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In recent years, the T1799A B-type Raf kinase (BRAF) muta-
tion in thyroid cancer has received enthusiastic investigation,
and significant progress has been made toward understand-
ing its tumorigenic role and clinical significance. Among var-
ious thyroid tumors, this mutation occurs uniquely in papil-
lary thyroid cancer (PTC), the most common endocrine
malignancy, and some apparently PTC-derived anaplastic
thyroid cancers. Many studies have found this mutation to be
associated with those clinicopathological characteristics of
PTC that are conventionally known to predict tumor progres-
sion and recurrence, including, for example, old patient age,
extrathyroidal invasion, lymph node metastasis, and ad-
vanced tumor stages. Direct association of BRAF mutation
with the clinical progression, recurrence, and treatment fail-
ure of PTC has also been demonstrated. The BRAF mutation
has even been correlated with PTC recurrence in patients
with conventionally low-risk clinicopathological factors.

Some molecular mechanisms determining BRAF mutation-
promoted progression and the aggressiveness of PTC have
recently been uncovered. These include the down-regulation
of major tumor suppressor genes and thyroid iodide-metab-
olizing genes and the up-regulation of cancer-promoting mol-
ecules, such as vascular endothelial growth factor, matrix
metalloproteinases, nuclear transcription factor �B, and c-
Met. Thus, BRAF mutation represents a novel indicator of the
progression and aggressiveness of PTC. Significant advances
have also occurred in the preclinical testing of new therapeu-
tic strategies targeting the MAPK pathway aberrantly acti-
vated by BRAF mutation and other related mutations. New
mitogen extracellular kinase (MEK) inhibitors developed re-
cently are particularly promising therapeutic agents for thyroid
cancer. With these advances, it has become clearer that BRAF
mutation will likely have significant impact on the clinical man-
agement of PTC. (Endocrine Reviews 28: 742–762, 2007)
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I. Introduction

A. Thyroid cancer

FOLLICULAR EPITHELIAL cell-derived thyroid cancer
is the most common endocrine malignancy, and its

incidence is rapidly rising in many areas of the world (1–4).
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In the United States, the rise in the incidence of this cancer
is the fastest among common human cancers, with a current
incidence of 33,550 cases per year and a prevalence of 366,466
cases (4). The major histological types of thyroid cancer are
papillary thyroid cancer (PTC), follicular thyroid cancer
(FTC), and anaplastic thyroid cancer (ATC). The vast ma-
jority of thyroid cancers are PTC, which accounts for more
than 80% of all thyroid malignancies (1, 2, 5). The rising
incidence of thyroid cancer is almost entirely attributed to the
increased diagnosis of PTC, particularly small PTC (1, 2).
Differentiated thyroid cancer, including PTC, is relatively
indolent and highly curable. However, a significant recur-
rence rate, about 20% at 10 yr and 30% at 30 yr of follow-up,
is seen after initial treatment (6). The negative psychosocial
and economic impact of such recurrence can be significant,
and the quality of life for patients with recurrent thyroid
cancer can be compromised. Although thyroid cancer-asso-
ciated mortality is low—standard surgical treatment in con-
junction with radioiodine ablation therapy is highly curative
in most patients—some still die from this condition. The
current mortality rate in the United Sates is 1,530 cases per
year (4). Patients face an increased chance of death when the
cancer becomes surgically inoperable and when it has lost
radioiodine avidity. There is currently no curative treatment
for this group of patients. Appropriate management of pa-
tients based upon accurate risk stratification and prognostic
evaluation is therefore important for reducing the recurrence
rate as well as the morbidity and mortality of thyroid cancer.

B. Clinicopathological risk evaluation of thyroid cancer

Conventional clinicopathological evaluation is currently
the basis upon which risk stratification is pursued for pa-
tients with thyroid cancer (7, 8). There are several clinico-
pathological characteristics that are classical high-risk fac-
tors, including old patient age at the time of diagnosis, male
gender, large tumor size, extrathyroidal invasion, lymph
node metastasis, distant metastasis, and advanced disease
stages (3, 6, 8–12). Each of these clinicopathological risk
factors has been shown to be associated with an increased
risk for the progression, recurrence, and even morbidity and
mortality of thyroid cancer. For PTC, histological subtype is
also an important factor in the risk evaluation of this cancer.
These subtypes include mainly tall cell PTC, conventional
PTC, and follicular variant PTC, which are associated with
tumor aggressiveness in the order of tall cell PTC � con-
ventional PTC � follicular variant PTC (13–17). Currently,
risk stratification is the chief consideration in determining
the aggressiveness with which to manage thyroid cancer,
including both the extent of the initial treatment, such as
whether to treat with radioiodine ablation after thyroidec-
tomy, and the degree of vigilance in subsequent follow-up of
the patient, such as how often to pursue surveillance testing.
The reliability of this clinicopathological criteria-based ap-
proach, however, can be uncertain, particularly in patients
with conventionally low clinicopathological stages (10, 18).

C. MAPK pathway and its activating genetic alterations

As illustrated in Fig. 1, the RET/PTC 3 Ras 3 Raf 3
mitogen extracellular kinase (MEK)3MAPK/ERK pathway

(hereafter referred to as “MAPK pathway”) is a classical
conserved intracellular signaling pathway that plays a fun-
damental role in cell functions such as proliferation, differ-
entiation, apoptosis, and survival (19–21), and, when aber-
rantly activated, tumorigenesis (22–25). Physiological
activation of this pathway is triggered by a large array of
growth factors, hormones, and cytokines through their re-
ceptors on the cell membrane. In normal cells, the activation
of the Raf kinase occurs through direct interaction with GTP-
bound Ras, a membrane-bound small G protein. Activated
Raf, a serine/threonine protein kinase, phosphorylates and
activates the immediate down-stream MEK, which, also a
serine/threonine protein kinase, in turn phosphorylates and
activates ERK. The activated ERK phosphorylates regulatory
protein molecules in the nucleus and ultimately alters gene
expression with consequent changes in the biological activ-
ities of the cell.

Aberrant activation of the MAPK pathway, through acti-
vating genetic alterations, has long been seen in many human
cancers (26). RET/PTC, with more than 10 types known to
exist mainly in thyroid cancer, represents a recombinant
protein product of a chromosomal rearrangement with the
combination of the 3� portion of the RET gene and the 5�
portion of an unrelated gene (27, 28). This recombination
confers ligand-independent activation of the tyrosine kinase
contained in the RET/PTC protein product. It has been re-
cently established that RET/PTC signaling in thyroid cells
utilizes the MAPK pathway (29–31). Activating Ras mutation
is a classical and common cause of aberrant activation of the
MAPK pathway in human cancers (24, 32). The B-type Raf
kinase (BRAF) mutation was recently discovered to be an-
other major cause of aberrant activation of the MAPK path-
way in human cancers (23, 33–35). There are three Raf ki-
nases, A-Raf, B-Raf (BRAF), and C-Raf (36). Among the three,
BRAF is the most potent activator of the MAPK pathway in
many cells (23). Therefore, activating mutation of the BRAF
gene is of particular importance in human cancers, especially
in those that show a high prevalence of this mutation, such
as thyroid cancer (13), the focus of this review.

D. BRAF mutation in thyroid cancer

Since the initial discovery of BRAF mutation in human
cancers (33), there have been more than 40 mutations iden-
tified in the BRAF gene, among which the T1799A point
BRAF mutation is the most common and accounts for more
than 90% of all the mutations found in the BRAF gene (35).
This mutation has been found to occur frequently in thyroid
cancer (13, 37–42). The T1799A BRAF mutation causes a
V600E amino acid change in the BRAF protein, resulting in
the constitutive and oncogenic activation of the mutated
BRAF kinase (33, 43). A few other activated BRAF mutants
are only rarely found in thyroid cancer, such as the BRAF
K601E (44), AKAP9-BRAF (45), BRAF V599ins (46), BRAF
V600E�K601del (47, 48), and a recently characterized novel
BRAF mutant, V600D�FGLAT601–605ins, resulting from an
insertion of 18 nucleotides at nucleotide T1799 of the BRAF
gene (47). Thus, the T1799A mutation is virtually the only
BRAF mutation identified in thyroid cancer (hereafter re-
ferred to as “BRAF mutation”). BRAF mutation represents a
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somatic genetic alteration and is not a germline mutation in
familial thyroid cancer (49, 50). A striking finding on BRAF
mutation in thyroid cancer is its exclusive occurrence in PTC
and PTC-derived ATC, with an average prevalence of 44% in
the former and 24% in the latter, and it does not occur in FTC
or other types of thyroid tumors (13). The high prevalence
and high specificity of BRAF mutation for PTC suggest a
unique and fundamental pathogenic role of this mutation in
PTC, which has led to great enthusiasm in recent years over
the potential clinical utility of this mutation as a novel prog-
nostic molecular marker and as an effective target for the
treatment of PTC. Several short reviews on BRAF mutation
in thyroid cancer have been published recently (27, 51–57).
This article is intended to provide a comprehensive review
on this mutation in thyroid cancer, with an emphasis on its
pathogenic role, underlying molecular bases, prognostic
value, and potential as a novel therapeutic target.

II. Association of BRAF Mutation with High-Risk
Clinicopathological Characteristics of PTC

A. Data supporting a positive association

Many studies have investigated the relationship of BRAF
mutation with clinicopathological characteristics of PTC (40,

42, 58–85) (Table 1). Although the results are not entirely
consistent, most of the studies from various ethnic and geo-
graphical backgrounds demonstrate a significant association
of BRAF mutation with one or more conventional high-risk
clinicopathological characteristics of PTC (40, 59, 61, 63, 64,
66–69, 71, 72, 74, 76, 79, 80, 82, 83, 85). For example, in a large
series of PTC cases consisting of mainly American patients,
a significant association of BRAF mutation with extrathyroi-
dal invasion and advanced disease stages III and VI was
reported by Nikiforova et al. (76). In a Japanese study, an
association of BRAF mutation with advanced disease stages
of PTC was observed by Namba et al. (40). Three Korean
studies (67, 68, 72) reported a significant association of BRAF
mutation with lymph node metastasis or extrathyroidal in-
vasion. One of them showed an independent association of
BRAF mutation with lymph node metastasis even in further
multivariate analysis with adjustment for confounding fac-
tors (67). A Mayo Clinic study by Jin et al. (64) also reported
a significant association of BRAF mutation with lymph node
metastasis and extrathyroidal invasion. In a large compre-
hensive international multicenter study, Xing et al. (83) re-
ported a close association of BRAF mutation with extrathy-
roidal invasion, lymph node metastasis, and advanced
disease stages. Similarly, three recent studies—from the

FIG. 1. Schematic illustration of the MAPK pathway. The
signaling starts at the cell membrane receptor upon stim-
ulation by extracellular mitogenic signals (e.g., growth fac-
tors). Upon activation by binding with GTP, the Ras protein
interacts with and activates Raf protein kinase. The B-type
Raf kinase, or BRAF, is the most abundant and potent in the
Raf family in many cells and is shown here in the figure.
Activated BRAF phosphorylates and activates two MEKs,
MEK1 and MEK2. Activated MEK1/2 in turn phosphory-
lates and activates the two immediately downstream ERKs,
ERK1 and ERK2. ERK1/2 subsequently phosphorylates
downstream proteins, many of which are kinases them-
selves, ultimately leading to alterations in the expression of
various genes in the nucleus involved in cell proliferation,
growth, survival, and tumorigenesis. Unique to some PTC
is also the occurrence of RET/PTC, a recombinant protein
consisting of the tyrosine kinase domain of the RET, a mem-
brane receptor tyrosine kinase, and a portion of an unre-
lated protein. RET/PTC can activate the MAPK pathway
through a step upstream of Ras. *, The gene for BRAF is a
common site for mutations in this pathway, with the acti-
vating T1799A mutation commonly seen in PTC, which is
the focus of this review.
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United States (59), Spain (79), and Italy (61)—have all dem-
onstrated a significant association of BRAF mutation with
extrathyroidal invasion and advanced stages. Association of
BRAF mutation with lymph node metastasis was also re-
ported in the Italian study (61). Consistent with the role of
BRAF mutation in lymph node metastasis of PTC, several
studies observed a high prevalence of BRAF mutation in
lymph node-metastasized PTC (48, 66, 67, 80, 86, 87). Inter-
estingly, in these studies, BRAF mutation was sometimes
found to be in the lymph node-metastasized PTC but not in
the primary tumors, raising the possibility that this mutation
could occur de novo in PTC cells metastasized to lymph
nodes. To further support a role of BRAF mutation in lymph
node metastasis of PTC, Rodolico et al. (80) recently dem-
onstrated that metastatic PTC lesions in lymph nodes har-
boring BRAF mutation were larger in size than those har-
boring wide-type alleles. This study also showed a higher
prevalence of extracapsular invasion of metastasized lymph
nodes with BRAF mutation than metastasized lymph nodes
without the mutation. A recent short meta-analysis on se-
lected reports was published during the revision of this re-
view and revealed a significant association of BRAF mutation
with extrathyroidal invasion, lymph node metastasis, and
advanced stages of PTC (54). Lupi et al. (74) recently reported
their results of a study on 500 cases of PTC in a homogenous

Italian cohort from a single institution, which represented the
largest study ever on the relationship between BRAF muta-
tion and clinicopathological outcomes. A strong association
of BRAF mutation with extrathyroidal invasion, lymph node
metastasis, and advanced tumor stages was demonstrated in
this study. Interestingly, BRAF mutation was also found to
be significantly associated with lack of tumor capsule in this
study. It has been shown that PTC tumors that lack the
capsule are associated with a higher risk for metastasis and
recurrence (74, 88, 89). A recent large American study on PTC
also confirmed some of the previous findings, including the
association of BRAF mutation with lymph node metastasis
and advanced tumor stages III and IV (66). Because distant
metastasis of PTC is uncommon, particularly in adult pa-
tients, few studies had a sufficient number of cases to look
at its relationship with BRAF mutation. Two large studies
that looked at this issue showed a significant association of
BRAF mutation with distant metastasis of PTC (40, 66).
Among various subtypes of PTC, BRAF mutation occurred
most commonly in the aggressive subtype, tall cell PTC;
second most commonly in conventional PTC; and least com-
monly in follicular variant PTC (66, 74, 76, 79, 82, 83, 86, 90),
with an average prevalence of 77, 60, and 12%, respectively
(13). Association of BRAF mutation with larger tumor size is
reported in several studies (65, 67, 71). In a larger study,

TABLE 1. Correlation of BRAF mutation with clinicopathological characteristics of PTC

Study no.
Extrathyroidal invasion Lymph node metastasis Disease stages III and IV

First author, year (Ref.)
BRAF � BRAF � P valuea BRAF � BRAF � P valuea BRAF � BRAF � P valuea

1 16/38 (42) 13/66 (20) 0.014 23/38 (61) 29/66 (44) 0.103 17/38 (45) 5/66 (8) �0.001 Nikiforova, 2003 (76)
2 14/38 (37) 24/88 (27) 0.283 21/38 (55) 54/88 (61) 0.522 26/38 (68) 46/88 (52) 0.093 Namba, 2003 (40)
3 7/21 (33) 6/35 (17) 0.165 4/21 (19) 7/35 (20) 0.931 Xu, 2003 (42)
4 10/22 (45) 10/29 (34) 0.427 8/16 (50) 9/22 (41) 0.578 Puxeddu, 2004 (78) b

5 12/16 (75) 13/23 (57) 0.237 7/18 (39) 9/29 (31) 0.581 Fugazzola, 2004 (62) b

6 39/58 (67) 4/12 (33) 0.028 Kim, 2004 (68)
7 3/13 (23) 8/33 (24) 0.933 Sedliarou, 2004 (81)
8 44/107 (41) 18/112 (16) �0.001 58/107 (54) 24/112 (21) �0.001 31/107 (29) 16/112 (14) 0.008 Xing, 2005 (83)
9 7/21 (33) 10/53 (19) 0.182 11/21 (52) 18/53 (34) 0.143 Trovisco, 2005 (82) c

10 15/31 (48) 11/29 (38) 0.414 21/31 (68) 15/29 (52) 0.206 13/31 (42) 11/29 (38) 0.752 Kim, 2005 (70)
11 24/64 (38) 7/15 (47) 0.513 Kim, 2005 (69)
12 26/47 (55) 26/54 (48) 0.472 17/47 (36) 24/54 (44) 0.398 19/47 (40) 17/54 (31) 0.349 Liu, 2005 (73)
13 16/40 (40) 8/57 (14) 0.004 21/40 (53) 29/57 (51) 0.875 16/40 (40) 7/57 (12) 0.002 Adeniran, 2006 (59)
14 18/28 (64) 11/39 (28) 0.003 9/28 (32) 9/39 (23) 0.409 23/28 (82) 16/39 (41) �0.001 Riesco-Eizaguirre, 2006 (79)
15 107/149 (72) 31/54 (57) 0.052 116/149 (78) 37/54 (69) 0.173 62/149 (42) 17/54 (31) 0.191 Kim, 2006 (71)
16 26/34 (76) 12/69 (17) �0.001 5/34 (15) 4/69 (6) 0.152 Kim, 2006 (67)
17 32/58 (55) 14/42 (33) 0.031 14/58 (24) 10/42 (24) 0.970 19/58 (33) 7/42 (17) 0.070 Lee, 2006 (72)
18 8/31 (26) 2/27 (7) 0.087 15/31 (48) 7/27 (26) 0.106 Jin, 2006 (64) d

19 34/53 (64) 5/8 (62) 0.928 21/53 (40) 2/8 (25) 0.426 Park, 2006 (77)
20 68/102 (67) 31/59 (53) 0.076 49/102 (48) 27/59 (46) 0.780 23/102 (23) 11/59 (19) 0.559 Jo, 2006 (65)
21 0/18 (0) 7/19 (37) 0.004 1/18 (6) 6/19 (32) 0.043 Sapio, 2006 (84)
22 12/24 (50) 7/20 (35) 0.317 10/24 (42) 11/20 (55) 0.378 Abrosimov, 2007 (58)
23 8/21 (38) 11/37 (30) 0.514 Mitsiades, 2007 (75)
24 14/56 (25) 12/36 (33) 0.386 16/55 (29) 12/37 (32) 0.733 15/43 (35) 7/32 (22) 0.221 Durante, 2007 (60)
25 82/214 (38) 47/286 (16) �0.001 34/214 (16) 19/286 (7) �0.001 81/214 (38) 46/286 (16) �0.001 Lupi, 2007 (74)
26 23/88 (26) 19/126 (15) 0.045 Rodolico, 2007 (80)
27 24/111 (22) 20/98 (20) 0.830 53/111 (48) 32/98 (33) 0.027 39/111 (35) 12/98 (12) �0.001 Kebebew, 2007 (66) e

28 30/54 (56) 18/54 (33) 0.020 18/54 (33) 16/54 (30) 0.679 16/54 (30) 7/54 (13) 0.034 Wang, 2007 f

Overall 577/1224 (47) 318/1211 (26) �0.001 661/1513 (44) 451/1515 (30) �0.001 433/1188 (36) 271/1281 (21) �0.001
OR, 2.50; 95% CI, 2.11–2.97 OR, 1.83; 95% CI, 1.58–2.13 OR, 2.14; 95% CI, 1.79–2.56

Data represent number/total (percent). OR, Odds ratio.
a P value per �2 test.
b Because many, but an unknown specific number of, cases from these two studies were overlapped with the cases in a recent study of the

same authors �Fugazzola et al., 2006 (63)�, the latter study is not included in this table.
c This represents combined data on both conventional and follicular variant PTC from Table 3 of the study of Trovisco et al. (82).
d These stratified data were provided by Dr. Ricardo V. Lloyd through a personal communication, which was collectively reported in the

original publication �Jin et al., 2006 (64)�.
e The raw data were provided by Dr. Electron Kebebew through a personal communication, which was not directly reported in the original

publication �Kebebew et al., 2007 (66)�.
f Unpublished data.
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however, BRAF mutation was seen to be associated with a
somewhat smaller tumor size in PTC (83). It therefore ap-
pears that BRAF mutation promotes the aggressiveness of
PTC mainly by promoting its invasiveness and metastasis.
BRAF mutation is an adult-associated mutation and is rarely
seen in pediatric populations (13, 27). Even in adult popu-
lations, an association of BRAF mutation with older age was
demonstrated in several studies (59, 63, 66, 69, 76, 80, 82, 85).
A significant association of BRAF mutation with male gender
has also been observed in a few studies (42, 71). The predi-
lection of BRAF mutation for old and male patients may
partially explain the known association of old age and male
gender with thyroid cancer progression and aggressiveness.

B. Association of BRAF mutation with the most aggressive
clinicopathological characteristics of PTC

Among the various clinicopathological risk factors dis-
cussed above, extrathyroidal invasion, lymph node metas-
tasis, and advanced clinicopathological stages III and IV
most reliably predict thyroid cancer progression, recurrence,
aggressiveness, and, ultimately, higher morbidity and mor-
tality (6, 8–11). Interestingly, among the various clinicopath-
ological characteristics of PTC, many studies have found that
BRAF mutation is also most commonly associated with these
three risk predictors (Table 1 and Fig. 2). When all the pub-
lished studies that provide sufficient information to calculate
the number of analyzed cases are pooled, a significant as-
sociation of BRAF mutation with extrathyroidal invasion,
lymph node metastasis, and stages III and IV is clearly shown
(Table 1), with overall odds ratios being 2.50 [95% confidence
interval (CI), 2.11–2.97], 1.83 (95% CI, 1.58–2.13), and 2.14
(95% CI, 1.79–2.56), respectively. These relationships be-
tween BRAF mutation and the three clinicopathological char-
acteristics from various studies are more clearly depicted in
Fig. 2, A–C. The association of BRAF mutation with lymph
node metastasis appears to be less uniform, probably reflect-
ing a fact that the extent of neck dissection often varied in
different patients and studies. When BRAF mutation distri-
bution among PTC with different disease stages is analyzed
across studies that report such information, a significantly
higher prevalence is seen in the advanced stages III and IV
than in stages I and II (Table 2). This pattern still exists when
the Korean series, which have in general reported an un-
usually high prevalence of BRAF mutation, up to 80–90% in
some studies (68, 71, 91), are excluded from this analysis
(Table 2). It is also important to note that BRAF mutation is
most commonly associated with the subtypes of PTC that are
classically known to be particularly aggressive. This issue
was specifically examined in the Xing et al. study (83), which
showed clearly an order of tall cell PTC � conventional PTC
�� follicular variant PTC when ranked according to the
prevalence of aggressive clinicopathological features of the
tumor, such as extrathyroidal invasion, lymph node metas-
tasis, advanced tumor stages III and IV, and tumor recur-
rence. Correspondingly, the same order of tall cell PTC �
conventional PTC �� follicular variant PTC held for the
prevalence of BRAF mutation in these subtypes of PTC (83).
This close association of BRAF mutation with aggressive
subtypes of PTC is itself strong evidence for the role of BRAF

mutation in determining the aggressiveness of PTC. This
evidence may, in fact, suggest that BRAF mutation is an
important, perhaps a primary, factor for the development of
tall cell PTC. A recent study showed that, in comparison with
conventional PTC, tall cell PTC was more aggressive (with
more metastasis and recurrence) even when confounding
factors were matched, including patient age, gender, tumor
size, extrathyroidal extension status, therapy type, and
follow-up length (92). This could be well explained by an
independent pathogenic role of the BRAF mutation that oc-
curs most commonly in tall cell PTC. Some studies also found
a correlation of BRAF mutation with high-risk clinicopath-
ological characteristics of PTC within specific subtypes, such
as conventional PTC (66, 68, 71) and follicular variant PTC
(74). Several studies showed that PTC components often
existed in BRAF mutation-harboring ATC tumors and, in
such cases, the PTC and ATC components usually both har-
bored BRAF mutation (76, 93–95). This suggests that BRAF
mutation may play a role in promoting the progression of
PTC to ATC. Thus, BRAF mutation is a driving force behind
the aggressive pathological characteristics of PTC and, as will
become more evident later in the discussion, predicts a
poorer prognosis for patients with PTC.

C. Studies with negative results

Although most of the studies, as discussed above, support
an association between BRAF mutation and the conventional
high-risk clinicopathological factors, some studies have
failed to reveal a significant association between them (58, 60,
62, 65, 70, 73, 75, 77, 78, 81, 84) (Table 1 and Fig. 2). There is
no definitive explanation for these inconsistent results, but
the relatively small number of cases in most of the “negative”
studies seems to be one explanation. In fact, a clear tendency
of association of BRAF mutation with poor clinicopatholog-
ical characteristics was seen in some of these studies although
no statistical significance was reached (Table 1 and Fig. 2).
Variations in the extent of the disease at the time of the initial
diagnosis (for example, PTC at an early stage with small
tumor is less likely to be associated with aggressive patho-
logical features), variations in the completeness of the patho-
logical description of the tumor in the patient records, and
variations in the criteria and protocols used for data collec-
tion may all exist among different studies and may be at least
partially responsible for the inconsistent reports. Possible
variations in the diagnostic criteria used by different pathol-
ogists, particularly the criteria for defining the various sub-
types of PTC, could also contribute to some of the inconsis-
tent reports. This may be true particularly given the fact that
the prevalence of BRAF mutation varies greatly among the
different subtypes of PTC, each of which is associated with
different levels of aggressiveness as discussed above. In fact,
in the Xing et al. study (83), when PTC subtypes were in-
cluded in the multivariate logistic regression analysis, the
association previously seen of BRAF mutation with some of
the clinicopathological characteristics was cancelled. This
result, however, may be well expected if BRAF mutation is
a major pathogenic factor that drives the development of
high-risk pathological characteristics of the aggressive sub-
types, such as the tall cell PTC.
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III. Association of BRAF Mutation with Recurrence
of PTC and Loss of Radioiodine Avidity in

Recurrent Tumors

A. Association with recurrence of PTC

The predictive value of the BRAF mutation for PTC re-
currence has been specifically investigated in several recent
studies that directly examine the relationship between BRAF
mutation and PTC recurrence. The first large study by Xing

et al. (83), a multicenter investigation on 219 PTC patients,
retrospectively analyzed the relationship of BRAF mutation
in primary PTC with tumor recurrence. In addition to dem-
onstrating the association of BRAF mutation with several
aggressive pathological characteristics, such as extrathyroi-
dal invasion, lymph node metastasis, advanced tumor
stages, and aggressive histological subtypes, a close associ-
ation of BRAF mutation with PTC recurrence was also dem-
onstrated over a median clinical follow-up of 15 months. An

FIG. 2. Relationship of BRAF mutation (odds ratios) with extrathyroidal invasion (A), neck lymph node metastasis (B), and advanced stages
III and IV (C) in PTC. Plotted are the data for each of the individual reports summarized in Table 1. Some reports did not provide the related
data and are left blank in the figure. Shown at the bottom of each panel are the overall data added up from the individual reports that provided
the related information. Kim et al. 2005a, Kim et al. 2005b, Kim et al. 2006a, and Kim et al. 2006b refer to Refs. 70, 69, 71, and 67, respectively.
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odds ratio of 4.0 (95% CI, 1.1–14.1; P � 0.03) for cancer
recurrence with BRAF mutation was obtained on multivar-
iate analysis with adjustment for all the classical confounding
clinicopathological factors, including tumor subtypes and a
history of radioiodine treatment. Interestingly, such an as-
sociation of BRAF mutation with PTC recurrence was found
even in a subgroup of patients with low-grade initial clini-
copathological stages I and II, which are known to be gen-
erally associated with a low risk for recurrence. This asso-
ciation also remained significant on multivariate analysis
with the adjustment for all the known confounding clinico-

pathological risk factors. A subsequent Korean study by Kim
et al. (71) similarly demonstrated a close association of BRAF
mutation with tumor recurrence in a series of 203 patients
with conventional PTC. Kaplan-Meier analysis of disease
recurrence-free probability showed similar overall patterns
in the two studies (Fig. 3). The Kim et al. study (71) displayed
smoother survival curves, probably because it consisted of a
homogeneous subject population of only Korean patients,
whereas the study by Xing et al. (83) consisted of a less
homogeneous population from four different international
medical centers. Also, the Kim et al. study consisted of only

TABLE 2. Prevalence of BRAF mutation in different stages of PTC

Study no.
Stage

First author, year (Ref.)
I II I � II III IV III � IV

1 20/74 (27) 1/8 (13) 21/82 (26) 10/12 (83) 7/10 (70) 17/22 (77) Nikiforova, 2003 (76)
2 5/27 (19) 7/27 (26) 12/54 (22) 20/61 (33) 6/11 (55) 26/72 (36) Namba, 2003 (40)
3 8/19 (42) 0/2 (0) 8/21 (38) 1/1 (100) 7/16 (44) 8/17 (47) Puxeddu, 2004 (78)
4 10/30 (33) 1/1 (100) 11/31 (35) 6/12 (50) 1/4 (25) 7/16 (44) Fugazzola, 2004 (62)
5 13/46 (28)a Sedliarou, 2004 (81)a

6 44/83 (53) 30/87 (34) 74/170 (44) 29/44 (66) 2/3 (67) 31/47 (66) Xing, 2005 (83)
7 18/36 (50) 0/0 (-) 18/36 (50) 11/22 (50) 2/2 (100) 13/24 (54) Kim, 2005 (70)
8 25/57 (44) 3/8 (38) 28/65 (43) 19/33 (58) 0/3 (0) 19/36 (53) Liu, 2005 (73)
9 20/62 (32) 1/7 (14) 21/69 (30) 9/12 (75) 7/11 (64) 16/23 (70) Adeniran, 2006 (59)

10 5/28 (18) 23/39 (59) Riesco-Eizaguirre, 2006 (79)
11 84/120 (70) 3/4 (75) 87/124 (70) 48/60 (80) 14/19 (73) 62/79 (78) Kim, 2006 (71)
12 14/62 (23) 15/32 (47) 29/94 (31) 1/3 (33) 4/6 (67) 5/9 (56) Kim, 2006 (67)
13 36/65 (55) 3/9 (33) 39/74 (53) 19/26 (73) 19/26 (73) Lee, 2006 (72)
14 33/132 (25)a Ugolini, 2007 (159)a

15 10/29 (35) 3/10 (30) 13/39 (33) 6/12 (50) 2/7 (29) 8/19 (42) Mitsiades, 2007 (75)
16 25/47 (53) 3/6 (50) 28/53 (53) 4/5 (80) 11/17 (65) 15/22 (68) Durante, 2007 (60)
17 124/357 (35) 9/15 (60) 133/372 (36) 81/127 (64) 81/127 (64) Lupi, 2007 (74)
18 88/214 (41)a Rodolico, 2007 (80)a

19 6/17 (35) 32/68 (47) 38/85 (45) 16/23 (70) Wang, 2007b

Overall (1)c 449/1085 (41) 111/284 (39) 699/1789 (39) 264/430 (61) 63/109 (58) 366/601 (61) P � 0.001e

Overall (2)d 297/802 (37) 90/239 (38) 526/1461 (36) 185/319 (58) 43/82 (52) 267/463 (58) P � 0.001e

Data represent number/total (percent).
a These were cases of micro-PTC and, for convenience of analysis, are included in the category of stages “I � II” because they would usually

fall into these stages.
b Unpublished data.
c Overall (1), overall values of all the studies.
d Overall (2), overall values after exclusion of the Korean series (studies 6 and 10–12).
e P value for comparison between “I � II” and “III � IV” per � 2 test.

FIG. 3. Kaplan-Meier estimate of recurrence-free probability of PTC in patients with (�) or without (�) BRAF mutation. A, Analysis of a
multicenter series consisting of 219 cases, mainly Caucasian patients. Log-rank test: �2 � 4.0, P � 0.04. [Adapted from Xing et al., 2005 (83),
with permission from The Endocrine Society.] B, Analysis of a Korean series consisting of 203 patients. Log-rank test: �2 � 4.60, P � 0.037.
[Adapted from Kim et al., 2006 (71), with permission from Wiley–Blackwell.]
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conventional PTC, whereas the Xing et al. study consisted of
three different PTC subtypes: conventional, tall cell, and
follicular variant PTC. The disease-free probability curves
declined more slowly in the Kim et al. study than in the Xing
et al. study, reflecting the overall lower disease extent of the
patients in the former study. A recent Spanish study by
Riesco-Eizaguirre et al. (79) also demonstrated a strong as-
sociation of BRAF mutation with the recurrence of PTC. Even
in a relatively small Italian study on 47 cases of PTC, a
tendency of association of BRAF mutation with PTC recur-
rence was shown, although it did not reach statistical sig-
nificance (62) (Table 3). More recently, in a large American
study on PTC, Kebebew et al. (66) also demonstrated a sig-
nificant association of BRAF mutation with recurrence or
disease persistence of PTC. Similar to the Kim et al. study (71),
the Kebebew et al. study (66) could show a significant role of
BRAF mutation in PTC recurrence when only conventional
PTC were examined. Confirming the findings by Xing et al.
(83), Kebebew et al. (66) also showed an independent asso-
ciation of BRAF mutation with PTC recurrence on multivar-
iate analysis with adjustment for the classical clinicopatho-
logical confounding factors. As demonstrated in the Xing et
al. study (83), Kebebew et al. (66) also showed a significant
association of BRAF mutation with PTC recurrence even in
low-stage (stage I) PTC. Although the median follow-up
time, geographical regions, and ethnic backgrounds of the
patients were very different among these studies, the pattern
of the relationship of BRAF mutation with PTC recurrence
was very similar (Table 3). Therefore, regardless of the risk
level associated with the preexisting clinicopathological,
geographical, and ethnic factors, BRAF mutation seems to
add an incremental risk for disease recurrence of PTC. The
overall odds ratio from five studies for this risk of PTC
recurrence associated with BRAF mutation is 2.65 (95% CI,
1.77–3.96; P � 0.001) (Table 3).

B. Association with loss of radioiodine avidity in
recurrent PTC

The mainstay of current medical treatment for PTC after
thyroidectomy is radioiodine ablation therapy (7, 8). Effec-
tive medical treatment of recurrent PTC is also largely con-
fined to radioiodine therapy. However, thyroid cancer may
lose radioiodine avidity, a major cause for radioiodine treat-
ment failure and associated increased morbidity and mor-
tality (7, 8, 96). This can be illustrated by the case of a PTC
patient who has initially been treated with radioiodine ab-

lation therapy for apparently radioiodine-sensitive primary
PTC after thyroidectomy and later develops a recurrent tu-
mor that becomes radioiodine-resistant and continues to
progress. Although various clinicopathological factors are
known to be associated with increased risk for recurrence of
thyroid cancer, no factor has been known to predict loss of
radioiodine avidity in the recurrent tumor. The study by
Xing et al. (83) showed an interesting association of BRAF
mutation in the primary PTC with loss of radioiodine avidity
in the recurrent tumor. The recurrent PTC in the patients
with primary tumors harboring BRAF mutation required
more aggressive treatments, including the need for surgeries
and external radiation therapy, than the recurrent tumors in
the patients without BRAF mutation, which mostly only re-
quired repeated radioiodine treatment (83). In many cases in
the former group the treatment for the recurrent tumor failed
and the patients continued to have persistent disease,
whereas the patients in the latter group were all cured for
their recurrent tumor, usually with only one repetition of the
radioiodine therapy. A tendency of association of BRAF mu-
tation in the primary or recurrent PTC with loss of radioio-
dine avidity in the recurrent tumor was observed in two
more recent studies, although it did not reach statistical sig-
nificance, probably due to the relatively small number of
cases studied (79, 97).

Pediatric PTC is highly curable and rarely recurs if ap-
propriate surgery with adjunctive radioiodine ablation is
used, even if the initial disease is extensive and associated
with extrathyroidal invasion, lymph node metastasis, or
even lung metastasis (98, 99). This is largely because pediatric
thyroid cancer is virtually always differentiated and sensi-
tive to radioiodine treatment. Interestingly, this echoes the
fact that BRAF mutation rarely occurs in pediatric PTC, a
population in which RET/PTC rearrangement is the major
genetic alteration in PTC (13, 27, 28). It appears that when
BRAF mutation does occur in pediatric PTC, the tumor tends
to be de-differentiated and the prognosis is potentially
poorer (100). Therefore, BRAF mutation-promoted loss of
radioiodine avidity may be an important cause for the failure
or inefficiency of radioiodine treatment and, hence, a cause
for both the progression and recurrence of PTC, although
other mechanisms may also exist. Strong molecular bases
have now been revealed for this phenomenon. These include
the silencing of thyroid iodide-metabolizing genes, which
occurs more profoundly with BRAF mutation than with RET/
PTC as will be discussed in Section IV.

TABLE 3. Recurrence of PTC with (�) or without (�) BRAF mutation

Primary patient group BRAF
mutation (�)

BRAF
mutation (�)

Median follow-up
time (months) OR (95% CI) P valuea First author,

year (Ref.)

Italian 5/18 (28) 5/29 (17) ? 1.85 (0.45–7.57) 0.39 Fugazzola, 2004 (62)
American 23/92 (25) 9/96 (9) 15 3.37 (1.47–7.74) 0.004 Xing, 2005 (83)
Korean 32/149 (21) 4/54 (7) 88 3.42 (1.15–10.18) 0.02 Kim, 2006 (71)
Spanish 9/28 (32) 3/39 (8) 36 5.68 (1.37–23.52) 0.01 Riesco-Eizaguirre, 2006 (79)
American 38/111 (34) 18/98 (18) 72 2.31 (1.21–4.41) 0.01 Kebebew, 2007 (66)b

Overall 107/398 (27) 39/320 (12) 2.65 (1.77–3.96) �0.001

Data represent number/total (percent), unless specified otherwise. OR, Odds ratio.
a P value per �2 test.
b The raw data were provided by Dr. Electron Kebebew through a personal communication, which was not directly reported in the original

publication �Kebebew et al., 2007 (66)�.
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IV. Molecular Bases for BRAF Mutation-Promoted
Invasiveness and Progression of PTC

A. Unique role of BRAF mutation in thyroid tumorigenesis

The tumorigenic ability of BRAF mutation was elegantly
demonstrated in transgenic mice that developed PTC upon
targeted expression of the BRAF V600E protein in the thyroid
gland (101). PTC developed in these animals progressed
naturally into poorly differentiated tumors that showed a
high frequency of invasion into blood vessels and surround-
ing tissues, recapitulating the clinicopathological findings on
this mutation in human PTC. Studies in rat thyroid cell lines
showed that BRAF V600E promoted matrigel invasion of
thyroid cells (30, 102). Matrigel matrix used in this assay is
a polymerized basement membrane which is rich in extra-
cellular matrix proteins and mimics physiological conditions
for cells to grow on. Migration of cancer cells across matrigel
membrane is a commonly used measure to test the inva-
siveness of cancer cells. BRAF inhibitors could inhibit the
growth and proliferation of cells harboring BRAF V600E
(103). In BRAF mutation-harboring human PTC-derived
cells, transient transfection with small interfering RNA
(siRNA) to knock down BRAF inhibited cell growth and
proliferation (104). Stable siRNA transfection of BRAF mu-
tation-harboring PTC cells resulted in persistent suppression
of BRAF, sustained the inhibition of cell proliferation, pre-
vented transformation even after long-term culture, and in-
hibited xenograft tumor growth in nude mice (105). These
results all strongly support the idea that BRAF mutation not
only can initiate tumorigenesis of PTC but is also required to
maintain and promote the progression of PTC.

The activating genetic alterations in the MAPK pathway,
including RET/PTC rearrangement, Ras mutation and BRAF
mutation, are mutually exclusive in PTC (13, 39, 41, 90, 106).
BRAF mutation is also mutually exclusive with aberrant hy-
permethylation and the silencing of a major tumor suppres-
sor gene, RASSF1A (ras-associated factor 1), in PTC (107).
These data suggest that each of these genetic alterations in
PTC may be sufficient on its own to drive PTC tumorigenesis.
It remains, then, an apparently confusing issue why BRAF
mutation is associated with increased aggressiveness and
recurrence of PTC when compared with other genetic alter-
ations related to the MAPK pathway, such as RET/PTC, the
second most common genetic alteration in PTC. The answer
may lie in the difference in the oncogenic strength of these
genetic alterations and the molecular events coupled to them
in the cell. For example, induced expression of BRAF V600E
in rat thyroid cells uniquely caused genetic instability, but
the expression of RET/PTC did not (108), suggesting that
secondary genetic alterations may occur after BRAF muta-
tion and that these alterations may play a special role in
determining the progression and aggressiveness of BRAF
mutation-induced PTC. Markedly increased matrigel cell in-
vasion was also seen with induced expression of BRAF
V600E, but not RET/PTC, in these cells (102). A previous
study demonstrated that conditional expression of RET/PTC
induced only a weak oncogenic drive in thyroid PCCL3 cells
(109). In microarray gene expression analyses, different gene
expression patterns were seen with induced expression of

BRAF V600E and RET/PTC in rat thyroid cells (30, 102),
suggesting a difference in the genes affected by the two
genetic alterations. These cell line studies also suggest that
BRAF mutant is probably a stronger activator of the MAPK
pathway than RET/PTC. In human PTC tumor tissues, dif-
ferent gene expression profiles were also found to be differ-
entially associated with BRAF mutation, RET/PTC, and Ras
mutation (110). From all these studies it is convincing that
molecular events that are coupled to BRAF V600E and are not
shared or not sufficiently driven by other genetic alterations
may be responsible for the tumor aggressiveness uniquely
associated with BRAF mutation in PTC. Ras mutation was
shown to be associated with poorly differentiated or undif-
ferentiated thyroid cancers in one study on patients (111) and
one study on a transgenic mouse model (112), but no com-
parison could be made with BRAF mutation in these studies.
In fact, in a study by Adeniran et al. (59) comparing the
relationships of different genetic alterations with clinicopath-
ological characteristics of PTC, BRAF mutation was far more
commonly seen than Ras mutation to be associated with
high-risk clinicopathological characteristics, such as extra-
thyroidal invasion, lymph node metastasis, and advanced
tumor stages III and IV. The Ras mutation occurs most com-
monly in FTC and follicular variant PTC and is virtually
absent in nonfollicular variant PTC (59, 113–115). Therefore,
Ras mutation may naturally not have a major impact on the
tumorigenesis and prognosis of nonfollicular variant PTC.

B. BRAF mutation-associated aberrant methylation and
silencing of tumor suppressor genes

Recent studies have demonstrated a close association of
BRAF mutation with aberrant methylation of several impor-
tant tumor suppressor genes in PTC, including the genes for
tissue inhibitor of matrix metalloproteinase-3 (TIMP3),
death-associated protein kinase (DAPK), SLC5A8, and reti-
noic acid receptor �2 (RAR�2) (116–118). Expression level of
SLC5A8 was particularly examined in PTC in some studies
and found to be inversely related to BRAF mutation (60, 118).
Hypermethylation-induced silencing of these genes is asso-
ciated with tumor progression and aggressiveness in many
human cancers (119–124). Interestingly, BRAF mutation-
associated methylation of these tumor suppressor genes was
also correlated with several high-risk clinicopathological
characteristics of PTC, including extrathyroidal invasion,
lymph node metastasis, and advanced stages III and IV (117).
The association of BRAF mutation with methylation of tumor
suppressor genes was selectively concurrent in several genes
in PTC (117), reminiscent of the phenomenon of “CpG island
methylator phenotype (CIMP)” proposed for colorectal and
other cancers, in which hypermethylation of CpG islands in
specific groups of genes distinguishes specific phenotypes of
the tumor (125, 126). As in PTC, this CIMP phenomenon was
found to be tightly associated with BRAF mutation in colo-
rectal cancers (126). It has been recently proposed that the
silencing of major tumor suppressor genes in a CIMP-like
manner may play an important role in BRAF mutation-pro-
moted tumorigenesis and progression of PTC (127). TIMP3
is a particularly interesting tumor suppressor in this regard
because it suppresses tumor growth, angiogenesis, invasion,
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and metastasis both by preventing the interstitial matrix
destruction promoted by matrix metalloproteinase (MMP)-3
(128) and by blocking the binding of vascular endothelial
growth factor (VEGF) to the VEGF receptor (129). VEGF is a
strong angiogenic protumor molecule that plays a critical
role in human cancer progression and invasion (130). There-
fore, methylation-mediated silencing of the TIMP3 gene may
play a unique role in BRAF mutation-promoted invasiveness
and progression of PTC. Recently, BRAF mutation was re-
ported to be associated with alterations in the expression of
various micro-RNAs in PTC (131, 132). Micro-RNAs are short
noncoding single-stranded RNA molecules that regulate
gene expression and cell growth and, by functioning as on-
cogenes or tumor suppressor genes, play an important role
in tumorigenesis (133). Of particular interest is the BRAF
mutation-associated down-regulation of certain micro-
RNAs in PTC that appeared to have tumor-suppressor func-
tion (132). This newly emerging area awaits to be explored
further in thyroid cancer, which may lead to discovery of
novel molecular mechanisms in BRAF mutation-promoted
thyroid tumorigenesis. It would be particularly interesting to
see whether alteration in the expression of micro-RNAs in
association with BRAF mutation is related to the change in
genomic DNA methylation.

C. Up-regulation of tumor-promoting molecules by
BRAF mutation

Interestingly, a recent study demonstrated overexpression
of VEGF in association with BRAF mutation in PTC (65).
Therefore, the dual angiogenic effects of BRAF V600E
through promoting methylation-induced silencing of TIMP3
and VEGF overexpression in PTC represent a unique mo-
lecular mechanism underlying BRAF mutation-induced pro-
gression and invasiveness of PTC. This mechanism may be
particularly involved in BRAF mutation-promoted extrathy-
roidal invasion and metastasis of PTC, which involves vig-
orous angiogenesis and tissue invasion. This is consistent
with the fact that extrathyroidal invasion, most commonly
and closely associated with BRAF mutation in PTC (Table 1
and Fig. 2A), is one of the most important clinicopathological
characteristics associated with a poorer prognosis for pa-
tients with PTC.

Overexpression of several MMPs, including MMP3, was
induced upon expression of BRAF V600E in thyroid cell lines
(30, 102, 134), providing further support for a role of the
MMP system in mediating BRAF mutation-promoted pro-
gression of PTC. MMP molecules, as exemplified by MMP3,
promote tumor progression and metastasis by facilitating
angiogenesis and the destruction of interstitial matrix (135).
In the study by Palona et al. (134) that demonstrated induc-
tion of MMPs by V600E in thyroid cells, the authors also
showed that BRAF V600E promoted activation of the nuclear
transcription factor �B (NF-�B)-coupled signaling, which in
turn promoted matrigel invasion of thyroid cancer cells.
Many studies have shown that the NF-�B pathway promotes
apoptosis resistance, cell proliferation, angiogenesis, inva-
sion, and metastasis of human cancers (136). Thus, the NF-�B
system may be another important pathway involved in BRAF
mutation-mediated progression and aggressiveness of PTC.

Interestingly, in the study by Palona et al. (134), BRAF V600E-
promoted activation of NF-�B system seemed to take place
through signaling directly from BRAF, independently of the
down-stream MEK/MAPK/ERK signaling.

In comparison with RET/PTC or Ras mutation, BRAF mu-
tation was also shown to be associated with markedly up-
regulated expression of c-Met in PTC (110). The c-Met protein
is a cell surface receptor tyrosine kinase that, through acti-
vation by binding with hepatocyte growth factor, stimulates
mitogenesis of a wide range of cells and promotes oncogen-
esis, tumor progression and aggressiveness, and metastasis
in several human cancers (137). Increased expression of c-
Met was previously demonstrated in PTC (138). In fact, ex-
pression of c-Met in tall cell PTC was shown to be signifi-
cantly higher than that in conventional PTC or follicular
variant PTC (139), consistent with the patterns of BRAF mu-
tation distribution and aggressiveness of the three subtypes
of PTC (83). Expression of c-Met was also highly associated
with extrathyroidal invasion and lymph node metastasis of
PTC (139), mimicking the association pattern of BRAF mu-
tation with these high-risk pathological characteristics of
PTC (Table 1 and Fig. 2). Therefore, c-Met may be involved
in BRAF mutation-promoted aggressiveness of PTC.

D. Silencing of thyroid iodide-metabolizing genes in PTC

The efficacy of radioiodine treatment for thyroid cancer
depends on the ability of cancer cells to take up and accu-
mulate radioiodine, which in turn relies on the integrity of
the iodide-metabolizing system of the thyroid cell (140). The
process involves the sodium/iodide symporter (NIS) in the
basal membrane of the thyroid cell that transports iodide into
the cell from the blood stream. Iodide is in turn transported
into the thyroid follicle through the putative iodide trans-
porter SLC26A4 (pendrin) (141) and possibly other unde-
fined transporters in the apical membrane of the thyroid cell.
In the follicle, iodide is oxidized by thyroperoxidase (TPO)
and incorporated into tyrosine residues in the thyroglobulin
(Tg) molecule to form thyroid hormone. TSH receptor
(TSHR) plays a pivotal role in regulating this process, in-
cluding up-regulation of the molecules involved in this pro-
cess. Expression of these thyroid iodide-metabolizing genes
is often impaired or lost in thyroid cancer (142–145). Inter-
estingly, BRAF mutation was found to be associated with
decreased expression of TPO (60, 97, 110, 146), NIS (60, 79),
Tg (60), and pendrin (97) in primary or recurrent PTC tumors.
Conditional expression of BRAF V600E in rat thyroid cell
lines led to silencing of all these thyroid-specific iodide-
metabolizing genes (79, 108, 147). Cessation of expression of
BRAF V600E or inhibition of the MAPK pathway using in-
hibitors or BRAF siRNA could restore the expression of these
and other thyroid genes (79, 147). Methylation was shown to
be a mechanism mediating the silencing of some of these
thyroid genes. For example, two previous studies demon-
strated that the TSHR gene was silenced in a promoter meth-
ylation-dependent manner in rat thyroid cell lines (148, 149).
This was similarly demonstrated in human thyroid cancer
cells (150, 151). It was recently demonstrated that in human
thyroid cancer cells, BRAF V600E-induced silencing of TSHR
gene involved aberrant promoter methylation of this gene
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partially through increased expression of DNA methyltrans-
ferases (147). Interestingly, expression of BRAF V600E im-
paired not only the expression of NIS protein but also its
targeting to the cell membrane (60, 79). Thus, these studies
provide a clear molecular explanation for the clinically ob-
served association of BRAF mutation with the loss of radio-
iodine avidity in recurrent PTC (83). Because these thyroid-
specific molecules are well-known differentiation markers of
thyroid cells, their loss represents progression of thyroid
cancer toward dedifferentiation. In this sense, the results on
BRAF mutation-associated silencing of thyroid-specific
genes are consistent with the notion that BRAF mutation
promotes progression and aggressiveness of PTC.

Overexpression of RET/PTC or activating Ras mutant
could also decrease the expression of thyroid iodide-metab-
olizing genes in thyroid cell lines (29). These oncoproteins,
like the BRAF mutant, all lie in the MAPK pathway. It may
then appear to be puzzling why BRAF mutation is prefer-
entially associated with impaired radioiodine avidity in PTC
tumors (83). As discussed in Section IV.A for the differential
role of BRAF mutation among different genetic alterations in
PTC aggressiveness, the answer may again lie in different
oncogenic strength and molecular events coupled to these
genetic alterations. For example, compared with RET/PTC
and Ras mutation, BRAF mutation was far more profoundly
associated with decrease in TPO expression in primary PTC
tumors (110). It is also important to note that the correlation
of BRAF mutation with abnormalities of the thyroid iodide-
metabolizing machinery in PTC tumors, such as decreased
expression of iodide-metabolizing genes (60, 79, 97, 110, 146)
or decreased radioiodine avidity (79, 83, 97), was established
by comparing two groups of PTC: BRAF mutation-negative
and BRAF mutation-positive. The BRAF mutation-negative
group of PTC in these studies conceivably harbored other
relatively common MAPK pathway-related genetic alter-
ations, such as RET/PTC, albeit showing less severe abnor-
malities, consistent with a weaker effect of these genetic
alterations than BRAF mutation on iodide-metabolizing
genes.

V. Testing of BRAF Mutation as a Potentially New
Dimension to Risk Stratification and Clinical

Management of PTC

A. BRAF mutation as a novel prognostic molecular marker
for PTC

As evidenced by the strong data discussed above, from
both the clinicopathological and the molecular biological
perspectives, it is convincing that BRAF mutation is intrin-
sically associated with increased progression and aggres-
siveness of PTC. This mutation, therefore, may represent a
novel and useful prognostic molecular marker for PTC.
There has not been a useful molecular marker that, like BRAF
mutation, has been extensively studied for the prognostic
value in the management of thyroid cancer. Like several
conventional clinicopathological factors, particularly extra-
thyroidal invasion, lymph node metastasis, and disease
stages III and IV (6), BRAF mutation similarly has a high
predictive value for PTC recurrence (66, 71, 79, 83) (Table 3).

It is important to note that multivariate analysis with ad-
justment for all the conventional confounding clinicopatho-
logical factors showed an independent predicting power of
BRAF mutation for PTC recurrence (66, 83). Therefore, BRAF
mutation is not simply a good surrogate marker for the
conventional clinicopathological factors, but may actually
add an incremental risk to that associated with the conven-
tional factors for PTC recurrence. Because BRAF mutation is
highly associated with extrathyroidal invasion and advanced
tumor stages III and IV (Table 1), which are themselves
associated with a higher mortality of PTC (6), BRAF mutation
is likely to be associated with an increased mortality of PTC.
This possibility is consistent with the ability of BRAF mu-
tation to promote the silencing of several major tumor sup-
pressor genes, the up-regulation of several protumor and
proangiogenesis molecules, and the dedifferentiation and
loss of radioiodine avidity of PTC. Given the generally in-
dolent nature of PTC, however, a long-term analysis, either
retrospectively or prospectively, is needed to directly ad-
dress the impact of BRAF mutation on PTC-associated mor-
tality. Even given the lack of such data on mortality at this
time, the high predicting value of BRAF mutation for PTC
recurrence alone makes it tempting to apply this novel prog-
nostic molecular marker to the clinic, where it would add a
new dimension to the standard risk stratification of PTC,
which is currently solely based on clinicopathological
criteria.

B. Potential utility of BRAF mutation in guiding medical
management of PTC

With this new dimension added to the current risk as-
sessment and stratification of PTC, it is possible to medically
manage patients with PTC more appropriately. Although
more data, and perhaps a consensus on how specifically to
use BRAF mutation in planning the treatment of thyroid
cancer, may be needed, it can be expected that this novel
prognostic factor may affect the current medical manage-
ment of patients with PTC principally in two ways. In the
first, it may assist in deciding how aggressive the initial
treatment of the patient should be. Patients with BRAF mu-
tation may need to be treated more aggressively, perhaps
with more extensive thyroid surgeries (to be discussed fur-
ther in Section V.C) followed by a more liberal (both in terms
of patient selection and dosage) use of radioiodine ablation
therapy. Because the BRAF mutation is associated with de-
creased expression of iodide-metabolizing genes and im-
paired radioiodine avidity of PTC, perhaps a higher initial
dose of radioiodine should be used to treat BRAF mutation-
positive patients. This “initial hard-hit” approach guided by
BRAF mutation status may eliminate PTC cells more effi-
ciently in the first place and therefore reduce the chance of
later recurrence. In the second, information on BRAF muta-
tion may assist in deciding how vigilantly and aggressively
patients should be managed after the initial treatment. PTC
patients with BRAF mutation may need to be more closely
monitored by a more liberal battery of diagnostic tests, such
as more aggressive use of imaging methods. Due to the
impairment or loss of radioiodine avidity in recurrent PTC
associated with BRAF mutation, a higher dose of radioiodine
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might be needed for diagnostic imaging studies or ablation
treatments for recurrent PTC in these patients. The presence
of BRAF mutation may also help physicians to be prepared
for the greater likelihood of radioiodine treatment failure in
these patients. In this context, in an appropriate clinical set-
ting, it may be reasonable to use imaging studies such as
positron emission tomography scan more liberally to mon-
itor a BRAF mutation-positive PTC patient who has a neg-
ative diagnostic radioiodine body scan. This idea is sup-
ported by the recent demonstration that BRAF mutation was
associated with increased expression of GLUT-1 in PTC (60,
97). GLUT-1 is a glucose transporter whose function to trans-
port radiotracer-labeled glucose into cancer cells is a basis for
positron emission tomography scan. Knowledge of a pa-
tient’s BRAF mutation status, in conjunction with other clin-
ical factors, may also be helpful in determining whether
radioiodine treatment should be pursued at all and whether
other treatment modalities, such as surgery or external beam
radiation, should be opted for at an early stage instead.

C. Value of preoperative testing of BRAF mutation on fine-
needle aspiration biopsy in patients with PTC

As a stable DNA molecular marker, BRAF mutation can be
easily detected on common DNA specimens, even in low
quantities, such as those obtained from thyroid fine-needle
aspiration biopsy (FNAB) (13, 64, 91, 152, 153). The diagnostic
sensitivity of BRAF mutation testing alone is low for cyto-
logically indeterminate thyroid nodules, which consist
mainly of follicular thyroid tumors, including follicular ad-
enoma, follicular thyroid cancer, and follicular variant PTC,
which do not or only rarely harbor BRAF mutation (13).
However, the accuracy of detection of BRAF mutation for
PTC is high on FNAB specimens (13). Therefore, although
BRAF mutation testing alone may not be a sufficiently sen-
sitive diagnostic tool for the evaluation of thyroid nodules in
general, it is tempting to propose that, for prognostic pur-
pose, perhaps all patients with cytologically diagnosed PTC
should be preoperatively tested for BRAF mutation on their
FNAB specimens. Preoperative knowledge of BRAF muta-
tion may be helpful to surgeons in defining the appropriate
surgical strategy, such as lobectomy vs. total thyroidectomy
and lymph node dissection vs. no dissection. It has been well
demonstrated that aggressive surgery with careful neck
lymph node examination and dissection can effectively de-
crease the chance of cancer recurrence (154, 155). On the other
hand, however, the risk of surgical complications may also
rise with aggressive neck surgeries. Because BRAF mutation
is particularly associated with extrathyroidal invasion,
lymph node metastasis, and local recurrence in the neck,
preoperative knowledge of BRAF mutation may help sur-
geons better balance benefit and risk in determining the
aggressiveness of neck dissection. This approach may help
reduce the recurrent rate of PTC while avoiding an increase
in complications. Preoperative knowledge of BRAF mutation
may also be helpful to endocrinologists in planning the ag-
gressiveness of medical management at an early stage, even
before surgery. It will have to be seen whether this preop-
erative testing of BRAF mutation on FNAB specimens can

prove to be sufficiently useful to become a routine clinical
practice in treating PTC patients.

D. Special usefulness of BRAF mutation in the management
of conventionally low-stage PTC

As discussed above, thyroid cancer stages III and IV are
associated with a high rate of recurrence and increased mor-
bidity and mortality (6–8). In contrast, PTC patients with
stages I and II mostly have small tumors, which are generally
associated with a good prognosis. However, even in this
low-grade group of PTC patients, high-risk pathological
characteristics, such as neck lymph node metastasis, are as-
sociated with a higher incidence of recurrence (156). PTC in
a subgroup of these patients seems to be bound to recur and
progress, and conventional clinicopathological evaluation
cannot identify this risk (3, 18). Because the rising incidence
of thyroid cancer in recent years is largely attributed to the
increased diagnosis of small PTC (1, 2), it has become in-
creasingly challenging to tailor the aggressiveness of treat-
ment for thyroid cancer patients with low stages solely on the
basis of clinicopathological criteria (3, 18). Testing of BRAF
mutation may thus have a special value in helping identify
those patients from this group that are likely to have a re-
currence. This notion is strongly supported by the finding
that BRAF mutation was independently associated with a
higher rate of recurrence of PTC even in patients with low-
grade stage I and II disease (66, 83). In fact, the Xing et al. (83)
study showed the odds ratio for PTC recurrence with BRAF
mutation on the multivariate analysis in this conventionally
low-risk group of patients to be 11.6 (95% CI, 2.2–62.6; P �
0.004), representing an even more significant predictive
power of BRAF mutation for PTC recurrence within this
subgroup than was seen in the analysis of the whole series
(odds ratio of 4.0; 95% CI, 1.1–14.1; P � 0.03). The recent
Korean study by Kim et al. (71) that showed a significant
predicting power of BRAF mutation for PTC recurrence con-
sisted of patients mostly with low-risk clinicopathological
stages. These results on clinical outcomes are consistent with
the recent pathological data in a large study by Lupi et al. (74)
showing that even in micro-PTC BRAF mutation was sig-
nificantly associated with extrathyroidal invasion, high tu-
mor stage, and lack of tumor capsule. It is thus highly prob-
able that, if BRAF mutation proves to be a clinically useful
prognostic marker in PTC, it will have a special value in
helping appropriately manage PTC patients with low-grade
stages. To put this in a practical perspective, perhaps one
could use BRAF mutation to help determine the need for
radioiodine ablation treatment and more vigilant follow-up.
Because BRAF mutation is associated with impairment of
iodide metabolism in PTC, a relatively aggressive dose of
radioiodine for ablation therapy might be reasonable for
BRAF mutation-positive patients even with disease of low
stages. The benefit of TSH suppression therapy is often con-
troversial in low-risk thyroid cancer patients (7, 8, 157). Al-
though TSH suppression therapy may not have significant
impact on the overall recurrence of thyroid cancer in patients
with stages I and II (158), it would be interesting to see
whether for the subgroup of these patients that are positive
for BRAF mutation it is beneficial to pursue aggressive TSH
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suppression. A low BRAF mutation prevalence of about 30%
was reported in most series on micro-PTC or PTC with stages
I and II (Table 2). An even lower prevalence (17%) of BRAF
mutation was reported in micro-PTC of several millimeters
in size that were incidentally found on histological exami-
nation of the thyroid gland (159). This relatively low prev-
alence of BRAF mutation was seen with stages I and II PTC
in most regions in the world except for certain regions, such
as Korea, where BRAF mutation is generally reported to be
extremely prevalent (68, 71, 91) (Table 2). Therefore, it ap-
pears to be reasonable and perhaps economically affordable
to more aggressively manage only the one third of PTC
patients with stages I and II that are positive for BRAF mu-
tation in regions where the prevalence of this mutation is not
too high (Table 2).

VI. BRAF Mutation and Related Signaling Pathways
as Novel Therapeutic Targets for Thyroid Cancer

A. MAPK pathway as a major therapeutic target

Because RET/PTC, Ras mutation, and BRAF mutation are
all oncogenic activators of the MAPK pathway and together
occur in the majority of cases of PTC (39, 41, 83, 90, 106), the
MAPK pathway plays a major role in tumorigenesis and
progression of PTC, as evidenced in the clinicopathological
and molecular studies discussed above. Consequently, the
MAPK pathway is a potentially effective therapeutic target
for PTC (160, 161). Much work has been done in recent years
to investigate the therapeutic potential of suppressing this
pathway in human cancers (22, 24, 25). For thyroid cancer,
recent effort has been particularly directed toward testing the
therapeutic potential of knocking down the MAPK pathway
signaling aberrantly activated by BRAF mutation. One such
example is the demonstrated inhibition of proliferation of
BRAF mutation-harboring thyroid cancer cells by Raf kinase
inhibitors AAL-881 and LBT-613 (103). This inhibition was
associated with G1 arrest and induction of cell death and was
seen both in cell lines and in xenograft tumors. Although
these BRAF inhibitors may be reasonably toxic enough to
prevent their clinical development (51), the data provide
implications that specific targeting of BRAF itself may be
therapeutic for BRAF mutation-harboring thyroid cancers.
This idea is also supported by the demonstration that specific
knockdown of BRAF by transient siRNA transfection inhib-
ited the proliferation of thyroid cancer cells harboring BRAF
mutation (104). Stable knockdown of BRAF using stable
siRNA transfection persistently suppressed the proliferation
of BRAF mutation-harboring thyroid cancer cells even after
long-term culture (105). Stable BRAF siRNA transfection also
suppressed the transformation of thyroid cancer cells and the
growth of xenograft tumors harboring BRAF mutation (105).
Differentiation of thyroid cancer cells harboring BRAF mu-
tation as reflected by reexpression of some thyroid-specific
genes was induced by stable siRNA knockdown of BRAF as
well (147). Thus, these studies all strongly support the ther-
apeutic potential of suppressing BRAF/MAPK signaling for
BRAF mutation-harboring PTC. The widely studied BAY
43-9006 compound was initially developed as a Raf kinase
inhibitor (162) and has been recently demonstrated to have

effective antitumor activity in renal cancers in both phase II
and phase III clinical trials (163). However, a recent phase II
clinical trial on this drug showed little or no antitumor ac-
tivity in melanoma (164), which harbors BRAF mutation with
the highest prevalence among all human cancers (33). In
particular, this study showed no correlation between BRAF
mutation and disease stability. This may reflect the fact that
BAY-43-9006 is now known to be a multikinase inhibitor,
with high potency particularly for C-Raf and various tyrosine
kinases (162, 165). As an inhibitor of tyrosine kinases, which
are usually associated with the cell membrane upstream of
BRAF, Bay-43-9006 may not have sufficient impact on mu-
tant BRAF-activated MAPK pathway signaling. However, a
recent preclinical study did show inhibitory effect of this
compound on BRAF mutation-harboring thyroid cancer cell
lines and tumor xenografts (104). It is possible, though, that
these cells harbored aberrantly activated signaling path-
ways, aside from BRAF, in which tyrosine kinases played a
significant role. This possibility could explain the respon-
siveness of the cells to Bay-43-9006. From the current un-
derstanding of the molecular mechanisms involved in BRAF
mutation-promoted PTC tumorigenesis, it cannot be pre-
dicted whether Bay-43-9006 will be effective in treating BRAF
mutation-harboring PTC as a single therapy. It seems to be
more likely that BAY 43-9006, as a potent multityrosine ki-
nase inhibitor, will be an effective drug for RET/PTC-har-
boring PTC because RET/PTC is a constitutively activated
tyrosine kinase. This notion is supported by a recent study
demonstrating potent inhibition of RET/PTC-transfected
NIH3T3 cells and PTC cells that naturally harbored RET/
PTC by this compound (104, 166). For BRAF mutation-har-
boring thyroid cancers, targeting the downstream MEK in
the MAPK pathway with specific inhibitors may prove to be
an effective alternative approach. Several specific and potent
MEK inhibitors have been developed in recent years and are
now available for clinical trials as will be discussed in Section
VI.B.

B. MEK inhibitors as highly promising therapeutic agents
for thyroid cancer

Great efforts have been made in recent years to develop
strategies targeting MEK with anticancer drugs to suppress
the MAPK pathway signaling (22, 25, 167–170). Much of what
is known about the clinical potential of MEK inhibitors has
been from the studies of CI-1040 compound, the first MEK
inhibitor to enter clinical trials. CI-1040 is a potent small-
molecule MEK-selective inhibitor, which inhibits both
MEK-1 and MEK-2, and was first demonstrated to inhibit
colon tumor growth in mice several years ago (171). Subse-
quent studies have demonstrated the inhibitory effects of this
compound on human cancer cell lines and animal tumor
models of diverse origins (172–175). Phase I (176) and phase
II (177) clinical trials on CI-1040 have been recently com-
pleted on patients with various advanced cancers, including
non-small-cell lung, breast, colon, and pancreatic cancers.
Disappointingly, however, no significant antitumor activity
of CI-1040 in these two clinical trials was demonstrated.
Insufficient potency and bioavailability may have potentially
contributed to the negative results but did not seem to ex-
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plain completely the discrepancy in the results on CI-1040
between the preclinical and clinical studies. An interesting
recent study demonstrated that MEK inhibitors, including
the CI-1040 compound, could preferentially inhibit the
growth and proliferation of cell lines or tumor xenografts
derived from various human cancers that harbored BRAF
mutation (175). It was concluded that BRAF mutation pre-
dicted sensitivity of human cancer cells to MEK inhibitors.
This may at least partially explain the failure of CI-1040 to
show significant antitumor effects in the two clinical trials
because the cancers studied generally infrequently harbor
BRAF mutation. In fact, disease stabilization with CI-1040
was observed in some patients in the two clinical trials (176,
177), and in one of them (177), a nearly significant association
of disease stabilization by CI-1040 with baseline phosphor-
ylation level of ERK in the tumor was observed (P � 0.055).
This result raises the possibility that a high activity of the
MAPK pathway, such as that achieved with BRAF mutation,
may be a prerequisite for MEK inhibitors to exert therapeutic
effects.

This BRAF mutation-sensitized effect of CI-1040 in other
human cancers was recently reproduced in thyroid cancer
cells (178). In this study, it was shown that CI-1040 inhibited
the growth and proliferation of thyroid cancer cells harbor-
ing mutant BRAF but not wild-type BRAF. The study also
showed that the CI-1040 compound preferentially induced
the differentiation of some thyroid cancer cells that harbored
BRAF mutation. Preferential inhibition of BRAF mutation-
harboring thyroid cancer cells was in fact also shown with
another MEK inhibitor, U0126, in a previous study by Namba
et al. (40), which was confirmed in a recent study by Hen-
derson et al. (179). This drug, however, cannot be developed
clinically due to its limited solubility and bioavailability (22,
170). Thyroid cancer cells harboring the Ras mutation that
was associated with activated MAPK pathway also re-
sponded well to the inhibitory effects of CI-1040 (178). This
result is consistent with the finding that the BRAF inhibitors
AAL-881 and LBT-613 could inhibit MAPK pathway signal-
ing, promoted by conditional expression of either BRAF mu-
tant or Ras mutant, in PCCL3 rat thyroid cells (103). There-
fore, in thyroid cancer, MEK inhibitors may be effective in
both BRAF and Ras mutation-harboring cancer cells. In ovary
cancer cell lines, it was similarly found that CI-1040 prefer-
entially inhibited the proliferation of cells harboring activat-
ing mutant BRAF or Ras but not wild-type BRAF or Ras (174).
The data are therefore compelling that MEK is a potentially
effective therapeutic target in thyroid cancer in which the
MAPK pathway is activated by upstream mutations such as
BRAF and Ras mutations. More potent and pharmaceutically
superior second-generation MEK inhibitors are currently un-
der development and clinical trial, such as the PD-0325901
compound (22, 25, 167, 168, 170) and the ARRY-142886
(AZD6244) compound (22, 170). The PD-0325901 compound
is structurally similar to CI-1040 but has greatly improved
potency with an IC50 of only 1 nm against both MEK1 and
MEK2 (170). It also has great biopharmaceutical superiority
over CI-1040, and preliminary results from early clinical
studies on this drug in patients with solid tumors are prom-
ising (22, 170). Like CI-1040, PD-0325901 also showed strong
BRAF mutation preferentiality in its potent inhibition on

cancer cells and xenograft tumors (175). This BRAF mutation-
selective effect of PD-0325901 was similarly seen in thyroid
cancer cells (D. Liu and M. Xing, unpublished data). The
ARRY-142886 (AZD6244) compound also displays great po-
tency and showed promising preliminary results in clinical
trials on other cancers (22, 170). This MEK inhibitor was
shown to selectively inhibit BRAF and Ras mutation-harbor-
ing cancer cells (180). BRAF mutation-selective inhibition of
thyroid cancer cells and xenograft tumors by this compound
was also demonstrated recently (181). In contrast, the MEK
inhibitors discussed here uniformly showed no or only a
minimal effect on the proliferation of RET/PTC-harboring
thyroid cancer cells in different studies (40, 178, 179, 181; D.
Liu and M. Xing, unpublished data), consistent with their
BRAF mutation preferentiality over RET/PTC. This interest-
ingly echoes the preferential association of BRAF mutation
with poorer clinicopathological outcomes of PTC discussed
in previous sections. These new MEK inhibitors showed
excellent patient tolerability and toxicity profiles in the early
clinical trials (22, 170), but this needs to be confirmed in more
extensive clinical studies. Given the high prevalence of BRAF
and Ras mutations in thyroid cancer, MEK inhibitors hold
great promise as novel and potentially effective therapeutic
agents for this cancer. It is anticipated that clinical trials on
some of these agents in thyroid cancer will occur in the near
future, particularly on those that have been documented to
be safe in clinical trials on other cancers. Such trials may be
reasonably conducted first on progressive PTC and ATC that
are positive for BRAF mutation and have lost radioiodine
avidity.

C. Restoring the expression of thyroid iodide-metabolizing
genes by suppressing MAPK pathway

The recently demonstrated correlation of BRAF mutation
with the loss of or decreased expression of a number of
thyroid iodide-metabolizing genes, including NIS, TSHR,
TPO, Tg, and pendrin genes in PTC strongly suggests that
suppression of the BRAF/MEK/MAPK signaling may be
able to restore expression of these genes and therefore pro-
vide a novel therapeutic approach in conjunction with ra-
dioiodine therapy. As discussed in previous sections, several
recent studies have demonstrated the restorability of these
genes, to various extents, in thyroid cancer cells by inhibiting
the BRAF and MAPK pathway using either BRAF siRNA or
specific MEK inhibitors (79, 147, 178). The restorability of
expression of NIS was particularly encouraging because it
plays a central role in iodide uptake of thyroid cells. Because
loss of radioiodine avidity is a major cause for failure of
radioiodine treatment of thyroid cancer and is associated
with BRAF mutation in PTC (79, 83, 97), therapy targeted at
suppression of BRAF and MAPK pathway, such as the use
of MEK inhibitors, in conjunction with conventional radio-
iodine ablation therapy may be particularly effective in treat-
ing PTC. Because aberrant methylation of some of the thyroid
genes is an important mechanism in their silencing in thyroid
cancer (116, 117, 147, 150, 151, 182), use of demethylating
agents in conjunction with inhibitors of the MAPK pathway
might be synergistically effective in restoring expression of
thyroid genes, an attractive possibility that is to be tested. T4
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withdrawal or the use of recombinant TSH to increase TSH
level are routinely used in the radioiodine treatment of thy-
roid cancer to enhance the uptake of radioiodine and hence
the efficacy of treatment. This strategy could be even more
effective in enhancing the efficacy of radioiodine treatment
if combined with the use of MEK inhibitors to increase the
expression of TSHR, which is commonly decreased in thy-
roid cancer (142–145). It remains to be seen whether such
therapeutic strategies directed both at inhibiting cell growth
and at the restoration of iodide-metabolizing genes may be
of particular benefit in those patients whose thyroid cancers
have lost radioiodine avidity and are currently incurable.

D. Targeting multiple signaling pathways in aggressive
thyroid cancers

ATC and poorly differentiated thyroid cancers are the
most aggressive thyroid cancers and account for a major
portion of thyroid cancer-associated mortality. Currently,
there is virtually no cure for these cancers. In addition to
BRAF mutation, ATC also frequently harbor one or more
genetic alterations in the phosphoinositol-3 kinase (PI3K)/
Akt pathway, including PIK3CA mutations and amplifica-
tion, PTEN mutations, and Ras mutations (183–186; D. Liu
and M. Xing, unpublished data). The PI3K/Akt pathway
plays an important role in the pathogenesis and progression
of human cancers (187, 188). Targeting this pathway is an-
other important strategy in the current development of novel
treatments for human cancers, including thyroid cancer.
Overlap of BRAF mutation with genetic alterations in the
PI3K/Akt pathway was common in ATC (183, 184; D. Liu

and M. Xing, unpublished data). Interestingly, the rate of
such overlap of BRAF mutation with PI3K/Akt pathway-
related genetic alterations increased as thyroid tumor pro-
gressed from low grade to a more aggressive form (184).
Therefore, simultaneous targeting of both the MAPK path-
way and PI3K/Akt pathway using specific inhibitors may be
a more effective, and perhaps necessary, approach in treating
this lethal cancer. Inclusion of the multikinase inhibitor BAY
43-9006 in such a combination therapy would likely enhance
the therapeutic efficacy. As discussed in previous sections,
BRAF mutation is coupled to several other tumor-promoting
molecular pathways, including the VEGF, MMP, NF-�B, and
c-Met systems. It is likely that the PI3K/Akt pathway is also
coupled to multiple signaling pathways that are yet to be
identified. It is conceivable that targeting these pathways
could also be therapeutically effective for thyroid cancer
depending on their dominance level in the pathogenesis of
thyroid cancer. As the molecular events and signalings cou-
pled to MAPK and PI3K/Akt pathways become more clearly
dissected, an effective combination therapy using combined
inhibitors targeting at multiple molecular pathways may
become possible for aggressive and lethal thyroid cancers.

VII. Concluding Remarks

From numerous clinicopathological and molecular stud-
ies, it is clear that BRAF mutation plays a fundamental role
in the pathogenesis of PTC. Recent data support the notion
that BRAF mutation not only initiates PTC, but also main-
tains and promotes the progression and aggressiveness of

FIG. 4. Summary of the molecular events and pathways involved in BRAF mutation-promoted PTC aggressiveness and recurrence. These
include overexpression of tumor-promoting molecules such as VEGF, MMPs, NF-�	, and c-Met, silencing of tumor suppressor genes, and
silencing and malfunction of thyroid iodide-metabolizing molecules. Aberrant gene methylation plays an important role in some of these
molecular events. Additional unidentified molecular events and pathways that are linked to BRAF mutation are also expected to exist as
indicated. DAPK, Death-associated protein kinase.
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PTC. Its unique predictive value for aggressive pathological
characteristics and for clinical progression and recurrence of
PTC may make BRAF mutation a useful prognostic marker
that can be applied to managing patients with PTC. As il-
lustrated in Fig. 4, several molecular bases of BRAF mutation-
associated progression and aggressiveness of PTC have been
revealed recently, which include down-regulation of major
tumor suppressors and important thyroid-specific molecules
as well as up-regulation of tumor-promoting molecules and
pathways. This prognostic molecular marker may be a useful
guide for the management of PTC even before thyroid op-
eration and continue to be so in the posttreatment follow-up
of the patient. Although there is not yet an agreement on how
BRAF mutation as a prognostic marker can be specifically
used, it will likely have an impact on the management of PTC
patients in the clinic. A prospective multicenter study, in-
volving both endocrinologists and surgeons, would best
evaluate the value of this novel molecular marker in the
surgical and medical management of PTC patients. The
strong therapeutic potential of targeting the MAPK pathway
represents another exciting dimension that BRAF mutation
may add to thyroid cancer medicine. Clinical trials on related
novel and promising agents for treating thyroid cancer are
being eagerly awaited and may fundamentally affect the
current treatment of thyroid cancer. In particular, potent
MEK inhibitors may prove to be the first effective therapeutic
agents for thyroid cancer. Perhaps the day when an effective
treatment for aggressive and lethal thyroid cancer, such as
PTC with advanced stages and aggressive ATC that have lost
radioiodine avidity, will be available is not too far away.
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