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Type 2 diabetes and cardiovascular disease represent a
serious threat to the health of the population worldwide.
Although overall adiposity and particularly visceral adi-
posity are established risk factors for these diseases, in the
recent years fatty liver emerged as an additional and inde-
pendent factor. However, the pathophysiology of fat accu-
mulation in the liver and the cross-talk of fatty liver with
other tissues involved in metabolism in humans are not fully
understood. Here we discuss the mechanisms involved in

the pathogenesis of hepatic fat accumulation, particularly
the roles of body fat distribution, nutrition, exercise, ge-
netics, and gene-environment interaction. Furthermore,
the effects of fatty liver on glucose and lipid metabolism,
specifically via induction of subclinical inflammation and
secretion of humoral factors, are highlighted. Finally, new
aspects regarding the dissociation of fatty liver and insulin
resistance are addressed. (Endocrine Reviews 29: 939–960,
2008)
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I. Introduction

THE EPIDEMICS OF obesity, metabolic syndrome, type
2 diabetes, and atherosclerosis are increasing world-

wide (1). Nonalcoholic fatty liver disease (NAFLD), for a long
time unnoted in the metabolic field, is becoming recognized
as a condition possibly involved in the pathogenesis of these
diseases. Support for this hypothesis emerges from studies
revealing that NAFLD precedes the manifestation of the
metabolic derangements (2–4). Today, with a prevalence of
about 34% in the United States among adults (5), NAFLD is
the most common cause of chronic liver disease, constituting
a major risk factor for progression to liver failure, cirrhosis,
and hepatocellular carcinoma (6–8). Particularly alarming
are the data showing that NAFLD has become the most
common cause of liver disease in children (9). Therefore, and
because the prevalence of the metabolic syndrome as well as
type 2 diabetes continuously rises in children (10–12), a con-
certed effort of the academic disciplines is requested to study
the pathophysiology of fatty liver. Furthermore, the conse-
quences of fatty liver for metabolism need to be carefully
investigated. Novel findings from the research in this field
may help to implement intervention strategies aimed at pre-
venting and reversing fat accumulation in the liver, as well
as its complications.

II. Prevalence and Diagnosis of Fatty Liver

A. Prevalence of fatty liver

The term NAFLD is used to describe a condition of fat
accumulation in the liver in the absence of excessive alcohol
consumption (less than 20 g/d) and specific causes of hepatic
steatosis. Among them, nutritional (e.g., malnutrition, rapid
weight loss), metabolic (e.g., abetalipoproteinemia, lipodys-
trophy), and drug-induced (e.g., glucocorticoids, methotrex-
ate) causes as well as other conditions (e.g., jejunal divertic-
ulitis with bacterial overgrowth, inflammatory bowel
disease) are relevant.
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A number of epidemiological studies converge in raising
the prevalence of fatty liver, measured by proton magnetic
resonance spectroscopy (1H-MRS), to more than 30% of the
adult general population (5, 13). Fatty liver is more frequent
among obese subjects (75%) compared with controls (16%)
(14) and among patients with type 2 diabetes (34–74%),
whereas it is an almost universal finding in obese patients
with type 2 diabetes (15). The prevalence of fatty liver is
increasing with age. Nevertheless fatty liver is found even in
children and that with increasing rates. Recent data indicate
a doubling of the prevalence from 2.6% a decade ago (16) to
5% of normal-weight children, 38% of obese children (17),
and 48% of children with type 2 diabetes (18). This makes
fatty liver the most common chronic liver disease in west-
ernized societies (15). In particular, males and certain ethnic
groups, e.g., Hispanics (5) and Asian-Indians (19), tend to
have higher rates of fatty liver.

B. Imaging techniques and histology

The American Association for the Study of Liver Diseases
(AASLD) set the limit for the diagnosis of NAFLD at fat
accumulation in the liver of at least 5–10% by weight. For
practical use, NAFLD is estimated as the percentage of fat-
laden hepatocytes observed by light microscopy in liver bi-
opsy (20). Because 1H-MRS, which is considered the most
accurate noninvasive method for measuring liver fat, is more
often applied, the cutoff limit has been set to 5.56% (hepatic
triglyceride level of 55.6 mg/g), corresponding to the 95th
percentile of the distribution of liver fat in 345 healthy sub-
jects with no or minimal alcohol consumption (13). Further-
more, computed tomographic (CT) scanning for the low-
density hepatic parenchyma, which is produced by the fat
infiltration of the liver, can be used to estimate the amount
of fat accumulation in the liver (7). Ultrasonography, the
method that is most widely used, allows detecting moderate
and severe steatosis with a fair sensitivity and specificity only
when fat on liver biopsy exceeds 33% (21). Histologically, the
liver of patients with NAFLD displays predominantly ma-
crovesicular and microvesicular fat accumulation in hepa-
tocytes. More severe states involving mononuclear cell in-
filtration and hepatocyte necrosis constitute steatosis with
inflammation [nonalcoholic steatohepatitis (NASH)]. NASH
may particularly advance to liver fibrosis, cirrhosis, and hep-
atocellular carcinoma (7, 22). NAFLD and NASH represent
advanced stages of hepatic steatosis that are associated with
metabolic diseases. However, findings from studies using
very precise imaging techniques such as 1H-MRS, which
allows detection of fat accumulation in the liver in early
stages of steatosis, suggest that already moderate hepatic fat
accumulation is associated with multiple metabolic pheno-
types (5). Thus, a “low-grade fatty liver syndrome” may
exist.

C. Laboratory and clinical findings

Up to 70% of patients with fatty liver do not show labo-
ratory abnormalities (5, 7, 21–23). An increase in serum levels
of liver alanine aminotransferase, which correlates with liver
fat independently of adiposity, and to a lesser degree aspar-

tate aminotransferase can be found (24, 25). Serum alkaline
phosphatase and �-glutamyltransferase are also associated
with liver fat independent of adiposity (26). However, they
are not more helpful than aminotransferases for diagnosing
steatosis or NASH (7). In general, elevation of liver enzymes
can only be used as a crude estimate of the presence of fatty
liver. Most patients with liver steatosis or NASH are asymp-
tomatic and have no signs of liver disease at the time of
diagnosis. When present, symptoms and findings are non-
specific and do not correlate well with the severity of the
disease. Most commonly, fatigue or malaise and a right up-
per quadrant pain or sensation of fullness are reported. In
addition, hepatomegaly can be found in physical examina-
tion (7, 27). Other findings relate to the presence of over-
weight or obesity and other features of the metabolic syn-
drome. Acanthosis nigricans, which was earlier found in the
context of severe insulin resistance (28, 29), is present almost
only in children (27, 30). Finally, cirrhosis exhibits signs and
symptoms of decompensated liver disease, independent of
the original cause. Altogether the diagnosis of fatty liver can
be established with a combined approach involving clinical
assessment including a careful history and physical exami-
nation, laboratory evaluation, imaging techniques, and liver
biopsy. More specifically, when clinical, routine laboratory,
or anthropometrical findings show abnormalities that are
often associated with fatty liver, ultrasonography and spe-
cific laboratory tests are commonly used to diagnose liver
diseases. Regarding fatty liver, other causes need to be ex-
cluded. CT scan, magnetic resonance (MR) tomography, 1H-
MRS, and to a lesser extent ultrasonography allow the non-
invasive diagnosis of fatty liver. When there are additional
findings suggesting NASH or fibrosis (age � 45 yr, alanine
aminotransferase/aspartate aminotransferase ratio � 1, vis-
ceral obesity, high triglycerides), a liver biopsy to estimate
the severity and the prognosis of the disease, as well as to
monitor the effectiveness of an intervention, may be useful.

Regarding the treatment of NAFLD, patients should avoid
alcohol and other hepatotoxins. The goal of treatment is to
reduce steatosis and prevent the development of fibrosis,
which may lead to cirrhosis and its complications. Because
the progression of NAFLD to more severe clinical conditions
may be affected by obesity, the metabolic syndrome, and
insulin resistance, these states have been the focus of treat-
ment. In particular, moderate lifestyle intervention is con-
sidered the first-line therapy (15, 31, 32). Numerous clinical
trials with pharmaceutical agents have been undertaken in
the last few years; however, there is no final consensus on the
effectiveness of such a treatment (33, 34). Agents affecting
redistribution of body fat (thiazolidinediones), insulin sen-
sitivity (thiazolidinediones and metformin), lipid oxidation
and food intake (cannabinoid receptor-1 antagonists), and
hepatoprotective drugs (ursodeoxycholic acid, betaine, vita-
min E) have been tested. Particularly, thiazolidinediones
were found to be effective in the treatment of NAFLD and
NASH (35). Pilot studies further reveal a potential role of the
nonselective phosphodiesterase inhibitor pentoxifylline,
which reduces transcription of the TNF gene, in the treat-
ment of NASH (36, 37).
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III. Causes of Fatty Liver

A. Body fat composition, hepatic lipid supply, and
adipokines

It is widely accepted that behavioral factors are involved
in the pathophysiology of fatty liver. In this aspect, an in-
creased energy intake is considered to represent a major
player. In addition, diet composition was found to be rele-
vant. Furthermore, studies showed that a sedentary lifestyle
with reduced physical activity, independent of diet, repre-
sents another determinant for fatty liver. Although these risk
factors may successfully be modified by moderate lifestyle
interventions, the existence of other risk factors most prob-
ably may necessitate more intense treatment. Among them,
a disproportionate fat distribution, particularly with in-
creased visceral adiposity releasing humoral factors regu-
lating liver fat, are relevant. Finally, impaired hepatic lipid
oxidation as well as dysregulated lipogenesis, factors that are
affected by genetics, may be of pathophysiological relevance
(Fig. 1).

Liver fat measured by 1H-MRS is closely and positively
correlated with measures of total adiposity such as body
mass index (BMI) or percentage body fat. Furthermore, the
correlation of liver fat with visceral adiposity, measured as
waist circumference, is particularly strong. In most studies,
the latter association remains statistically significant after
adjustment for BMI and is stronger than the relationship
between liver fat and BMI (38–40). Even stronger are the
correlations between liver fat and visceral adipose tissue
(VAT) mass, quantified by means of computed (41) or MR
tomography and 1H-MRS (24, 42, 43). Of note, in multivariate
analyses with gender, age, waist-to-hip ratio, and VAT as
independent variables, only VAT is significantly correlated
with liver fat (42). Both, in univariate and multivariate anal-

yses, the respective correlation coefficients generally range
between 0.54 and 0.65, suggesting that 30 to 40% of the
variation in liver fat content can be explained by the vari-
ability in VAT (44). The impact of other body fat compart-
ments, as sc abdominal fat or fat of the extremities, remains
to be studied.

A mechanism possibly explaining the relationship of over-
all and visceral obesity with liver fat is inflammation of
hypertrophic adipose tissue. When adipose tissue expands,
it becomes infiltrated by macrophages and overflows with
proinflammatory cytokines and probably, therefore, is insu-
lin resistant (45–47). The impairment of insulin-mediated
suppression of lipolysis then results in an increased release
of free fatty acids (FFAs) from adipose tissue (48, 49). In this
aspect, VAT is of special importance because it is metabol-
ically more active than sc adipose tissue (50, 51). The in-
creased lipolysis in VAT is thought to result in an elevated
flux of FFAs directly into the portal vein and the liver, a
process that is commonly referred to as the “portal hypoth-
esis” (48). FFAs are then taken up by the hepatocytes and are
bound to coenzyme A (CoA). The fatty acyl CoAs (FACoAs)
can react to form hepatic triglycerides but can also interfere
with insulin signaling (52). Furthermore, FACoAs can induce
intracellular inflammation by stimulating the nuclear factor
�B (NF-�B) (53). Moreover, FFAs are ligands of the mem-
brane-bound toll-like receptor 4 and can induce insulin re-
sistance and inflammation virtually by the same intracellular
mechanisms, without being converted to FACoAs (54–56).

Hepatic inflammation was previously considered to pro-
mote steatosis (57); however, this concept is not supported by
other studies (58, 59). In mice selectively expressing active
inhibitor �B kinase, which stimulates nuclear translocation
and expression of NF-�B and NF-�B target genes, liver fat is
not increased but is reduced (59).

FIG. 1. Major determinants of fatty liver.
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The “portal hypothesis” was challenged when the contri-
bution of VAT lipolysis to the pool of FFAs drained into the
liver, measured by isotope dilution and arteriovenous sam-
pling methods, was found to be only 5–10% in normal-
weight subjects and only up to 25% in viscerally obese in-
dividuals (60). The main origin of the FFAs in the systemic
plasma pool in the fasting state is considered to be sc fat (60,
61). Whereas in the fasting state hepatic fatty acids originate
predominantly from the systemic plasma FFA pool (62), the
portal FFA supply to the liver may be substantially increased
postprandially (63). Nevertheless, irrespectively of the origin
of the FFAs, increased hepatic lipid supply is most probably
contributing to hepatic fat accumulation (31, 49) (Fig. 2). This
hypothesis is further supported by studies showing that
exogenous lipid infusion and high-fat diet increase liver fat
content and hepatic insulin resistance, whereas low-fat diets
and treatment with fatty acid-lowering medication have the
opposite effects (32, 49).

Furthermore, inflamed adipose tissue in obesity secretes
high amounts of proinflammatory cytokines as TNF-� and
ILs, particularly IL-6 (45–47), which suppress the production
of the insulin-sensitizing adipokine adiponectin (64, 65). The
imbalance in the secretion pattern of these adipocytokines is
considered to represent another link between obesity and
fatty liver (49). Although plasma levels of TNF-� and IL-6 are
increased in obesity (47, 66, 67), they are low compared with
their tissue concentrations (68, 69). In particular, TNF-� is
likely to have predominantly paracrine effects in terms of
increasing insulin resistance in the adipose tissue (31, 47). In
contrast, circulating adiponectin closely correlates with liver
fat content (43, 70) and hepatic insulin resistance (70). Fur-
thermore, treatment with thiazolidinediones, which increase
circulating adiponectin, results in a decrease in liver fat con-
tent (35). In addition, genetic variability in the adiponectin
receptor gene affects hepatic fat accumulation (71), support-
ing the important role of adiponectin signaling in the patho-
physiology of fatty liver in humans. Mechanisms of adi-
ponectin action include increase in lipid oxidation in liver
and skeletal muscle via activation of AMP-activated protein

kinase (AMPK) and induction of peroxisome proliferator-
activated receptor (PPAR)-� (65, 72, 73). Furthermore, adi-
ponectin decreases the activity of enzymes involved in fatty
acid synthesis as acetyl-CoA carboxylase and fatty acid syn-
thase (74).

Leptin is considered another important regulator of liver
fat, although the mechanisms of the protective effect of this
adipokine are not fully understood. Besides the hypotha-
lamic effects of leptin in the regulation of food intake, it most
probably has direct antisteatotic effects by enhancing lipid
oxidation and inhibiting lipogenesis in tissues (75). This hy-
pothesis is supported by data from studies with adminis-
tration of recombinant adenovirus-receptor constructs con-
taining the normal leptin receptor in obese Zucker diabetic
fatty rats. Because most of the infused adenovirus-receptor
construct is taken up by the liver, the reduction in hepatic
triglycerides under treatment is thought to be predominantly
mediated by direct antisteatotic effects of endogenous lep-
tinemia (75). However, effects of this intervention on other
tissues cannot be ruled out.

In line with findings from studies on lipoatrophy (76), both
aforementioned hypotheses, the hepatic FFA oversupply and
altered adipokine release, suggest that fat distribution may
strongly be involved in the pathogenesis of hepatic steatosis.
More specifically, it is hypothesized that when sc adipose
tissue is absent or deficient, the excess of calories cannot be
stored in this insulin-sensitive tissue. Thus, expansion of
visceral fat mass, as well as ectopic fat accumulation in liver
and skeletal muscle results from the inability of the body to
adequately store energy, a state that is driven by insulin
resistance of sc adipose tissue (77). Fatty liver would then
rather be secondary to peripheral insulin resistance.

Whether hyperinsulinemia is only an innocent bystander,
resulting from skeletal muscle insulin resistance-mediated
hyperglycemia and thus, insulin hypersecretion from the
�-cells, or whether it may also contribute to the pathogenesis
of liver fat accumulation has been a matter of discussion.
Insulin is a potent activator of sterol-regulatory binding pro-
tein 1c (SREBP-1c), a transcription factor regulating the ex-

FIG. 2. Pathophysiology of fatty liver. Among the
mechanisms involved in the pathophysiology of
fatty liver, hyperglycemia and hyperinsulinemia
are considered to induce lipogenesis via ChREBP
and SREBP-1c, respectively, thereby increasing
the hepatic pool of FACoA. This pool is also in-
creased by increased delivery of FFA through ei-
ther the diet or lipolysis in adipose tissue. FA-
CoAs are assembled to triglycerides (TG) that
remain in the liver or are secreted in the form of
VLDLs. The latter pathway is regulated by sev-
eral factors, among them the two enzymes
stearoyl-CoA-desaturase (SCD) and acyl:CoA:D-
GAT2, as well as the MTP and the availability of
apolipoprotein B. FACoAs can also be oxidized in
the liver, involving the transcription factors
PPAR� and PPAR�. In addition, the AMPK is
involved. The adipokine adiponectin stimulates
fatty acyl oxidation via AMPK activation and
PPAR� induction. AMPK is also involved in the
suppression of lipogenesis. Furthermore, bile ac-
ids activate the FXR that inhibits SREBP-1c. The
role of insulin signaling in the pathophysiology of
fatty liver needs to be elucidated further.
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pression of enzymes involved in the synthesis of fatty acids
in the liver (31, 49, 78, 79) (Fig. 2). At first view, it seems
contradictory that in hepatic insulin resistance, which is
strongly associated with hepatic steatosis (44, 49, 80), insulin
may still be able to stimulate lipogenesis. However, in the
presence of profound insulin resistance in animals, insulin
does stimulate hepatic SREBP-1c transcription. This is asso-
ciated with increased rates of de novo lipogenesis (DNL) (81,
82), possibly mediated by a mechanism involving Foxa2 sig-
naling (83–85). Alternatively, as discussed by Biddinger et al.
(86), DNL may also become insulin resistant but may be
stimulated by other factors such as carbohydrates.

In this aspect, glucose activates carbohydrate response
element-binding protein (ChREBP), which exerts, similarly
to SREBP-1c, stimulatory effects on the expression of genes
involved in lipogenesis and triglyceride synthesis (79, 87, 88).
ChREBP also stimulates pyruvate kinase, thus increasing the
glycolysis of glucose into pyruvate, which forms acetyl-CoA
and then malonyl-CoA, which is required for FFA synthesis
(89). The activities of both transcription factors (ChREBP and
SREBP-1c) are increased in animal models of fatty liver (81,
90) (Fig. 2).

Support from data in humans showing that hyperinsulin-
emia alone is not a major driving force for fat accumulation
in the liver comes from a study in patients with type 2
diabetes. In that study, 7 months of insulin therapy resulting
in systemic hyperinsulinemia actually was found to decrease
liver fat content (91). Furthermore, a study addressing the
effect of high-fat, low-carbohydrate vs. low-fat, high-carbo-
hydrate diets on hepatic DNL in lean, obese insulin-sensitive
and obese insulin-resistant subjects shows a major effect of
carbohydrate intake on lipogenesis (92). On the high-fat diet,
DNL increases only in obese, insulin-resistant subjects (but
not in obese, insulin-sensitive subjects), supporting the find-
ing that hyperinsulinemia is involved in DNL in humans.
Moreover, and of particular importance, on the high-carbo-
hydrate diet DNL is highest in lean insulin-sensitive subjects,
and hyperinsulinemia has no additional effect on DNL. Al-
together, these human data support, first, that hepatic DNL
is up-regulated in insulin resistance; and second, that intake
of carbohydrates has a more profound effect than hyperin-
sulinemia. Certainly, further studies are needed to precisely
clarify the magnitude of these effects in human metabolism.

B. Nutrition

Nutritional factors affect the hepatic fatty acid pool in
several ways. Dietary fatty acids enter the liver either
through the uptake of intestinally derived chylomicron
remnants or in the form of FFA from chylomicrons hy-
drolyzed at a rate in excess of what can be taken up by
tissues (spillover) (62, 79). Dietary glucose, as mentioned
above, and fat are important regulators of DNL via acti-
vation of ChREBP and SREBP-1c (79, 87, 88). Postprandi-
ally, both dietary fat supply to the liver and DNL increase
and can provide more than 50% of the FFAs entering the
liver (63). In the fasting state, DNL accounts for less than
5% of hepatic fatty acids in healthy subjects (93), but li-
pogenesis may substantially increase in subjects with fatty
liver (62, 94). Moreover, it is likely that the fatty acid

pattern modulates the activity of ChREBP and SREBP-1c,
with saturated and trans-unsaturated FFAs increasing and
mono- as well as polyunsaturated FFAs decreasing their
expression and activity (95–98).

In human studies, individuals with fatty liver have higher
intake of calories as well as saturated fat and cholesterol
compared with healthy controls. They also have lower intake
of polyunsaturated fat, fiber, and antioxidant vitamins such
as vitamin C and E (99–101). In trials with only caloric re-
striction in severely obese individuals, an improvement in
liver enzymes and in liver steatosis is found in those subjects
who lost weight (102, 103). Furthermore, a low-calorie diet is
associated with improvement in liver histology in over-
weight patients with NASH (104). In intervention studies
investigating the effect of fat intake, high-total fat diets cause
an increase in liver fat content. In contrast, low-fat diets result
in a decrease in liver fat content as well as in markers of
insulin resistance. These effects occur under isocaloric (105)
as well as hypocaloric diets (106–108). The restriction of
saturated fat intake is particularly effective (108, 109). Many
of these studies are relatively small and do not assess the
effects of such diets on the improvement in liver fat content
using precise measurement techniques such as histology,
1H-MRS, or CT scans. Nevertheless, strategies aimed at
weight reduction by restriction of total and saturated fat
intake, combined with an increase in physical exercise, are
now considered to constitute the most appropriate initial
treatment for fatty liver (15, 32). A moderate weight loss by
5–10% of baseline weight or 0.5–1.5 kg/wk is recommended
(31, 34). This is important because rapid weight loss was
found to deteriorate liver histology, possibly due to in-
creased lipolysis (15, 31, 110).

There are also human studies supporting the findings in
animals regarding the role of dietary carbohydrates in the
pathophysiology of fatty liver (111–113). A low-carbohy-
drate, ketogenic diet (�20 g/d) is associated with a greater
weight loss, a better lipid profile, and clearly improved ste-
atosis and inflammation in liver biopsies after 6 months than
low-fat diets (113). Among the carbohydrates, fructose ap-
pears to have the strongest effects on lipogenesis (114, 115).
In a study in seven young healthy males, a high-fructose diet
for 6 d was found to increase the fractional hepatic DNL
6-fold as well as hepatic insulin resistance and plasma trig-
lycerides. Interestingly, fish oil supplementation reversed
dyslipidemia and tended to reduce DNL (116). However,
in another study a 4-wk high-fructose consumption (1.5
g/kg�d) resulted in an increase in plasma triglycerides, but
not in hepatic fat content, suggesting that the excess of trig-
lycerides formed in the liver was exported as very low-
density lipoprotein (VLDL) triglycerides (117). Because con-
sumption of high-fructose corn syrup has tremendously
increased in the last decades in the westernized world, it may
have contributed to the respective increase in the incidence
of fatty liver disease (118).

Other nutritional factors may also be of importance in the
pathophysiology of hepatic steatosis and hepatosteatitis. An-
tioxidant vitamins, because of their ability to prevent oxi-
dative stress and inflammation, may have beneficial effects
particularly in the pathogenesis of steatohepatitis and fibro-
sis. In support of this hypothesis, obese patients with NASH
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were found to consume less antioxidant vitamins C and E
compared with obese controls (100). In addition, vitamin E
supplementation as add-on treatment of NASH reduces liver
fat content (119, 120). However, these are rather small trials,
and the magnitude of the effect of vitamin supplementation
on liver fat still remains to be clarified.

Furthermore, agents regulating bile acid metabolism may
be important in the regulation of fat accumulation in the
liver. Bile acids, by binding to the G protein-coupled receptor
TGR5, or mBAR, induce PPAR� coactivator 1� (PGC-1�)
transcription, thereby increasing mitochondrial activity and
�-oxidation (121). Furthermore, bile acids via G protein-cou-
pled receptor increase cAMP production and activate the
cAMP-protein kinase A pathway, resulting in an increase of
cAMP-dependent thyroid hormone activating enzyme type
2 iodothyronine deiodinase (D2) activity. This enzyme con-
verts T4 to T3, which binds to thyroid hormone receptor
and uncouples electron transfer in the respiratory chain
from oxidative phosphorylation. Thus, this bile acid-TGR5-
cAMP-D2 signaling pathway increases energy expenditure
and oxygen consumption and finely regulates energy ho-
meostasis. These mechanisms are operative in the most ther-
mogenically important tissues in rodents (brown adipose
tissue) and humans (skeletal myocytes) (121, 122). Whether
such a mechanism also takes place in the human liver,
thereby possibly contributing to an increased oxidation of
fatty acids and reducing liver fat, is unknown.

In addition, bile acids are the major ligands of the farnesoid
X receptor (FXR) (Fig. 2), a nuclear receptor that plays a key
role in protecting the liver and the intestine against bile acid
toxicity (123, 124). In this context, FXR down-regulates cy-
tochrome P450 cholesterol 7a-hydroxylase (CYP7A1) gene
expression and thus, bile acid synthesis via up-regulation of
the atypical nuclear receptor small heterodimer partner
(SHP) (121, 125, 126). Another pathway leading to suppres-
sion of CYP7A1 involves bile acid-mediated activation of
FXR of the ileum, which induces the local expression of
fibroblast growth factor (FGF)-19 (FGF15 in rodents) (127,
128). FGF19 is absorbed in the bloodstream and is able to
activate FGF receptor isotype 4 in hepatocytes. Activated
FGF receptor isotope 4 represses CYP7A1 expression via a
c-Jun N-terminal kinase (JNK) pathway (127, 129–131). Liver
FXR also down-regulates expression of polypeptides acting
as bile acid import pumps, up-regulates bile acid export
pumps, and inhibits intestinal reabsorption of bile acids
(121, 127).

Furthermore, FXR has significant effects in modulating
postprandial energy metabolism and particularly lipopro-
tein metabolism (130). A natural FXR agonist, chenodeoxy-
cholic acid, has been known for several decades to reduce
plasma triglycerides in humans (132). In animals, both this
natural agonist (133) and the synthetic FXR agonist GW4064
reduce plasma triglycerides and the rate of VLDL produc-
tion, as well as blood glucose (134). Although the mechanism
of bile acid sequestrants (resins)-induced hypertriglyceride-
mia was unknown for a long time, recent findings indicate
that a reduction in FXR ligands is involved. The reduction of
triglycerides is, at least partially, attributed to the down-
regulation of SREBP-1c (133, 135) and up-regulation of
PPAR�, leading to a reduced hepatic fatty acid and triglyc-

eride synthesis and an increased fatty acid oxidation (121).
The latter effect may also be mediated by bile acid-induced
production of FGF19 (136). Another mechanism includes
induction of apolipoprotein C-II expression, which is a co-
activator of lipoprotein lipase, the enzyme that hydrolyzes
serum triglycerides (127, 137).

In addition, activation of FXR is associated with a decrease
in blood glucose. This effect is thought to be mediated by
suppression of hepatic gluconeogenetic genes (130, 138).
Therefore, it is reasonable to assume that an FXR agonist
could decrease liver fat as well as plasma triglycerides and
possibly glucose levels (139). On the other hand, an antag-
onist of FXR would be expected to lower low-density-li-
poprotein (LDL) cholesterol by promoting conversion of cho-
lesterol into bile acids (140). Furthermore, FXR activation
seems to decrease high-density lipoprotein (HDL) choles-
terol levels and regulate HDL remodeling. Possible mecha-
nisms include repression of apolipoprotein A-I gene, up-
regulation of hepatic scavenger receptor B1 (stimulation of
hepatic HDL uptake), and up-regulation of the phospholipid
transfer protein (125, 130, 139, 141, 142) and the cholesterol
ester transfer protein (121) genes. These data derive princi-
pally from animal studies but are in line with the known
moderate HDL cholesterol-increasing effect of bile acid se-
questrants. In any case, the precise effects of FXR on LDL and
HDL remain to be elucidated.

Liver X receptor (LXR, isoforms � and �) is another nuclear
receptor that is an attractive target for new drugs. LXR in
macrophages and in the liver plays a critical role for cho-
lesterol reverse transport (the transport of cholesterol from
macrophages to HDL particles and into the liver). Therefore,
agonists of LXR are emerging as drugs potentially reducing
atherosclerosis. However, they increase hepatic steatosis and
plasma triglyceride levels, possibly by up-regulating
SREBP-1c (125). It needs to be investigated whether selective
hepatic LXR antagonists could have favorable effects on liver
fat without accelerating atherosclerosis.

C. Exercise and mitochondrial function

It is still a matter of discussion whether there is a positive
direct effect of exercise on liver fat (108, 109, 143, 144). Ha-
bitual physical activity is negatively associated with liver fat,
independent of BMI (145, 146) but not independent of vis-
ceral adiposity (145). These data suggest that exercise inten-
sity is not an independent determinant of liver fat. In con-
trast, mitochondrial function, which can be estimated by
measurement of aerobic fitness, may be involved in the
pathophysiology of hepatic steatosis. The association of max-
imal aerobic capacity with liver fat was investigated in three
cross-sectional studies. In a relatively small study, no sig-
nificant difference in maximal aerobic capacity between sub-
jects with high vs. low liver fat was found (147). Two larger
studies showed a close relationship of aerobic fitness, both
with liver fat (148) and the prevalence of fatty liver (39). In
170 subjects, we found a strong predictive effect of high
fitness at baseline on the reduction in liver fat during a
lifestyle intervention (149). This effect was not only larger
than the impact of total or visceral fat on change in liver fat,
but it was also independent of these parameters, supporting
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the hypothesis that aerobic fitness and hepatic lipid metab-
olism have a common background. In agreement with this
assumption, in a recent study involving a cohort of 2603
adults that were followed up for a mean of 12 yr, fitness and
BMI predicted mortality, independent of several established
risk factors. Most notably, the effect of fitness was indepen-
dent of total and abdominal adiposity (150). As discussed the
effect of fitness on mortality may have been mediated by liver
fat (151).

Mechanisms explaining the relationship between fitness
and liver fat possibly include factors regulating hepatic lipid
oxidation (152–156). Fitness is associated with enlargement
of and increase in mitochondria in skeletal muscle and the
generation of type I fibers (157). These effects may be reg-
ulated by genetics (152). Indeed, genetic variability in
PGC-1� and PPAR� genes regulate mitochondrial function
and the response of fitness to physical activity (153). More-
over, the same single nucleotide polymorphism (SNP) in the
PPAR� gene (PPARD) is associated with change in liver fat
(158). Mitochondria play an important role in hepatocyte
metabolism, representing the primary site for the oxidation
of fatty acids and oxidative phosphorylation. Hepatocytes
are rich in mitochondria, occupying about 18% of the liver
cell volume (159). Thus, the aforementioned findings
strongly suggest that mitochondrial function is a major reg-
ulator of liver fat. In addition, when mitochondrial function
is impaired or even when an excess of substrate (FFA) is
available, as is often the case in fatty liver, reactive oxygen
species (ROS) can arise leading to oxidative stress, which is
thought to be important for the progress to NASH and fi-
brosis (83). In fact, multiple functional abnormalities and
even morphological changes have often been observed in
mitochondria of patients with NASH (160, 161).

D. Genetics

The role of genetics in the pathogenesis of body fat dis-
tribution has been elegantly described in animal models
(162). So far, there is not much information about the genetics
of fat distribution in humans. Beyond that, there is little
information about the impact of genetics, independent of
body fat distribution, in the pathophysiology of fatty liver. A
study in monozygotic twins even revealed that liver fat was
different among the siblings; however, the twins also dis-
played different levels of total and visceral adiposity (163).
On the other hand, the fact that the prevalence of fatty liver
is different between ethnic groups, e.g., higher in Hispanics
compared with European Americans and African-Ameri-
cans (5), suggests that the disease has a genetic component.

In recent years, microarray and PCR techniques for ana-
lyzing differential expression of genes in fatty liver and con-
trols were widely used. Several genes involved in pathways
of fatty acid metabolism in the liver such as uptake, de novo
synthesis, and oxidation of fatty acids as well as synthesis
and secretion of VLDL have been identified as candidates.
However, the results thus far are largely inconsistent and are
not replicated in large studies (164–170).

In contrast to the microarray approach determining
merely expression of genes in fatty liver, the investigation of
SNPs in candidate genes may be more promising in the

search for the impact of genetics. In this respect, the G/T SNP
at position �493 of the promoter of the gene encoding mi-
crosomal triglyceride transfer protein (MTP), a protein crit-
ical for the synthesis and secretion of VLDL, was found to be
associated with hepatic steatosis (171). Among factors af-
fecting fatty acid oxidation, adiponectin serum levels and
adiponectin signaling are of particular importance (64, 65).
We found that variants in the genes encoding adiponectin
receptor-1 (ADIPOR1) are associated with insulin sensitivity
and liver fat content, both in cross-sectional and longitudinal
analyses (71). The data on the impact of genetic variants of
ADIPOR1 on metabolism are supported by two other studies
showing an association of SNPs of ADIPOR1 with type 2
diabetes and the metabolic syndrome (172, 173). Such asso-
ciations were not found in a study including relatively lean
subjects (174). In agreement with the data showing that gene-
environment interaction is important for adiponectin signal-
ing in mice (175, 176), human studies suggest that the rela-
tionship of adiponectin and adiponectin signaling with
insulin sensitivity and liver fat are stronger with increasing
adiposity (43, 177–179).

As discussed above, mitochondrial dysfunction, which in
skeletal muscle is implicated in the pathogenesis of insulin
resistance and type 2 diabetes (180), could be a fundamental
abnormality in the process of liver fat accumulation (83, 159).
Mitochondrial biogenesis and activity are, among others,
transcriptionally regulated by PGC-1� and PGC-1� (181,
182). Expression of PGC-1� and PGC-1� is low under normal
conditions but is up-regulated under fasting conditions,
thereby activating fatty oxidation by induction of PPAR�
expression (183). Furthermore, PPAR� is considered to in-
teract with PGC-1� in regulating fatty acid oxidation. In a
recent study, the rs2267668 A/G SNP in PPARD was found
to be a determinant of mitochondrial function in cultured
myotubes and, together with the Gly482Ser SNP in the
PGC-1� gene (PPARGC1A), to be associated with the effect
of aerobic exercise training to increase aerobic fitness, an
effect probably mediated by mitochondrial function (153). In
agreement with the aforementioned hypothesis, the SNP in
PPARD was also associated with liver fat (158).

Among polymorphisms of other genes involved in fatty
acid oxidation, SNPs in the gene encoding the hepatic iso-
form of carnitine palmitoyltransferase were recently inves-
tigated. This enzyme regulates the transport of long-chain
fatty acids into mitochondria. However, no associations of
the SNPs with liver fat or type 2 diabetes were found (185).

Furthermore, hepatic lipase plays a central role in hepatic
lipid metabolism (186). In the hepatic lipase gene (LIPC), the
�514C/T SNP in the promoter is associated with decreased
activity of the enzyme (187) and with the plasma lipid profile
(188, 189). Carriers of the T allele of this SNP have higher liver
fat and insulin resistance, independent of established risk
factors for these disorders (190). Furthermore, this SNP dis-
plays gene-gene interactions with the common Pro12Ala
SNP of PPARG (190), which is well known to be involved in
the pathogenesis of type 2 diabetes and lipid metabolism
(191), and with the upstream transcription factor usf1s2 G/A
SNP (192), which is associated with familial combined hy-
perlipidemia and atherosclerosis (193, 194).

Another interesting candidate gene for fatty liver is the

Stefan et al. • Causes and Consequences of Fatty Liver Endocrine Reviews, December 2008, 29(7):939–960 945

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/29/7/939/2355109 by guest on 09 April 2024



circadian locomotor output cycles protein kaput (CLOCK)
gene. Clock mutant mice display hyperphagia, obesity, the
metabolic syndrome, and hepatic steatosis. In agreement
with the animal data, in humans, SNPs in the CLOCK gene
are associated with fatty liver and histological severity of
liver damage (195). Furthermore, the phosphatidyl-ethanol-
amine N-methyl-transferase gene (PEMT) catalyzing hepatic
de novo synthesis of phosphatidylcholine (196) may be in-
volved in the regulation of fat accumulation in the liver in
humans. PEMT knockout mice develop fatty liver under a
choline-deficient diet (197), and in humans a functional SNP
(V175M) is associated with fatty liver (198).

In summary, the genetic effects observed so far are rather
small. Once available genome-wide association studies, sim-
ilar to those that occurred in the field of type 2 diabetes (199)
and atherosclerosis (200), may reveal new and possibly more
important genes. Such efforts, however, are still limited by
the relatively small existing databases containing precise
measurements of liver fat and information about the diag-
nosis of NASH.

IV. Metabolic Consequences of Fatty Liver

A. Dyslipidemia

It has been shown convincingly that fatty liver is associ-
ated with insulin resistance, atherosclerosis, and the meta-
bolic syndrome (15, 44, 49, 201–204). Furthermore, fatty liver
predicts future cardiovascular events (3, 201). It is thought
that a pro-atherogenic serum lipid profile, which is com-
monly observed in subjects with fatty liver, is in part re-
sponsible for these relationships. This profile consists of low
HDL cholesterol and high triglyceride levels, small, dense
LDL particles, and high apolipoprotein B100 levels (4, 78,
205–208). An increased rate of hepatic triglyceride synthesis
and VLDL particle production, which secondarily results in
low HDL cholesterol and increased LDL particle density (78,
209, 210), is considered to be causative for this type of dys-
lipidemia. Furthermore, a decrease in lipoprotein lipase ac-
tivity may also be involved (211, 212). Although there is
evidence that insulin resistance is a strong underlying mech-
anism for this dyslipidemia (78, 207, 209, 210, 213–215), other
studies suggest that fat accumulation in the liver may also
have an independent effect on dyslipidemia. In the study by
Toledo et al. (206), plasma insulin was higher in subjects with
steatosis compared with controls, but insulin was much
weaker correlated with serum triglycerides than hepatic ste-
atosis. However, in that study hepatic insulin resistance was
not measured, leaving the question open whether liver fat
correlated with triglycerides also independent of hepatic in-
sulin resistance. Regarding HDL, not only quantitative, but
also qualitative and compositional alterations are related to
its antiatherogenic properties (216–219). Circulating HDL2
was particularly found to protect from atherosclerosis (220,
221). We could recently show that fatty liver correlates more
strongly with circulating HDL2 and the HDL2/HDL3 ratio
than with total HDL (222). Moreover, the correlation of liver
fat with HDL2 and the HDL2/HDL3 ratio remains statisti-
cally significant even after adjustment for whole-body insu-
lin resistance and circulating adiponectin that is associated

with both dyslipidemia and liver fat (64, 65). In agreement
with the data from Toledo et al. (206) and with the limitation
that hepatic insulin resistance was not directly measured,
these findings suggest that there may be a direct link between
fatty liver, dyslipidemia, and thus atherosclerosis.

B. Inflammation

Besides its metabolic functions, the liver is involved in
immune responses (47, 223). Although the hepatocytes rep-
resent approximately two thirds of the total cells in the liver,
other cell types are biliary epithelial cells, sinusoidal endo-
thelial cells, Kupffer cells, stellate cells, dendritic cells, and
lymphocytes (224, 225). The Kupffer cells and lymphocytes
are the main cell types involved in the hepatic immune
response. Kupffer cells represent the largest group of fixed
macrophages in the body and account for about 20% of
nonparenchymal cells in the liver (226). They are derived
from circulating monocytes that arise from bone marrow
progenitors (227). In the liver, Kupffer cells clear endotoxins
(lipopolysaccharides) from the passing blood, and phagocyte
debris and microorganisms. Furthermore, they are in close
contact with blood lymphocytes and other resident antigen-
presenting cells.

Kupffer cells produce cytokines that play a key role in cell
differentiation and cell proliferation. This process is modu-
lated by the membrane-bound bile acid receptor TGR5/
mBAR (228). Kupffer cell-derived IL-12 and IL-18, for ex-
ample, regulate natural killer (NK) cell differentiation and
promote the local expansion of cytotoxic NK cell subpopu-
lations that express large amounts of antiviral interferon
(IFN)-� (229). Other Kupffer cell-derived cytokines such as
IL-1�, IL-6, TNF-�, and leukotrienes promote the infiltration
and antimicrobial activity of neutrophils (230). Because NK
T cells are capable of releasing IFN-� and IL-4 (231), they are
thought to modulate the local and systemic adaptive im-
mune responses to either a proinflammatory type I (IFN-�,
TNF-�) or an antiinflammatory type II (IL-4, IL-10, IL-13)
profile (224, 225). The increased production of TNF-� is con-
sidered to have a particularly major role in the pathogenesis
of hepatic insulin resistance (232, 233).

In this aspect, the gastrointestinal tract may be important
for hepatic inflammation and the pathophysiology of NASH.
This is supported by data from animal studies (234) and from
jejunoileal bypass surgery for morbid obesity in humans
showing that NASH and fibrosis are encountered as a com-
plication of this procedure (235, 236). Furthermore, small
intestinal bacterial overgrowth was more frequently found in
patients with NASH than in controls (237). Such derange-
ment of the gut flora, which plays an important role in the
prevention and treatment of infections as well as in immune
functions, is also thought to be mediated by the consumption
of manipulated and processed foods, e.g., high amounts of
refined sugar and saturated fat and a decrease in fiber, vi-
tamins, and antioxidants (238). Small intestinal bacterial
overgrowth results in the production of ethanol in animals
(239) and humans (240–242) as well as in the release of
bacterial lipopolysaccharides (243). Both ethanol and lipo-
polysaccharides activate TNF-� production in Kupffer cells,
thereby, inducing hepatic inflammation (244). In agreement
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with this hypothesis, antibiotics (245) and probiotics (246)
targeting the gut flora positively affect hepatic inflammation
in animals as well as in humans (235, 247).

Furthermore, hepatic inflammation is induced by hepatic
steatosis. Hotamisligil (47) and Shoelson et al. (223) hypoth-
esize that hepatic steatosis might induce a subacute inflam-
matory response in liver that is similar to the adipose tissue
inflammation, after adipocyte lipid accumulation. Part of this
process is considered to be attributed to endoplasmic retic-
ulum (ER) and oxidative stress. The ER is a membranous
network responsible for the processing and folding of newly
synthesized proteins. Besides hypoxia, toxins, infections, and
other insults, nutrient fluctuations and excess lipids pose
stress on the ER that is accompanied by accumulation of
unfolded or misfolded proteins (248). ER stress in liver and
adipose tissue is generated in mice with genetic or diet-
induced forms of obesity. This is largely mediated by acti-
vation of JNK resulting in impairment of insulin signaling
(249). Furthermore, ER stress is associated with activation of
multiple stress responses and with the specific activation
of CREBP, a hepatocyte-specific bZip transcription factor
that may have an important role in hepatic acute-phase
response such as the induction of transcription of the
serum amyloid P-component and C-reactive protein (CRP)
genes (250).

In addition, the ER is involved in the generation of ROS
and, consequently, oxidative stress (251). Furthermore, ROS
are formed in the mitochondria by impaired mitochondrial
respiratory chain capacity. Particularly an increase in cy-
tosolic fatty acids results in increased fatty acid oxidation
and, thus, ROS production (252, 253). In agreement, in
humans with NASH, increased levels of by-products of
lipid peroxidation are found, suggesting increased oxida-
tive stress (254). Finally, under conditions of oxidative
stress, NF-�B and JNK pathways are activated, represent-
ing a link between oxidative stress and insulin resistance
(47, 223, 255).

Altogether, the close interaction of immune cells with the
metabolically active hepatocytes (47, 223) may trigger local
but also systemic subclinical inflammation, a process that is
strongly regulated by PPAR� (256). Systemic subclinical in-
flammation can be estimated by measurement of circulating
CRP. The plasma levels of this acute-phase protein are very
low under healthy conditions but increase in response to a
pathological inflammatory process. Because of its relatively
low half-life of 18 h, CRP represents a useful, early nonspe-
cific marker of inflammation (257). Plasma CRP is produced
predominantly by hepatocytes and is under transcriptional
control by IL-6 and other proinflammatory cytokines. How-
ever, other sites of local CRP synthesis and possibly secretion
have also been suggested (258). Circulating CRP is positively
correlated with liver fat (259–262). Moreover, CRP levels are
higher in patients with histologically proven NASH com-
pared with simple steatosis (262). Of interest, circulating CRP
most probably is not merely an indicator of systemic inflam-
mation but is also involved in the pathogenesis of athero-
sclerosis (257). These data suggest that fat accumulation in
the liver may be involved in the pathophysiology of athero-
sclerosis via induction of systemic inflammation.

C. Insulin resistance

Fatty liver and obesity are strongly associated with insulin
resistance (263, 264), the condition that plays a predominant
role in the pathophysiology of type 2 diabetes (47, 255, 264–
266) and cardiovascular disease (67, 267–270). Animal stud-
ies reveal that fat accumulation in the liver inhibits insulin
signaling in hepatocytes. In particular, hepatic insulin resis-
tance can be attributed to impaired insulin-stimulated insu-
lin receptor substrate (IRS)-1 and IRS-2 tyrosine phosphor-
ylation resulting in increased gluconeogenesis (263, 271, 272).
In humans, a strong relationship exists between fat accumu-
lation in the liver and whole-body insulin resistance (4, 71,
80, 106, 146, 190, 273–285) (Fig. 3). More importantly, liver fat
correlates with insulin resistance independent of visceral
adiposity (147, 286), a major regulator of both liver fat and
insulin resistance (77, 287). Euglycemic, hyperinsulinemic
clamp studies with tracer methods to measure the suppres-
sion of endogenous glucose production, an estimate of he-
patic insulin sensitivity, show that liver fat is particularly
strongly correlated with hepatic insulin sensitivity (41, 106,
147, 280, 288, 289).

Interestingly, hepatic steatosis is also associated with myo-
cardial insulin resistance. In patients with type 2 diabetes,
liver fat measured by 1H-MRS is the strongest predictor of
insulin-stimulated myocardial glucose uptake, compared
with other determinants such as visceral fat mass and whole-
body glucose uptake (290). Moreover, liver fat is also strongly
associated with myocardial perfusion, which is affected by
coronary artery function (290). It needs to be determined
whether fat accumulation in the liver induces myocardial
insulin resistance via humoral mechanisms, as recently dis-
cussed (291), and/or mainly reflects myocardial steatosis and
abnormal cardiac metabolism, parameters that strongly cor-
relate with liver fat content (292).

It has not been determined whether fatty liver is mainly a
result of insulin resistance of adipose tissue and skeletal
muscle or whether fatty liver may also develop independent
of the aforementioned conditions. Animal studies provided
the first evidence that the latter could also be the case. Insulin
resistance can be induced in vivo by overexpression of sup-
pressor of cytokine signaling (SOCS)-1 or -3 in liver (293).
SOCS proteins attenuate insulin signaling by binding to the
insulin receptor and reducing its ability to phosphorylate IRS
proteins (294–296). This hepatic overexpression of SOCS pro-
teins is associated with an increase in SREBP-1c and hepatic
steatosis (293). Conversely, suppression of SOCS-1, SOCS-3,
or both in liver partially rescues impaired insulin sensitivity
and ameliorates hyperinsulinemia in diabetic db/db mice.
More importantly, suppression of SOCS proteins, especially
SOCS-3, markedly improves hepatic steatosis. In summary,
these findings suggest that fatty liver may also develop by
alteration of hepatic insulin signaling and/or by direct effects
of SOCS proteins on SREBP-1c in the liver (293, 297, 298).
Thus, fatty liver may develop independent of skeletal muscle
and adipose tissue insulin resistance.

Furthermore, there are human data showing that fatty
liver may even have a primary role in the pathophysiology
of skeletal muscle insulin resistance. In patients with type 2
diabetes, the PPAR� agonist rosiglitazone, as well as met-
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formin, increases hepatic insulin sensitivity via activation of
AMPK (299). However, a decrease in liver fat is only seen in
subjects receiving thiazolidinediones. More importantly, in-
sulin sensitivity of glucose disposal increases only in the
thiazolidinedione group (300). Because skeletal muscle is not
a major target of PPAR� action (301), these data support the
notion that the increase in skeletal muscle insulin sensitivity
in the thiazolidinedione group may be mediated by the de-
crease in liver fat.

A study by Hwang et al. (289), with quantification of fat in
liver and skeletal muscle by 1H-MRS and measurement of
visceral fat by MRT and of endogenous glucose production
and insulin sensitivity of glucose disposal by tracer methods,
further supports a role of hepatic fat accumulation in the
pathophysiology of skeletal muscle insulin resistance. In that
study, the negative correlation between liver fat content
and skeletal muscle insulin sensitivity is exceptionally
tight (289). The authors discuss the fact that their data,
together with previous studies (302–304), suggest that the
liver releases factors that regulate insulin sensitivity in
skeletal muscle.

Fetuin-A [former name for the human protein, �2-Her-
emans-Schmid glycoprotein (AHSG)] may represent one of
these factors. Fetuin-A is predominantly expressed in the
liver, and to a lesser degree in the placenta and the tongue
(305). Because placental expression is only relevant during
pregnancy and the tongue is not an organ with endocrine
activity, the liver is the only organ regulating circulating
fetuin-A levels. This protein is a natural inhibitor of the
insulin receptor tyrosine kinase in liver and skeletal muscle
(306–310). Furthermore, mice deficient for the gene encoding
fetuin-A display improved insulin signaling (311), suggest-
ing that fetuin-A may play a major role in the regulation of
insulin sensitivity in animals. In humans, SNPs in the fe-
tuin-A gene (AHSG) are associated with type 2 diabetes (312).
However, the role of this protein in the natural history of type
2 diabetes was unknown for a long time. Of note, severe liver
damage as in cirrhosis, acute viral hepatitis, and cancer is
associated with a decrease and not an increase in circulating
fetuin-A (313). Thus, no liver dysfunction was known to be
associated with elevated fetuin-A production in humans.
Recently, fetuin-A mRNA expression was found to be in-

FIG. 3. Relationship of liver fat, measured by 1H-MRS, to insulin sensitivity. Liver fat content was quantified by localized 1H-MRS using a 1.5-T
whole-body imager. Although there is no clear difference in gray shade in the liver between the individuals, the signal from the 1H-MRS shows
that liver fat content is obviously different. These two individuals also behaved differently when insulin sensitivity was measured during the
euglycemic-hyperinsulinemic clamp. The individual with higher liver fat content had lower insulin sensitivity. To correct this relationship for
the confounding factors total body fat and body fat compartments, whole-body MR imaging for quantification of these parameters (inset) is a
precise technique. [Adapted from N. Stefan et al.: Horm Res 64(Suppl 3):38–44 (285), with permission from S. Karger AG.]
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creased in fatty liver in mice (281), which is in agreement with
previous data from rats (314). In addition, circulating
fetuin-A correlates positively with liver fat in humans in cross-
sectional and longitudinal analyses. Circulating fetuin-A also
correlates negatively with insulin sensitivity (281, 315).
Moreover, high fetuin-A plasma levels predict change in
insulin sensitivity, measured by the euglycemic, hyperinsu-
linemic clamp in prospective analyses (281) and are associ-
ated with incident type 2 diabetes (316, 317). In agreement
with the notion that circulating fetuin-A is increased in fatty
liver and insulin resistance, plasma fetuin-A is associated
with the metabolic syndrome and correlates positively with
CRP levels (316). Furthermore, fetuin-A promotes cytokine
expression in monocytes and adipocytes and represses the
production of the insulin-sensitizing adipokine adiponec-
tin (317). Thus, these data support the hypothesis that
fetuin-A may be one of the factors that mediate effects of
fatty liver to other tissues. Such factors may be referred to
as “hepatokines.”

Another protein that is preferentially produced by the liver
is FGF21 (318). It has beneficial effects on lipid metabolism, as
well as insulin sensitivity and pancreatic �-cell function (319–
321). These effects of FGF21 on metabolism in animal models
are not accompanied by changes in body weight (319). This
finding is interesting because a profound synergy between the
effects of FGF21 and the thiazolidinedione rosiglitazone, which
induces weight gain, exists in stimulating glucose uptake in
3T3-L1 adipocytes (322). In addition, FGF21 regulates hepatic
steatosis. FGF21 expression in the liver in the fasted state is
induced by PPAR�. Accordingly, FGF21 expression in the livers
of fasted mice is absent in PPAR�-deficient animals. These
animals have fatty liver and serum hypertriglyceridemia (323–
326). Furthermore, a decrease in endogenous FGF21 expression
by RNA interference induces fatty liver and hyperlipidemia
(323). So far, there is little information on the relationship of
FGF21 with metabolic traits in humans. In a cross-sectional
study in 200 subjects, circulating FGF21 levels correlated pos-
itively with components of the metabolic syndrome, but not
with insulin sensitivity estimated from fasting serum glucose
and insulin levels, independent of obesity (327). Whether he-
patic FGF21 expression and production are affected by hepatic
steatosis needs to be investigated.

Another very interesting protein, retinol binding protein 4
(RBP4), is expressed in adipose tissue and in the liver and is
secreted into circulation (328). The first evidence that RBP4
has major effects on metabolism was found in adipose-
specific knockout of glucose transporter 4 mice (329) that
display insulin resistance in skeletal muscle, liver, and adi-
pose tissue (330). In these animals, expression of Rbp4 in
adipose tissue and serum RBP4 levels are increased. In ad-
dition, increase in serum RBP4 concentrations by transgenic
overexpression or by injection of purified RBP4 protein into
wild-type mice causes insulin resistance (329). Furthermore,
Rbp4 knockout mice display enhanced insulin sensitivity,
and lowering of serum RBP4 with the synthetic retinoid
fenretinide improves insulin sensitivity and glucose toler-
ance in mice on a high-fat diet (329). Moreover, in humans
high circulating RBP4 is associated with insulin resistance in
cross-sectional studies (331–336). In addition, a strong rela-
tionship between changes in circulating RBP4 and insulin

sensitivity is shown in longitudinal studies (331, 333). Recent
data suggest that the elevated circulating RBP4 in insulin-
resistant states is a result of increased production from the
increased visceral fat mass (332), as well as fatty liver (333).

Altogether, there is strong support to show that fatty liver
produces humoral factors affecting insulin signaling in in-
sulin-responsive tissues. Thus, further efforts are warranted
to identify these hepatokines.

D. Dissociation of fatty liver and insulin resistance

Although hepatic fat accumulation, both in animals and
in humans, is strongly associated with a decrease in insulin
sensitivity, a large variability in this relationship exists
that cannot be explained by other parameters regulating
insulin sensitivity such as overall obesity, body fat distri-
bution, or circulating adipokines. In other words, for the
same amount of hepatic steatosis, subjects can be identi-
fied who have very high and very low insulin resistance
(Fig. 4), suggesting that a dissociation of fatty liver and
insulin resistance exists. The paradox of this finding may
be due to lipotoxicity. This term was mainly devised by
Roger Unger to describe the deleterious effects of lipid
accumulation in various tissues (75, 337). According to this
concept, triglycerides are probably the least toxic form in
which the lipid excess can be stored in ectopic tissues, at
least in the short term. The incorporation of fatty acids into
triglycerides, as well as their oxidative degradation, thus
represents protection from lipotoxicity. However, when
these compensatory mechanisms are overwhelmed, fatty
acids induce damage to cells resulting in impaired me-
tabolism (75, 249, 337, 338) (Fig. 5).

FIG. 4. Variability in the relationship between liver fat and insulin
sensitivity in humans. This image depicts the strong, negative relation-
ship between liver fat measured by 1H-MRS and insulin sensitivity
measured by the euglycemic- hyperinsulinemic clamp in 200 individuals
without type 2 diabetes (regression line and 95% confidence interval).
For a very similar amount of liver fat, individuals can be identified who
are relatively insulin sensitive (upper circle) and insulin resistant (lower
circle). Major determinants of insulin sensitivity such as age, gender,
total and visceral body fat mass measured by MRT, and intramyocellular
fat in the tibialis anterior muscle, measured by 1H-MRS, cannot explain
this difference in insulin sensitivity.
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Several pathways are thought to be operative in this pro-
cess. Among them, activation of NF-�B and JNK pathways,
as well as the Janus kinase-signal transducer and activator of
transcription-3-SOCS-3 pathway, which are involved in in-
sulin resistance (47, 223, 339), is critical. Cai et al. (59) ele-
gantly showed that NF-�B transcriptional targets are acti-
vated in liver by obesity and a high-fat diet. This is associated
with a chronic state of subacute inflammation and insulin
resistance. Inhibition of NF-�B activation under a high-fat
diet still results in hepatic steatosis; however, this interven-
tion is not accompanied by insulin resistance (59). These
findings indicate that fat accumulation in the liver leads to
subacute hepatic inflammation through NF-�B activation. In
addition, under conditions of inhibited NF-�B stimulation,
fatty liver does not result in insulin resistance. In support of
this hypothesis, liver-specific inactivation of the NF-�B es-
sential modulator gene in mice under a high-fat diet results
in hepatic steatosis, but not in insulin resistance (340). The
susceptibility to inflammatory responses may modulate the
dissociation of fatty liver and insulin resistance. In this as-
pect, carriers of the �1031C and �863A variants of the SNPs

in the promoter region of the TNF-� gene (TNF) have high
serum levels of the soluble TNF receptor 2, indicating ele-
vated TNF-� production. Furthermore, they are insulin re-
sistant and have steatohepatitis more frequently than simple
steatosis (341). Similar results for other SNPs in TNF are
reported elsewhere (342).

Another interesting animal model for the dissociation of
fatty liver and insulin resistance is the liver-specific acyl:
CoA:diacylglycerol acyltransferase 2 (DGAT2) transgene
mouse (343). DGAT enzymes, among them particularly
DGAT2, catalyze the final step of triacylglycerol biosynthesis
(344). Liver-specific DGAT2 overexpressing mice develop
hepatic steatosis with a 5-fold increase in liver triglyceride
content compared with controls. However, this condition is
not accompanied by whole-body or hepatic insulin resis-
tance. In agreement with these novel findings, antisense oli-
gonucleotide treatment targeting the DGAT2 gene reduces
liver triglycerides in mice fed a high-fat diet, without im-
proving insulin sensitivity or glucose tolerance (345). In an-
other study, DGAT2 silencing also reduced hepatic steatosis,
while insulin sensitivity improved as well. This finding,

FIG. 5. Metabolic consequences of fatty liver. Fat accumulation in the liver induces hyperglycemia, subclinical inflammation dyslipidemia, and
the secretion of parameters that can be referred to as “hepatokines” (e.g., fetuin-A), thereby inducing insulin resistance, atherosclerosis, and
possibly �-cell dysfunction and apoptosis. The degree of these conditions may be moderate [benign fatty liver (left panel)]. However, the same
amount of hepatic fat accumulation may, by mechanisms that are yet not fully understood, be strongly associated with hepatic lipotoxicity,
resulting in aggravation of hyperglycemia, subclinical inflammation, dyslipidemia, and an imbalance in hepatokine production as well as in
their metabolic consequences. This state may be referred to as malign fatty liver (right panel).
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however, may be attributable to an effect of DGAT2 silencing
on decreasing body weight and epididymal fat pad mass
(346). The mechanism for the dissociation of fatty liver and
insulin resistance in this animal model is not fully under-
stood. It may be that an increase in triglyceride synthesis
protects from fatty acid-induced lipotoxicity. This hypothesis
is supported by the finding that on a high-fat diet, activation
of JNK and NF-�B in DGAT2 transgenic mice is not increased
compared with controls. Alternatively, the increase in un-
saturated fatty acids, which are found in the tissue of these
animals and are considered to be less lipotoxic compared
with saturated fatty acids, may generate the phenotype.

Support for the involvement of the fatty acid pattern in the
dissociation of fatty liver and insulin resistance is provided
by another recently described animal model. Mice deficient
for the elongation of long-chain fatty acids (ELOVL) gene
(Elovl6) develop obesity and hepatic steatosis, but not insulin
resistance, hyperinsulinemia, or hyperglycemia under a
high-fat diet (339). Elovl6 encodes for the enzyme ELOVL,
catalyzing the conversion of palmitate (C 16:0) to stearate (C
18:0) as well as palmitoleate (C 16:1n-7) to vaccinate (C 18:
1n-7), thus regulating the tissue fatty acid composition (347,
348). Interestingly, amelioration of hepatic insulin resistance
in these animals cannot be explained by changes in energy
balance or proinflammatory signals. However, a suppression
of elongation and degradation of fatty acids, resulting in
moderately increased hepatic triglyceride content, as well as
a decrease in the diacylglycerol-protein kinase C� pathway
occurs (339). This observation is important because hepatic
protein kinase C� is involved in the development of hepatic
insulin resistance (349). Although these animal data provide
novel and mechanistic evidence for the existence of a dis-
sociation of fatty liver and insulin resistance, human studies
have not specifically addressed this interesting point. Based
on the aforementioned findings in animals, we studied the
relationship of a SNP in DGAT2, which is associated with
obesity (350), with liver fat and insulin resistance in humans.
In 200 subjects, the SNP in DGAT2 is associated with changes
in liver fat, but not insulin sensitivity during a lifestyle in-
tervention (our 184), supporting the hypothesis that DGAT2
may differentially affect liver fat and insulin sensitivity in
humans, too.

V. Concluding Remarks

Although the roles of adipose tissue, and particularly
VAT, in the pathophysiology of metabolic diseases such as
type 2 diabetes, the metabolic syndrome, and atherosclerosis
have been carefully studied, the impact of fatty liver in the
natural history of these diseases has long been underesti-
mated. With increasing evidence from transgenic and
knockout animal models that hepatic steatosis is involved
in several major pathways regulating glucose and lipid
metabolism, fatty liver gained recognition in the metabolic
field of research. This effect was accompanied by the iden-
tification of exciting novel targets to prevent and treat hepatic
fat accumulation. Moreover, there is strong support indicat-
ing that different aspects of fatty liver exist and are associated
with severe or merely moderate metabolic disturbances. Fi-

nally, similar to adipose tissue, liver under conditions of an
increased lipid load may have important secretory functions,
and in analogy to adipokines, hepatokines may become an
interesting target for future research.

From a clinical aspect, prevention of ectopic fat deposition
in liver, as well as in other insulin-sensitive tissues under
conditions of a sedentary lifestyle, overnutrition, and dis-
proportionate adipose tissue distribution, is the primary goal
in the protection from obesity-induced insulin resistance.
When such efforts are not very effective, targeting lipotox-
icity, which appears to be the predominant mediator of met-
abolic consequences of fatty liver, seems to be an effective
strategy to accomplish this mission.
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