPH as cofactors postulated to be present in
transfected cells in culture. These results also emphasize the
important fact that assessment of enzyme activity should
always be performed in intact cells to more closely resemble
the situation in vivo, an issue that will be discussed in more
detail in Section VII.

In relation to an enzyme having dual activity, such sec-
ondary activity could be explained by the binding of the
steroid in the inverted substrate orientation, in this case from
the C-17 rather than C-3 extremity, to the same active site
responsible for the primary activity of the enzyme. The phys-
iological relevance of this secondary 17�-HSD activity is also
supported by the observation that the purified bovine ad-
renal 3�-HSD enzyme (20) also possesses the 17�-HSD-like
activity (84, 86). Moreover, it was recently shown that mouse
types I and VI 3�-HSD isoforms display significant 17�-
HSD-like activity (617).

Another enzyme known to catalyze the oxidation of both
3�- and 17�-hydroxy groups of certain hydroxysteroids is
the NAD�-dependent 3�-17�-hydroxysteroid dehydroge-
nase from Pseudomonas testosteroni (104). The elucidation of
the cDNA sequence of this enzyme revealed that it is a
member of the short-chain dehydrogenase/reductase super-
family, however, sharing more homology with the 17�-HSD
than with the 3�-HSD enzymes (105). It is also known that
some members of the 17�-HSD family, such as human type

2 (106) and human type 7 (107) 17�-HSDs, possess dual
3�/17� activity.

V. Transcriptional Regulation of Human Type I and
II 3�-HSD

The human HSD3B2 gene is the major form expressed in
the adrenal cortex, ovary, and testicular Leydig cells. It is
most homologous to the type I gene expressed in mice, rats,
and other species. The different gene isoforms are so named
because of their chronological isolation. The current state of
knowledge concerning the transcriptional control human
HSD3B2 gene will be discussed first.

A. Gonadal/adrenal isoenzyme—type II 3�-HSD

1. Steroidogenic factor-1 (SF-1). Initial studies investigating the
transcriptional regulation of the human HSD3B2 gene pri-
marily focused on the trophic hormones known to regulate
expression of other genes, including ACTH in the adrenal
cortex, LH/human chorionic gonadotropin (hCG) in theca
cells and corpus luteum (CL), and LH in testis Leydig cells.
Until fairly recently, data regarding the transcriptional reg-
ulation of 3�-HSD was highly limited. After the isolation and
sequencing of genomic clones for human type II 3�-HSD,
several studies analyzed the promoter and 5�-flanking re-
gions looking for regulatory elements essential for expres-
sion and regulation in steroidogenic cells. Initial examina-
tions of the sequence were not very revealing. Because cAMP
was a known intracellular mediator of trophic hormone stim-
ulation of 3�-HSD expression, it was interesting that no
identifiable cAMP response elements were observed in the
proximal 1.3 kb of the 5�-flanking sequence. There were two
putative activator protein-1 (AP-1) elements at �576 and
�977 that matched functional AP-1 elements in other genes
(e.g., the sequence at �977 is an exact match of an AP-1
element in the simian virus 40 promoter). This limited in-
formation formed the basis of the initial functional studies of
the 3�-HSD promoter by transfection into steroidogenic cells.

The H295R human adrenocortical carcinoma cell line was
chosen as a steroidogenic cell model due to its relatively high
level of differentiated functions, including responsiveness to
adrenal trophic hormones such as ACTH and synthesis of
cortisol. Interestingly, these cells have characteristics of all
three zones of the normal adrenal gland, the zona reticularis
(ZR), zona fasciculata (ZF), and ZG (108). As such, these cells
may represent a pluripotent adrenal cortical stem cell that
transformed before terminal differentiation. The H295R cells
can be cultured under different specific conditions that pro-
mote the differentiated characteristics of cells from the in-
dividual zones (108). In these studies, the cells were treated
with activators of the protein kinase A (PKA) pathway, such
as forskolin and dibutyryl cAMP, to increase the expression
of enzymes P450 17�-hydroxylase/17,20-lyase (P450c17), 3�-
HSD, and P450c11 as well as cortisol production, thereby
promoting the characteristics of ZF cells. Promoter-reporter
constructs were prepared that used a series of 5�-deletions of
the human HSD3B2 5�-flanking sequence and promoter,
fused to the chloramphenicol acetyltransferase (CAT) gene.
Transfections were performed, and the cells were treated in
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the presence and absence of phorbol ester stimulation. The
surprising finding of these initial studies was that the pu-
tative AP-1 elements were nonfunctional with respect to
either cAMP or phorbol ester stimulation. Both putative AP-1
elements could be removed without affecting the cAMP- or
phorbol ester-stimulated promoter activity, with 5�-deletion
down to �100 bp. The promoter-reporter constructs did not
lose responsiveness to cAMP or phorbol ester stimulation
until a further deletion was made to �52 (109).

The sequence between �100 and �52 contained an ele-
ment at �64 to �56 that is an 8/9 match for the consensus
regulatory element that binds the orphan nuclear receptor
SF-1, also referred to as adrenal 4 binding protein. New
nomenclature for members of the nuclear receptor super-
family designates this family as NR5A and SF-1 as NR5A1a
(110). The essential nature of the SF-1 element was tested
further using two approaches. First, promoter-reporter con-
structs were transfected into a nonsteroidogenic cell type that
does not express SF-1 (HeLa cells) in the presence and ab-
sence of cotransfection with an SF-1 expression vector. Sec-
ond, the importance of SF-1 was tested with the use of a 2-bp
point mutation in the element (from TCAAGGTAA to
TCAATTTAA), whereas all other sequences in the �100-bp
HSD3B2 gene promoter remained as in the wild type. The
2-bp point mutation in the SF-1 element dramatically abro-
gated the cAMP and phorbol ester response of the promoter
(109). These studies indicated that SF-1 was essential for
cAMP or phorbol ester-stimulated steroidogenesis and sug-
gested that trophic hormone stimulation of type II 3�-HSD
expression involved SF-1 activation.

The mechanisms by which cAMP and phorbol esters stim-
ulate SF-1-mediated transcription of the HSD3B2 gene are
not yet clear. In the GnRH promoter, another SF-1 responsive
gene, the essential response of SF-1 involves an interaction
between SF-1 and another transcription factor, early growth
response protein (111, 112). However, the HSD3B2 promoter
differs from the GnRH promoter in that it lacks proximal
early growth response recognition sequences. However, it is
possible that the interaction of SF-1 with another yet unde-
scribed transcription factor is a necessary component to the
cAMP/phorbol ester stimulation.

2. Stat5. The involvement of transcription factors other than
SF-1 in the control of the human HSD3B2 gene has become
evident following the discovery of a regulatory element,
which interacts with Stat5. The Stat family of proteins is
named for the acronym (signal transducers and activators of
transcription). The Stats comprise a family of cytoplasmic
transcription factors that are activated by tyrosine kinases
followed by nuclear translocation and binding to specific
regulatory elements (reviewed in Ref. 113). The Stats are
activated by a number of extracellular protein ligands in-
cluding cytokines, growth factors, and prolactin (PRL)/GH.
The activation involves either tyrosine kinase activity that is
intrinsic to the receptors for these ligands or tyrosine kinases
that associate with the receptors such as the Janus kinases.
Seven different Stat genes have been identified (Stats 1, 2, 3,
4, 5a, 5b, and 6). Targeted gene disruptions have been per-
formed for each of these seven Stat genes in mice, resulting
in different phenotypes, which include immune deficiencies

in Stat 1 knockouts, embryonic lethals in knockouts of Stats
2 and 3, and deficient breast development and lactation in
Stat5 knockouts. Interestingly, the Stat5a Stat5b double
knockout displays luteal failure (114), which involves one of
the key tissues expressing 3�-HSD.

Stat5 was independently identified and cloned in studies
concerning a transcription factor important for PRL activa-
tion of the �-casein promoter in mammary epithelial cells
(115, 116). The potential involvement of PRL and Stat5 in the
human 3�-HSD promoter is an intriguing concept. Prolactin
and placental lactogens are known to be important luteo-
tropic hormones in many species including bovine, porcine,
and rodent (117). The human placenta expresses human pla-
cental lactogen, which was previously referred to as human
chorionic sommatomammotropin. The involvement of PRL
as a potential luteotropic hormone in humans has not been
examined in detail, although conditions of hypo- and hy-
perprolactinemia are known indicators of female infertility
(118, 119).

Two independent findings suggested the possibility that
Stat5 could be mediating regulation of the 3�-HSD promoter.
First, analysis by Western blot showed that Stat5 was in-
duced on d 5 (after hCG) in pseudopregnant rat ovaries
approximately 10-fold over controls (120). This was a specific
effect because Stat3 levels remained unchanged. These data
suggested that Stat5 was being specifically induced during
luteinization and that it could be involved in mediating the
regulation of luteal function. Because this represents an im-
portant site of Stat5-mediated activity, it suggested a role for
Stat5 in luteal function. Stat5 is expressed in a wide variety
of tissues, and its expression is fairly constitutive. However,
it has been shown to be induced in mammary epithelial cells
during differentiation of the mammary gland into the active
lactation state (121). A second finding was the discovery of
a 9/9 match for a Stat5 consensus regulatory element in the
human HSD3B2 gene promoter during the examination of
SF-1 action. The sequence TTCTGAGAA at �118 to �110 is
a 9/9 match to the consensus regulatory element TTC-
NNNGAA for Stat5 (Fig. 9). These findings suggested a po-
tential regulatory role for Stat5.

Transfection studies have confirmed that PRL activates
Stat5 regulation of the human HSD3B2 promoter (122). Point
mutations of the Stat5 regulatory element abrogate the PRL
response, both the fold-stimulation and the levels of stimu-
lated activity. However, disruption of Stat5 action does not
totally remove PRL stimulation. It is possible that some of the
alternative signaling pathways stimulated by PRL may con-
tribute to PRL-stimulated 3�-HSD expression.

The functional Stat5 element in the HSD3B2 promoter may
also integrate signaling from other ligand-stimulated path-
ways. For example, angiotensin II has been shown to stim-
ulate Stat5 in cardiac myocytes (123). A similar signaling
pathway in adrenal ZG cells would allow angiotensin II
stimulation of 3�-HSD expression in the synthesis of min-
eralocorticoids. Another ligand that could utilize this path-
way is EGF. Stat5 has been shown to be the major Stat protein
activated in EGF stimulation of the mouse liver (124). Recent
studies have demonstrated that EGF stimulates cortisol syn-
thesis in H295 adrenocortical cells as well as stimulating
3�-HSD mRNA levels and promoter activity (125). Further-
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more, Stat5 and a functional Stat5 regulatory element in the
HSD3B2 promoter are required for this stimulation (Fig. 10)
(125).

Stat proteins are important for the transcription of other
steroidogenic enzyme genes. For example, Stat3 has been
shown to be important for aromatase (CYP19; P450arom) ex-
pression in adipocytes (126). The aromatase gene has mul-
tiple promoters that are used in tissue-specific expression
and regulation (126). Interestingly, the adipocyte promoter
activity utilizing the Stat3 element requires glucocorticoids
for maximal activity (126). Although the aromatase adipo-
cyte promoter contains a glucocorticoid response element, it
is not clear whether additional glucocorticoid effects can
occur through interactions between Stat3 and the glucocor-
ticoid receptor.

3. DAX-1. DAX-1 (dosage-sensitive sex reversal adrenal hy-
poplasia congenita critical region on the X chromosome gene
1) was originally isolated by positional cloning from patients
presenting with adrenal congenita hypoplasia associated
with hypogonadotropic hypogonadism (127, 128). Mutations
in DAX-1 have been found to be the cause of adrenal hyp-

oplasia congenita and hypogonadotropic hypogonadism.
The possible role of an atypical member of the nuclear hor-
mone receptor superfamily on 3�-HSD promoter activity has
come from studies examining the effects of DAX-1 overex-
pression on adrenal cell steroidogenesis and steroidogenic
enzyme gene expression. The structure of DAX-1 indicates
that it lacks the most highly conserved DNA-binding domain
typical of members of the nuclear hormone receptor super-
family (127). This has raised questions as to whether this
transcription factor binds to DNA. Data have been presented
suggesting that DAX-1 has unique mechanisms of DNA
binding through putative stem-loop structures (129). An al-
ternative hypothesis is suggested by the sequencing of
DAX-1 from another species, which apparently lacks the
analogous domain necessary for DNA binding (130). This
implies that possible protein-protein interactions between
DAX-1 and other transcription factors may be critical to the
function of this orphan nuclear receptor. Additional work in
this field is needed to determine the mechanisms of DAX-1
actions.

The overexpression of DAX-1 in Y-1 adrenal cells inhibits

FIG. 9. Schematic representation of type I and II 3�-HSD promoter regions (A) and alignment of the promoter sequences (B). [Reproduced from
S. Gingras et al.: J Steroid Biochem Mol Biol 76:213–225, 2001 (196), copyright 2001, with permission from Elsevier.]

538 Endocrine Reviews, June 2005, 26(4):525–582 Simard et al. • Molecular Biology of 3�-HSD

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/26/4/525/2355189 by guest on 10 April 2024



steroidogenesis (131). Associated with this inhibition are
strong inhibitory effects on the expression of mRNAs for
StAR, P450scc, and 3�-HSD (Fig. 11) (131). The exact mech-
anisms by which DAX-1 overexpression affects 3�-HSD ex-
pression remain unclear. Additional studies of these mech-
anisms are needed to elucidate the factors involved.

4. Steroids. There is growing evidence in the literature that
steroid hormones modulate type II 3�-HSD expression. For
example, glucocorticoids stimulate the expression of 3�-HSD
in adrenal cells (132), whereas androgens inhibit 3�-HSD
expression in the adrenal cortical cells and in testicular Ley-
dig cells (133, 134). The transcriptional mechanisms by which
this regulation is occurring are of high interest because the
HSD3B2 gene promoter and 5�-flanking sequence lack clear
homologous consensus steroid regulatory elements. One
possible explanation of these findings is that the steroid
hormones exert their effects using posttranscriptional mech-
anisms. Alternatively, the steroids could exert their actions
indirectly, altering the transcription of another transcription
factor, which targets the HSD3B2 gene promoter. Lastly,
another possible mechanism is that the steroid hormones and
their cognate nuclear receptors are acting via nonclassical
mechanisms to alter transcription. Accumulating evidence
indicates that nuclear hormone receptors can alter transcrip-
tion via protein-protein interactions with other classes of
transcription factors and that these interactions do not re-
quire direct DNA binding by the receptors (135). Steroid
receptors have been shown to interact with Stat proteins
(136), AP-1 (137), nuclear factor-�B (138), and Sp1 (139) pro-
teins and to alter transcription in a ligand-dependent
manner.

It has been recently demonstrated that glucocorticoids
stimulate type II 3�-HSD mRNA levels in H295R cells and
stimulate HSD3B2 gene promoter activity (125). The mech-
anisms by which this stimulation occurs are beginning to be
characterized and are linked to Stat5. Inactivating point mu-
tations in the Stat5 regulatory element of the HSD3B2 gene
promoter abolishes glucocorticoid regulation (125). Addi-
tionally, point mutations in Stat5, which convert the critical
tyrosine phosphorylation residue to a phenylalanine and
abolish Stat5 activation, also abolish its regulation by glu-
cocorticoids. These data indicate that Stat5 is critical to the
mechanism of HSD3B2 gene promoter activation by glu-
cocorticoids. The exact mechanisms involved in this action
are not yet characterized but could involve protein-protein
interactions between glucocorticoid receptor and Stat5, as
suggested for the �-casein promoter in mammary glands
(136). These data are intriguing because they point to new
ways in which nuclear receptors function in transcriptional
activation. They also raise a number of questions concerning
the established mechanisms of nuclear receptor action. For
example, the domains of the nuclear receptor proteins, which
are critical for different aspects of their function, have been
mapped out in relation to the traditional DNA binding-
dependent mechanism of action. With these new nontradi-
tional mechanisms, which domains of the nuclear receptors
are critical to their functions? In addition to structure-func-
tion questions, what is the influence of known agonists and
antagonists on the efficacy of activation? What is the effect of

FIG. 10. EGF activates type II 3�-HSD reporter activity through a
Stat5-dependent mechanism. A, Increasing concentrations of EGF
result in increased type II 3�-HSD reporter activity. HeLa cells were
cotransfected with a �3013�45 fragment of the type II 3�-HSD
promotor fused to a CAT reporter gene (�301 CAT; 5 �g), ovine Stat5
(5 �g), �-galactosidase (0.5 �g), and control DNA for a total of 15.5 �g
using the calcium phosphate precipitation method, followed by treat-
ment for 24 h with increasing doses of EGF (03100 ng/ml). B, hStat5A
and hStat5B isoforms in activation of 3�-HSD reporter activity. HeLa
cells were cotransfected with a �3013�45 fragment of the type II
3�-HSD promotor fused to a CAT reporter gene (�301 CAT; 5 �g),
hStat5A, or hStat5B (5 �g), �-galactosidase (0.5 �g), and control DNA
for a total of 15.5 �g using the calcium phosphate precipitation
method, followed by treatment for 24 h with EGF (25 ng/ml). The
number above the bar is fold activation compared with the identically
transfected group minus EGF. C, A Stat5 regulatory element confers
EGF responsiveness to the human type II 3�-HSD promotor region.
HeLa cells were cotransfected with �301 (wild-type) or �301 (mutant)
CAT reporter contructs (5 �g), ovine Stat5 (5 �g), �-galactosidase (0.5
�g), and control DNA for a total of 15.5 �g using the calcium phosphate
precipitation method, followed by treatment for 24 h with EGF (25
ng/ml). Data represent the mean � SE of triplicate cultures after cor-
rection for transfection efficiency from a representative experiment of
two performed. [Reproduced from F.A. Feltus et al.: Endocrinology 144:
1847–1853, 2003 (125), copyright 2003, The Endocrine Society.]
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other nonsteroid factors, which are known to activate other
intracellular signaling pathways on steroid-regulated tran-
scription? With these new mechanisms, each of these ques-
tions will need to be explored to characterize the essential
processes.

5. IL-4. Immune cell populations in the ovary change during
the reproductive cycle and cytokines from these immune
cells have been shown to affect steroidogenesis (140). Recent
data indicate that IL-4 stimulates 3�-HSD mRNA levels in
primary cultures of human granulosa-lutein cells (141). IL-4
has been shown to primarily activate Stat6 through Stat6
regulatory elements, one of which is present in the human
HSD3B2 promoter at �160 to �151 (Fig. 9). However, the
activation of Stat protein signaling often involves multiple
Stat proteins with some overlap in function (113). Although
IL-4 stimulation is associated with Stat6 activation, IL-4 stim-
ulation of HSD3B2 gene promoter activity requires both an
intact Stat5 and an intact Stat6 regulatory element (141).

6. GATA proteins. The GATA proteins are a family of zinc
finger transcription factors that bind to GATA regulatory
motifs (A/TGATAA/G) in the promoter regions of numer-
ous target genes. Although they were originally identified as
crucial regulators of hematopoietic cell differentiation and
heart development, the expression of GATA factors is not
limited to these two tissues. Interestingly, transcription fac-
tors belonging to the GATA family are emerging as novel
regulators of steroidogenesis. Indeed, members belonging
to this family, namely GATA-4 and GATA-6, are strongly
expressed in steroidogenic cells of both the fetal and adult
adrenals and gonads (142). In these tissues, several target

genes for GATA factors have been identified, such as StAR
(143–146), CYP11A (P450 side-chain cleavage) (147), SULT2A1
(618), CYP17 (17�-steroid hydroxylase) (147–150), HSD17B1
(17�-HSD type 1) (151), CYP19 (aromatase) (143), human
HSD3B1 (3�-HSD type 1) (152), and most recently human
HSD3B2 (3�-HSD type 2) (153). The human HSD3B2 promoter
contains four consensus GATA elements within the first 1000
bp upstream of the transcription start site and is potently ac-
tivated by both GATA-4 and GATA-6 in cooperation with the
nuclear receptors SF-1 (NR5A1) and liver receptor homolog-1
(NR5A2). This suggests that GATA factors are key regulators of
this gene and that deregulated GATA expression and/or ac-
tivity might be relevant to pathological processes associated
with aberrant HSD3B2 expression such as adrenal insufficiency,
male pseudohermaphroditism, and polycystic ovary syndrome
(PCOS).

B. Future directions in transcriptional regulation

One area of future studies will be to follow up on new
developments in the orphan nuclear receptors SF-1 and
DAX-1. The importance and effectiveness of these factors in
the regulation of the 3�-HSD expression as well as emerging
information on their action can be applied to developing
insights into the regulation of 3�-HSD and its potential in-
teraction with other intracellular signaling pathways. For
example, there is a growing body of evidence suggesting that
SF-1 interacts with other transcription factors such as Egr-1
(111). In addition, SF-1 has been suggested to interact with
other transcription factors (154) as well as coactivators and
integrating proteins (155, 156). As patterns of interactions

FIG. 11. Effect of DAX-1 on the expres-
sion of StAR, P450scc, and 3�-HSD in
Y-1 cells. A, Northern blot showing ex-
pression of StAR, P450scc, and 3�-HSD
RNA transcripts in Y-1/neo, Y-1/
hDAX-1 and Y-1/RIAB cells. Total RNA
was extracted from each cell line grow-
ing in basal conditions (lanes 1, 4, 7, 10,
and 12) or after 6 h (lanes 2, 5, and 8)
and 24 h (lanes 3, 6, 9, 11, and 13) fors-
kolin (10 �g/ml) stimulation. RNA was
transferred on a nylon membrane and
hybridized with StAR, P450scc, 3�-HSD,
and GAPDH probes. B, Western blot
showing expression of StAR, P450scc,
and 3�-HSD proteins in Y-1/neo, Y-1/
hDAX-1, and Y-1/RIAB cells. Mitochon-
drial extracts were prepared from cell
lines in basal conditions (lanes 1, 3, and
5) and after 16 h forskolin (10 �g/ml)
stimulation (lanes 2, 4, and 6). Western
blots were sequentially probed with
specific antibodies directed to StAR,
P450scc, and 3�-HSD, respectively. [Re-
produced from E. Lalli et al.: Endocrinol-
ogy 139:4237–4243, 1998 (592), copy-
right 1998, The Endocrine Society.]
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emerge, they may provide insight into mechanisms impor-
tant for understanding the regulation of 3�-HSD.

Another potential area of future interest relates to regu-
lation by members of the TGF� family. Members of the TGF�
family including TGF� have been shown to regulate 3�-HSD
mRNA levels in adrenal cells (157). Another potential area of
interest relates to regulation by members of the nerve growth
factor-induced clone B (NGFI-B) family. Nur77, a member of
the NGFI-B family, was shown to regulate type II 3�-HSD
mRNA levels in granulosa (158), as well as Leydig and ad-
renal cells (619). Nur77 stimulates transcription of HSD3B2
through action at a NBRE site (�124/�131 bp from tran-
scription start site) on the promoter and is only minimally
affected by SF-1. Furthermore, Nur77 synergizes with SRC
coactivators (SRC-1/2/3) to further enhance HSD3B2 pro-
moter activity in Leydig and adrenal cells (619). Taken to-
gether, the identification of Nur77 as a regulator of HSD3B2
expression helps better define the tissue-specific and hor-
monal regulation of HSD3B2 gene in steroidogenic cells.

C. Regulation of placenta/peripheral tissue type I 3�-HSD

The HSD3B1 gene encoding the type I 3�-HSD shares a
relatively high degree of homology with the HSD3B2 gene,
not only over the coding sequence but also over the promoter
and 5�-flanking sequence (Fig. 9). Long stretches of the pro-
moter up to approximately 1 kb upstream of the transcription
start site share more than 80% nucleotide sequence homol-
ogy with the HSD3B2 promoter. Although this degree of
homology might suggest some common regulatory mecha-
nisms, very small changes in critical core nucleotides of reg-
ulatory elements can disrupt their function. Therefore, care-
ful functional studies will be needed to map the critical
regulatory elements of the HSD3B1 gene and to compare and
contrast these elements to those of its homologous HSD3B2
gene.

1. Placenta. Initial studies of the HSD3B1 gene in placental
cells indicated that stimulation with phorbol esters increased
gene expression and that this effect could not be blocked with
protein synthesis inhibitors (159). The regulatory elements
important for transcription of the HSD3B1 gene in human
placental cells have not been fully mapped. Some studies
have suggested that some of the important regulatory ele-
ments for this gene are localized in the first intron of the
HSD3B1 gene (160) with an element overlapping an Sp1
motif. Recently, a 53-bp placental-specific enhancer element
located between �2570 and �2518 of the HSD3B1 promoter
was identified. Within this 53-bp element, two potential pla-
cental transcription factor binding sites were found, one
identified as being a specific binding site for the transcription
enhancer factor-5 (TEF-5), which is highly expressed in hu-
man placenta, and the other being an overlapping binding
site specific for a GATA-like protein. Because the expression
of P450scc and HSD3B1 is essential for the biosynthesis of
PROG, one would assume that their expression is coordi-
nated. It will be of interest in future experiments to inves-
tigate whether TEF-5 and GATA proteins also determine the
human placental-specific expression of P450scc (152). Addi-
tional studies are needed in this area, particularly using

normal, physiological models. In this regard, it is interesting
that expression of type I 3�-HSD mRNA levels increases
during placental development, during the process of syncy-
tium formation (161). If this process involves transcriptional
changes, this may provide a model for investigations of the
critical regulatory elements in placental expression of 3�-HSD.

2. Crucial role of IL-4 and IL-13 in peripheral tissues. In animal
species as well as in humans, there are several reports sug-
gesting that cytokines can regulate the expression of several
steroidogenic enzymes. For example, IL-1, IL-2, or IL-3 and
TNF-� exhibit either stimulatory or inhibitory effects on ste-
roid production in ovaries (140, 162–164). IL-1, IL-4, IL-6,
IGF-I, and IL-2 modulate 17�-HSD activity in breast cancer
cells lines (165–167). And finally, IL-1 and IL-6 regulate aro-
matase expression in breast cancer cells and in adipose tis-
sues (168, 169).

IL-4 is produced by T cells, mast cells, and basophils and
exerts its activities on many immune cells, including B and
T lymphocytes, mast cells, and macrophages. The most spe-
cific effects of IL-4 are differentiation of T cells to the Th2
phenotype (secretion of IL-4, IL-5, IL-6, IL-10, and IL-13), and
Ig class switching to IgE in B cells (reviewed in Ref. 170). On
the other hand, the IL-4 receptor (IL-4R) is also expressed in
certain nonimmune cells, thus suggesting that IL-4 may reg-
ulate some functions within those cells.

It has recently been shown that IL-4 and IL-13 induce
3�-HSD type I gene expression in ZR-75-1, T47-D, and MDA-
MB-231 breast cancer cells; in HT-29 colon and ME-180 cer-
vical cancer cell lines; in the HaCaT immortalized keratin-
ocytes; as well as in normal human mammary and prostate
epithelial cells in primary culture (Figs. 12 and 13) (51, 52,
171). The IL-4-induced expression of the HSD3B1 gene re-
quires new mRNA synthesis, but not new protein synthesis,
thus suggesting that this induction takes place at the tran-
scriptional level by activating latent transcription factors
(Fig. 12) (51).

a. STAT6 activation. Studies of IL signal transduction have
clarified the mechanism by which IL-4 functions. Stat6 is an
IL-4-activated transcription factor (172, 173). Indeed, recent
experiments performed on Stat6-deficient mice demon-
strated that Stat6 plays an essential role in IL-4 and IL-13
signaling (174–176). Analysis of the sequences upstream of
the HSD3B1 gene revealed the presence of two sequences
matching the Stat6 consensus sequence (TTCNNNNGAA)
(Fig. 9). The distal site (Stat6#1) is located at position �847
to �838, and the proximal site (Stat6#2) is located between
�156 and �137. Stat6 binds in an IL-4-dependent fashion to
the 3�-HSD type 1 Stat6#1 and Stat6#2 probes as revealed
using EMSA. No such complexes were formed on mutated
probes containing two single-base pair substitutions in the
Stat6 consensus sequence at positions that disrupt Stat6-
DNA binding (51). IL-4 activated Stat6 in all cell lines studied
in which IL-4 also induced 3�-HSD type I expression, but not
in those cell lines that failed to respond to IL-4 (51, 52).
Furthermore, the lack of a stimulatory effect of IL-4 on 3�-
HSD type 1 expression in some cell lines cannot be explained
by the absence of Stat6 expression, because this protein was
expressed in the IL-4 nonresponsive PC-3, Caco-2, JAR, and
JEG-3 cell lines. Rather, our study shows that the cell-specific
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action of IL-4 correlates with the activation of Stat6 (Fig. 13)
(52).

To determine whether Stat6 DNA-binding activity was
modulated by other transduction pathways (see Section
V.C.2.b), ZR-75-1 cells were incubated with IL-4 in the pres-
ence or absence a phosphatidylinositol 3-kinase (PI3-K) in-
hibitor (wortmannin), a MAPK inhibitor (PD98058), or an
activator of protein kinase C (PKC) pathway [phorbol-12-
myristate-13-acetate (PMA)]. It has been demonstrated that
neither wortmannin nor PD98059 blocked the induction of
Stat6 DNA-binding activity by IL-4, whereas PMA did not
change the potency of IL-4 to induce Stat6 DNA-binding
activity (177). Those results indicated that Stat6 is specifically
activated by IL-4 and independently of the PI3-K, MAPK,
and PKC pathways. The fact that: 1) Stat6 plays an essential
role in IL-4 signaling, 2) Stat6 DNA-binding sequences are
present in the HSD3B1 promoter, and 3) Stat6 is activated by
IL-4 in all cell lines studied where IL-4 induced 3�-HSD type
1 expression, but not in those cell lines that failed to respond
to IL-4, suggests that Stat6 could be involved in the signal
transduction leading to the induction of 3�-HSD type 1 ex-
pression by this cytokine. However, we have never been able
to show induction by activated-Stat6 of a reporter gene under
the control of the HSD3B1 promoter, so it was considered that
other pathways could be involved for the effect of IL-4.

b. Multiple signal transduction pathways. There is evidence
that IL-4 stimulates bifurcating signaling pathways in which
the Stat6-signal pathway is involved in differentiation and
gene regulation, whereas insulin receptor substrate (IRS)
proteins mediate the mitogenic action of IL-4 (178, 179). The
cytoplasmic protein IRS-1 was first identified as a major
substrate for the insulin receptor and IGF-I receptor, whereas
IRS-2 (also designated 4PS, IL-4 phosphorylated substrate)
was first identified as a substrate for the IL-4R (reviewed in
Ref. 180). However, both proteins share extensive structural
and functional identities and are tyrosine-phosphorylated in
response to IL-4, insulin, and IGF-I (181, 182). Moreover, it
has been demonstrated that activated IRS-1 and IRS-2 act as
mediators of IL-4 mitogenic signaling (178, 179, 182). Despite
the inhibitory effects of IL-4 on estradiol (E2)-induced pro-
liferation of ZR-75-1 cells (183), we still decided to investigate
whether IRS proteins are involved in the induction of 3�-
HSD type 1 expression by IL-4. Our study demonstrated that
IL-4 caused rapid tyrosine phosphorylation of both IRS-1 and
IRS-2, which was readily detectable after a 15-min exposure
(177). The phosphorylation of IRS proteins by IL-4 raised the
possibility that this pathway could be involved in IL-4 sig-
naling in ZR-75-1 cells.

To determine their involvement, the effect of other factors
that induce the phosphorylation of IRS proteins on 3�-HSD

FIG. 12. Rapid induction of 3�-HSD activity and 3�-HSD type I transcripts by IL-4 in ZR-75-1 human breast cancer cells. A, Induction of 3�-HSD
activity. Cells were plated at a density of 40,000 cells per well. Three days after plating (time 0), ZR-75-1 cells were incubated for the indicated
time periods with or without 140 pM IL-4. During the last 2 h of each incubation period, medium was replaced with fresh medium containing
[3H]DHEA in the presence or absence of IL-4. Data are expressed as mean � SEM of triplicate dishes. B, Increase of type I 3�-HSD mRNA levels.
Cells were treated with 140 pM IL-4 for the indicated time periods. Northern analysis was performed, and the membrane was probed with type
I 3�-HSD cDNA and exposed for 5 d, then stripped and reprobed with GAPDH, followed by an overnight exposure period. C, Inhibition of IL-4
induced type I 3�-HSD mRNA by actinomycin-D (4 �g/ml) but not by cycloheximide. Cells were treated for 2 h with 140 pM IL-4 in the presence
or absence of actinomycin-D (4 �g/ml) or cycloheximide (10 �g/ml) before subsequent incubation for the indicated time periods with or without
IL-4. [Reproduced from S. Gingras et al.: Mol Endocrinol 13:66–81, 1999 (51), copyright 1999, The Endocrine Society.]
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type 1 expression was examined. IRS-1 and IRS-2 are also
tyrosine phosphorylated by insulin and IGF-I in ZR-75-1,
MCF-7, and T47-D breast cancer cell lines (184). As shown in
Fig. 8, IGF-I and insulin increase the stimulatory effect of IL-4
on 3�-HSD activity. However, neither IGF-I nor insulin, even
at high concentrations, induced 3�-HSD activity in the ab-
sence of IL-4, thus indicating that phosphorylation of IRS
proteins is not sufficient to induce 3�-HSD type 1 expression.
Because both IGF-I and insulin exerted their stimulatory
action on IL-4-induced 3�-HSD activity at EC50 values in the
low nanomolar range (177), and knowing that there is no
significant binding of insulin to the IGF-I receptor or of IGF-I
to the insulin receptor at concentrations less than 10 nm (185),
these data suggest that both factors exert their potentiating
action through the binding to their specific receptors.

However, as illustrated in Fig. 14, incubation with PMA
increased the maximal stimulatory effect of IL-4. It is inter-

esting to note that PMA, even at high concentrations, was
unable to induce 3�-HSD activity in the absence of IL-4. Thus,
similar to the IRS pathway, activation of the PKC pathway
is not sufficient to induce 3�-HSD type 1 expression, but it
suggests that at least one signaling molecule involved in
signal transduction of the IL-4-induced 3�-HSD type 1 ex-
pression is also a substrate for PKC.

Another means of addressing the role of IRS proteins in the
induction of 3�-HSD type 1 expression was to study the
involvement of pathways downstream of IRS proteins in IL-4
signaling. To study a possible role in the induction of 3�-HSD
type 1 expression by IL-4, specific inhibitors of the PI3-K and
MAPK pathways were used. Wortmannin and LY294002 are
two structurally unrelated molecules that specifically inhibit
PI3-K activity. Both inhibitors completely blocked the IL-4-
induced 3�-HSD activity. Because it has been shown that the
regulatory subunit of PI3-K associates with phosphorylated

FIG. 13. A, Rapid induction of 3�-HSD activity by IL-4 in a variety of cell types derived from peripheral tissues. ZR-75-1 and BT-20 breast cancer
cells, PrEC normal human prostate epithelial cells in primary culture, HaCaT human immortalized keratinocytes, HT-29 human colon cancer
cells, and ME-180 human cervix cancer cells were plated at 200,000 cells per well in six-well plates. Two days after plating, cells were incubated
for the indicated time periods with 100 pM IL-4. Thereafter, cells were harvested, and 3�-HSD activity was measured, as previously described
(52), with 10 nM [14C]DHEA in the presence of 1 mM NAD�. Data are expressed as mean � SEM of triplicate dishes. B, Stat6 activation by IL-4.
Cell types mentioned in panel A were incubated in the presence or absence of IL-4 (10ng/ml for 30 min). Analysis of Stat6 activation using EMSA
was performed as previously described using a well-established Stat6 responsive element derived from the IgE promotor. A Stat6 antibody was
included in the binding reaction where indicated. [Adapted from Ref. 52].
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IRS proteins in ZR-75-1 (184), the blockade of IL-4 signaling
by the PI3-K inhibitors indicates not only the involvement
of PI3-K but also the involvement of IRS proteins in IL-4-
induced 3�-HSD type 1 expression.

Phosphorylated IRS-1 and IRS-2 can activate the MAPK
pathway by binding Grb2 and engaging the Ras/Raf path-
way (186–188). The specific inhibitor of MAPK kinase acti-
vation, PD98059, inhibits the induction of 3�-HSD expres-
sion by IL-4 (177). Moreover, MAPK activity was also found
to be increased in cells treated with IL-4, IGF-I, or insulin
compared with untreated cells (177). Although IL-4 failed to
activate MAPK in lymphohemopoietic cells (189–191), the
activation of MAPK in ZR-75-1 cells is in accordance with
reports showing that MAPK is activated by IL-4 in human
keratinocytes (192) as well as in breast cancer cell lines (184).
Wortmannin is able to block the induction of MAPK by all
three factors, thus suggesting that MAPK activation is a
downstream effector of PI3-K that is activated by IL-4, insulin,
or IGF-I (177). In conclusion, the involvement of IRS proteins in
the regulation of HSD3B1 gene expression is supported by the
fact that: 1) IL-4 induces the phosphorylation of both IRS-1 and
IRS-2; 2) IL-4 activates the MAPK pathway by an PI3-K de-
pendent pathway; and 3) inhibition of downstream targets of
IRS proteins (PI3-K and MAPK pathway) block IL-4-induced
3�-HSD type 1 expression.

In accordance with this model, IGF-I and insulin increase
the pool of receptors able to phosphorylate IRS proteins and
activate MAPK in a PI3-K-dependent manner. Our observa-
tion that PMA caused a greater potentiating effect of IL-4-
induced 3�-HSD expression than that exerted by IGF-I or
insulin may be explained, at least in part, by its capacity to
activate a different set of PKC isoforms, i.e., the diacylglyc-
erol-sensitive PKC isoenzymes (193), whereas IL-4, IGF-I,

and insulin activate atypical (diacylglycerol-insensitive)
PKC (194).

The inability of IGF-I, insulin, and PMA to induce 3�-HSD
activity in the absence of IL-4 indicates that IRS-1 and IRS-2
phosphorylated proteins and their downstream effectors
may cooperate with another IL-4-specific signaling trans-
duction pathway. Thus, it has been postulated that IL-4-
induced HSD3B1 gene expression requires the independent
activation of at least two transcription factors, i.e., Stat6, an
IL-4-specific transcription factor, and a second unidentified
factor, which can be activated not only by IL-4 but also by
IGF-I, insulin, and PMA. The fact that IL-4-induced Stat6
DNA-binding activity is not affected by wortmannin or
PD98059 and that PMA does not modify the potency of IL-4
to activate Stat6 indicates that Stat6 is activated indepen-
dently of IRS proteins as previously suggested in another
model system (195). Taking into consideration these find-
ings, Gingras et al. (196) proposed the following model for the
induction of 3�-HSD type 1 induction by IL-4 (Fig. 15).

D. Species similarity/divergence in mechanisms

The similarities/differences in the transcriptional control
mechanisms between humans and other species will need to be
carefully examined. The existence of six different expressed
3�-HSD genes in mice is suggestive of some potentially inter-
esting differences in the mechanisms between the two species
because sequence divergence in the promoter regions will likely
introduce changes in the control of the isoform genes. Many of
these potential similarities/differences will need to be exam-
ined using functional studies. Sequences that appear to contain
homologous regulatory elements are sometimes nonfunctional
in the context of a specific promoter, and sequences that appear

FIG. 14. IGF-I, insulin, and PMA increase IL-4-induced 3�-HSD activity in ZR-75-1 cells. ZR-75-1 cells were incubated for 6 h with increasing
concentrations of IGF-I (A), insulin (B), and PMA (C) in the presence or absence of 10 pM IL-4. Cell homogenates equivalent to 100,000 cells
were used to measure 3�-HSD activity for 6 h by measuring the conversion of [14C]DHEA into [14C]4-DIONE as previously described. [Adapted
from Ref. 177].
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to have diverged from the core necessary sequences can some-
times prove functional.

The complexity of this process is seen by comparing the
potential SF-1 regulatory element in the human HSD3B2
gene promoter with the homologous sequence in the human
HSD3B1 gene (placental/peripheral form) and the rat type I
gene (gonadal/adrenal form). The human type I gene has a
substitution of one nucleotide in the core AAGG sequence
resulting in an AAaG core as seen in Fig. 9. A substitution of
this kind in the core sequence would predict that the SF-1
element would be nonfunctional in the human HSD3B1 gene.
Alternatively, the rat type I gene that is the major gonadal/
adrenal form has diverged significantly in sequence from the
SF-1 element in the human HSD3B2 gene but maintains the
core AAGG sequence. Therefore, it will be important to test
the function of these elements because the highly divergent
sequence of the rat type I could still be functional.

In a recent study on the expression of the mouse ortholo-
gous 3�-HSD, 3�-HSD VI, in giant trophoblast cells during
midpregnancy, two transcription factors were identified that
determined the trophoblast-specific expression of 3�-HSD VI
(197). The two transcription factors, AP-2� and the home-
odomain protein distal-less (Dlx-3), were found in both
mouse giant trophoblast cells and human placental JEG-3
cells. In addition, it was reported that AP-2� was the tran-
scription factor required for mouse trophoblast-specific ex-
pression of P450scc. Thus, the identification of an AP-2� and

Dlx-3 binding site in the promoter of the human HSD3B1
gene and the demonstration that these two transcription
factor binding sites were located within an enhancer region
of the HSD3B1 promoter led to the belief that the placental-
specific expression of human 3�-HSD type 1 was determined
by the same transcription factors as those found for the
trophoblast-specific expression of the mouse 3�-HSD VI
(198). However, neither one of these transcription factors is
involved in determining the placental-specific expression of
human 3�-HSD type 1. As previously mentioned in Section
V.C.1, a 53-bp placental-specific enhancer element was iden-
tified between �2570 and �2518 of the HSD3B1 promoter.
The sequence comprising this enhancer element identified a
consensus binding site for a family of TEFs, TEF-5 as well as
an overlapping binding site specific for a GATA protein
(152). Although the tissue-specific expression of mouse 3�-
HSD type VI and human 3�-HSD type 1 are very similar, it
may not be surprising that the placental-specific expression
is regulated by different transcription factors in the two spe-
cies. Placental PROG production in humans, which requires
3�-HSD type 1, is absolutely essential for maintenance of
pregnancy, whereas in mouse, trophoblast cells have the
capacity for PROG production (197) and there is no evidence
that the trophoblast-generated PROG is required for main-
tenance of mouse pregnancy. The difference in the transcrip-
tion factors that determine placental-specific expression does
not appear to be the result of the absence of expression of the

FIG. 15. Working hypothesis for the induction of 3�-HSD type I gene expression by IL-4 in ZR-75-1 breast cancer cells. The steps in the pathway
known to occur are represented by solid lines, whereas the proposed pathways are shown in dashed lines. A cross on the signaling pathways
indicates those that are not involved in the regulation of 3�-HSD type I gene expression. Phosphorylated tyrosines are represented by pY.
[Reproduced from S. Gingras et al.: J Steroid Biochem Mol Biol 76:213–225, 2001 (196), copyright 2001, with permission from Elsevier.]
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factors identified that mediate human or mouse trophoblast-
specific expression. As discussed above, AP-2� and Dlx-3 are
present in human placental JEG-3 cells as well as in mouse
trophoblast cells. TEF-5 (199), GATA-2, and GATA-3 (200)
are expressed in mouse giant trophoblast cells. Whether
GATA-4 or other GATA-like proteins are expressed in mouse
trophoblast cells is not currently known (152).

VI. Ontogeny, Localization, and Regulation of
3�-HSD Expression

A. Adrenal

Morphological differentiation during adrenal develop-
ment results in two functionally distinct organs: the fetal and
adult adrenal cortex. In primates, the fetal adrenal cortex
consists of an outer neocortical (definitive) zone that is the
primary site of aldosterone synthesis, a cortisol-producing
transitional zone, and an inner fetal zone that comprises 80%
of fetal adrenal volume and is responsible for the synthesis
of DHEA and its sulfated derivative DHEA-S. In the adult
adrenal, the outer cortex has differentiated through the pro-
cess of zonation into three steroidogenically and morpho-
logically distinct zones: ZG, ZF, and ZR). In the primate,
these zones are responsible for the production of aldosterone,
cortisol, and DHEA/DHEA-S, respectively. The ZR is absent
in early infancy and starts to develop around ages 5 to 6
before DHEA-S increases steadily until the end of puberty
(201, 202). However, in mice and rats, ZG produces aldoste-
rone, ZR and ZF produce corticosterone, but no production
of androgens is observed due to the absence of P450c17
expression. In fact, after castration of rats, guinea pigs, and
mice, no androgens can be detected in the serum, suggesting
that sex steroids are solely of gonadal origin in subprimate
species (203).

The onset of 3�-HSD expression in the fetal adrenal cortex
correlates with the ability of the definitive zone to synthesize
aldosterone and also allows for cortisol production by tran-
sitional zone cells due to coexpression of P450c17 (204–207).
Although 3�-HSD is not expressed to a high degree in the
fetal zone, P450c17 is expressed, thereby directing the ste-
roidogenic pathway toward �5-hydroxysteroid (i.e., DHEA/
DHEA-S) production. This zone-specific steroid secretion
pattern is dependent on the relative expression levels of
3�-HSD, P450c17, and P450 21�-hydroxylase (P450c21) that
serve as molecular markers of the adrenocortical develop-
mental state. After birth, the neocortex differentiates into the
three functional zones of the adult adrenal cortex. The co-
expression of 3�-HSD and P450c21 in the ZG leads to aldo-
sterone production, whereas the coexpression of 3�-HSD
and P450c17 in the ZF results in the production of cortisol.
The expression of P450c17 in the ZR along with the low levels
of 3�-HSD expression leads to the synthesis of DHEA and
DHEA-S. A third period of adrenal functional differentiation,
in which DHEA/DHEA-S serum levels increase, occurs in
humans at around age 6–8 yr. This increase in adrenal an-
drogen production is termed adrenarche and correlates with
a decline in 3�-HSD expression in the ZR (Fig. 16). The
mechanisms underlying the variability of expression are not
well understood at this time, and a deeper understanding of

the factors involved in the regulation of 3�-HSD is critical to
elucidating the control of adrenal steroidogenesis.

1. Ontogeny and localization. The primate fetal adrenal is de-
rived from the dorsal coelomic epithelium. At 8 wk gestation
in the human, the fetal adrenal is composed of chromaffin
cells that later form the medulla, fetal, and neocortical zones.
The neocortical zone further divides into the ZG, ZF, and ZR,
whereas the fetal zone regresses after birth. The fetal zone,
which expresses P450c17, catalyzes DHEA synthesis, which
serves as a reservoir of precursors for placental estrogen
biosynthesis (208). The neocortex also expresses P450c17, as
well as 3�-HSD and P450scc, and is the site of fetal cortisol
biosynthesis (209). The fetal and neocortical zones have un-
detectable 3�-HSD protein and mRNA expression at 17–22
wk gestation in humans, whereas P450scc and P450c17 are
detected in the fetal and transitional zones (207). At 22 wk
gestation, the neocortex starts expressing 3�-HSD, and at 28
wk the enzyme is widely distributed in the neocortex (204).
Another study showed that neocortical expression of 3�-
HSD could be detected as early as 11 wk gestation, followed
by a reduction in expression until 24–25 wk gestation (210).
By 35 wk gestation, 3�-HSD expression is observed in dif-
ferentiated ZG and ZF cells in the mature human fetus and
is also seen in the 2- and 8-month-old infant. In the 2-yr-old
infant, 3�-HSD staining is seen in all cortical layers (204).
Adult adrenal 3�-HSD expression was not seen in the ma-
caque reticularis (211), whereas its expression was low in
human reticularis cells accounting for their increased output
of DHEA/DHEA-S (212). The highly differential expression
of 3�-HSD vs. P450scc and P450c17 in the fetal adrenal is

FIG. 16. Relative expression of 3�-HSD and CYP21 in three zones of
the human adrenal cortex at different ages. Immunohistochemical
staining of 3�-HSD and CYP21 in various zones of the adrenal cortex.
Gray column, Glomerulosa; hatched column, fasciculata; black col-
umn, reticularis. Arbitrary units, 5 (highest degree of staining) to 0 (no
staining present). Data are expressed as mean � SEM. Reticularis com-
pared with fasciculata within each group. [Adapted from Ref. 271.]
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suggestive of unique transcriptional control mechanisms be-
tween these steroidogenic enzyme genes.

In the rhesus monkey, 3�-HSD has been localized to the
definitive zone of the fetus between 109 and 148 d, whereas
at term (155–172 d), 3�-HSD was localized in both definitive
and transitional zones (207). Similarly to humans, rhesus
monkey 3�-HSD is contained in the outer regions of the
adrenal during fetal life. At midgestation, the levels of 3�-
HSD increase, which accounts for a rise in the levels of
cortisol in circulation (213). In addition to cortisol output by
the fetal adrenal, estrogen levels (via conversion of DHEA)
and PROG levels fall after fetalectomy in baboons. This sug-
gests that the fetus is directly responsible for steroidogenesis
either by fetal steroid production or via secretion of steroi-
dogenesis promoting factors (214).

Detailed ontological studies in the rat have also been per-
formed. 3�-HSD activity studies in the rat adrenal were
initially performed using histochemical techniques (215).
These studies revealed that 3�-HSD protein and mRNA were
not detected in cortical cells until d 16 of gestation. Differ-
ential levels of expression could be seen between d 18 and 21
of gestation with high levels of expression in ZF/ZR relative
to ZG. Fetal ACTH secretion begins on d 17–18 in the rat,
which could account for this induction in ZF/ZR (216, 217).
This pattern was maintained until 15 d after birth. Twenty-
five-day-old rats then showed adult expression patterns with
equal cytoplasmic 3�-HSD immunostaining and in situ hy-
bridization patterns in all three cortical zones and no staining
in the medulla (218). Other studies have shown by immu-
nohistochemistry that 3�-HSD is present in the rat ZG at low
levels in the first few days after birth, peaks at d 20, and then
decreases to levels below that seen in the ZF until adulthood
at 65 d. In the rat ZF, 3�-HSD staining was high at birth and
reached a maximum at 14 d, which was maintained until
adulthood. The inner part of ZF/ZR was low before d 20 and
then increased to ZF levels and remained so until d 90.
Aldosterone secretion paralleled the development of the ZG,
whereas corticosterone levels were low for the first 14 post-
natal days (219, 220). These data show that 3�-HSD expres-
sion is expressed in the ZF/ZR before the ZG. Earlier in-
duction of ACTH relative to angiotensin II (A-II) (221) could
account in part for this differential expression.

Ontological studies have also been performed in other ani-
mals besides rodents and primates. Adrenal studies in sheep
demonstrated 3�-HSD localization to the outer cortical layer
from d 43 of gestation until term. 3�-HSD localization was
observed in ZF from d 65–130 (222). Adult ovine adrenal ZG
stained negatively for P450c17 and only faintly positive for
3�-HSD, whereas the adjacent layer of cells (ZF) stained
strongly for P450c17 and 3�-HSD (223). Bovine adrenal devel-
opment studies show that 3�-HSD appears in a narrow ZG/ZF
band at d 80 of gestation (224), and that 3�-HSD mRNA ex-
pression is seen in the bovine fetal adrenal with higher expres-
sion in early and late gestational stages relative to midgestation
(225). Species-specific differences must therefore be taken into
account when examining 3�-HSD ontogeny in the adrenal.

2. Regulation

a. ACTH and A-II. The differential expression of the en-
zymes required for zonal-specific steroid production in the

adrenal is under the control of multiple factors. Regulation
of 3�-HSD expression in the adult adrenal has long been
known to involve ACTH in ZF/ZR and A-II in the ZG. The
involvement of ACTH in 3�-HSD induction in the fetal ad-
renal has been examined. The release of ACTH resulting
from metyrapone treatment (an inhibitor of 11�-hydroxylase
activity) of rhesus monkeys at 135–137 d gestation caused an
induction of 3�-HSD in the transitional zone suggesting that
ACTH plays a role in the induction of 3�-HSD at term (226).
The transitional zone, which is comprised of cortical cells that
express P450c17 and 3�-HSD (i.e., cortisol production), and
the definitive zone, which lacks P450c17 expression but does
express 3�-HSD (i.e., mineralocorticoid production), develop
in the late stages of gestation. It has been shown by immu-
nocytochemistry that induction of 3�-HSD and P450c17 in
the transitional zone of baboon adrenals occurs late in ges-
tation and is dependent on ACTH. However, the develop-
ment of the definitive zone at midgestation occurs in the
absence of ACTH (227). ACTH receptor and 3�-HSD mRNA
and protein levels were also decreased in the developing
definitive zone of the fetal adrenal. These data suggest that
ACTH is required for the up-regulation of ACTH respon-
siveness and steroidogenesis in the fetal definitive zone of the
baboon adrenal gland (228). Additional evidence for adrenal
differentiation in the absence of ACTH comes from studies
of anencephalic human fetuses that lack ACTH production,
yet in which the definitive zone appears to develop normally
(229). In the fetal sheep adrenal, ACTH administration in the
late stages of pregnancy led to an increase in P450c17 but not
3�-HSD, suggesting that control of 3�-HSD levels in the
pregnant sheep is more complex (230). These results suggest
that the ontogenesis of 3�-HSD expression in the transitional
zone is dependent on ACTH, yet these effects appear to be
species specific.

The functional development of the rat adrenal cortex is
characterized by a triphasic response to ACTH with a nadir
in responsiveness around neonatal d 10. Immunoreactive
levels of 3�-HSD are low until d 10 relative to adults, al-
though enzymatic activity is similar to adults. ACTH injec-
tion on d 10 increased 3�-HSD staining (231). Studies in adult
rats have shown that 3�-HSD staining by in situ hybridiza-
tion followed a uniform pattern throughout the adrenal cor-
tex that was unaffected by ACTH injection until responsive-
ness appeared at d 4 of treatment (232). Other studies have
been performed using chronic stimulation (injections twice
daily for 9 d) of adult rats with ACTH. Results from these
studies showed increased StAR mRNA levels, but decreased
3�-HSD and angiotensin type 1 receptor transcripts in ZG
cells, whereas the levels of P450scc and P450C21 mRNA did
not differ significantly from the control values, thus sug-
gesting a control of StAR expression by ACTH and 3�-HSD
by A-II. Interestingly, Western blotting analysis revealed that
StAR protein levels were increased, whereas 3�-HSD protein
levels were unchanged. In addition, ACTH suppression via
dexamethasone (DEX) treatment for 5 d did not affect either
StAR or 3�-HSD. In the ZF/ZR, chronic ACTH stimulation
led to increases in StAR, whereas 3�-HSD was unchanged
(233). These data demonstrate that: 1) the ability of ACTH to
stimulate 3�-HSD follows a temporal pattern in the rat fetal
adrenal; 2) differential regulation of steroidogenic enzymes
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exists under chronic exposure of adult adrenals to circulating
ACTH; and 3) other factors are involved in modulating 3�-
HSD expression.

Primary cultures of human adrenal cells have demon-
strated the capacity of ACTH and A-II to regulate 3�-HSD.
In vitro studies of fetal zone cells demonstrate that they are
responsive to ACTH with an induction of 3�-HSD, suggest-
ing that an in vivo endogenous factor is inhibiting 3�-HSD
production (205, 206, 234). Many studies have shown in-
creased receptivity of adrenal cells after the addition of
ACTH and A-II as well as second messenger mimetics of
ACTH (cAMP/forskolin/cholera toxin induce PKA activity)
and A-II (phorbol esters induce PKC activity). In human
reticularis-fasciculata cells, the stimulatory effects of ACTH
and A-II were additive only on 3�-HSD expression (235).
Moreover, in rat adrenal cells in the absence of ACTH, this
enzymatic activity was found to decay with a half-life of
3.1 d, which was similar to the half-life of the enzyme activity
induced by ACTH in vitro (3.5 d) (236). The induction of
3�-HSD activity by ACTH or dibutyryl cAMP required a lag
period of approximately 4 h and was dependent on RNA and
protein synthesis (236). ACTH and cAMP also up-regulate
3�-HSD protein and mRNA expression in cultured bovine
adrenocortical (BAC) cells (157, 237), yet A-II treatment de-
creases ACTH-induced 3�-HSD expression in BAC cells (157,
238). These in vitro model systems have been useful in the
examination of ACTH and A-II on steroidogenesis regulation.

Two steroid-producing adrenal cell line models exist:
H295R (human adrenocortical carcinoma) and Y1 (mouse
adrenocortical carcinoma). In H295R cells, it has been dem-
onstrated that forskolin, A-II, and cAMP treatments stimu-
lated 3�-HSD mRNA; however, this effect could be blocked
by cycloheximide treatment (239, 240). H295R studies have
also shown that cAMP and phorbol esters induce 3�-HSD
(240). K�, an agent known to increase intracellular Ca2�

through the opening of voltage-sensitive Ca2� channels,
caused an increase in H295R cells of P450c17 and P450scc, but
not of 3�-HSD mRNA levels. This suggests that phorbol ester
effects in this system may signal via a pathway independent
of that induced by Ca2� alone (241). Interestingly, stauro-
sporine (PKC inhibitor) increases 3�-HSD mRNA levels in
mouse Y1 cells, suggesting that PKC is a tonic inhibitor of
steroidogenesis in these cells (242). The effects of induction
of PKC activity via the employment of phorbol esters may
not be indicative of signaling by the angiotensin type 1 re-
ceptor due to the differential effects seen in these model
systems.

b. TGF�, IGF, and growth factors. Because the expression of
3�-HSD during adrenal development is not completely un-
der the control of ACTH and A-II, other factors must be
involved in the induction and repression of 3�-HSD in the
neocortical zone and the fetal zone, respectively. Candidate
molecules involved in this regulation include EGF, fibroblast
growth factor (FGF), IGF, and TGF�. EGF and FGF are mi-
togenic in human fetal adrenals (243), whereas aFGF and
bFGF have been shown to be mitogens in BAC and Y1 cells
(244, 245). In addition, it has been postulated that the mito-
genic effects of GH in the adrenal could be due to IGFs (246).
On the other hand, TGF� has a growth inhibitory effect (247).

Therefore, there appears to be a complex interplay of factors
controlling adrenal growth and development, and combina-
tions of these factors could be involved in the regulation of
3�-HSD and other steroidogenic enzymes in vivo.

Several studies have implicated EGF in the regulation of
adrenal development and function. Macaque fetuses treated
with EGF show induced expression of 3�-HSD protein in the
transitional zone of the fetal adrenal, whereas betamethasone
treatment resulted in a reduction of 3�-HSD protein levels
(248). Studies by McAllister and Hornsby (249) have shown
that forskolin induction of 3�-HSD activity in human adre-
nocortical cells could be enhanced by A-II, EGF, or FGF
treatment, whereas other work has shown that EGF can
induce 3�-HSD mRNA and cortisol production in H295R
cells (125). Another study has shown that infusion of EGF
into ewes for 24 h resulted in a 700% increase in cortisol levels
(250). Activation of the EGF receptor is probably not being
mediated by EGF in humans because EGF is not expressed
in the adrenal cortex. However, TGF� is expressed (251).
These data suggest that activation of the EGF receptor in the
adrenal cortex can induce steroidogenic enzymes including
3�-HSD, but the precise role of EGF and EGF-like ligands is
unclear.

Another factor thought to play a role during adrenal de-
velopment is TGF�. 	ntisense oligonucleotides to TGF�1
caused a 2-fold increase of mRNAs for 3�-HSD and P450c17
in BAC cells (252). Similarly, TGF� decreased P450c17 and
3�-HSD expression, but the effect was more pronounced on
P450c17 levels in the cow (157). Interestingly, human adre-
nocortical cells treated with TGF�1 in the presence of ACTH
resulted in an increase in 3�-HSD mRNA levels, a decrease
in P450c17 mRNA, but no effect on P450scc expression (253).
Studies by Naville et al. (254) showed that ACTH up-regu-
lates 3�-HSD mRNA and protein expression in ovine adre-
nocortical cells, whereas P450c17 and 3�-HSD expression
were decreased by TGF�. However, the effect TGF� was
more pronounced on P450c17 levels in the sheep. Further-
more, TGF�1 decreased 3�-HSD mRNA and protein levels in
mouse Y1 cells (255). Therefore, TGF� may play an important
role in the down-regulation of 3�-HSD and steroidogenesis
in the adrenal gland, however the regulatory context in
which TGF� exerts its effects may be lost in vitro.

Insulin and IGFs have been known to enhance steroido-
genesis in multiple tissues, and these effects have been
shown to involve the up-regulation of 3�-HSD mRNA levels.
IGF-II enhances ACTH-stimulated, but not basal levels of
3�-HSD mRNA in cultured human fetal adrenals (256).
Treatment with insulin and IGF-I increased 3�-HSD and
P450c17 mRNA levels in human adrenocortical cells, and this
increase was coincident with a decrease in the DHEA/cor-
tisol ratio (257). Although P450c17 and 3�-HSD mRNAs
were increased by IGF-I/II treatment, P450scc levels re-
mained unaffected in human adult fasciculata-reticularis
cells. In addition, the acute steroidogenic response to ACTH
of cells pretreated with IGF-I, IGF-II, or insulin was 3- to
6-fold higher than that of control cells (258). ACTH and IGF-I
also increased 3�-HSD and P450c17 mRNA levels in BAC
cells (238). Therefore, these studies demonstrate that insulin
and IGFs play a role in enhancing adrenal steroid output, and
that part of this effect is mediated at the level of 3�-HSD.
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c. Steroids. Data from multiple studies have suggested that
steroids can regulate adrenal 3�-HSD and possibly steroi-
dogenesis. If verified, this would have important implica-
tions on the ability of steroids downstream of 3�-HSD ca-
talysis to feedback or feed-forward on steroid production.
For example, DEX can enhance 3�-HSD mRNA levels and
cortisol production in H295R cells, and this effect is enhanced
with PMA treatment (125). These results suggest that cortisol
production by the ZF might enhance the steroidogenic po-
tential of the adrenal gland through direct transcriptional
effects. Other work has shown that E2 decreased 3�-HSD
activity in a dose-dependent manner in H295R cells (259).
The PROG/glucocorticoid receptor antagonist RU486 ad-
ministered to hypophysectomized (HYPOX)/castrated/
ACTH-replaced rats decreased 3�-HSD activity, yet cortico-
sterone levels were unaffected (260). 3�-HSD activity is
greater in female than male adrenals of C57BL/6J and C3
h/HeJ mice. Injection of T or DHT decreased adrenal 3�-HSD
activity in both strains (133). These studies therefore open
the possibility for complex feedback by androgens, estro-
gens, and glucocorticoids in the regulation of adrenal
steroidogenesis.

d. Other regulatory mechanisms. Several studies have sug-
gested that adrenal 3�-HSD is regulated by factors other than
those mentioned. For example, thyroid hormone (T3) regu-
lation of 3�-HSD has been examined in the adrenal gland as
well as in other tissues. T3 alone had no effect, however
cotreatment with T3 enhanced ACTH up-regulation of 3�-
HSD activity in human fetal adrenocortical cells (261). On the
other hand, T3 and T4 reduced 3�-HSD activity in male rat
ZFR cells (262). A detailed examination of T3 performed in
the perch showed that T3 caused a linear increase of 3�-HSD
activity in cells isolated from the ovarian follicles. These
studies also demonstrated that T3 induction required protein
synthesis, which could be overcome by the addition of T3-
induced protein (263, 264). Furthermore, piscine gonadotro-
pin and T3 stimulated 3�-HSD activity in perch testis; how-
ever, the kinetics of stimulation differed (265). These studies
therefore suggest that the thyroid hormone can also partic-
ipate in the regulation of steroidogenesis by modulating
3�-HSD activity.

Other factors tested include CRH, prostaglandins, and
hypoxemia. CRH increased DHEA-S/cortisol production by
cultured human adrenal fetal zone and neocortical zone cells
in a dose-dependent manner (266). This suggests a direct role
for the pituitary factor in the regulation of adrenal steroido-
genesis. Chronic treatment of BAC cells with PGE2 induced
3�-HSD mRNA and protein expression (267). Prostaglandin
signaling in the adrenal might therefore be involved in the
regulation of 3�-HSD. Finally, hypoxemia increased the cor-
tisol to �4-DIONE ratio in pregnant sheep fetuses and also
increased adrenal P450scc, P450c21, and 3�-HSD, although
P450c17 remained unaffected (268). These factors may there-
fore play a role in the regulation of adrenal steroidogenesis
at the level of 3�-HSD; however, more work needs to be done
to determine whether these effects are a general phenomenon
or a specific effect of the model systems tested.

3. Adrenarche. Adrenarche is characterized by an increase in
adrenal androgen secretion (DHEA/DHEA-S), which is not

accompanied by an increase in cortisol and is independent of
the gonads or gonadotropins. Adrenarche is limited to Old
World primates (269) and occurs at around age 6–8 yr in
humans. After this period, P450c17 expression continues in
the ZR, whereas that of 3�-HSD declines. Several studies
have shown that 3�-HSD expression decreases in the ZR in
humans over 8 yr old (Fig. 16) (270–272). However, the
mechanisms underlying the decrease in 3�-HSD expression
are still unknown. Another proposed mechanism that could
explain the increase in DHEA/DHEA-S output during adre-
narche is an alteration of the ratio of 17�-OH/17,20-lyase
activities of P450c17 (211, 273, 274). Increases in the coupling
of the allosteric factor, cytochrome b5, to P450c17 promote
17,20-lyase activity and androgen synthesis by P450c17 in-
dependent of increases in P450c17 expression. Moreover, an
increase in SULT2A1 expression is observed, which results in
an increased conversion of DHEA to DHEA-S, further at-
tenuating �4-steroid production (620). Adrenarche may
therefore result from an increase in 17,20-lyase activity of
P450c17 due to an increase in cytochrome b5 association, an
increase in SULT2A1 expression along with a decrease in
3�-HSD expression, which results in an increase of adrenal
androgen output.

B. Ovary

At birth, the ovary consists of steroidogenically inert pri-
mordial follicles that during adulthood are recruited to pro-
liferate and differentiate into distinct layers with specialized
functions. These follicles pass through preantral, antral, and
ovulatory stages under gonadotropin and intracrine control
in which the outer androgen-producing theca layer and the
inner estrogen-producing granulosa layer develop. After
ovulation, follicles differentiate into the PROG-secreting CL.
Each of these structures possesses a different steroidogenic
profile that is the result of altered steroidogenic enzyme
expression. Differential regulation of 3�-HSD plays an im-
portant role in the steroidogenic profile of ovarian tissue, and
a complex interplay of pituitary factors and ovarian factors
maintains a tight control over steroidogenic enzyme control.

Ontological studies have shown that 3�-HSD is expressed
during some fetal stages in human ovaries, but then disap-
pears until puberty. Therefore, fetal human ovaries are ste-
roidogenically quiescent except for a window late in gesta-
tion (275), so most estrogens seen by the primate fetus are of
placental origin (276). This is in contrast to testicular expres-
sion because androgen production by the male embryo is
critical for male sexual development (277). In humans, hilar
cells of the ovary express 3�-HSD at 26 wk gestation as
detected by immunohistochemistry (210), whereas 3�-HSD
protein could be seen in the theca and interstitial layers of the
human fetal ovary from 28–34 wk. No 3�-HSD staining was
seen from birth until puberty (275). The role of steroid pro-
duction in the human fetal ovary is unclear at this time. In
contrast to humans, 3�-HSD protein cannot be detected in
the fetal rat ovary and is not seen until 6 d after birth in the
developing theca (278, 279). Similarly, 3�-HSD is not ex-
pressed in the fetal mouse ovary (280). Steroidogenesis by the
ovary does not appear to be critical for female development,
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with the caveat that there is an unknown function of steroid
production during the development of the human ovary.

1. Follicle

a. Follicular localization. 3�-HSD localization studies track
the molecular machinery required for PROG and androgen
production by the thecal layer during primate follicular de-
velopment. Androgens are then further metabolized into
estrogens by the granulosa cells (281). 3�-HSD mRNA has
been localized to the theca interna of preantral, antral, and
atretic follicles as well as the CL (282–285). Preantral/antral
expression studies show 3�-HSD mRNA and protein ex-
pression in the human ovary to be initially in the theca and
then developing in the granulosa layer as folliculogenesis
continues. Interestingly, some layers of theca interna cells
next to the basement membrane showed no 3�-HSD expres-
sion (282, 283). Low levels of 3�-HSD relative to P450c17 in
the theca during the proliferative phase of the menstrual
cycle lead to more �5-steroid precursors being produced,
which results in higher estrogen output by the follicle (286).

In nonprimate species, 3�-HSD has been shown to have
different expression patterns. In the rat, 3�-HSD mRNA is
elevated throughout the estrous cycle. Preantral, antral, and
preovulatory rat follicles showed 3�-HSD expression in the
theca, but no expression was seen in the granulosa layer
(287). During gestation, 3�-HSD could not be detected at d
10, but increased on d 14, 17, and 21 (288). Similarly to the
rat, 3�-HSD is localized to the theca-interna layer of the pig
follicle (289–291). In contrast to rodents, pigs, and primates,
3�-HSD expression in the cow was seen in all stages of the
preovulatory follicle in both theca and granulosa layers (292),
and mRNA and protein levels peaked in bovine ovaries on
d 16–17 after estrous (293). After formation of theca interna
around the granulosa cells, mRNA for 3�-HSD is expressed
in thecal cells about the time of antrum formation, and ex-
pression increases with the growth of early antral follicles
(294–296). Moreover, granulosa cells of preantral and early
antral follicles (less than 4 mm) do not express 3�-HSD,
indicating that bovine follicles less than 4 mm in diameter are
not able to convert cholesterol to PREG and subsequently to
PROG (297). Selection of dominant follicle occurs between 36
and 48 h after initiation of the first follicular wave and is
associated with mRNA expression for 3�-HSD in granulosa
cells (295, 296, 298). Expression in thecal and granulosa cells
decreases dramatically in preovulatory follicles after the pre-
ovulatory LH surge (292, 299). Other studies in the cow have
localized 3�-HSD mRNA to theca at 12 h after the first fol-
licular wave, and expression in the theca was maximal be-
tween 24 and 96 h (298). These studies suggest that the
primary site of 3�-HSD expression is in the thecal layer of the
follicle, yet expression in the granulosa layer is seen depend-
ing upon the stage of folliculogenesis and species examined.

b. Pituitary control. Pituitary hormones are a primary
means of regulating steroidogenesis in the ovary. Follicular
binding of the gonadotropins FSH and LH causes an increase
in cAMP and phosphatidylinositol-turnover, which in turn
results in an increase in 3�-HSD expression concomitantly
with other steroidogenic enzymes under the similar control
by PKA and PKC. In vitro studies have shown that human

theca-interna cells responded to cAMP with an induction of
3�-HSD (300). Similarly, 3�-HSD activity was increased by
cAMP in fetal rat ovaries (301), and 3�-HSD mRNA levels in
pseudopregnant rats rose dramatically 2 d after induction of
ovulation (302). The induction of rat 3�-HSD by FSH can be
attenuated by AG18 (a tyrosine kinase inhibitor), suggesting
that an undetermined tyrosine kinase pathway is involved in
the cAMP-dependent signal transduction pathway of FSH
action (303). Activation of the PKB/Akt kinase pathway by
FSH has been reported to occur in terminally differentiated
granulosa cells, in a cAMP-dependent and PKA-indepen-
dent manner (304). In these cells, FSH also activates the p38
(305) and ERK MAPKs (306, 307), indicating that the FSH-
receptor owns the structural requirements for coupling to
these pathways.

Work in the pig parallels 3�-HSD regulation seen in rats
and primates. The porcine granulosa tumor cell line, JC-410,
responded to cholera toxin with an increase in 3�-HSD and
P450scc mRNA, but not P450arom (308). LH/hCG treatment
increases 3�-HSD expression in porcine granulosa cells,
which can be attenuated with PMA treatment (309). 3�-HSD
protein levels increased linearly between d 3 and 7 in pre-
ovulatory follicles of the pig (290). These studies show that
cAMP production induced by gonadotropins is an important
regulatory mechanism for the control of 3�-HSD, yet mod-
ulation by other factors is evident. Another pituitary factor
critical to the regulation of ovarian steroidogenesis in rodents
and possibly primates is PRL. Although the direct control of
3�-HSD by PRL is unclear, studies have been performed that
suggest its ability to alter 3�-HSD enzyme levels. Martel et
al. (310) have demonstrated that induction of 3�-HSD mRNA
levels in the follicle of hypophysectomized rats can be ac-
complished by hCG but not FSH treatment. In addition, PRL
was shown to be inhibitory, yet the inhibition could be coun-
teracted with hCG treatment. Additional studies using in situ
hybridization showed that the administration of hCG for 9 d
induced increases of 146% in 3�-HSD mRNA levels in ovar-
ian interstitial cells of pseudopregnant rats. Treatment with
PRL caused a 78% decrease in 3�-HSD mRNA levels in CL
after 9 d of treatment (311). Although the levels of PRL used
in these studies were high, PRL was effective in the control
of ovarian steroidogenesis.

Although declines in serum gonadotropin levels during
menopause limit the capacity of the ovary to produce ste-
roids, some steroid production continues. In postmeno-
pausal women, for example, 30% of circulating �4-DIONE
is of ovarian origin (312, 313). 3�-HSD expression continues
in menopausal and postmenopausal women and is localized
to dispersed interstitial cells (275). These studies suggest that
ovarian steroid production in postmenopausal women con-
tinues, but the decline in pituitary control dramatically
changes the steroid profile. Due to the continued expression
of steroidogenic enzymes, the postmenopausal ovary could
be viewed as a site of both local synthesis and peripheral
conversion of steroids produced by the adrenal.

c. Nonpituitary control. Other factors of extrapituitary
origin have been examined for their capacity to regulate
follicular 3�-HSD. These factors, which include PROG, IGFs,
thecal differentiating factor (TDF), GnRH, EGF, and �-
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adrenergic agents, may modulate gonadotropic and lacto-
genic control of 3�-HSD expression. Furthermore, 3�-HSD
autoantibodies are present in patients with premature ovar-
ian failure, potentially affecting ovarian steroid biosynthesis
(314). However, the relative role of these factors in control-
ling follicular steroid production independent of trophic fac-
tors is a matter of debate.

PROG is a critical component in the ovulatory process in
rodents and primates (315). However, the role that PROG
plays in the regulation of steroidogenic enzymes in the ovary
is less well defined. Treatment of macaques with trilostane
(a competitive inhibitor of 3�-HSD) allows for the examina-
tion of 3�-HSD regulation in the absence of PROG and other
active steroids. For example, an hCG bolus administered to
macaques resulted in a time-dependent decrease in P450scc
mRNA, whereas 3�-HSD increased in a steroid-independent
manner (316). Although these studies do not implicate PROG
as a major inducer of 3�-HSD in primates, the effects on basal
production of steroids have yet to be examined.

In the rat, however, PROG does appear to have a positive
effect on the transcription of 3�-HSD. Onapristone, which is
an antiprogestin, blocks ovulation and decreases PROG re-
ceptor (PR) and 3�-HSD protein expression in pseudopreg-
nant rats (317). Furthermore, RU486 (a PROG/glucocorticoid
antagonist) administered before hCG injection in the pseu-
dopregnant rat model attenuated the hCG induction of 3�-
HSD activity (318). R5020 (a PROG agonist) and PROG in the
presence of the 3�-HSD inhibitor, cyanoketone, augmented
the FSH induction of 3�-HSD activity in a dose-dependent
manner in rat granulosa cells (319). Progesterone may there-
fore play a role in the feedback regulation of 3�-HSD in the
rat ovary.

There is evidence that the IGFs and their binding proteins
play a role in ovarian steroidogenesis. Studies in the rat have
shown that intrafollicular IGF-I amplifies granulosa cell ste-
roidogenesis in this species (320). Similar to results obtained
in the adrenal gland, IGF-I appears to augment trophic hor-
mone stimulation of ovarian steroidogenesis. Cultured rat
granulosa cells showed a 3.8-fold basal and 1.8-fold FSH-
stimulated increase in 3�-HSD activity and mRNA levels by
IGF-I treatment (321). IGF-I also increased 3�-HSD mRNA by
2-fold in theca-interstitial cells isolated from HYPOX imma-
ture rats (322). The relative importance of an autocrine effect
of IGF on ovarian function has yet to be fully determined.

TDF, which is secreted by the preantral follicle, stimulates
theca-interna androgen production in a LH-independent
manner. TDF is induced by FSH in the rat and increases
3�-HSD, P450scc, P450c17, and LH receptor mRNA levels
(323). 3�-HSD mRNA is also expressed in the theca-interna
layer of the rat follicle before LH-responsiveness. Studies
showed that the treatment of dispersed cells from 4-d-old rat
ovaries with media from preantral follicles containing TDF
activity caused an induction of 3�-HSD and other steroido-
genic enzymes in these cells along with an increased andro-
gen production (324). Therefore, FSH-induced TDF may en-
hance the steroidogenic capacity of the rat follicle.

Other nonpituitary factors shown to have effects on 3�-
HSD are GnRH, EGF, and �-adrenergic agonists. The GnRH
receptor has been shown to be expressed in the follicle (325).
Moreover, the GnRH agonist, buserelin, increased 3�-HSD

activity in pseudopregnant rat ovarian cells (326), suggesting
a role for GnRH outside of pituitary in the control of ovarian
steroidogenesis. Another factor that might have an intrao-
varian role in the regulation of 3�-HSD is EGF. In rat gran-
ulosa cells, EGF increases 3�-HSD in the presence or absence
of TGF� and increases FSH induction of this parameter (327).
Finally, studies have suggested a role for direct innervation
and local production of neurotransmitters within the ovary
in the control of 3�-HSD and ovarian steroidogenesis (328,
329). Indeed, terbutaline and isoproterenol (�-adrenergic
agonists) produced dose-dependent increases in 3�-HSD
mRNA in porcine granulosa cells (330). The regulation of
3�-HSD and ovarian steroid output involves an interplay of
multiple factors (intrinsic and extrinsic) of which the com-
plexity has yet to be fully ascertained.

2. CL

a. CL localization. After ovulation, luteinization ensues in
which the follicle becomes highly vascularized and secretes
copious amounts of PROG. PROG output is controlled in part
by the amount of 3�-HSD enzyme. Macaque localization
studies demonstrate high levels of 3�-HSD expression in the
early luteal cycle with a decline in expression thereafter (331,
332). A more detailed temporal examination showed expres-
sion of 3�-HSD mRNA from d 1–9 of an induced cycle in CL
of macaques (333). In the sheep, however, 3�-HSD mRNA
was not detected in ovine CL until 48 h after onset of estrous
(334). These results suggest that 3�-HSD localization to the
CL is a marker of the PROG production capacity of the CL.

Several studies have correlated the luteal expression of
3�-HSD with that of androgen receptors (AR) and PR. These
receptors may alter luteal function based upon local PROG
and androgen concentrations. For example, 3�-HSD, AR,
and PR are all expressed in human CL (284, 335). In addition,
3�-HSD and PR, but not ER, were present at the highest
levels during the midluteal phase of the baboon menstrual
cycle (336, 337). As in the baboon, 3�-HSD and PR show the
highest expression levels in the midluteal phase of the ma-
caque cycle (338), and 3�-HSD was also detected in the CL
of macaques with coexpression of AR (339). These studies
suggest a potential role of steroids in the modulation of
3�-HSD levels, and this potential will be discussed further.

Luteal cells are derived from the theca and granulosa
layers of the follicle. Two types of luteal cells have been
identified in multiple species: large and small. Large luteal
cells contain more 3�-HSD mRNA per microgram than small
ovine luteal cells (340). Small, medium, and large 3�-HSD
positive cells are also found in rhesus monkeys (341). In the
mouse, 3�-HSD staining was seen in large and small luteal
cells. Although the functional significance of luteal cell types
is unclear, the two cell types are regulated differentially as
is the case in the ovine CL (334).

b. CL regulation. The CL is a transient organ that is under
the control of luteotropic factors that maintain PROG output.
In primates, LH/hCG action through the LH receptor pro-
vides a primary means of luteotropic support. For example,
hCG has been shown to maintain 3�-HSD mRNA expression
in humans (342) and macaque CL (343). Furthermore, LH,
hCG, and forskolin increased 3�-HSD activity in human
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granulosa-lutein cell culture (344), and induction of 3�-HSD
mRNA was observed by cAMP or hCG treatment of porcine
granulosa-lutein cells (309). In addition, FSH has been shown
to increase 3�-HSD protein and mRNA levels in human
granulosa-lutein cells, and this effect could be enhanced via
cotreatment with insulin (345). In rodents, both PRL and LH
are important luteotropic factors. PRL potentiated hCG in-
duction of 3�-HSD mRNA in rat CL (346), and treatment with
mPL-1 (a placental lactogen) resulted in a dose-dependent
increase in PROG production (347). Owing to the luteotro-
phic nature of PRL in the rat CL, it is possible that PRL might
play a contributing role in the primate CL. Prolactin has been
shown to increase basal PROG production in antral follicles
(348), dispersed CL cells (349), and in granulosa-lutein cell
cultures obtained from women undergoing egg retrieval in
in vitro fertilization procedures (350, 351). Increases in PROG
production occurred at physiological doses of PRL, but these
effects were reversed when doses approached levels seen in
hyperprolactinemic patients (348). Therefore, it is postulated
that PRL might be capable of regulating genes involved in the
PROG biosynthetic pathway. Although the direct control of
3�-HSD by PRL in humans has yet to be demonstrated, PRL
has been shown to up-regulate 3�-HSD transcriptional ac-
tivity in vitro (122). The activation of LH and PRL receptors
is therefore an important event in the maintenance of 3�-
HSD activity and PROG secretion by the CL.

As is seen in other steroidogenic tissues, increases in PKA
and PKC activities modify 3�-HSD levels in the CL. Inter-
estingly, PKA activity induced by increases in cAMP is af-
fected by cross-talk from PKC pathways mimicked by treat-
ment with phorbol esters. It has been shown that
tetradecanoyl phorbol acetate decreased 3�-HSD activity in
human granulosa-lutein cells (352). Forskolin treatment in-
creased PROG production in small ovine luteal cells, whereas
PMA inhibited PROG production in large and small cells, yet
neither PMA nor forskolin altered 3�-HSD activity (353).
Other studies have shown that PMA inhibited hCG/cAMP/
LH/forskolin induction of 3�-HSD mRNA in porcine gran-
ulosa-lutein cells (309). These studies thus suggest that cross-
talk exists between PKA and PKC pathways in the control of
3�-HSD expression in the CL.

Although LH is a critical control factor for PROG output,
there is evidence that LH may be, at least partially, uncou-
pled to 3�-HSD mRNA levels. Administration of a GnRH
antagonist to macaques suggested an uncoupling of PROG
production from LH stimulation. Although PROG secretion
was markedly diminished after 24 h of antagonist treatment,
there were no differences in P450scc and 3�-HSD mRNA
levels between antagonist-treated and control animals. These
data suggest that P450scc and 3�-HSD mRNA regulation are
uncoupled from LH-induced PROG production (354).

Rothchild (355) and others have suggested that PROG
output by the CL could be regulated by endogenous and
circulating steroids. Presumably, these intrinsic factors could
work independently of external luteotropins at the level of
3�-HSD regulation. For example, trilostane treatment of fe-
male macaques reduced PROG production, but not relaxin
output by the CL, suggesting that PROG is important in
regulating PROG biosynthesis in the primate and this effect
is uncoupled from luteolysis (356–358). RU486 induced lu-

teolysis in rats with a decrease in 3�-HSD activity and an
increase in 20�-HSD activity (359–362). On the other hand,
R5020 but not hydrocortisone increased PROG output of rat
luteal cells from d 19 of pregnancy (363). E2 decreased 3�-
HSD activity in isolated human (364, 365) and rat (366) luteal
cells. Results from these studies suggest interplay in the
steroid modulation of PROG output by the CL.

Other factors besides LH/hCG, PRL, and steroids have
been shown to affect 3�-HSD regulation in the CL. These
include growth factors, LHRH, catecholestrogens, and ad-
renergic innervation. In the case of growth factors, cAMP-
stimulated 3�-HSD activity was enhanced by FGF, EGF, and
TGF� in cultured human granulosa-lutein cells (352), sug-
gesting that these factors may play an autocrine role in the
regulation of 3�-HSD in the CL. Similarly, the administration
of GH to normally cycling women resulted in an increase of
3�-HSD mRNA levels in granulosa-lutein cells (367), al-
though these effects may be mediated indirectly through the
action of IGFs. On the other hand, GnRH antagonist de-
creased 3�-HSD content in rat luteal cells in culture (368),
demonstrating the ability of GnRH to have a direct role in the
regulation of luteal PROG production. Finally, catechol-
estrogen treatment has been shown to down-regulate 3�-
HSD expression in rat luteal cells (369), whereas adrenergic
innervation of the cow increases 3�-HSD activity and PROG
secretion (370). These studies again suggest that multiple
luteotrophic agents are involved in the regulation of 3�-HSD
activity and PROG output by the CL, yet their relative im-
portance has not been determined.

c. Luteolysis. Luteolytic factors are involved in the con-
trolled destruction of the CL, a process termed luteolysis.
Evidence for the induction of luteolysis by prostaglandins is
extensive, and evidence also exists for direct regulation of
3�-HSD by PGF2a during this process. A 50% reduction in
3�-HSD mRNA and protein levels was observed 4 h after
injection of PGF2� in pseudopregnant rats. This effect was
transient because 3�-HSD levels returned to normal 8 h after
injection (371). Along with a decrease in 3�-HSD activity,
PGF2� injection into whole rats resulted in an increase in
20�-HSD activity, and this effect could be overcome with a
dose of PROG on d 19 of pregnancy (363). In isolated porcine
granulosa cells, PGF2� caused a reduction of P450scc and
3�-HSD mRNA levels (372). PGF2� has also been shown to
induce luteolysis in cows and decrease 3�-HSD expression
(373–375). In ewes, PGF2� injection at d 11 of estrous resulted
in a 95% reduction in 3�-HSD mRNA after 48 h of treatment
in large luteal cells (376). Although the role of prostaglandins
in primate luteolysis is unclear, PGF2a is clearly a mediator
of luteal regression in other species.

Another factor known to induce luteolysis in rodent and
play a role in 3�-HSD regulation is LH. LH-induced lute-
olysis on d 19 of pregnancy resulted in a decrease in 3�-HSD
activity and an increase in 20�-HSD activity 48 h after treat-
ment. This effect can be blocked with LH antiserum given on
d 19 of pregnancy. The decrease in 3�-HSD could not be
rescued by the treatment with diclofenac (prostaglandin H2
synthase inhibitor) or PROG, yet this treatment did reduce
20�-HSD activity (377, 378). Therefore, these results dem-
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onstrate that LH signaling plays a role in luteal regression in
rodents.

3. PCOS. PCOS is an ovarian disorder associated with hy-
perthecosis of the ovary and elevated serum LH, insulin, and
androgen levels. Several studies have put forth evidence of
aberrant 3�-HSD regulation in polycystic thecal cells. Tro-
glitozone (an insulin-sensitizing agent) lowers androgen
concentrations in women with PCOS. It was also shown that
troglitazone reduced PROG production in porcine granulosa
cells and interfered with forskolin- and FSH-induced PROG
production. In addition, 3�-HSD enzymatic activity was re-
duced 60% after treatment (379). A reduction in 3�-HSD
activity was also observed in rat cystic ovaries (380), and it
has been hypothesized that excess adrenal androgens might
inhibit 3�-HSD activity and increase DHEA levels (381).
PCOS thecal cells exhibited both higher basal and forskolin-
induced P450c17, 3�-HSD, P450scc, and 17�-HSD, but not
StAR activities, relative to normal thecal cells (382). The
mechanisms of aberrant steroidogenic enzyme expression in
PCOS theca cells are unclear, but it has been suggested that
hyperphosphorylation of insulin or high circulating insulin
levels may be involved in the etiology of the condition.

C. Testis

1. Ontogeny and localization. In the human fetus, Leydig cells
of the testis secrete T, which promotes differentiation of the
Wolffian ducts, urogenital sinus, and external genitalia. Ley-
dig cells first appear at 8 wk gestation in humans. T secretion
in humans begins around 8 wk gestation, peaks around
14–16 wk, and then begins to fall, and these low levels are
then maintained until late gestation when they decrease even
further (383–385). Plasma T levels are high at birth in boys,
fall within 2 to 5 d, and then rise again at 2–3 wk of life. They
decrease correlatively with time from the third month to the
sixth month of life, where minimal levels are reached and
maintained until the onset of puberty (386–389). The induc-
tion of several steroidogenic enzymes, including 3�-HSD, is
associated with these changes in T production.

Ontology studies on testis have been performed to exam-
ine T production in relation to 3�-HSD activity. Immuno-
histochemistry studies have revealed that human Leydig
cells express 3�-HSD as early as 18 wk gestation (210). Dur-
ing gestation in human, 3�-HSD expression in the testis
parallels androgen production and is detected at the second
and third trimesters. Eight-month-old and 11-yr-old boys
showed no testicular 3�-HSD staining, and levels remained
low until puberty (390). In the rodent, 3�-HSD protein was
detected in fetal rat testis on d 14.5 post coitum (p.c.) (391).
Mouse type I/VI 3�-HSD is expressed in adult testis, and
RT-PCR analysis showed that type I was expressed from
embryonic d 13 until adulthood, whereas type VI was first
detected at d 11 postnatally and was the predominant iso-
form in the adult animal (280, 392). Clearly, expression of
3�-HSD during development is an indicator of testicular
androgen production.

Adult Leydig cells arise postnatally and encompass three
developmental stages: progenitor, immature, and adult cells
(393). Rat testes of postnatal d 15 showed 3�-HSD localiza-

tion to the smooth ER of precursor Leydig cells and endo-
thelial cells in the vicinity of 3�-HSD positive Leydig cells
(394, 395). Large (12 �m) rat Leydig cells showed higher
staining of 3�-HSD than smaller cells (8 �m) (396). Further-
more, cells from the rat H540 Leydig cell tumor line express
3�-HSD, P450c17, P450scc, P450arom, and 5�-reductase (397,
398). Other localization studies have examined 3�-HSD by
immunocytochemistry in cynomolgus monkey testis, show-
ing that 3�-HSD expression is seen in both Leydig and Sertoli
cells (399). The immunoreactive 3�-HSD was labeled in part
of Leydig cells and in all Sertoli cells in neonatal, late infan-
tile, pubertal, and adult testes, whereas only a few Leydig
cells, but no Sertoli cells, were labeled in early infantile testes
(400). Thus, the predominate site of 3�-HSD expression in the
testis is in Leydig cells, but evidence exists for some local-
ization in Sertoli cells, at least in some primate species.

2. LH. During development, testicular 3�-HSD expression
appears to be uncoupled from LH regulation. T production
is first detected in humans at 9 wk (383), yet LH receptors do
not appear until 12 wk (277). Studies in normal mice have
shown that LH levels can be seen at d 17 p.c., which is after
induction of 3�-HSD in fetal Leydig cells. 3�-HSD expression
was also shown to be normal and independent of circulating
GnRH during development (401). In rats, 3�-HSD protein
was detected in fetal testis on d 14.5 p.c., whereas LH receptor
expression was seen on d 16.5 p.c., also suggesting an inde-
pendent mechanism of 3�-HSD regulation in the fetal rat
testis (391).

In adult rat testis, however, primary control of 3�-HSD
expression occurs through the action of the LH receptor and
the induction of the cAMP second messenger system. LH,
forskolin, cAMP, and cholera toxin all induced 3�-HSD
mRNA in adult rat Leydig cells (402, 403), whereas hCG and
cAMP induced 3�-HSD activity in immature rat Leydig cells
(404). hCG also induced 3�-HSD activity in adult rat testis
(405, 406). However, desensitizing doses of hCG down-reg-
ulated 3�-HSD mRNA in adult rat Leydig cells, whereas it
had no effect on 3�-HSD mRNA in pseudopregnant rat ova-
ries (407). Furthermore, K9 mouse Leydig cells respond to
hCG with a 4-fold increase in 3�-HSD mRNA (408). LH
secretion by the pituitary is therefore a critical control path-
way in adult rodent testicular steroidogenesis, which is in
contrast to fetal regulatory mechanisms.

3. Steroids. Studies have suggested that androgens can inhibit
androgen production by the testis and that this repression
could occur at the level of 3�-HSD regulation. Rats treated
with hCG showed an increase in 3�-HSD activity, but R1881
(androgen agonist) decreased hCG induction, whereas
cyproterone acetate (androgen antagonist) increased activity
(405). Similarly, DHT and methyltrienolone (androgen ago-
nist) inhibited 3�-HSD activity in adult rat Leydig cells (409),
and T decreased 3�-HSD activity in Leydig cells from
C57BL/6J mice (134, 410). Disruption of steroidogenesis with
aminoglutethimide (AMG) treatment increased 3�-HSD and
P450c17 mRNA levels, whereas treatment with T and cAMP
reversed this effect (411). DEX (glucocorticoid agonist) ad-
dition in the presence of AMG reduced both basal and cAMP
stimulatory effect in 3�-HSD mRNA, but not P450c17 in
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mouse Leydig cells (411). AMG has also been shown to
increase 3�-HSD mRNA in porcine Leydig cells; however, in
contrast to mice this effect could not be rescued by T treat-
ment (412). DEX increased P450 content and decreased 3�-
HSD activity in rat Leydig cells, and older rats appeared
more sensitive than younger rats (413). The data concerning
down-regulation of 3�-HSD by androgens and up-regulation
by glucocorticoids suggests that steroid regulation occurs in
testicular Leydig cells and differs between species.

4. Stress. A study by Orr and Mann (414) showed that im-
mobilization stress (IMO) of rats results in a reduction of
serum androgen but not of serum LH concentrations. For
example, 3 h of IMO to rats showed a 7-fold increase in serum
corticosterone along with a reduction in serum T concentra-
tions. Western blots of testicular fractions revealed reduced
amounts of P450scc and 3�-HSD, but not P450c17 (415).
Treatment with an opioid antagonist, naltrexone-methobro-
mide, reversed this effect, suggesting that endogenous opi-
oid peptides might play a role in regulating testicular ste-
roidogenesis (416–418). Another study has suggested that
IMO of rats results in the down-regulation of P450c17 and
3�-HSD and is mediated through nitric oxide (NO) synthase
(419). Testicular injection of aminoguanidine hydrochloride
(inducible NO synthase inhibitor) prevented the sustained,
but not the acute, stress-induced decrease in serum T. In
addition, aminoguanidine hydrochloride added in vivo and
in vitro blocked the sustained decrease in 3�-HSD and
P450c17 activities. These data seem to suggest that P450c17
and 3�-HSD are regulated in the testis independently of LH
and that opioids and/or NO production might mediate this
effect. In addition, the direct role of glucocorticoids in the
modulation of testicular 3�-HSD transcription has yet to be
examined. It should however be kept in mind that the effect
of stress on serum LH concentrations varies according to the
type of and length of stress.

5. Growth factors. Studies have been performed to determine
whether 3�-HSD regulation in fetal testis might be mediated
through growth factors. EGF, TGF�, activin A, and GH have
been shown to increase 3�-HSD activity. It has been dem-
onstrated that EGF treatment of porcine Leydig cells in-
creased 3�-HSD activity (420), whereas TGF� and activin A
treatment increased 3�-HSD activity in immature porcine
Leydig cells (421). GH induced StAR and 3�-HSD mRNA
expression as well as androgen production in progenitor
Leydig cells isolated from 28-d-old rats, whereas cyclohex-
imide treatment altered this 3�-HSD induction (422). FGF
and platelet-derived growth factor have been shown to re-
duce 3�-HSD activity in immature rat Leydig cells. aFGF in
immature rat Leydig cells decreased 3�-HSD activity (423),
whereas insulin/IGF-I treatment reversed the bFGF inhibi-
tory effect in immature rat Leydig cells (423). Another report
has shown that platelet-derived growth factor inhibits 3�-
HSD activity induction by cAMP/hCG but not basal activity
in cultured immature rat Leydig cells (424). Candidate
growth factors might play a role in the regulation of 3�-HSD
in the developing testis; however, the precise regulators of
testicular 3�-HSD in vivo remain to be fully defined.

6. Other regulatory mechanisms. Other factors besides LH, ste-
roids, stress, and growth factors have been tested for their
ability to regulate 3�-HSD. Some of these include immune
cytokines, neurotransmitter agonists, and oxidative metab-
olites. Amphetamine treatment of rat Leydig cells decreases
3�-HSD (425), whereas H2O2 decreased 3�-HSD activity in
mouse MA-10 cells in a dose-dependent manner (426). Cl�

ion removal from culture media of rat Leydig cells enhances
LH-stimulated steroidogenesis, and this is independent of
3�-HSD, but may involve an increase of StAR (427). CSF-1
deficient mouse Leydig cells have reduced amounts of 3�-
HSD, P450scc, P450c17, and 17�-HSD protein (428). TNF�
and IL-1 decreased cAMP-stimulated 3�-HSD mRNA and
protein in mouse Leydig cells, however only TNF� reduced
basal levels of 3�-HSD and T output (429). Taken together,
these studies suggest that a complex interplay of extrinsic
ligands (i.e., LH) and intrinsic factors modulates androgen
production by the testis.

D. Placenta

The placenta is responsible for the production of the ma-
jority of progestins and estrogens in primates during later
stages of pregnancy. The 3�-HSD expressed in human pla-
centa is the peripheral isoform, type I 3�-HSD, and is under
differential regulatory control than the adrenal/gonadal iso-
form, type II 3�-HSD as previously described. It should be
noted that the catalytic efficiency of human type I 3�-HSD is
5.9-, 4.5-, and 2.8-fold higher than the catalytic efficiency
(Vmax/Km) of the human type II 3�-HSD (adrenal/gonadal)
isoform using PREG, DHEA, and DHT, respectively, as sub-
strates (27). The higher Km for type II 3�-HSD is correlative
to the higher amounts of substrate produced in these tissues
(430). A detailed understanding of the regulation of 3�-HSD
in the placenta and other peripheral tissues must take into
consideration the catalytic differences between the two iso-
forms present in humans.

1. Ontogeny and localization. It is generally considered that
human 3�-HSD expression in the placenta is localized to
syncytiotrophoblastic cells. 3�-HSD mRNA and protein
were detected in uninucleate cytotrophoblasts in chorion
laeve similar to that in the syncytia, but not in cytotropho-
blast placenta. The expression of 3�-HSD was not induced
either temporally or by cAMP in laeve cytotrophoblasts,
whereas villous cytotrophoblasts spontaneously demon-
strated progressive increases in 3�-HSD expression (161).
Another study in humans has shown that 3�-HSD protein
was localized to syncytiotrophoblast and intermediate tro-
phoblast cells at both villous and extravillous sites, but not
in cytotrophoblast cells from 6 wk gestation to term (431).
Although several aspects of the baboon placenta are different
from that of human, syncytiotrophoblast expression of 3�-
HSD mRNA remained constant during all phases of gesta-
tion (432).

In contrast to primates, the mouse placenta is not of crucial
importance in the de novo synthesis of steroids in the second
half of pregnancy (347). However, recent reports have shown
a role for the local production of steroids in the maternal
decidua and trophoblast layers surrounding the endometrial
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cavity. Mouse type VI 3�-HSD is expressed in the uterine
wall during decidualization (433). Expression is initially in
the antimesometrial cells of the decidua on d 6.5–7.5 p.c. and
then shifts to embryonal giant trophoblast cells. 3�-HSD VI
then declines between d 10.4 and 14.5 p.c. (433). These data
thus suggest that maternal expression of placental steroido-
genic enzymes may play a determining role in maintenance
of pregnancy and/or embryogenesis in a localized manner.

2. Regulation. Activation of PKA and PKC pathways in hu-
man placental in vivo models results in an increase in 3�-HSD
activity. PMA and cAMP induces 3�-HSD mRNA in human
JEG-3 choriocarcinoma cells; however, the phorbol ester re-
sponse is mediated by PKC (159). A23187 increased basal
17�-HSD-I and 3�-HSD-I, but not P450scc in human JEG-3
cells. Furthermore, A23187 decreased cAMP stimulated type
I 3�-HSD and P450scc, but synergistically activated type I
17�-HSD (434). Cross-talk between calcium flux/PKC and
cAMP/PKA signaling pathways in the regulation of placen-
tal steroidogenesis is thus evident.

Growth factors have been tested for their ability to induce
3�-HSD in the human placenta. For example, insulin and
IGF-I treatment of human cytotrophoblasts increased 3�-
HSD activity (435). IGF-II also increased 3�-HSD activity in
human placental cytotrophoblasts, and this effect could be
inhibited via cycloheximide or actinomycin D treatment
(436). In addition, Morrish et al. (437) have examined the
effects of cytotrophoblast differentiation on gene expression.
EGF, colony-stimulating factor (CSF)-1, and granulocyte-
macrophage CSF stimulate, whereas TGF� inhibits human
cytotrophoblast differentiation, and subtractive hybridiza-
tion experiments between undifferentiated and differentiat-
ing cytotrophoblasts identified an increase in the hCG �-sub-
unit, �1-glyocoprotein, 3�-HSD, and plasminogen activator
inhibitor-1 mRNAs during differentiation (437). These re-
sults suggest that growth factors involved in placental dif-
ferentiation might play a role in the regulation of 3�-HSD
and other factors. Although species- and placental-specific
mechanisms are observed, similar regulatory pathways as
those seen in other tissues exist for 3�-HSD expression in the
placenta.

It is interesting that sex steroids have been shown to reg-
ulate 3�-HSD mRNA levels in trophoblast cells (438). Treat-
ment of human trophoblast cell cultures with PROG and E2
led to increases in P450scc and 3�-HSD mRNA levels, but
had no effects on 3�-HSD protein levels (438). The potential
transcriptional regulation of the human type I 3�-HSD gene
by PROG or E2 is interesting in light of the lack of palin-
dromic steroid regulatory elements in the promoter and 5�-
flanking sequence. In this regard, the human HSD3B1 gene
may share some similar mechanisms with the HSD3B2 gene
that has recently been shown to respond to PROG and glu-
cocorticoids, although it is also lacking palindromic steroid
regulatory elements (132).

The murine ortholog, type VI 3�-HSD, is the only isoform
expressed in giant trophoblast cells during the first half of
mouse pregnancy. Transfection studies in placental and non-
placental cells identified a novel 66-bp trophoblast-specific
enhancer element located between �2896 and �2831 of type
VI 3�-HSD promoter (197). As revealed by DNase protection

analysis, three trophoblast-specific binding sites, FPI, FPII,
and FPIII, were identified. EMSAs with oligonucleotides rep-
resenting the protected sequences, FPI and FPIII, and nuclear
extracts isolated from human JEG-3 cells and from mouse
trophoblast cells demonstrated the same binding pattern that
was different from the binding pattern with mouse Leydig
cell nuclear proteins. Additional assays identified AP-2� and
the homeodomain protein, Dlx-3, as the transcription factors
that specifically bind to FPI and FPIII, respectively. Site-
specific mutations in each of the binding sites eliminated
enhancer activity, indicating that AP-2� and Dlx-3, together
with an additional transcription factor(s) that is conserved
between humans and mice, are required for trophoblast-
specific expression of type VI 3�-HSD (197).

E. Liver

Hepatic 3�-HSD expression is presumed to be important
in the metabolism and inactivation of steroids. 3�-HSD has
been purified from human liver (439, 440), and 3�-HSD ac-
tivity in human liver microsomes was shown to be three
times higher for the reduction of DHT to 3�-DIOL than the
reverse reaction (441). The adult mouse liver expresses 3�-
HSD types II, III, and IV, with type III predominating. Mouse
type I 3�-HSD (analogous to human type II) is the predom-
inant form in the fetal liver during development until post-
natal d 1, when type III is induced. Mouse type I expression
ends at postnatal d 20, while type V is detected at postnatal
d 40 and is male specific, whereas type II is expressed at low
levels throughout development. These data suggest that the
mouse liver might play a key role during fetal development
(95). Rat type III is expressed in the male rat liver and is a
3-KSR implicating its function in inactivating steroids in this
tissue (75, 85, 442). Immunohistochemical studies localized
3�-HSD protein to the bile duct epithelium and microsomal
fraction in the pig liver (98, 99).

Studies have also examined the regulation of 3�-HSD in
the rodent liver. It appears that isoform-specific, sexually
dimorphic regulation of 3�-HSD occurs in rats and mice.
Castration of rats led to an 80% reduction in type III 3-KSR
in rat liver after 15 d, and this effect could be rescued by the
administration of DHT. Similarly, DHT increased levels in
ovariectomized females to levels seen in the male (85). T
increased, whereas E2 decreased type III 3-KSR in gonadec-
tomized rats, but these effects were not seen in HYPOX
animals. Also, PRL exerted a sex-specific blockade of T/E2

regulation in HYPOX females (85). A down-regulation of
type III 3-KSR by GH was also observed in rats (85, 443). In
the mouse liver, sexually dimorphic GH expression regulates
many steroidogenic enzymes. GH expression in transgenic
mice driven by the phosphoenolpyruvate-carboxykinase
promoter down-regulates the 42-kDa male-specific isoform
without affecting the 47-kDa nondimorphic isoform (444).
These data suggest that circulating levels of steroids might
affect regulation of 3�-HSD activity in the liver, principally
through altering GH and PRL levels, and thereby resulting
in feedback on steroid degradation.
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F. Breast

Sex steroids are well recognized to play a predominant
role in the regulation of cell growth and differentiation of
normal mammary gland as well as in hormone-sensitive
breast carcinomas. Estrogens stimulate cell growth of hormone-
sensitive breast cancer cells (445–448), whereas androgens exert
an antiproliferative action in breast cancer cells (12, 448–450).
The role of estrogen formation in peripheral intracrine tissues
is well illustrated in women by the important benefits on breast
cancer observed in postmenopausal women treated by a series
of aromatase inhibitors (451). Moreover, the recent observation
that postmenopausal women who received the antiestrogen
raloxifene for only 3 yr led to a 76% decrease in the incidence
of breast cancer (452) is also consistent with the role of extra
ovarian estrogens in the development and growth of breast
cancer. 3�-HSD activity was detected in breast tissue in humans
as early as 1990 (453), and 3�-HSD activity was demonstrated
in human adipose stromal tissue (454). Expression in breast
cancer tissue has also been investigated. Stage II/III infiltrating
ductal primary breast tumors demonstrated 3�-HSD activity
(455), and 3�-HSD protein was seen in 36% of breast carcinoma
samples tested (456). Similarly, 3�-HSD activity was detected in
ZR-75-1 breast cancer cells (457).

Both endocrine and paracrine influences on the prolifer-
ation of human breast cancer cells are well recognized, thus
supporting the suggestion that breast tumor growth is mod-
ulated by the hormonal environment (458, 459). The presence
in breast tumors of considerable numbers of tumor-associ-
ated macrophages and tumor-infiltrating lymphocytes se-
creting a wide spectrum of cytokines also suggests a key role
for these factors in neoplastic cell activity (460, 461). More-
over, it has been observed that Natural Killer cells isolated
directly from ductal invasive breast tumors secrete increased
amounts of interferon-� and IL-4 (462). The rationale to in-
vestigate the potential action of IL-4 and IL-13 in breast
cancer cells pertains to the recent demonstration of high-
affinity IL-4 receptors in human breast carcinomas (463), the
inhibitory effect of IL-4 and IL-13 on the estrogen-induced
breast cancer cell proliferation (171, 183, 464, 465) and their
potent stimulatory effect on GCDFP-15/PIP gene expression
(183), as well as on spermidine transport in ZR-75-1 cells
(466). Furthermore, it has been reported that some cytokines
can regulate the expression of several enzymes involved in
sex steroid formation and inactivation in breast cells. For
example, IL-6 regulates the expression of 17�-HSD/KSR
(171, 467), estrone sulfatase (468), and P450 aromatase (15,
126), whereas IL-4 regulates 17�-HSD/KSR (171) activity as
well as 3�-HSD type 1 activity (51, 52, 171).

Under basal growth condition, there is no detectable 3�-
HSD activity in ZR-75-1 cells; however, incubation with IL-4
or IL-13 caused a potent up-regulation of 3�-HSD activity
(51). It should be noted that IL-1�, IL-2, IL-3, IL-6, IL-8, IL-10,
interferon-�, and EGF all failed to induce 3�-HSD activity in
ZR-75-1 cells. In the ER� MDA-MB-231 cells, IL-4 increased
this enzymatic activity by 3.3-fold as measured by the con-
version of [3H]DHEA into both [3H]-4-DIONE and [3H]-A-
DIONE, thus indicating that the IL-4 action on 3�-HSD ac-
tivity was not restricted to ER� ZR-75-1 and T-47D human
breast cancer cells. Furthermore, the 5.5-fold increase in 3�-

HSD activity after exposure to IL-4 in normal human mam-
mary epithelial cell in primary culture suggests the physio-
logical relevance of our finding.

As shown in Fig. 14, IGF-I and insulin increase the stim-
ulatory effect of IL-4 on 3�-HSD activity. The stimulatory
effect of IGF-I and insulin on the IL-4-induced 3�-HSD ac-
tivity was exerted at EC50 values of 0.8 and 3 nm, respectively,
thus providing the first evidence of potentiation of an IL-4
response by IGF-I and/or insulin. The relevance of this find-
ing also pertains to the observation that most invasive breast
tumors appear to express IGF-I receptor, and their growth is
stimulated in vitro in response to exogenous IGF-I (469).
Furthermore, it is of interest to note that the amplitude of the
effect of insulin or IGF-I on IL-4-induced 3�-HSD activity was
more striking in the presence of submaximal concentrations of
the cytokine. It is thus tempting to speculate that the action of
these growth factors could be significant under physiological
conditions when IL-4 is present at low concentrations.

The similar effects exerted by IL-4 and IL-13 are explained
by the fact that their receptors share at least one subunit (470,
471). One type of IL-4R is composed of the IL-4R� chain and
the common � chain from the IL-2 receptor, whereas the IL-13
receptor �1 chain can heterodimerize with the IL-4R� chain
to form receptors for both IL-4 and IL-13 (472).

Because aromatase is expressed in a large proportion of
human breast carcinomas (15, 473, 474), induction of 3�-HSD
activity by IL-4 and IL-13 could markedly increase the for-
mation of estrogen precursors, namely �4-DIONE and T, and
therefore may well have a significant impact on the estrogen
synthesis in breast tumors. However, it should be taken into
consideration that androgens are well recognized to exert an
antiproliferative action in breast cancer cells (446, 447). Thus,
the IL-4-induced 3�-HSD activity would first increase the
intracellular levels of T that in return would inhibit breast
cancer cell growth. In support of this hypothesis, DHEA
exerts an inhibitory effect on the development of ZR-75-1
human breast cancer cell xenografts in ovariectomized nude
mice (450). Moreover, DHEA exerts a potent inhibitory effect
on the development of dimethylbenzanthracene-induced
mammary carcinoma in the rat (475). Finally, DHEA exerts
an almost exclusive androgenic effect in the rat mammary
gland (476).

�5-DIOL is well recognized to exert an estrogenic action at
physiological concentrations due to its relatively high affin-
ity for estrogen receptors, while it also possesses a lower
affinity for the androgen receptor (446, 448, 449, 477, 478).
Thus, as demonstrated by an experiment using both estro-
gen- and androgen-sensitive reporter constructs, the induc-
tion of type I 3�-HSD expression by IL-4 may indeed mod-
ulate the balance between estrogenic and androgenic
biological responses when incubating ZR-75-1 cells with �5-
DIOL (51). Our findings thus strongly support the relevance
of the action of IL-4 and IL-13 in the biosynthesis of active sex
steroids from adrenal precursors (DHEA and �5-DIOL) in
both normal and tumoral human breast tissues.

G. Prostate

In men, the importance of intracrine formation of active
androgens is in concordance with the observation that after
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elimination of testicular androgens by medical or surgical
castration, the intraprostatic concentration of DHT remains
at approximately 40% of that measured in the prostate in
intact 65-yr-old men, thus leaving important amounts of free
androgens to continue stimulating growth of the prostate
cancer (13, 479, 480). Indeed, an important source of andro-
gens in the human prostate is androgens synthesized locally
by the conversion of adrenal-derived DHEA and DHEA-S
by 3�-HSD and 17�-HSD type V into �4-DIONE and T,
respectively.

It has been shown that 3�-HSD expression colocalizes by
immunocytochemistry and in situ hybridization with 17�-
HSD type V in the glandular epithelium of the prostate with
the highest levels seen in basal cells relative to luminal cells
(481). Other studies have found 3�-HSD in human hyper-
plastic prostate tissue (482, 483). These studies demonstrate
the capacity of the human prostate to locally produce an-
drogens, which increase the hypertrophic potential of the
organ.

More recently, IL-4 and IL-13 were shown to induce 3�-
HSD activity and mRNA levels in normal human prostate
epithelial cells (PrEC) (52). The 3�-HSD activity was not
detectable in PrEC under basal growth conditions, whereas
incubation with IL-4 or IL-13 induced a potent up-regulation
in 3�-HSD activity observed at EC50 values of 20 and 170,
respectively. Moreover, IL-4 induced 3�-HSD gene expres-
sion as early as 3 h after exposure (52), whereas the 3�-HSD
activity was detectable after a short incubation period of 8 h
with IL-4 and continued to increase for at least 48 h, thus
showing a rapid induction of 3�-HSD activity by IL-4. Thus,
the induction of 3�-HSD activity by IL-4 and IL-13 would
markedly increase the formation, from DHEA, of the type V
17�-HSD/KSR substrates �4-DIONE and A-DIONE, which
would lead to the synthesis of T and DHT, respectively. This
may well have a significant impact on the development of
prostate cancer because the effect of prolonged presence of
androgens that stimulate prostate cancer growth is well es-
tablished (13, 484, 485). The relevance of the IL-4 action in
prostate cells also pertains to the observation that in an im-
mortalized human prostate cell line derived from primary
cultures, the gene expression of the tissue inhibitor of met-
alloproteinase-1 and matrix metalloproteinase-2 was regu-
lated by IL-4 (486). It was suggested that IL-4 might control
the molar ratio of tissue inhibitor of metalloproteinase-1 and
matrix metalloproteinase-2 to influence the level of protease
activity and perhaps the invasive behavior of malignant cells
in vivo.

In the general population, we observe an interindividual
variability in the susceptibility to cancer; however, little is
known about the underlying genes contributing to this vari-
ability. Although a number of rare highly penetrant loci
contribute to the Mendelian inheritance of prostate cancer as
recently described (487), some of the familial risks may be
due to shared environment and more specifically to common
low-penetrance genetic variants, which alter predisposition
to prostate cancer. It is not surprising that analyses of genes
encoding key proteins involved in androgen biosynthesis
and action, led to the observation of a significant association
between common genetic variants and a susceptibility to
prostate cancer (488–491). Such analyses provided some un-

derstanding of how common low-penetrance polymor-
phisms present in a number of these candidate genes were
involved in prostate cancer onset, progression, and response
to treatment for the disease. To evaluate the possible role of
HSD3B genes in prostate cancer susceptibility, a recent study
used a panel of DNA samples collected from 96 men with or
without prostate cancer for sequence variants in the putative
promoter region, exons, exon-intron junctions, and 3�-
untranslated region of HSD3B1 and HSD3B2 genes by direct
sequencing (492). Four of the 11 single nucleotide polymor-
phisms (SNPs) were informative. These four SNPs were
further genotyped in a total of 159 hereditary prostate can-
cer probands, 245 sporadic prostate cancer cases, and 222
unaffected controls. Although a weak association between
prostate cancer risk and a missense SNP (B1-N367T) was
found, stronger evidence for association was found when
the joint effect of the two genes was considered. Indeed,
men with the variant genotypes at either B1-N367T or B2-
c7519g had a relative risk of 1.76 (95% confidence interval,
1.21–2.57; P 
 0.003) to develop prostate cancer compared
with men who were homozygous wild type at both genes.
The risk for the hereditary type of prostate cancer was
stronger, with a relative risk of 2.17 (95% confidence inter-
val, 1.29–3.65; P 
 0.003). Most importantly, the subset of
hereditary prostate cancer probands, whose families pro-
vided evidence for linkage at 1p13, predominantly contrib-
uted to the observed association (492). Additional studies
are warranted to confirm these findings.

The rat provides a useful model for the study of prostate
steroid production. 3�-HSD activity was seen in the rat ven-
tral prostate (493) with higher activity in epithelial vs. stromal
cells (494). In addition, the 5�-reductase inhibitor, 4MA, was
shown to decrease 3�-HSD activity in the prostate of rats
(495), thus suggesting that androgens may play a role in the
regulation of prostatic steroidogenesis; however, more work
needs to be done to verify these effects.

H. Skin

Sharp et al. (496) have shown that 3�-HSD activity in
human fetal skin is low at 12 wk, whereas 28-, 38-, and 41-wk
human fetal skin samples showed high 3�-HSD activity. It
was also observed that 90% of 3�-HSD activity from human
fetuses was found to be in sebaceous glands (497). Thereafter,
it has been demonstrated that human 3�-HSD is found in
sebaceous gland ducts with highest expression in fully dif-
ferentiated ducts (53, 498, 499). 3�-HSD expression in seba-
ceous glands provides the ability of glands to control local
concentrations of DHEA and other steroids in the skin.

It has been demonstrated recently that IL-4 and IL-13
caused a rapid induction of 3�-HSD activity in HaCaT hu-
man immortalized keratinocytes (Fig. 13) (52, 500). The phys-
iological relevance of this finding is well supported by the
observations that: 1) human skin can convert DHEA into T
(501); 2) DHEA can stimulate sebaceous gland secretion (502,
503); 3) the in vivo sebum secretion rate in humans is closely
correlated with 3�-HSD activity (504); and 4) 3�-HSD type 1
gene is expressed in human skin (27, 53). The relevance of this
finding also pertains to the observation that IL-4 and IL-13
stimulate IL-6 expression in normal keratinocytes and ker-
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atinocyte cell lines of human origin (505), and that IL-4 in-
duces proliferation of normal human keratinocytes, which is
associated with c-myc gene expression (506). Therefore, it is
likely that these cytokines play a role in the regulation of
inflammation at both systemic and local levels. Finally, hu-
man keratinocytes constitutively express IL-4R, and its ex-
pression is also increased in some epidermal proliferative
diseases (507, 508), whereas IL-4 can be detected in atopic
dermatitis and during the elicitation phase of contact sensi-
tivity (507, 509). Thus, it would be relevant to investigate the
potential effect of androgens or estrogens in those patholo-
gies as well as in the physiological functions of keratinocytes.

In rats, type IV is the major isoform in skin (83) with much
lower expression of types II and I, whereas the only 3�-HSD
transcript found in mouse skin is the type VI (91, 92). HYPOX
rats showed an increase of 3�-HSD activity in female animals
and a decrease in males. Moreover, treatment of HYPOX
animals with l-T4 demonstrated elevated 3�-HSD mRNA in
a male-specific manner, corticosterone showed a decrease in
mRNA in both sexes, and elevated PRL levels caused a stim-
ulation of type IV in both sexes (510).

I. Brain

Steroid hormones exert important functions in the control
of growth, maturation, and differentiation of the central and
peripheral nervous systems. These actions have long been
attributed exclusively to steroid hormones secreted by ad-
renal glands and gonads. However, during the past decade,
it has been demonstrated that both neurons and glial cells are
capable of synthesizing bioactive steroids, now called neuro-
steroids, which also participate in the control of various
functions in the central nervous system (CNS). Several recent
studies have made possible the establishment of the neuro-
anatomical distribution of key enzymes (see Ref. 511 for a
review). Levels of PROG are higher in the peripheral nerves
of rats and mice than in plasma, and these levels persist after
removal of steroidogenic endocrine glands (512). It should be
noted that examination of PROG production must be cou-
pled with relative levels of PROG metabolites to fully un-
derstand the neurosteroid milieu present in specific regions
of the brain.

The presence of 3�-HSD activity in the CNS was first
demonstrated in homogenates of rat amygdala and septum
(513), whereas the first immunohistochemical localization of
3�-HSD in the CNS was performed in the European green
frog Rana ridibunda (514). Multiple 3�-HSD localization stud-
ies in rats have characterized expression at the gross neu-
roanatomical level. For instance, P450scc and 3�-HSD are
expressed as demonstrated by in situ hybridization in the
hippocampus, dentate gyrus, cerebellar granular layer, ol-
factory bulb, and Purkinje cells of the rat brain (515). Other
studies showed by RT-PCR that 3�-HSD expression occurs
in the cerebellum and cerebrum of the rat brain (516). 3�-
HSD mRNA was also localized to the olfactory bulb, stria-
tum, cortex, thalamus, hypothalamus, septum, habenula,
hippocampus, and cerebellum in the rat brain. The cerebel-
lum showed the highest levels of expression of a 1.8-kb
transcript (517). Rat 3�-HSD mRNA was also localized in the
medulla ventrally and laterally bordering the fourth ventri-

cle (518). In situ studies showed 3�-HSD expression in neo-
natal rat Purkinje cells and external granule cells throughout
the cerebellum at 10 d of age (519). In the peripheral nervous
system, rat 3�-HSD was localized in the sciatic nerve (520,
521) as well as in dorsal root ganglion, where its expression
is increased after peripheral nerve injury (522). Although
expression patterns of steroid metabolizing enzymes in the
brain are emerging, the functional implications of local ste-
roid production are only beginning to be examined.

Other studies have demonstrated 3�-HSD expression in
cell culture. Rat Schwann cells and sensory neurons from the
embryonic dorsal root ganglia express 3�-HSD protein and
activity (523). RT-PCR studies have shown that rat cerebellar
glial and cerebellar granule primary cell cultures expressed
3�-HSD and P450scc (524). Rat astrocytes express 3�-HSD
activity (525, 526), whereas 3�-HSD, 3�-HSD, and 5�-reduc-
tase activities can be detected in fetal rat brain cells in culture
(527). 3�-HSD was increased 10-fold in rat Schwann cell/
neuronal cocultures, suggesting that 3�-HSD regulation in
isolated cells differs from that seen in vivo. Moreover, 3�-
HSD and P450scc mRNAs were induced during the differ-
entiation of O-2A precursor cells to oligodendrocytes (528).
Astrocytes appear to be the most steroidogenically active
cells in the brain as determined from cells isolated from the
neonatal rat cerebral cortex (529). Finally, it has been re-
ported that in frog hypothalamic explants that the endoz-
epine triakontatetraneuropeptide stimulates 3�-HSD activ-
ity. This effect was mimicked by a peripheral benzodiazepine
receptor (PBR) agonist and inhibited by the PBR antagonist
PK11195, whereas the central-type PBR antagonist, fluma-
zenil, did not affect the triakontatetraneuropeptide-evoked
neurosteroid secretion (530). These cell culture models there-
fore provide systems in which regulatory factors for the
control of neurosteroidogenesis can be identified.

J. Other expression sites

The importance of local steroid production by peripheral
isoforms of 3�-HSD is easily envisioned. However, far too
little is known about the regulation of 3�-HSD in additional
peripheral tissues, namely, kidney (88), vas deferens (531),
bone (532, 533), cardiovascular tissues (534, 535), adipose
tissue (454), etc. Nevertheless, as one example supporting the
key role of 3�-HSD activity in peripheral tissues, it has been
recently observed that 3�-HSD is expressed in mouse
megakaryocytes in which it is essential for the initiation of
proplatelet formation. A recent study showed that 3�-HSD
expression is up-regulated by the megakaryocyte/erythro-
cyte specific transcription factor p45 NF-E2 (536). This up-
regulation induces biosynthesis of estrogens in matured
megakaryocytes, which in turn, by autocrine action on the
estrogen receptor, triggers proplatelet formation. Because
platelet transfusions are presently the only established ther-
apy for preventing bleeding complications in severely
thrombocytopenic individuals, these results provide an in-
teresting venue for the development of an effective treatment
of thrombocytopenia (536). The molecular mechanisms in-
volved in the regulation of 3�-HSD in classical steroidogenic
tissue appears to have little overlap due to the lack of control
by trophic factors in these tissues, but cytokines, GH, and

558 Endocrine Reviews, June 2005, 26(4):525–582 Simard et al. • Molecular Biology of 3�-HSD

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/26/4/525/2355189 by guest on 10 April 2024



PRL are good candidates to first investigate. Thus, the map-
ping of hormones and transcription factors involved in the
control of each of these tissues points to a potentially rich
source of regulatory pathways involved in peripheral ste-
roidogenesis that have yet to be elucidated. An understand-
ing of these pathways will allow for controlled modulation
of steroidogenesis and its effects in these tissues.

VII. Molecular Genetics of Human 3�-HSD Deficiency

Classical 3�-HSD deficiency is a rare form of congenital
adrenal hyperplasia (CAH) accounting for about 1–10% of
cases of CAH (537, 538). The salt-losing forms of CAH are a
group of life-threatening diseases that require prompt rec-
ognition and treatment. Indeed, autosomal recessive muta-
tions in the CYP21, CYP17, CYP11B1, and HSD3B2 genes that
encode steroidogenic enzymes, in addition to mutations in
the gene encoding the intracellular cholesterol transport pro-
tein, StAR, can cause CAH, each resulting in different bio-
chemical consequences and clinical features (277, 539–541).
These five biochemical defects impair cortisol secretion,
which results in compensatory hypersecretion of ACTH and
consequent hyperplasia of the adrenal cortex. However, only
deficiencies in 21-hydroxylase (CYP21) and 11�-hydroxylase
(CYP11B1) predominantly result in virilizing disorders. In-
deed, in patients with the classical form of these two defects,
the most noticeable abnormality in the sexual phenotype is
the masculinization of the female fetus due to oversynthesis
of adrenal DHEA and DHEA-S, whereas in comparison,
affected males do not have ambiguous genitalia. In contrast
to these two most frequent causes of CAH, which are ex-
clusive adrenal defects, 3�-HSD, P450c17, and StAR defi-
ciencies impair steroidogenesis in both the adrenals and the
gonads, resulting in the diminished formation of sex steroids
in addition to cortisol and aldosterone.

A. Clinical features

Since the first reports by Bongiovanni (542, 543), many
patients of both sexes have been described with various
heterogeneity upon clinical presentation (Table 2). Classical
3�-HSD deficiency results from mutations in the HSD3B2
gene, whereas the HSD3B1 gene in these patients is normal
(56–59, 539, 544–547) (also Ref. 548 and references therein).
The classical form of 3�-HSD deficiency can be divided,
depending upon the severity of the salt-wasting associated
with the disorder, into the salt-wasting or non-salt-wasting
forms. There is no correlation between the impairment in
male sexual differentiation and salt wasting.

Male individuals suffering from classical 3�-HSD defi-
ciency present with either perineal hypospadias or perine-
oscrotal hypospadias as shown in Table 2. On the other hand,
complete or partial inhibition of 3�-HSD activity in the adre-
nals and ovaries was not accompanied by a noticeable al-
teration in the differentiation of the external genitalia of
female patients, as indicated by the absence of ambiguous
external genitalia. The reason for this striking difference in
phenotype between the male and female individuals is that
deficiency of 3�-HSD in the fetal testis results in a lowering
of the levels of T below the levels required for the normal

development of external genitalia (56–58, 539, 544–547).
However, males affected with pseudohermaphroditism and
complete or partial 3�-HSD deficiency have intact Wolffian
duct structures, including vas deferens. This is also the case
in 17�-HSD type III deficiency as well as 5�-reductase type
II deficiency, which is consistent with the hypothesis that a
major effect of 3�-HSD deficiency is to reduce the formation
of DHT below the level required for normal development of
external genitalia (545). However, it is important to keep in
mind that the decreased DHT results only from reduced T,
knowing that the 5�-reductase activity is intact in these
patients.

The salt-losing form of classical 3�-HSD deficiency is usu-
ally diagnosed during the first few months of life due to
insufficient biosynthesis of aldosterone and consequent salt
loss, which may be fatal if not diagnosed and treated early
(542, 547, 549–554). In contrast, the non-salt-losing form of
3�-HSD deficiency may be diagnosed either at a young age
in the presence of indicating factors, such as a family history
of death during early infancy (555), perineal hypospadias in
male newborns (556, 557), or failure to gain weight (553), or
the diagnosis may be made at a later date (554, 558–560). It
would be expected that death in early infancy is more in-
dicative of salt loss; however, the family history of a patient
diagnosed with the non-salt-losing form of 3�-HSD defi-
ciency indicated that four of seven children died in early
infancy (554). Because sexual differentiation is normal in
female newborns affected by non-salt-losing 3�-HSD defi-
ciency, the correct diagnosis is delayed until adrenarche (559,
561) or puberty (560) (Table 2).

Interestingly, the patient recently reported by Van Vliet
and colleagues (561) underwent progressive feminization
starting between 8 and 9 yr of age and was the first female
with severe salt-wasting 3�-HSD deficiency reported to have
progressive breast development, regular menses, and evi-
dence of PROG secretion. This patient is homozygous for the
A10E mutation that results in the complete loss of type II
3�-HSD activity (561). One possible explanation for the de-
velopment of breasts and the endometrium in the patient
reported by Van Vliet is that there is local conversion of
inactive adrenal precursors into estrogens. On the other
hand, it is possible that, as suggested for the testes (562),
pubertal levels of gonadotropins may induce sufficient ovar-
ian 3�-HSD activity by increasing the normally low levels of
type I 3�-HSD, thereby allowing significant ovarian produc-
tion of E2. The rise in the patient’s plasma PROG levels favors
the latter hypothesis and raises the possibility that this in-
dividual may be fertile (561). It should be noted that a male
affected with proven severe 3�-HSD deficiency has in fact
fathered children (56, 549). These recent findings further
illustrate that genotype may not always predict the pheno-
type in patients with this disorder (548).

B. Biological diagnosis

The basal plasma levels of �5-3�-hydroxy steroids such as
PREG, 17OH-PREG, and DHEA are elevated in affected in-
dividuals. An elevated ratio of �5/�4-steroids is considered
to be the best biological parameter for the diagnosis of 3�-
HSD deficiency (560, 563). The best criteria for the correct
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diagnosis of this disorder now appears to be a plasma level
of 17OH-PREG greater than 100 nmol/liter after stimulation
with ACTH. However, it is well recognized that plasma
levels of 17OH-PROG and �4-DIONE and other �4-steroids
are frequently elevated in 3�-HSD-deficient patients (13, 56–
58, 539, 543–547, 550, 551, 558–560). The T response to hCG
is usually poor in infancy (553) but may be substantial in
pubertal boys (564). Such observations are consistent with a
functional type I 3�-HSD enzyme that is expressed in pe-
ripheral tissues. However, the peripheral type I 3�-HSD ac-
tivity could explain why certain patients were initially mis-
diagnosed as suffering from 21-hydroxylase deficiency, in
view of the elevated levels of 17OH-PROG and mild viril-
ization seen in girls at birth (544). Nevertheless, the signif-
icant accumulation of precursors, for instance 17OH-PREG,
may also interfere with the RIAs used in routine laboratories
to measure levels of 17OH-PROG, although in practice this
elevated level of 17OH-PROG is considered beneficial. It has
been suggested by Morel et al. (544) that an increased level
of 17OH-PROG observed when screening neonates for 21-
hydroxylase deficiency should help in making the correct
diagnosis of 3�-HSD deficiency. Therefore, measurement of
the levels of 17OH-PREG should be performed when an
elevated level of 17OH-PROG has been observed in a female
neonate without ambiguity of external genitalia or if the
patient is a male pseudohermaphrodite (544).

In the presence of premature pubarche with high DHEA-S
levels in girls, the diagnosis of attenuated or late-onset 3�-
HSD deficiency was often evoked. The late-onset form of
3�-HSD deficiency has been described in older females with
hyperandrogenism beginning at adulthood and in children
with premature pubarche (565–569). No mutation was found
in the HSD3B1 and/or HSD3B2 genes in these patients (569–
572), and upon reexamination certain patients no longer
showed an elevated �5/�4 ratio (569, 572).

C. Molecular diagnosis

To date, a total of 37 mutations (including five frameshift,
four nonsense, one in-frame deletion, one splicing, and 26
missense mutations) have been identified in the HSD3B2
gene in 60 individuals from 47 families suffering from clas-
sical 3�-HSD deficiency as shown in Table 2. In almost all the
cases, the characterization of HSD3B2 mutations has pro-
vided a molecular explanation for the heterogeneous clinical
presentation of this disorder (59). As described above, the
high production rate of PROG by the placenta, due to type
I 3�-HSD activity is essential for the maintenance of human
pregnancy. Consequently, it was suggested that in a fetus
homozygous for an HSD3B1 gene defect, the absence of the
activity of the placental enzyme would lead to interruption
of pregnancy before the end of the first trimester (56–58). The
recent data presented by Moisan et al. (59) supports the
notion that it is more appropriate to assess the enzymatic
activity of transiently expressed mutant proteins using intact
HEK293 cells rather than homogenates from cells, because
addition of exogenous cofactor can drive a reaction that may
not occur in vivo (Fig. 17). For example, enzyme activity can
be detected for mutants G15D, L108W, and P186L when
assessed in cell homogenates, using PREG as the substrate,

whereas no activity can be detected in intact transfected cells
using DHEA as the substrate (548). Moreover, this study
provides biochemical evidence supporting the involvement
of a new molecular mechanism in classical 3�HSD deficiency
involving protein instability (Fig. 18). Although the exact
molecular and cellular explanation for the apparent insta-
bility of various mutant recombinant 3�-HSD proteins in
intact transfected HEK293 cells remains to be elucidated, our
recent results illustrate that it might be difficult, if not im-
possible, to rigorously measure the levels of expression of
some of these mutant proteins to obtain an accurate estimate
of their Vmax value. We are thus suggesting that the varying
degrees of protein instability may explain, at least in part, not
only the observed decrease in the Vmax values for several
mutant proteins and more specifically for those with the
L173R or G294V substitution, but also the absence of activity
observed in HEK293 cells transiently expressing mutant re-
combinant proteins A10E, G15D, L108W, P186L, A245P,
Y253N, T259M, and T259R.

D. Genotype-phenotype relationships

The current knowledge on the molecular basis of CAH due
to 3�-HSD deficiency is in agreement with the prediction that
no functional type II 3�-HSD isoenzyme is expressed in the
adrenals and gonads of the patients suffering from a severe
salt-wasting form (Table 2 and Fig. 17). Furthermore, the
missense mutations associated with the severe salt-wasting
form of 3�-HSD deficiency (Fig. 17) result in mutant 3�-HSD
proteins that retain no detectable enzyme activity, e.g., A10E,
G15D, L108W, E142K, P186L, L205P, P222Q, Y253N, and
T259R (Table 2). Taken together, all of these results are in
perfect agreement with the severity of this form of CAH.

In addition, the current data demonstrates that the non-
salt-losing form of classical 3�-HSD deficiency also results
from missense mutation(s) in the HSD3B2 gene, which
causes an incomplete loss in enzyme activity, thus leaving
sufficient enzymatic activity to prevent salt wasting (57–59,
546, 573–575). Indeed, for example, the hormonal profile of
two of the individuals bearing the N100S mutation (patients
11, 36, and 37) suggests that salt loss was compensated for by
a limited capacity of aldosterone biosynthesis at the price of
high renin synthesis (Table 2) (575).

In general, the present functional and biochemical data
(Table 2 and Fig. 17) are in close agreement with the severity
of the disease in patients suffering from the non-salt-wasting
form of 3�-HSD deficiency (576). On the other hand, know-
ing that all heterozygote carriers of a deleterious mutation in
the HSD3B2 gene are asymptomatic, it was unexpected to
observe such a relatively high activity of L173R, i.e., 52.8%
(Table 2), although the apparent instability of the L173R
mutant protein would most likely be involved in further
reducing the activity catalyzed by the mutant type II 3�-HSD
protein in the cells of the adrenals and gonads in patients 15
and 16. It is also possible that the apparent instability of
A245P (patient 22) and G294V (patients 47 and 48) will play
a role in further decreasing the activity in these patients, as
also suggested by their Vmax/Km values.

Although the results described above illustrate the almost
perfect genotype-phenotype relationship associated with
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this disorder, there are several examples supporting the no-
tion that there are exceptions to every rule. One of these
exceptions is the homozygous A82T mutation that was pre-

viously reported in Brazilian patients 7, 8, 9, and 10 (559, 577).
In family 7, the homozygous A82T mutation was associated
with precocious puberty, whereas in an unrelated family,

FIG. 17. Comparison of the time course of enzymatic conversion of [14C]DHEA into [14C]�4-DIONE in intact HEK293 cells in culture transfected
with the indicated type II 3�-HSD wild-type or mutant expression vectors. The results are presented as the mean � SEM (n 
 3). When the
SEM overlaps with the symbol used, only the symbol is illustrated. Inset, Northern blot analysis demonstrating that following transient expression
with the indicated expression vector constructs, all transcripts were expressed at equivalent levels in transfected HEK293 cells. The cells were
transfected with the pcDNA3 vector alone to show no endogenous expression of type II 3�HSD mRNA. Hybridization to human GAPDH is also
shown as a control. [Reproduced from A.M. Moisan et al.: J Clin Endocrinol Metab 84:4410–4425, 1999 (59), copyright 1999, The Endocrine
Society.]
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family 6, it was found to be associated with male pseudoher-
maphroditism, although it had no effect in the homozygous
female relative. However, it has recently been demonstrated
that although the 46XY individual bearing the A10E ho-
mozygous mutation, patient 3, presented with the typical
phenotype of ambiguous genitalia at birth with normal vir-
ilization at puberty, the female patient, patient 2, also har-
boring this homozygous mutation, presented with sponta-
neous feminization and menarche (561), which is in contrast
to the 46XX patient 14 with severe 3�-HSD deficiency (due
to a homozygous W171X mutation) who was hypogonadal
(56, 578). These latter findings demonstrate the complex re-
lationships between the genotype and the gonadal pheno-
type in severe 3�-HSD deficiency and the difficulty in pre-
dicting fertility (561). Another good example is the
observation that the Brazilian patients 29 and 30 bearing the
homozygous mutation T259M suffer from a non-salt-wasting

form of the disease (579), whereas the homozygous Taiwan-
ese patient 28 also bearing the T259M mutation and the
compound heterozygous French patients 52 and 53 with the
heterozygous T259M/867delG mutation, as well as the ho-
mozygous Japanese patients 26 and 27 bearing the T259R
mutation were all found to be affected by the severe salt-
wasting form of the disease. Moreover, the current data
strongly indicate instability of the T259M mutant protein (59,
580). Nevertheless, as illustrated in Fig. 17, it was possible to
observe a very low residual 3�-HSD activity after a longer
incubation period in intact cells expressing the mutant
T259M protein when using DHEA as the substrate (59); how-
ever, this low activity was more evident when using PREG
as substrate (580). It can be speculated that the Brazilian
patients possess a different steroid responsiveness, but ad-
ditional experiments would be needed to better understand
this apparent discrepancy.

FIG. 18. Comparison of the levels of expression and stability of 25 mutant recombinant type II 3�-HSD proteins. A, Northern blot analysis
demonstrating that after transient expression with the indicated expression vector constructs, all transcripts were expressed in transfected
HEK293 cells. The cells were transfected with the pcDNA3 vector alone to show no endogenous expression of type II 3�HSD mRNA.
Hybridization to GAPDH is also shown as a control of transfection efficiency. B, Representation of an in vitro transcription/translation (TNT)
rabbit reticulocyte lysate assay using the mutant cDNA constructs showing that each pcDNA3 construct is adequately translated into a
[35S]-labeled 42-kDa protein, indicative of the normal expression levels of mutant recombinant type II 3�-HSD proteins. Translation was
assessed by separation on a 12% SDS-PAGE gel. To determine whether all mutant proteins are recognized by the polyclonal antibody, Western
blot analysis of the corresponding samples from the TNT assay, probed with an antihuman type I 3�-HSD polyclonal antibody at 1:2000 dilution,
was performed as described (59). C, Western blot analysis of the homogenates purified from the same corresponding transiently transfected
HEK293 cells with the indicated expression vectors, which have been used for the RNA blot analysis illustrated in panel A. A 42-kDa band
corresponding to the type II 3�-HSD protein was detectable in several but not all homogenate preparations from HEK293 transfected cells
expressing the indicated wild-type or mutant recombinant proteins, whereas no 42-kDa protein is detected in cells transfected with the mock
pcDNA3 vector alone. The nonspecific band (NS) observed may also be used as an internal control for loading. [Reproduced from A.M. Moisan
et al.: J Clin Endocrinol Metab 84:4410–4425, 1999 (59), copyright 1999, The Endocrine Society.]
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It was also unexpected to observe that the L236S mutation,
which was found in the compound heterozygous non-salt-
losing patient 50 (L236S/867delG), possesses the same en-
zyme activity as the wild-type enzyme with no evidence
suggesting that this mutation affects the stability of the pro-
tein. Nevertheless, this hypothesis is difficult to reconcile
with the well-established fact that heterozygous carriers are
asymptomatic (8, 58, 544, 545). On the other hand, it cannot
be ruled out that the L236S mutation could be in linkage
disequilibrium with another deleterious mutation affecting
the expression or the splicing of this gene.

E. Structure-function relationships

Finally, the functional characterization of these mutant
enzymes also generated valuable information concerning the
structure-function relationships of the 3�-HSD superfamily.
Indeed, it is of special interest to note that the amino acid
residues that are the sites of missense mutations are generally
in highly conserved regions in members of the vertebrate
3�-HSD isoenzymes characterized thus far (Fig. 2). This find-
ing strongly suggests the crucial role of these residues for the
catalytic activity of these enzymes. It is also of interest to
mention that mutations A10E, A10V, and G15D alter amino
acid residues in the highly conserved Gly-X-X-Gly-X-X-Gly
region found in all members of the 3�-HSD superfamily (544,
581, 582), which is similar to the common Gly-X-Gly-X-X-Gly
conserved sequence present in most NAD(H)-binding en-
zymes (68, 583). Furthermore, the striking phenotypic dif-
ferences observed between the homozygous salt-losing pa-
tients 2 and 3, bearing the A10E mutation (561), and the
non-salt-losing patients 4 and 5, bearing the A10V mutation,
are in accordance with their respective enzymatic properties,
as determined in intact cells (Fig. 17). Such a difference may
be the result of the observed apparent instability of the A10E
protein coupled with the fact that Glu is a negatively charged
residue, whereas Val, like Ala, is a nonpolar residue.

Moreover, mutations A82T and G294V create a substitu-
tion in each of the two predicted membrane-spanning do-
mains (8, 74). Furthermore, mutation P155L is located in the
first of the two characteristic Y-X-X-X-K sequences located in
the region from Tyr154 to Lys158 and Tyr269 to Lys273, which
is found in the active site of short-chain alcohol dehydroge-
nases (68, 72, 584). Affinity labeling of purified human type
I 3�-HSD identified two tryptic peptides, comprising amino
acids Asn176 to Arg186 and Gly251 to Lys274 that should con-
tain residues involved in the putative substrate-binding do-
main (30). Consequently, the exact role of the first YXXXK
motif in the 3�-HSD family remains to be confirmed. Finally,
recent findings have shown that His261 is a critical amino acid
residue for 3�-HSD activity and Tyr253 or Tyr254 participates
in the isomerase activity of the human type I 3�-HSD enzyme
(23), in addition to providing evidence indicating that Tyr253

functions as the general acid (proton donor) in the isomerase
reaction (24). Consequently mutations located within this
area will inevitably have a major effect on enzyme activity,
as exemplified in the case of the deleterious mutations
Y253N, Y254D, T259M, and T259R.

F. Sequence variants in the HSD3B2 gene vs. nonclassical
3�-HSD deficiency

Although, as previously mentioned, no mutations have
been identified in the HSD3B1 and HSD3B2 genes in patients
diagnosed to be suffering from late-onset 3�-HSD deficiency,
several sequence variants have been identified in these in-
dividuals (A167V, S213G, K216E, and L236S) (585, 586). As
illustrated in Fig. 17, in addition to the L236S mutation, the
heterozygous A167V sequence variant leads to a protein that
has a similar activity to the native enzyme, whereas mutant
S213G and K216E proteins have only a minor impact on the
activity, retaining 58.4 and 58.95% of the activity of the wild
type, respectively (Table 2, patients 57–60) (59). It should also
be noted that the mother of patient 57 was also a heterozy-
gous A167V carrier, but did not have any symptoms of hy-
perandrogenism (585). However, as indicated previously, all
reported heterozygous carriers bearing a deleterious muta-
tion in the HSD3B2 gene were typically asymptomatic; these
results provide additional molecular proof in support of the
conclusion that other genetic or environmental/hormonal
influences may contribute to the expression of the observed
symptoms (569–572, 587, 588). Thus, the functional data con-
cerning these sequence variants, coupled with the previous
studies reporting that no mutations were found in HSD3B1
and/or HSD3B2 genes in the patients affected by premature
pubarche or hyperandrogenism (570–572, 587–589), strongly
support the conclusion that this disorder does not result from
a mutant 3�-HSD isoenzyme. Although the possibility that
inherited mutation(s) could be located farther upstream in
the putative promoter region of the HSD3B2 gene, leading to
an aberrant level of expression of a normal type II 3�-HSD
protein cannot be refuted, this hypothesis is markedly weak-
ened by the fact that all patients come from unrelated ped-
igrees and diverse ethnic origins. In contrast to the 21-hy-
droxylase deficiency, in which the nonclassical form is an
allelic variant of the classical form, the so-called late-onset
3�-HSD deficiency is not an allelic variant of the classical
form. On the other hand, because 3�-HSD gene expression
and activity are under multiple complex hormonal regula-
tion, it cannot be ruled out that at least some forms of late-
onset 3�-HSD deficiency result from a genetic or acquired
origin acting indirectly on these modulatory parameters.
There is also the possibility of the implication of a steroido-
genic enzyme different from known 3�-HSD isoenzymes.
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