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Reviews on the inflammatory role of adipose tissue outside
the field of metabolism are rare. There is increasing evidence
provided by numerous basic research studies from nearly all
internal medicine subspecializations that adipocytes and adi-
pocytokines are involved in primary inflammatory processes
and diseases. Therefore, it is the aim of the present review to

discuss and to summarize the current knowledge on the in-
flammatory role of adipocytokines and special types of re-
gional adipocytes such as retroorbital, synovial, visceral, sub-
dermal, peritoneal, and bone marrow adipocytes in internal
medicine diseases. Future clinical and therapeutic implica-
tions are discussed. (Endocrine Reviews 27: 449–467, 2006)
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I. Introduction and Focus

DURING THE PAST 10 yr, the understanding of the
physiological and pathophysiological role of the adi-

pocyte has been completely changed. Once considered to be
a passive type of connective tissue storing excess energy as
triglycerides, adipose tissue has now been established as a
real endocrine organ coupling (neuro)-endocrine and met-

abolic signaling. This new point of view was reviewed
excellently by Kershaw and Flier (1). Secretory products of
preadipocytes and mature adipocytes, the so-called adi-
pocytokines (2), clearly regulate energy homeostasis, ap-
petite/satiety, reproduction, and insulin sensitivity and
influence neuroendocrine, endothelial, immunological,
hematological, angiogenetic, and vascular functions in an
endocrine, paracrine, and autocrine manner. Adipocyto-
kines such as adiponectin are currently discussed as new
drug targets in treating atherosclerosis and single com-
ponents of the metabolic syndrome (3), such as visceral
obesity, hypertension, insulin resistance, type 2 diabetes
mellitus, and dyslipidemia (4).

In contrast to numerous and excellent publications de-
scribing the role of adipose tissue and adipocytokines in
metabolic syndrome and atherosclerosis (5, 6), reviews on the
inflammatory role of adipose tissue outside the field of me-
tabolism are rare (7–9). However, visceral obesity is charac-
terized by a C-C motif chemokine receptor-2-mediated in-
filtration of adipose tissue by monocytes (9, 10) and is being
regarded more and more as a chronic and low-grade state of
inflammation causing whole body insulin resistance (11).
There is increasing evidence provided by numerous basic
research studies from nearly all internal medicine subspe-
cializations that adipocytes and adipocytokines are involved
in primary inflammatory processes and diseases (12, 13).
Comprehensive and interdisciplinary reviews summarizing
the inflammatory role of “alternative” stores of adipose tis-
sue are currently not available.

Therefore, it is the aim of the present review to discuss and
to summarize the inflammatory role of adipocytokines and
special types of regional adipocytes, such as retroorbital,
synovial, visceral, subdermal, peritoneal, and bone marrow
adipocytes in internal medicine diseases (Table 1). Due to the
criteria mentioned above, it is not the aim of the present
review to discuss the role of adipocytes in the context of
visceral obesity, insulin resistance, type 2 diabetes mellitus,
hypertension, dyslipidemia, metabolic syndrome, athero-
sclerosis, or lipodystrophic syndromes.
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Abbreviations: ADD1/SREBP1, adipocyte determination- and differen-

tiation-dependent factor-1 / sterol regulatory element binding protein-1;
AdipoR1, adiponectin receptor type 1; AdipoR2, adiponectin receptor type
2; BMI, body mass index; C/EBP, CCAAT enhancer binding protein; CFU,
colony-forming unit; CORS-26, collagenous repeat containing sequence of
26 kDa protein; CRP, C-reactive protein; CT, computed tomography; Foxa2,
forkhead box A2; Foxo1, forkhead box O1; GATA-2, GATA binding pro-
tein-2; HMW, high molecular weight; IBMX, isobutylmethylxanthine; KLF,
Krüppel-like transcription factor; Krox20, Krox-20 homolog Drosophila, pre-
viously EGR2 early growth response 2; LPL, lipoprotein lipase; LPS, li-
popolysacharide; MCP-1, monocyte chemoattractant protein-1; M-CSF,
macrophage colony-stimulating factor; MMP, matrix metalloproteinase;
NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepa-
titis; NF-�B, nuclear factor-�B; OA, osteoarthritis; PPAR, peroxisome pro-
liferator-activated receptor; PPRE, PPAR response element; Pref-1, prea-
dipocyte factor-1; RA, rheumatoid arthritis; RELM, resistin-like molecule;
RXR�, retinoid X receptor �; sFRP, secreted frizzled related protein-1;
STAT, signal transducer and activator of transcription.
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II. From the Mesenchymal Stem Cell toward
Adipose Tissue

A. Cellular development

Adipocytes differentiate from a pluripotent mesenchymal
stem cell (14) that has the potential for chondrogenic, osteo-
genic, myogenic, and adipogenic differentiation (15, 16). Re-
cent studies demonstrated that pluripotent stem cells can be
obtained from stromal cells isolated from mature adipose
tissue (17). The subsequent development and differentiation
into mature adipocytes is highly regulated and undergoes
uniform steps (Fig. 1) of commitment, cell contact, mitosis,
clonal expansion, growth arrest, and maturation (5, 18–20).

The commitment (determination) of the pluripotent mes-
enchymal stem cell to the adipocyte lineage (15) is triggered
mainly by mechanisms yet to be identified and creates an
adipoblast. The first step in adipogenesis is the reentry of
growth-arrested preadipocytes into the cell cycle and the
subsequent clonal expansion. This step is regulated by the

phosphorylation state of the tumor suppressor gene Rb (ret-
inoblastoma protein), its interaction with the transcription
factor E2F, and the subsequent activation/deactivation of
cyclin-dependent kinases (21). After cell-to-cell contact, an
early preadipocyte of first order arises and expresses early
genes such as �2Col6 (�2 chain of collagen 6), IGF-I, and
lipoprotein lipase (LPL). After mitosis and clonal expansion,
the preadipocyte of second order undergoes growth arrest.
Only these growth-arrested preadipocytes can differentiate
into mature adipocytes. This ability for further differentia-
tion depends on the expression of early and intermediate
markers of differentiation (22, 23), such as the typical adi-
pogenic transcription factors CCAAT-enhancer binding pro-
tein (C/EBP) �, C/EBP�, peroxisome proliferator activated
receptor (PPAR) �2, and adipocyte determination- and dif-
ferentiation-dependent factor-1 (ADD1)/sterol regulatory
element binding protein-1 (SREBP1). As a consequence of
these transcriptional main events, immature adipocytes be-
gin to accumulate lipid droplets and to express late markers

TABLE 1. Role of different adipose tissue depots, regional adipocytes, and adipocytokines in the pathophysiology of inflammatory human
diseases

Type of adipose tissue/ adipocytes Internal medicine subspecialization Inflammatory disease

Synovial adipocytes/infrapatellar fat pad Rheumatology OA, RA
Mesenteric/visceral adipocytes Gastroenterology Mesenteric panniculitis, acute pancreatitis

Hepatology NASH/NAFLD
Creeping fat Gastroenterology Crohn’s disease
Peritoneal adipocytes Gastroenterology Peritonitis, peritoneal tumor spread
Retroorbital adipocytes Endocrinology Graves’ ophthalmopathy
Subdermal adipocytes Endocrinology Pretibial dermopathy
Bone marrow adipocytes Hematology Hematopoesis, leukemia

Osteology Osteoporosis, bone diseases
Secreted adipocytokines Immunology Monocyte/macrophage function

Hepatology NASH/NAFLD
All adipose tissues Infectiology Reservoir of microbial infection

Due to the high number of references supporting the items mentioned in the table, the detailed publications must be obtained from the
respective sections within the text.

FIG. 1. Cellular development and gene expression profile during adipocyte differentiation. Glut-4, Glucose transporter-4.
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of differentiation such as C/EBP�, glucose transporter-4,
perilipin, and lipogenic and lipolytic enzymes. During the
last decade, it has become evident that these mature adipo-
cytes are characterized by the expression and secretion of
highly specific and very late markers of differentiation such
as leptin (24), adiponectin (4), resistin (25), visfatin (26, 27),
omentin (28), adipsin (29), and collagenous repeat containing
sequence of 26 kDa protein (CORS-26) (30). These molecules
not only regulate energy, glucose, and lipoprotein metabo-
lism (31) but also represent pro- and antiinflammatory me-
diators of the adipose tissue (7, 13). In a general context of
inflammation, adiponectin (32, 33) and CORS-26 (34) seem to
represent more antiinflammatory adipocytokines, whereas
resistin (35) and leptin (36) seem to act as proinflammatory
adipocytokines.

B. Transcriptional regulation

The cellular and transcriptional mechanisms controlling
adipogenesis have been elucidated in detail mainly in several
rodent cell lines (e.g., 3T3-L1 preadipocytes) and also human
adipocytes. The detailed molecular mechanisms of adipocyte
differentiation are characterized by a complex and highly
regulated interplay of stimulatory (Fig. 2) and inhibitory (Fig.
3) transcription factors during certain phases of the differ-
entiation process. The molecular concept of adipocyte dif-
ferentiation has been summarized in several excellent re-
views (5, 18–21, 37–40). Although several transcriptional key
events regulating the differentiation of preadipocytes into
mature adipocytes have been identified in the last decade,

master genes committing the multipotent mesenchymal stem
cell to adipoblasts are still waiting to be discovered (15). Most
recently, transcriptional coactivator with PDZ-binding motif
(TAZ) was identified as an early “molecular rheostat” mod-
ulating mesenchymal stem cell differentiation (41).

Adipocyte differentiation is characterized by two contrary
transcriptional events (transcriptional remodeling): the up-
regulation of stimulatory transcriptional regulators during
adipogenic conversion (Fig. 2) and the down-regulation of
inhibitory transcriptional regulators in early preadipocytes
and adipoblasts (Fig. 3).

The zinc finger transcription factor Krox20 (Krox-20 ho-
molog Drosophila, previously EGR2 early growth response 2)
is expressed in preadipocytes and represents one of the ear-
liest factors becoming induced during adipogenesis (42).
Krox20 acts upstream of the C/EBP� gene by transactivation
of the C/EBP� gene promoter (43). Hormonal stimuli such
as insulin and glucocorticoids or isobutylmethylxanthine
(IBMX) trigger adipogenic differentiation by causing a tran-
sient induction of C/EBP� and C/EBP� expression during
the early phase of adipogenesis at the stage of the preadi-
pocyte (dexamethasone increases C/EBP� gene expression,
whereas isobutylmethylxanthine increases C/EBP� gene ex-
pression). These C/EBP transcription factors (44) consist of
a C terminal, a basic DNA binding domain, and a leucine
zipper domain mediating homo-/heterodimerization.

C/EBP� and C/EBP� together induce the expression of
Krüppel-like transcription factor (KLF) 5, a zinc finger tran-
scription factor (42) that activates the PPAR�2 promoter (45).

FIG. 2. Transcriptional control of adipocyte differentiation. Stimulatory factors regulating adipogenesis. Hormonal stimuli are necessary for
the induction of adipocyte differentiation. The different stages of adipocyte differentiation are controlled by a network of stimulatory and
adipogenic transcription factors.
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The simultaneous activation of C/EBP�, C/EBP�, and KLF5
strongly induces the expression of PPAR�2. PPAR�2 (46, 47)
belongs to the ligand-activated nuclear receptors of the thy-
roid, steroid, and vitamin D receptor family and is charac-
terized by a ligand-activation domain and a DNA binding
domain consisting of two zinc finger motifs. PPAR�2 repre-
sents the transcriptional master regulator of adipocyte dif-
ferentiation, and, together with C/EPB�, it is responsible for
the maintenance of the fully differentiated phenotype. In
parallel, as yet unidentified lipid ligands are produced via
ADD1/SREBP1, which additionally activates PPAR�2.
ADD1/SREBP1 (48) belongs to the family of basic helix-
loop-helix transcription factors possessing a dual DNA spec-
ificity by binding to E-box sequences and non-E-box se-
quences (sterol responsive elements).

PPAR�2 is only active as an obligate heterodimer with
retinoid X receptor (RXR) �. This complex binds to specific
recognition elements, PPAR response elements (PPREs),
within the promoter regions of adipocyte-specific target
genes. These PPREs consist of a so-called DR-1-Motif
[TGAACTNTGAACT] (direct repeat of the nuclear receptor
hexameric DNA core recognition motif spaced by one nu-
cleotide). After induction and activation of PPAR�2, the ex-
pression of C/EBP� is induced. C/EBP� can be regarded as
a transcriptional master regulator of late adipocyte differ-
entiation, and it is responsible for the maintenance of the
fully differentiated phenotype. C/EBP� induces its own ex-
pression as well as the transactivation of PPAR�2 via specific
C/EBP binding sites in the promoter regions of both genes
(21).

Besides this positive cascade of transcriptional activation,
inhibitory transcription factors expressed in preadipocytes
become down-regulated because otherwise they would in-
hibit the differentiation program (Fig. 3). Among these in-
hibitory pathways of adipocyte differentiation, the zinc fin-
ger transcription factors GATA-binding protein-2 and -3
(GATA-2 and GATA-3) (49) function as inhibitors of adipo-
genesis by repressing PPAR�2 promoter activity (50) and by
forming protein complexes with C/EBP� and C/EBP� (51).

An inhibition of preadipocyte to adipocyte transition is also
exerted by activation of the Wnt signaling cascade (52, 53).
KLF2 also represents an inhibitory transcription factor that
is expressed in preadipocytes and becomes down-regulated
during adipogenesis. KLF2 does not affect the commitment
of the mesenchymal stem cell, but it maintains the preadi-
pocyte state and inhibits the transition into adipocytes (54).
KLF2 functions as an inhibitory transcription factor by re-
pressing PPAR�2 promoter activity (55) and by restoration of
preadipocyte factor-1 (Pref-1) (54). Pref-1, one of the epider-
mal growth factor-like proteins, is a secreted preadipocyte
factor synthesized as a membrane protein that undergoes
cleaving of its ectodomain to generate a soluble form (56).
Pref-1 inhibits adipocyte differentiation and is induced by
dexamethasone and down-regulated during adipogenesis.
Other recently described signaling molecules negatively in-
terfering with adipogenesis are forkhead box O1 (Foxo1) and
A2 (Foxa2) , mothers against decapentaplegic Drosophila ho-
molog 3 (SMAD-3), and wingless type MMTV integration
site family member 10b (Wnt-10b) (53, 57).

Efforts to understand the highly regulated balance be-
tween positive and negative intracellular and extracellular
factors governing adipogenesis are still in progress and may
have important therapeutical implications.

III. Adipocytes and Adipocytokines in
Inflammatory Diseases

A. Rheumatology

1. Adipose tissue-derived effector molecules in arthritis and rheu-
matic diseases. Less than a decade ago, adipose tissue-derived
effector molecules began to be investigated in rheumatologi-
cal disorders. In rheumatoid arthritis (RA), leptin was found
to be present in serum, and it correlated with percentage
body fat in some patient populations but not with disease
activity (58) or individual parameters of inflammation, such
as erythrocyte sedimentation rate and C-reactive protein
(CRP) (59). Although there is a direct link between key in-
flammatory molecules in arthritides such as IL-6, TNF-�, and
leptin, chronic inflammation appears to reduce plasma leptin
levels in patients with RA (60), an effect that might be based
on an intensive consumption in the arthritic joint (61). In
osteoarthritis (OA) patients, leptin could also be found in
synovial fluid and correlated to a similar extent as in RA with
the body mass index (BMI) of the patients (62). In juvenile
arthritis, leptin was a marker for the nutritional status of the
patient and could not be used for differentiation of active and
inactive disease (63). In less joint-associated rheumatic dis-
eases such as systemic lupus erythematosus, the affected
patients showed higher serum leptin levels than BMI-
adjusted healthy controls, but similar to RA and OA, there
was also no correlation between disease activity and leptin
serum levels (64). The only disease with a positive correlation
between activity and leptin levels at present is Behçets dis-
ease, a common vasculitis around the Mediterranean and the
Near and Far East (65).

Although articular and synovial adipose tissue is one of
the ubiquitous components of a human joint, little is known
about its local function, especially with regard to arthritis.

FIG. 3. Transcriptional control of adipocyte differentiation. Inhibi-
tory factors regulating adipogenesis. The down-regulation of gene
expression/gene function of inhibitory factors normally blocking adi-
pocyte differentiation in preadipocytes is a prerequisite of the adi-
pogenic differentiation program. Wnt-10b, Wingless-type MMTV in-
tegration site family member 10b.
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However, recent studies have revealed novel links between
adipose tissue, adipocytokines (e.g., adiponectin and resis-
tin), and arthritides (61). In particular, classical adipocyto-
kines such as adiponectin (66) and the adiponectin-paralo-
gous gene CORS-26 (30) are expressed both by synovial
fibroblasts and directly by articular adipocytes. However, it
is important to emphasize that many proinflammatory cy-
tokines (IL-6 and TNF-�) and adipocytokines (leptin and
resistin) are also produced by articular nonadipocytic cells,
such as chondrocytes or immigrated inflammatory cells, and
that point has to be considered by interpreting data derived
from total articular tissue or synovial fluid.

Ushiyama et al. (67) have demonstrated the presence of
proinflammatory cytokines and growth factors in the in-
frapatellar fat pad from patients with OA, and we could
show that the adipocytokines adiponectin and resistin are
present in high levels in synovial fluid (and not in serum) of
patients with RA and OA (68). Furthermore, not only adi-
pocytes but also other activated cells of the mesenchymal
lineage such as synovial fibroblasts within the synovial lin-
ing, the perivascular area, and the inflamed sublining are
main producers of adiponectin. Not only could this property
be maintained in culture, but the respective adiponectin re-
ceptors necessary to transfer the adiponectin-dependent sig-
nals into the articular effector cells appeared to be charac-
teristic for mesenchymal cells, such as articular fibroblasts,
periarticular adipocytes, cartilage, and bone. These cells can
express type I and type II adiponectin receptors from the
embryonic state (69) to the adult human organism. In addi-
tion, novel members of the recently discovered TNF/C1q
superfamily are present in arthritic synovium. For example,
CORS-26 could also be found in murine and human synovial
adipocytes (70). Interestingly, its chromosomal localization
was mapped to the chromosome locus 15A2, which links this
adipokine directly to experimental arthritis, because the link-
age loci for both MRL lpr/lpr- and proteoglycan-induced
arthritis (two experimental animal models for arthritis) are
positioned within the same genomic region.

According to current data, one of the main producers of
articular leptin is chondrocytes (62, 71), which appear to be
part of a feedback loop because chondrocytes also express the
leptin receptor OB-Rb. Moreover, a negative effect of leptin
on cartilage metabolism has been reported. When acting in
combination with interferon-�, nitric oxide synthesis in chon-
drocytes is significantly increased (72). Leptin levels also
correlate with osteophytic destruction and growth factor
IGF-I and TGF�1 expression. Interestingly, the altered bone
formation stimulated by leptin is not only based on its an-
tiosteogenic potential, but this inhibitory capability appears
to be directly linked to effects on mesenchymal stem cells,
stromal precursor cells, and the sympathetic nervous system
via high-affinity leptin receptors (73).

Adipocytokines such as adiponectin have significant effects
on the metabolism of articular fibroblasts, and this stimulatory
capacity appears to be highly selective, because only two of the
main mediators of pathophysiology in RA, i.e., IL-6 and
proMMP-1, are being synthesized under the influence of adi-
ponectin, whereas most others, including proinflammatory
substances such as IL-1, TNF�, vascular endothelial growth
factor, and TGF� as well as protective cytokines such as IL-4

and IL-10, are not affected (66, 74). However, the only pathway
known to be involved in adiponectin receptor signaling as well
as in key pathways operative in RA synovial fibroblasts or
osteoblasts is the p38 MAPK pathway (75). This selectivity is
further supported by the finding that neither protein kinase A
nor protein kinase C enhances any of these effector molecules
in rheumatoid synovial fibroblasts that were mentioned above.
Of note, at least in vitro the phenotypic difference between
fibroblasts and adipocytes appears marginal as cytokines are
capable of transforming fibroblasts into adipocytes (76), and
leptin can stimulate the differentiation of mesenchymal stem
cells into osteoblasts, chondrocytes, and adipocytes (77). Resis-
tin, on the other hand, was able to up-regulate IL-6 and TNF�
in human peripheral blood mononuclear cells and induced
severe arthritis when injected in nonarthritic murine joints (78).
In contrast to adiponectin, resistin regulation was found to be
predominantly nuclear factor-�B (NF-�B)-dependent (78).

2. Animal models. Experimental murine models could show
that leptin is directly involved in immune phenomena in
arthritis. Leptin-deficient ob�/ob� mice developed a sub-
stantially less active antigen-induced arthritis than wild-type
mice, and similar results were seen in leptin receptor-defi-
cient mice (79). These effects were paralleled by lower con-
centrations of the proinflammatory cytokines TNF� and IL-
1�, a switch to joint-protective Th2 cytokines, and a
decreased proliferative response when performing an anti-
gen challenge of lymph node cells (79). Interestingly, al-
though secondary cellular immune responses were also di-
minished, which was illustrated by a reduced antigen-
specific T cell and B cell response in combination with higher
IL-10 and lower interferon-� production, no reduction of
cartilage degradation could be observed. The latter finding
was supported by the lack of leptin-dependent effects on
zymosan-induced arthritis, a murine arthritis model that de-
velops independent of adaptive immunity (80). In addition,
the expression of chemokines monocyte chemoattractant
protein (MCP)-1 and macrophage inflammatory protein-1�
by adipocytes and the presence of the novel CC-chemokine
macrophage inflammatory protein-related protein-2 in mu-
rine fat pads indicates that adipocytes may even be respon-
sible for chemoattraction of other inflammatory cells (81).

Clinical and therapeutical implications: As outlined above, lep-
tin is directly linked to the neuroendocrine system. In pa-
tients with RA and systemic lupus erythematosus, serum
levels of androstenedione correlated negatively with the se-
rum levels of leptin and might be responsible, at least in part,
for the known hypoandrogenicity in these patients (82). Con-
versely, although not related to systemic inflammatory pa-
rameters, leptin appears to exert protective effects in septic
arthritis, because recombinant leptin reduced both inflam-
mation and articular destruction in Staphylococcus aureus-
induced arthritis without reducing the viability of bacteria in
vivo (83). Medication also has an effect on serum leptin levels,
but this effect depends on the type of the antiarthritic drug,
because it could be shown that the majority of disease-
modifying antiarthritic drugs were associated with low lep-
tin levels, whereas patients under therapy with methotrexate
showed higher leptin plasma concentrations (61), and anti-
TNF therapy did not alter leptin serum levels (60).

Schäffler et al. • Adipose Tissue as an Inflammatory Organ Endocrine Reviews, August 2006, 27(5):449–467 453

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/27/5/449/2355184 by guest on 09 April 2024



In contrast to leptin, adiponectin exerts significant proin-
flammatory and matrix-degrading effects in arthritis (66).
Moreover, it can no longer be regarded as a strictly adipo-
cyte-specific protein, at least not in the context of chronic
inflammation. In human RA, adipocytes might be the key
interaction partners for the matrix-degrading synovial fibro-
blasts (84), which are specifically active at sites of destruction
(85). The hypothesis is supported by the finding that adi-
ponectin is a strong stimulator with regard to the synthesis
of cytokines, growth factors, and matrix metalloproteinases
(MMPs). Moreover, it is likely that the ameliorating effect on
inflammatory and joint-destructive mechanisms, especially
on IL-6 and MMP-1-dependent pathways of TNF-inhibitors
is, at least in part, based on an anti-adipocytokine effect (66,
86). This effect appears restricted to adiponectin, because
treatment with TNF inhibitors did not alter leptin plasma
levels in patients with RA (60).

Taken together, the current data support the idea that
(peri)articular adipose tissue and adipocytokines can no
longer be regarded innocent bystanders in arthritides be-
cause they modulate substantially the expression of local
synovial cytokines and matrix-degrading enzymes and thus
may also become an attractive candidate target for novel
antiarthritic strategies.

B. Gastroenterology

1. Crohn�s disease. Patients suffering from Crohn�s disease
regularly develop an accumulation of intraabdominal, mes-
enteric adipose tissue from the onset of the disease. Accord-
ingly, mesenteric obesity represents a basic and common
feature of Crohn�s disease (87) that cannot simply be diag-
nosed by measuring the patient’s BMI. However, this in-
creased mesenteric adipose tissue mass is nowadays rou-
tinely diagnosed by computed tomography (CT) and
magnetic resonance imaging techniques (87, 88). During sur-
gery, this special type of mesenteric adipose tissue presents
as tissue hypertrophy, showing signs of inflammation and an
increased stiffness during tissue palpation. Regional lymph-
adenopathy might also be present. Dr. Burril B. Crohn, who
gave his name to this chronic inflammatory bowel disease,
initially described the changes in the appearance of the mes-
enteric adipose tissue. The connective and adipose tissue
changes contiguous to the involved intestine in Crohn�s dis-

ease are characterized by (13, 89): 1) mesenteric fat hyper-
trophy; 2) creeping fat, meaning fat creeping upon the bowel;
3) fat wrapping, meaning enveloping the bowel surface/
circumference; 4) fibrofatty proliferation, macrophage infil-
tration; 5) regional lymphadenopathy; 6) tissue fibrosis; 7)
perivascular and transmural inflammation; and 8) intimal/
medial thickening of vessels (90–94).

Interestingly, fat wrapping/creeping fat correlates with
ulceration, stricture formation, transmural inflammation,
wall thickness, and internal bowel diameter (90).

It is a matter of controversy (13, 89) whether the devel-
opment of creeping fat is a causative or secondary phenom-
enon (13, 89) to the underlying intestinal disease (Table 2).
Some groups interpret fat wrapping as a phenomenon sec-
ondary to the process of transmural inflammation and the
subsequent release of proinflammatory cytokines such as
TGF-�1 and TNF-� (90, 93, 95, 96) from the intestinal mucosa
and from macrophages present within the adjacent soft tis-
sue. As a consequence, PPAR� becomes activated and could
then promote adipose tissue hypertrophy that could build a
barrier against the transmural inflammation.

In contrast, an increasing body of evidence suggests that the
mesenteric adipose tissue plays a more active role in the patho-
genesis of creeping fat and mesenteric inflammation (13, 89, 97).
Adipocytes not only respond to proinflammatory cytokines but
also are known to secret proinflammatory and antiinflamma-
tory mediators such as TNF-� (87), IL-10 (98), vascular endo-
thelial growth factor (99), leptin (100), macrophage-colony-
stimulating factor (M-CSF) (101), regulated upon activation,
normal T cell expressed and secreted (RANTES) (CCL5) (98),
and adiponectin (102). The specific overexpression of TNF-�
(87), leptin (100), M-CSF (101), and adiponectin (102) in creeping
fat derived from patients with Crohn�s disease argues for a
more active role of the adipose tissue. Furthermore, it was
demonstrated that mesenteric adipocytes secret higher
amounts of TNF-� than mesenteric monocytes/macrophages
(87). Similarly, leptin mRNA levels were reported to be signif-
icantly higher in mesenteric adipose tissue from patients with
either Crohn’s disease or ulcerative colitis when compared with
control patients with colonic carcinoma as a noninflammatory
disease (100). Luminal application of leptin can even cause
colonic epithelial wall damage and neutrophil inflammation
(103).

TABLE 2. Arguments for a causative or a secondary role of mesenteric adipose tissue hypertrophy in Crohn’s disease

Creeping fat: arguments for a causative role Creeping fat: arguments for a secondary role

Mesenteric fat hypertrophy present at onset of disease Transmural inflammation might cause adjacent adipose tissue
hypertrophy

Axial polarity of inflammation and ulcers along the mesenteric
border

Mesenteric fat hypertrophy with a putative barrier function

Adipocytes secreting both pro- and antiinflammatory mediators Chronic intestinal cytokine release
Amount of TNF-� secretion higher from mesenteric adipocytes

than from macrophages
Chronic lymphoid tissue cytokine release

Up-regulation of PPAR� expression drives adipogenesis Perinodal adipose tissue hypertrophy
Secretion of chemoattractants from adipocytes (MCP-1, M-CSF)

attracts monocytes into adipose tissue
Regional lymphadenopathy

There is a controversial discussion as to whether creeping fat in Crohn’s disease is a primary and causative phenomenon (left column) or
a secondary phenomenon simply caused by the chronic and transmural inflammation of the gut (right column). Further information regarding
this controversy can be found in Section III.B and recent reviews (9, 13, 89).

454 Endocrine Reviews, August 2006, 27(5):449–467 Schäffler et al. • Adipose Tissue as an Inflammatory Organ

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/27/5/449/2355184 by guest on 09 April 2024



Clinical and therapeutical implications: The activation of PPAR�
by synthetic ligands such as thiazolidinediones reduces
proinflammatory TNF-� and leptin gene expression and in-
creases antiinflammatory adiponectin gene expression in
adipocytes (104). Furthermore, PPAR� activation diminishes
the activation of inflammatory response genes by decreasing
the activity of the NF-�B, activator protein-1, and signal
transducer and activator of transcription (STAT)-1 transcrip-
tion factor pathways (105). Hence, PPAR� activation fosters
an antiinflammatory microenvironment within mesenteric
adipose tissue. In detail, activating ligands of PPAR� were
shown to inhibit the expression of proinflammatory cyto-
kines such as IL-1�, IL-2, IL-6, IL-8, MCP-1, TNF-�, and
MMPs by mechanisms including transcriptional regulation
and nontranscriptional interference with signaling pathways
such as NF-�B (p65, p50), activator protein-1 (fos/jun),
MAPK cascade, and STAT-1/STAT-3 (105, 106). These ob-
servations have been made in different cell types such as
monocyte/macrophages, endothelial cells, smooth muscle
cells, and adipocytes. Because these cell types are abundantly
expressed in the adipose tissue, the control function of the
PPAR�/RXR heterodimer in inflammation (106) could pro-
vide the basis for potential therapeutic applications in in-
flammation-related diseases such as chronic inflammatory
bowel disease (106, 107).

Recently, increasing data have pointed to this nuclear hor-
mone receptor as a novel antiinflammatory mediator with
broad therapeutic potential in ulcerative colitis and Crohn’s
(107, 108). The PPAR� ligands troglitazone and rosiglitazone
were tested in an experimental animal model, the dextran
sodium sulfate-induced colitis, and shown to inhibit the co-
lonic inflammation, possibly by attenuating cytokine gene
expression in colon epithelial cells via inhibiting the activa-
tion of NF-�B. Similarly, a gene therapy approach (109, 110)
using PPAR� proved to be successful in the treatment of
dextran sodium sulfate-induced colitis. Desreumaux et al.
(107) were successful in ameliorating colitis in an experi-
mental mouse model (trinitrobenzene sulfonic acid-induced
colitis) by treatment with PPAR� and RXR ligands. Even in
ischemia-induced colitis, PPAR� seems to mediate potent
antiinflammatory effects (111).

2. Mesenteric panniculitis. Although there are numerous case
reports and clinical descriptions, the pathophysiology of
mesenteric panniculitis is completely unknown (112–115).
The disease has been described by several synonyms such as
Pfeiffer-Weber-Christian disease, mesenteric panniculitis,
xanthogranulomatous mesenteritis, mesenteric lipodystro-
phy, retractile mesenteritis or, sclerosing mesenteritis). These
terms mainly refer to the typical histopathological findings
that characterize a special type of mesenteric inflammation
without any involvement of the adjacent gut, lymph nodes,
or vessels. The inflammatory soft tissue changes mostly af-
fect the mesentery of the small bowel and are characterized
by nonfocal lymphoplasmocytic infiltration, fat cell necrosis,
foamy macrophages, and focal fibrosis (114). Thickening and
retraction of the mesentery occur as a consequence and can
be divided into three classes according to Kipfer et al. (113):
diffuse thickening of the mesentery (type 1); single knotty
thickenings at the mesentery root (type 2); and multiple

knotty thickenings of the mesentery (type 3). Fat cell necrosis
and lipid-laden macrophages (foam cells) are among the
most characteristic and specific findings that could give in-
sights into the pathophysiology of the disease. Whether fat
cell necrosis occurs as a primary event triggered by yet un-
known mechanisms or whether a primary and sterile (au-
toimmune?) inflammation causes fat cell necrosis is a matter
of uncertainty. Although a severe and fatal disease course is
possible (116), it mostly appears as an exclusion diagnosis of
an intraabdominal tumor (112, 117) or as a differential di-
agnosis of uncharacteristic symptoms such as obstipation/
diarrhea, ileus, weight loss, fever, and abdominal pain. Al-
though radiological techniques have been significantly
improved (118–121), diagnosis still remains a challenge.

Clinical and therapeutical implications: Whereas antibiotic treat-
ment seems not to provide a successful therapeutic approach,
surgery and immunosuppressants such as corticosteroids,
azathioprine, or cyclophosphamide have been used success-
fully in more severe cases (122–125). There are no data on
whether glitazone treatment might improve the clinical
course of mesenteric panniculitis. Because PPAR� activation
induces the expression of antiinflammatory genes in adipo-
cytes (adiponectin) (126) and has antiinflammatory effects
(127) on monocytes/macrophages or endothelium in the
context of atherosclerosis (128), glitazone treatment might be
a reasonable drug target (129) to be tested in clinical trials or
individual patients because the disease is rather rare.

3. Acute pancreatitis. Whereas most patients with acute pan-
creatitis (130) recover without complications, about 10–20%
(131, 132) will develop systemic (organ system failure) or
local (necrosis, pseudocyst, abscess) complications. Because
a variety of therapeutic strategies such as prophylactic an-
tibiotic treatment, early enteral nutrition, endoscopic sphinc-
terotomy, CT-guided drainage, or laparotomy are currently
discussed (130), there is a considerable clinical interest in the
prediction of severity and risk of necrosis (131, 133–138).
Multiple factor scoring systems, including therapy-associ-
ated and patient-related factors based on anthropomorphi-
cal, clinical, biochemical, and physiological disturbance,
have been developed such as the APACHE-II score (139, 140),
the APACHE-O score (138), the Glasgow Coma Scale (GCS)
(141), and the Ranson score (142). In addition, different ra-
diological scoring systems (133, 143–146) describing the ex-
tent of pancreatic and extrapancreatic necrosis have been
published, such as the Schröder score (145, 146), the pan-
creatic necrosis score (146), and the Balthazar score (133, 143,
144, 146).

Markers of trypsinogen activation (131, 135, 147) or the
systemic release of cytokines (131, 134, 135, 137, 148, 149)
such as IL-10 (150), IL-8 (151, 152), and IL-6 (150, 153) have
been evaluated for their potential value in early severity
prediction. In clinical praxis, serum glucose (150), serum
calcium (150), CRP levels (136, 154), and hematocrit (155)
have been reported to be the best widely available markers
in predicting the severity of acute pancreatitis.

Obesity is associated with an increased risk of severe out-
come in acute pancreatitis (154–157). Accordingly, adding a
simple obesity score (by calculating the BMI) to the
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APACHE-II score (APACHE-O score) (138) can provide a
slightly greater predictive accuracy. This indicates that the
adipose tissue compartment, especially the visceral adipose
tissue, might play an important pathophysiological role in
pancreatitis-associated morbidity and mortality. However,
up to now there are no convincing data linking the amount
of visceral adipose tissue directly with the clinical outcome
of an acute pancreatitis.

Visceral adipose tissue-derived secretory factors might
play a role during the clinical course of acute pancreatitis
(158). Based on this hypothesis (158), peripancreatic fat cell
necrosis could cause a massive release of adipocytokines
possibly causing organ dysfunction. Moreover, if highly adi-
pocyte-specific marker proteins such as leptin (36), adiponec-
tin (159), and resistin (160) would be available for routine
measurement, these adipocytokines could serve as specific
markers for the extent of peripancreatic fat cell necrosis.

The biochemical parameters for predicting the clinical
course of acute pancreatitis are currently divided into three
(135) categories: 1) markers of pancreatic injury (amylase,
lipase); 2) markers of proteolytic activation (trypsinogen
pathway); and 3) markers of systemic inflammation (CRP,
cytokines). Our intention (158) was to obtain data justifying
the addition of a fourth category, i.e., specific markers of fat
cell necrosis (adipocytokines).

The role of adiponectin in pancreatitis has not been studied
so far, and there exist no precise data on leptin levels during
acute necrotizing pancreatitis in humans. In rats, leptin levels
were reported to be elevated in both acute ethanol-induced
or caerulein-induced pancreatitis (161, 162) and chronic pan-
creatitis when compared with sham-operated animals. How-
ever, no differences between acute and chronic pancreatitis
(161) have been observed in these studies. In one single
study, leptin levels were measured in patients with edem-
atous pancreatitis and found to be elevated when compared
with healthy controls (162). Both in humans with acute edem-
atous pancreatitis and in rats with acute caerulein-induced or
ethyl alcohol-induced pancreatitis, plasma leptin levels show
a marked increase (161, 162). Both in caerulein-induced (162)
and in ischemic (163) pancreatitis, leptin seems to have pro-
tective effects on the development of pancreatic damage,
probably through activation of the nitric oxide pathway or
the limitation of proinflammatory IL-1� release.

Up to now, no data on resistin in the context of acute
pancreatitis have been published. Resistin is a member of
a new gene family of small cysteine-rich secreted proteins
[resistin-like molecule (RELM)�, RELM�, RELM�, and re-
sistin] playing an as yet widely uncharacterized role during
inflammatory processes (160). In the murine system, lipo-
polysaccharides (LPS) can increase resistin gene expression
in vivo and in vitro (164). Furthermore, resistin is up-regulated
during adipocyte differentiation. Resistin is mainly pro-
duced by adipose tissue and monocytes and is secreted from
mature adipocytes into the blood stream, where it is detect-
able in variable amounts by ELISA (165). This observation
suggests that resistin acts at sites distant from its synthesis
and release (160). Human resistin mRNA expression is
higher in abdominal adipose tissue than in sc adipose tissue
(166).

Clinical and therapeutical implications: To investigate the po-
tential of the adipocytokines resistin, leptin, and adiponectin
as specific markers for the extent of peripancreatic fat cell
necrosis and to test for possible associations of these adipo-
cytokines with CT-based pancreatic necrosis scoring systems
and potential associations with clinical markers, a prospec-
tive study in 23 patients with acute pancreatitis is currently
being performed by our clinical research group (158). We
could demonstrate that: 1) resistin levels are highly elevated
in patients with severe pancreatitis when compared with
patients with moderate or mild pancreatitis; 2) resistin levels
are correlated with the extent of extrapancreatic necrosis; and
3) resistin positively correlates with systemic CRP levels. A
suggested cutoff value above 9.2 ng/ml for systemic resistin
provides a highly significant positive predictive value of
91.9% for predicting extrapancreatic necrosis with good sen-
sitivity and specificity. Furthermore, resistin levels deter-
mined on d 1 (day of admittance) proved to predict a Schrö-
der score greater than 3 with a positive predictive value of
93.3% (cutoff value, 6.95 ng/ml). Accordingly, d 1 resistin
can be regarded as a novel parameter indicating peripan-
creatic fat cell necrosis, expressed as a Schröder score greater
than 3. However, confirmatory and larger studies are needed
before transferring these results into routine clinical use.

4. Peritoneal and ascitic fluid. Leptin is detectable in peritoneal
fluid of humans. Although peritoneal leptin levels correlate
with BMI and body fat content as do serum leptin levels,
ascitic fluid leptin levels are higher than serum levels in the
absence of spontaneous bacterial peritonitis (167). Further
studies have to be performed to investigate whether there is
an intraabdominal production of leptin by peritoneal
adipocytes.

Clinical and therapeutical implications: It seems reasonable to
investigate both locally produced and systemic adipocyto-
kine levels in patients with and without spontaneous bac-
terial peritonitis because inflammation-induced alteration of
local adipocyte function or necrosis of peritoneal adipocytes
could release high amounts of adipocytokines that might be
used for differential diagnosis of inflammatory vs. nonin-
flammatory peritoneal diseases. Interestingly, in mice with
experimental bacterial peritonitis, plasma leptin levels in-
crease in response to the induction of TNF-� (168). Moreover,
an increase in local adipocytokine production by peritoneal
adipocytes in patients with peritoneal tumor spread might
have the potential of a tumor marker indicating peritoneal
tumor spread. Interestingly, an involvement of leptin in the
pathophysiology of Meig’s syndrome (ovarian fibroma with
ascites and hydrothorax) (169) and pelvic endometriosis
(170) has already been suggested.

5. Nonalcoholic steatohepatitis (NASH)/nonalcoholic fatty liver
disease (NAFLD). Upon several pathophysiological stimuli,
the liver reacts with an increased triglyceride storage and a
subsequent necroinflammation. Although there are no site-
specific adipose cells within the liver, visceral adipocyte-
derived adipocytokines play an important role in NASH/
NAFLD. Most recently, this new pathophysiological concept
was reviewed extensively (12, 171, 172).
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C. Endocrinology

1. Graves’ ophthalmopathy. Graves’ disease as well as associ-
ated thyroid eye disease (Graves’ ophthalmopathy) and
pretibial dermopathy are caused by autoimmune mecha-
nisms leading to goiter and hyperthyroidism (173, 174). The
clinical association between hyperthyroidism, ophthalmop-
athy, and pretibial dermopathy is suggestive for the patho-
physiological role of a common antigen shared by these
tissues (175). Thyroid eye disease (176) is now thought to
result from the action of thyroid-stimulating autoantibodies
directed against the TSH receptor. Genetic (human leukocyte
antigen system, molecular mimicry), individual (pregnancy),
and environmental (smoking) factors determine a patient’s
susceptibility to develop the disease. There is increasing ev-
idence that orbital fibroblasts in Graves’ disease have unique
properties responsible for thyroid eye disease, such as an
increased potential to differentiate into mature adipocytes,
an exaggerated response to proinflammatory cytokines, an
increased secretion of proinflammatory cytokines by them-
selves, and an increased TGF-�-, IL-1�-, and leucoregulin-
induced hyaluronan synthesis (177–182).

After tolerance against the TSH receptor has been lost,
autoreactive T cells trigger an immunological inflammatory
reaction in tissue compartments expressing the TSH recep-
tor. Subsequently, a Th-1-like cytokine spectrum (183) is
released within the orbital space. A wide variety of mediators
(183) such as IL-1�, IL-�, IL-2, IL-6, IL-8, IL-10, IL-12, IFN-�,
IGF-I, TGF-�, platelet-derived growth factor, and prosta-
glandin E2 are released within the orbital tissue of patients
with ophthalmopathy, creating a unique and proinflamma-
tory microenvironment for residing fibroblasts and preadi-
pocytes (173, 184). Whereas IL-6 stimulates TSH receptor
gene expression in orbital fibroblasts (185), TNF-� and IFN-�
have inhibitory effects (186). IL-1� induces tissue inhibitor of
metalloproteinase-1 in human orbital fibroblasts, thus mod-
ulating both the activity of MMP-1 and the composition of
extracellular matrix (180).

In Graves’ ophthalmopathy, the overabundance of orbital
adipose tissue represents a characteristic finding in many pa-
tients. Intriguingly, human orbital fibroblasts/preadipocytes
can be differentiated into mature adipocytes using appropriate
stimulation protocols (187–189). Because both TSH receptor
mRNA (190–196) and protein (188, 189, 191, 193, 194, 197–201)
are expressed in orbital fibroblasts and adipocytes, these cells
can be directly targeted by TSH receptor autoantibodies. Not
only the expression but also the functionality of the TSH re-
ceptor on orbital adipose cells has been demonstrated in several
studies (187, 188, 197, 200). Treatment of orbital preadipocytes
with TSH leads to an up-regulation of TSH receptor gene ex-
pression (202). This mechanism might explain the clinical ob-
servation that hypothyroidism during antithyroidal drug treat-
ment exacerbates ophthalmopathy.

There is increasing evidence for an enhanced adipogenesis
in the orbital tissue of patients suffering from Graves’ oph-
thalmopathy (195). Based on this new pathophysiological
concept, orbital fibroblasts can undergo an adipogenic dif-
ferentiation program (187–189, 195). Orbital mature adipo-
cytes resemble the characteristic gene expression profile
known from normal adipose tissue with a characteristic ex-

pression of adipocyte markers such as PPAR�, adiponectin,
leptin, perilipin, IL-6, and, LPL (203). Moreover, orbital adi-
pocytes obtained from patients with Graves’ ophthalmopa-
thy have been shown to express even higher levels of leptin
(187, 189, 195), adiponectin (195), TSH receptor, and PPAR�
(195) than orbital tissues from controls.

The stimulus responsible for the increased de novo adipo-
genesis within the orbital space has not been identified yet.
A recent study (203) revealed an up-regulation of sFRP (se-
creted frizzled related protein-1) in orbital tissues from pa-
tients with Graves’ ophthalmopathy compared with normal
orbital soft tissue. Because sFRP functions as an inhibitor of
Wnt signaling, a pathway known to inhibit adipogenesis
(57), the up-regulation of sFRP in Graves’ ophthalmopathy
adipose tissue might explain the phenomenon of an in-
creased de novo adipogenesis (195). Moreover, treatment of
orbital preadipocytes isolated from patients with Graves’
ophthalmopathy with recombinant sFRP induces the expres-
sion of the genes for adiponectin, leptin, and TSH receptor
(195). After adipogenesis has been induced, the increasing
amount of functional TSH receptor protein expressed on the
surface of orbital adipocytes makes the adipocyte vulnerable
to circulating TSH receptor autoantibodies. It is a well-
known clinical feature that patients suffering from Graves’
ophthalmopathy show a variable presentation ranging from
ocular muscle enlargement to orbital connective/adipose tis-
sue enlargement. Because there is a heterogeneity (204) be-
tween orbital fibroblasts and extraocular muscle or dermal
fibroblasts (e.g., the expression of the surface glycoprotein
Thy-1 or the adipogenic potential), differences in the clinical
presentation of Graves’ ophthalmopathy might be explained
by these observations.

Taken together, the infiltration of the orbital tissue with
autoreactive T cells and macrophages leads to the secretion
of a wide variety of proinflammatory molecules. This proin-
flammatory environment seems to trigger the adipogenic
conversion of fibroblasts and preadipocytes residing within
the orbital space. Along with the adipogenic differentiation,
adipocyte-specific genes and the TSH receptor gene are
strongly up-regulated. The increasing orbital fat mass leads
to the clinical symptom of protrusing ophthalmopathy. The
TSH receptor-positive adipose tissue is then being targeted
by TSH receptor autoantibodies, most probably leading to an
inflammatory transformation and activation of retroorbital
adipocytes.

Clinical and therapeutical implications: Treatment of orbital fi-
broblasts with fenofibrate, a specific activator of PPAR�,
induces the adipogenic differentiation program and the ex-
pression of the genes encoding the adipogenic protein high-
mobility group AT-hook 2, leptin, and the TSH receptor
(187). PPAR� is also expressed in orbital fibroblasts and
mature adipocytes. PPAR� agonists and antagonists can
stimulate or decrease adipogenesis, respectively (205). Based
on this observation, it has been reported that treatment of
type 2 diabetes mellitus with pioglitazone in coexistent
Graves’ ophthalmopathy worsened thyroid eye disease due
to the expansion of the orbital fat content (205). Similarly,
rosiglitazone treatment increased adipogenesis exclusively
in orbital preadipocytes (198, 204) but not in fibroblasts de-
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rived from other tissues. Moreover, rosiglitazone treatment
also induced functional TSH receptor expression during the
differentiation process of orbital preadipocytes (198). These
observations suggest that exacerbation of thyroid eye disease
after glitazone treatment is probably caused not only by fluid
retention (edema) but also by an increased orbital adipogen-
esis leading to an expansion of the orbital fat content. Based
on this, PPAR� and/or PPAR� antagonists might represent
future drug targets in Graves’ ophthalmopathy. However,
there are no additional data or clinical studies up to now
supporting that hypothesis.

2. Pretibial dermopathy. Pretibial dermopathy is associated
with Graves’ disease, and, similar to ophthalmopathy, the
pretibial soft tissue containing fibroblasts, preadipocytes,
and mature adipocytes is characterized by edema and dep-
osition of hydrophilic glycosaminoglycans. The analysis of
the pretibial T cell receptor V gene repertoire showed a
restriction of the T cell receptor V usage in both orbital and
pretibial tissue in Graves’ disease (206). Because preadipo-
cytes and mature adipocytes are localized within pretibial
tissue, the TSH receptor expressed locally in pretibial cells
(207) might be recognized by oligoclonal T lymphocytes (173,
206). Based on this, pretibial dermopathy is most probably
caused by a similar mechanism, as is the case with ophthal-
mopathy (175).

D. Immunology

1. Perinodal adipocytes and adipocyte-lymph node interaction. It
is a well-known anatomical feature that lymph nodes are
commonly embedded in adipose tissue. However, the inter-
action between perinodal adipocytes and lymphoid tissues is
poorly understood (208–210). Perinodal adipocytes can re-
spond to signals from activated lymphoid cells (210–212).
After activation of a lymph node by LPS or proinflammatory
stimuli, lipolysis and glycerol release are increased in peri-
nodal adipocytes (212, 213). It seems interesting to speculate
that chronic inflammation and lymph node activation influ-
ence adipose tissue function (lipolysis, glycerol release), ad-
ipose tissue vascularization, and cytokine receptor expres-
sion (214, 215). Adipocytes seem to be involved in local
immune responses, and their involvement might explain
why most lymph nodes are embedded in adipose tissue
(211). In contrast, there are only sparse data indicating that
perinodal adipocytes and derived adipocytokines can di-
rectly influence lymph node function in a paracrine manner
during local inflammatory processes. Adipocytes enclosing
lymph nodes might serve to supply immune cells with fuel
needed during acute and chronic infection (208, 209).

2. Interaction between fat tissue adipocytes and fat tissue macro-
phages. An increasing body of evidence supports a correlative
and causative relation between insulin resistance or type 2
diabetes mellitus and inflammation (216). Population studies
have linked insulin resistance to systemic inflammation
(216–218), and obesity is now regarded as a chronic and
low-grade inflammatory state (219–221). Moreover, it has
become evident that the adipose tissue connects energy me-
tabolism with immune function and host defense (216, 219,
222–224).

Based on this, it seems noteworthy that of 1,300 gene
transcripts expressed in white adipose tissue, about 30%
encode inflammatory and macrophage-specific genes (225).
The reason is that in the context of obesity, the adipose tissue
undergoes an inflammatory transformation and becomes in-
filtrated by significant amounts of macrophages (9). The per-
centage of macrophages residing within adipose tissue can
vary from less than 10% to more than 50% of cells (225, 226).

Xu et al. (227) and Weisberg et al. (225) performed two
groundbreaking studies published in late 2003 and reviewed
by Lehrke and Lazar (8) in 2004. These studies reported for
the first time that: 1) adipose tissue is infiltrated by significant
amounts of macrophages (but not lymphocytes or granulo-
cytes). The number of macrophages is increasing with adi-
pocyte size and the degree of obesity; 2) inflammatory and
macrophage genes (e.g., MCP-1) are up-regulated in obesity-
related insulin resistance; and 3) proinflammatory cytokines
are produced mainly by adipose tissue-homed macrophages
rather than by adipocytes.

There exist two basic mechanisms by which macrophages
can infiltrate the adipose tissue: first, macrophages can differ-
entiate from bone marrow-derived monocytes that reached the
adipose tissue by diapedesis from the systemic circulation; sec-
ond, macrophages can trans-differentiate from local adipose
tissue preadipocytes and mesenchymal stem cells. There is ev-
idence from the literature that both mechanisms play a role in
inflammatory adipose tissue remodeling.

The molecular basis for a significant diapedesis of blood
monocytes into the adipose tissue (225, 226) is provided by
the fact that adipocytes secrete a wide variety of chemoat-
tractants that direct monocytes from the circulation into fat
stores (219). MCP-1, macrophage migration inhibitory factor,
RANTES (CCL5), and macrophage inflammatory protein-1�
are secreted from adipose tissue (98, 225, 227–230), and an
adipose tissue-derived local supply with M-CSF (101) can
support the differentiation and maturation of monocytes into
macrophages. A recent study (10) could demonstrate that
C-C motif chemokine receptor-2 plays an important role in
the recruitment of macrophages to adipose tissue, and this
new mechanism was reviewed by Neels and Olefsky (9).

Because adipocytes and macrophages share macrophage-
specific antigens and because PPAR� controls both adipocyte
and macrophage differentiation and function, it has been sug-
gested that adipocytes and macrophages might not be too dif-
ferent (8). This point of view is supported by a study that
demonstrated the trans-differentiation of preadipocytes into
macrophages acquiring phagocytic activity (231). Based on this
observation, macrophages and adipocytes might be intercon-
vertible (8), and local trans-differentiation of preadipocytes into
mature macrophages can now be regarded as an established
process.

Clinical and therapeutical implications: However, the adipose
tissue not only regulates its macrophage content but can also
control monocyte and macrophage function by the secretion
of pro- and antiinflammatory cytokines and adipocytokines
such as leptin and adiponectin (219). In this context, it seems
important to emphasize that human macrophages express
the adiponectin receptor subtypes, AdipoR1 and AdipoR2,
and the full-length leptin receptor (232, 233). The cellular
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compartment of the adipose tissue is highly variable and can
be transformed into a macrophage-containing tissue com-
partment under certain conditions. The molecular basis for
this concept is provided by the fact that adipocytes can se-
crete a wide panel of proinflammatory mediators and che-
moattractants necessary for local trans-differentiation and
systemic diapedesis of monocytes/macrophages (7, 219,
234). Future work is necessary to demonstrate which con-
ditions and stimuli trigger this inflammatory remodeling of
the adipose tissue.

Macrophages resident within adipose tissue might represent
a future drug target for diseases that are characterized by an
adipose tissue inflammation. A fascinating perspective of ad-
ipose tissue monocytes could be the specific transport and re-
lease of drugs or gene products into adipose tissue. A future
gene therapy approach for the treatment of obesity could be
imaginable. Transgenic monocytes carrying specific genes (e.g.,
lipases or differentiation inhibitors) under the control of an
adipocyte-specific promoter could be directed into fat stores
where the gene of interest can be activated locally.

3. Adipocytokines, innate immunity, and monocyte/macrophage
function. Dendritic cells and macrophages provide a first line
of defense against infectious pathogens. Macrophages rec-
ognize microbial pathogens by pattern recognition receptors
such as toll-like receptors or scavenger receptors. Recogni-
tion of foreign microorganisms triggers phagocytosis and the
eventual destruction of microorganisms by lysosomal en-
zymes, reactive oxygen, and nitrogen species. Binding of
microbial products like endotoxin stimulates macrophages
to release cytokines that influence the innate and, subse-
quently, the adaptive immune response (235). Adiponectin is
an adipocytokine that is highly abundant in human serum,
and trimeric, hexameric, and high molecular weight (HMW)
isoforms have been described. Mutations in the gene encod-
ing adiponectin can cause impaired multimer formation,
lower HMW isoforms in the plasma, or reduced abundance
of all adiponectin isoforms owing to a disturbed secretion of
adiponectin from the cell (236). Adiponectin exerts immu-
nomodulatory effects and a reduced secretion of the proin-
flammatory cytokines IL-6, TNF-�, and IFN-�. Moreover, an
enhanced release of IL-10 and IL-1RA in endotoxin-activated
monocytes has been described (237–239). The immunosup-
pressive response is partly explained by reduced NF-�B sig-
naling and ERK1/2 activity. Whereas trimeric adiponectin
inhibits NF-�B, hexameric and HMW isoforms of this protein
activate NF-�B (240) and may explain induction of IL-6 in
monocytes treated with HMW adiponectin. HMW adiponec-
tin reduces phagocytosis of apoptotic cells and IL-8 produc-
tion in the absence of LPS. In contrast, in LPS-stimulated
monocytes, both IL-8 secretion and phagocytosis are stim-
ulated. Therefore, adiponectin cannot be regarded as an an-
tiinflammatory protein in general but modulates innate im-
munity in an isoform-dependent way.

Besides alterations in cytokine response, the macrophage
scavenger receptor A is down-regulated by adiponectin (147).
Macrophage scavenger receptor A binds LPS from Gram-
negative bacteria and lipoteichoic acid from Gram-positive bac-
teria and mediates nonopsonin-dependent phagocytosis (241).
Uptake of fluorescent microspheres is also impaired in adi-

ponectin-treated macrophages. Suppression was mediated by
the complement receptor C1qRp, because anti-C1qRp mono-
clonal antibody abrogated this effect (147).

Blood monocytes may differentiate into macrophages or den-
dritic cells. In adiponectin-treated macrophages, LPL abun-
dance and phagocytosis is impaired. Furthermore, reduced
proliferation but not viability has been described (147). In
monocyte-derived dendritic cells, adiponectin did not influence
the allostimulatory capacity. Moreover, adiponectin-treated
dendritic cells did not show any changes in the cell surface
expression of CD80, CD83, CD86, CD1�, CD11c, CD14, CD40,
CD54, CCR6, CCR7, and major histocompatibility complex II,
and phagocytic activity was not affected (239). Therefore, adi-
ponectin strongly influences monocytes and macrophages,
whereas dendritic cells seem not to be affected by this adipo-
cytokine. Altered cytokine secretion from macrophages may
influence the immune response, but the effects of adiponectin
on cells of the innate and adaptive immune activation have not
been studied in detail. At least levels of circulating adiponectin
were shown to be unaltered in animal and human endotox-
inemia (242–244).

Leptin belongs to the type I cytokine superfamily, and its
functional receptor is expressed in immune cells. In mono-
cytes/macrophages, phagocytosis and the secretion of proin-
flammatory cytokines, nitric oxide (245), and prostaglandin E2
are potentiated by leptin (233). Proliferation and the surface
expression of early and late activation markers are induced on
macrophages by recombinant leptin in vitro (246). In neutro-
phils, leptin exerts antiapoptotic effects and stimulates com-
plement-mediated phagocytosis and chemotaxis (247–249).
Furthermore, leptin itself is a potent chemoattractant for these
cells (248). Leptin also affects natural killer cell differentiation,
proliferation, and activation (250). Leptin does not stimulate
naive CD4� and CD8� T cells but enhances proliferation and
activation of stimulated T cells, further increasing CD69, CD71
(transferrin receptor), and CD25 (�-chain of IL-2 receptor) abun-
dance (251). However, in CD4� memory T cells, leptin inhibits
CD3-induced proliferation and cytokine secretion.

Human leptin deficiency is associated with reduced num-
bers of circulating CD4� T cells, impaired T cell proliferation,
and reduced secretion of cytokines such as IL-4, IL-10, and
IFN-�. Recombinant leptin nearly restores T cell responsive-
ness to normal levels and increases cytokine secretion (252).
In contrast, administration of recombinant leptin to healthy
probands did not influence levels of circulating cytokines
(253). Therefore, in leptin-sufficient states, a further elevation
of circulating leptin does not affect inflammatory markers.

Plasma leptin levels are increased in sepsis survivors (254)
and were found to be elevated both in humans during
experimental endotoxemia (255) and in TNF-�-injected
humans (256). Although most animal studies indicate that
leptin-deficient animals are protected from the toxic effects
of innate immunity and T cell-mediated inflammation (257),
some studies describe an elevated TNF synthesis in leptin
deficiency, an enhanced sensitivity to Listeria monocytogenes
infection, and a higher endotoxin-induced lethality (258).

In summary, these data indicate that physiological levels
of leptin are needed to maintain an optimal immune re-
sponse. Leptin deficiency or leptin resistance as in obese
humans may impair innate and adaptive immune cells. Ac-
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cordingly, the risk of infection is higher in states of energy
deficiency and excess, both associated with adipocytokine
dysregulation (259). Depletion of adipose tissue reduces cir-
culating leptin and adiponectin (260), whereas an elevated fat
mass is accompanied by high leptin, peripheral leptin resis-
tance, and low adiponectin (224). Both of these adipokines
have immunoregulatory functions, and impaired systemic or
local levels of these adipokines may account for a disturbed
immune function. These findings further support the idea of
an important crosstalk between adipose tissue and the im-
mune system.

E. Infectiology

1. Microbial infection of adipose tissue. Little attention has been
given to the role of adipocytes as a primary site of microbial
infection. However, adipocytes can be infected directly by
Trypanosoma cruzi with a high efficiency (170). After infection,
the intracellular parasites cluster around lipid droplets and
affect the expression and secretion of adipocytokines such as
adiponectin. During chronic infection, adipocytes may rep-
resent a long-term reservoir for parasites. Similarly, Myco-
bacterium leprae survives intracellularly in preadipocytes, and
a multiplication occurs during adipocyte differentiation
(261). It has been a matter of controversy whether or not the
HIV-1 retrovirus can directly infect adipocytes (262). How-
ever, it is becoming clear that human adipocytes can be
infected by HIV-1 (263). A productive infection of the adipose
tissue by HIV-1 at least requires proinflammatory stimula-
tion of the adipose tissue, e.g., by TNF-� or IL-1� (263).
Accordingly, future research should address the adipose tis-
sue as a potential reservoir of chronic microbial infections.

F. Hematology

1. The role of bone marrow adipocytes in hematopoiesis and bone
homeostasis. During aging, the hematopoietic bone marrow is
becoming more and more replaced by adipose tissue,
whereas the number of bone-forming osteoblasts decreases
(264–266). This kind of remodeling is caused by a switch of
bone marrow mesenchymal stem cell commitment from the
osteoblast lineage to the adipocyte lineage (266, 267), prob-
ably caused by an increased PPAR�2 expression or activation
(264). From one point of view, one could assume that this
adipose tissue only functions as a space keeper or as a local
energy store. However, because hematopoietically active
bone marrow consists of varying amounts of residing prea-
dipocytes and adipocytes, it has long been speculated that
adipocytes might act as functional components of bone mar-
row influencing hematopoiesis in a paracrine manner.

Most importantly in this context, adipocytes and bone
marrow stromal cells supporting hematopoiesis develop
from the same mesenchymal stem cell (268, 269), and plu-
ripotent stems cells can be isolated from adipose tissue stro-
mal cells (17). Moreover, bone marrow stromal cells have the
potential to differentiate into mature adipocytes (269–271).
The molecular mechanism behind the commitment of a mes-
enchymal stem cell toward adipocyte differentiation is only
poorly understood but is currently under investigation as a
hot topic (269). One important question is whether or not

mesenchymal stem cell-derived adipocytes are different
from sc or visceral preadipocyte-derived adipocytes. With
respect to several metabolic pathways and the expression of
adiponectin and leptin, mesenchymal stem cell-derived adi-
pocytes seem to be comparable to preadipocyte-derived ma-
ture adipocytes (269). The transcription factor delta-like-1/
Pref-1 is expressed in mesenchymal stem cells and inhibits
the adipogenic differentiation program (245).

Because adipocytes are the most abundant stromal cell
phenotypes in human adult bone marrow, an important sup-
portive function in hematopoiesis is most likely. Adiponectin
and leptin are among the most probable and putative adi-
pocytokines to control hematopoiesis (272). Interestingly,
adiponectin serum levels were reported to be inversely cor-
related with red blood cell counts, white blood cell counts,
and platelet counts in peripheral blood (272).

Adiponectin is produced by human bone marrow adipo-
cytes in significant amounts, and both adiponectin receptor
subtypes AdipoR1 and AdipoR2 are expressed in adipocytes
and monocytes (4). Adiponectin inhibits the differentiation
of bone marrow preadipocytes in a paracrine manner (273)
by induction of COX-2 gene expression and secretion of
prostaglandin E (2). Therefore, adiponectin controls the
amount of differentiated adipose tissue within bone marrow.
Furthermore, this antiinflammatory adipocytokine has been
suggested to act directly on hematopoiesis. Adiponectin in-
hibits the proliferation of myelomonocytic lineage cells. It
suppresses colony formation from several colony-forming
units, such as CFU-macrophage, CFU-granulocyte-macro-
phage, and CFU-granulocyte. In addition, it inhibits the pro-
liferation of several myeloid cell lines (238). Recombinant
adiponectin also inhibits lymphopoiesis of early lymphocyte
precursors via induction of the cyclooxygenase-prostaglan-
din E2 pathway (274).

High-affinity leptin receptors are expressed in human
mesenchymal stem cells (275). Leptin is secreted by human
bone marrow adipocytes, and its expression is inhibited by
IL-1�, IL-6, TNF-�, and, IFG-� (276). Using a coculture sys-
tem, it could be demonstrated that bone marrow adipocytes
support a complete myeloid and lymphoid differentiation
from human CD34� cells (277). Leptin treatment of CD34�
progenitors stimulates the appearance of granulocyte-mac-
rophage colonies (278–280). Leptin stimulates the prolifer-
ation of acute myeloid leukemia cells (281) and, in acute
promyelocytic leukemia cells, bone marrow adipocyte-
derived leptin stimulates cell survival (282). Due to this stim-
ulatory effect, the leptin-leptin receptor system has been
suggested to play a role in the pathophysiology of leukemia
(283, 284). Additionally, leptin acts synergistically with
erythropoietin to stimulate erythroid development (278).

Despite their influence on hematopoiesis, adiponectin and
leptin might also regulate bone formation and bone ho-
meostasis because leptin receptors and the specific adiponec-
tin receptors AdipoR1 and AdipoR2 are expressed in bone
and primary human osteoblasts (275, 277). Indeed, adiponec-
tin was shown to increase bone mass by suppressing oste-
oclastogenesis and increasing osteoblastogenesis (285). In
detail, adiponectin induces human osteoblast proliferation
via the adiponectin/c-jun N-terminal kinase pathway and
osteoblast differentiation via the AdipoR/p38 pathway
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(286). Similarly, leptin treatment can prevent bone loss by
exerting positive effects on osteoblasts and negative effects
on osteoclastogenesis (287, 288). Taken together, these data
indicate that bone marrow adipocytes provide a specific
microenvironment within the bone cavity to regulate bone
metabolism/formation and hematopoiesis.

Clinical and therapeutical implications: The local control of
adipogenesis and adipocytokine secretion in bone marrow
adipocytes might represent a promising drug target in he-
matology and osteology. Osteoblast activation by adipocy-
tokines could be used for the treatment of osteoporosis and
bone diseases. Recombinant adipocytokines might represent
future drugs in hematology for lineage-specific stimulation
or inhibition of cell growth, differentiation, and proliferation.
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