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The calcium-sensing receptor (CaR) is responsive to changes
in the extracellular Ca2� (Ca2�

o) concentration. It is a member
of the largest family of cell surface receptors, the G protein-
coupled receptors, and it has been shown to be involved in
Ca2�

o homeostasis. Apart from its primary role in Ca2�
o ho-

meostasis, the CaR may be involved in phenomena that allow
for the development of many types of benign or malignant
tumors, from parathyroid adenomas to breast, prostate, and
colon cancers. For example, whereas the CaR is expressed in
both normal and malignant breast tissue, increased CaR lev-
els have been reported in highly metastatic primary breast
cancer cells and breast cancer cell lines, possibly contributing
to their malignancy and associated alterations in their bio-
logical properties. In these settings the CaR exhibits onco-

genic properties. Enhanced CaR expression and altered pro-
liferation of prostate cancer cells in response to increased
Ca2�

o have also been described. In contrast, colon and para-
thyroid cancers often present with reduced or absent CaR
expression, and activation of this receptor decreases cell pro-
liferation, suggesting a role for the CaR as a tumor suppressor
gene. Thus, the CaR may play an important role in the devel-
opment of many types of neoplasia. Herein, we review the role
of the CaR in various benign and malignant tumors in further
detail, describing its contribution to parathyroid tumors,
breast, prostate, and colon cancers, and we evaluate how
pharmacological manipulations of this receptor may be of
interest for the treatment of certain cancers in the future.
(Endocrine Reviews 30: 178–195, 2009)
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I. Introduction

A. General introduction

ONE OF THE greatest challenges facing scientists and
the pharmaceutical industry today is the develop-

ment of effective medications to prevent or delay the inci-
dence of cancer as well as to treat those cancers that have
already developed. The characteristic features of cancer, such
as uncontrolled growth, loss of the capacity for apoptosis and
senescence, and acquisition of the ability to invade, metas-
tasize, and form new blood vessels (angiogenesis), have been
attributed to mutations of various oncogenes and tumor
suppressor genes coding for growth factors, tyrosine kinases,
and transcription factors (1, 2). Mutations in the genes en-
coding the G protein-coupled receptors (GPCRs) have also
been implicated in tumorigenesis. It has been shown that the
�1B adrenergic receptor gene can act as a protooncogene. A
mutation, resulting in constitutive activation of this receptor,
leads to the acquisition of oncogenic properties by enhancing
focus formation in an agonist-independent manner. Injection
of Rat-1 or NIH-3T3 cells expressing the mutant receptor into
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nude mice eventually results in increased tumor generation (3).
It has also been reported that a point mutation in the chemokine
receptor CXCR2, the closest homolog of the Kaposi’s sarcoma
herpesvirus-GPCR, involving the DRY sequence (D138V) in
the second intracellular loop, which is normally conserved
among GPCRs, leads to oncogenic transformation. This
transformation is similar to that seen in cells transfected with
the Kaposi’s sarcoma herpesvirus-GPCR, which contains the
VRY sequence, producing constitutive activation which then
promotes proliferation (4).

However, it is currently believed that the principal process
by which GPCRs contribute to cancer is through differential
receptor expression in healthy vs. malignant cells, and the
subsequent modifications in signaling, as has been demon-
strated by numerous studies. For instance, the adenosine
A2B receptor, neuropeptide receptors, metabotropic gluta-
mate receptors, the chemokine CXC receptors, and the P2Y
purinoceptors, such as the GPR87 receptor, are expressed at
significantly higher levels in some cancers (5–7). The che-
mokine CXC receptors are well-known examples of GPCRs
that play a role in cancer, having a role in growth, metastasis,
and angiogenesis (8). For example, it has been shown that the
chemokine CXCL12 acts as a potent chemoattractant for
breast cancer cells expressing the CXCR4 receptor, thereby
potentially contributing to their sites of metastasis (9). The
TSH receptor is another example of a GPCR that plays a role
in the development of tumors, namely in thyroid malignan-
cies. Interestingly, changes in the functionality of this recep-
tor that contribute to tumor development arise through var-
ious mechanisms. Not only does the loss of this receptor due
to abnormal methylation of its gene contribute to a more
aggressive phenotype in thyroid cancers (10–12), but muta-
tions of the TSH receptor have also been demonstrated to
lead to neoplastic transformation (13). Activating mutations
of the TSH receptor, for example, are frequent in thyroid
adenomas (14, 15) and also occur occasionally in thyroid
carcinomas (16, 17). In this review we will discuss the role of
another GPCR in neoplasia, the Ca2�-sensing receptor (CaR),
which, based on accumulating evidence from recent studies,
plays a role in the development and progression of several
types of benign and malignant tumors.

B. Structure and physiological function of the CaR

Ca2�
o plays an essential role in numerous physiological

processes, including blood clotting, neuromuscular excitabil-
ity, and maintenance of skeletal integrity. The concentrations
of Ca2�

o are kept at nearly constant levels with the help of
a complex homeostatic system, which includes the parathy-
roid glands and calcitonin-secreting C cells of the thyroid
gland, kidneys, bones, and intestines (18, 19). It has been
known for years that Ca2�-selective ion channels enable Ca2�

to move across the cell membrane. However, the mechanism
by which cells, such as the chief cells of the parathyroid
glands, which are extremely sensitive to the slightest vari-
ations in Ca2�

o, can sense Ca2�
o was for many years

unknown.
In 1993, a membrane-spanning, Ca2�

o-sensing receptor,
the CaR, containing 1085 amino acids was cloned from the
bovine parathyroid, and it was shown to belong to the GPCR

superfamily (20). The structure of the CaR, like that of other
members of the GPCR superfamily, consists of seven trans-
membrane helices, an extracellular N terminal, and an in-
tracellular C terminal (Fig. 1). The CaR belongs to family 3
(or C) of the GPCRs, which also includes the metabotropic
glutamate receptors (mGluR1-8), �-aminobutyric acid recep-
tor subunits (GABAB1 and GABAB2), sweet and umami taste
receptors (T1R1, T1R2, and T1R3), as well as pheromone and
several orphan receptors (21), and is characterized by a large
extracellular N-terminal ligand-binding domain that pos-
sesses structural similarity to the Venus flytrap domain motif
of bacterial periplasmic binding proteins (18, 21). As is
widely accepted for numerous GPCRs, the CaR also mainly
exists in the form of a dimer (22, 23). The monomers within
the dimeric, cell surface form of the CaR are covalently linked
by disulfide bridges involving two cysteine residues (Cys129
and Cys131) within the Venus flytrap domain motifs (24).

The activated CaR is capable of binding to a number of
different G proteins, with preferential activation of G�q/11
and G�i, which leads to a range of cellular responses, such
as stimulation of phospholipase C�, production of inositol
1,4,5-triphosphate, release of intracellular Ca2�, stimulation
of MAPKs, and an inhibition of adenylate cyclase, causing a
decrease in cAMP levels (18, 25).

When the CaR was first cloned from the bovine parathy-
roid (20), it was identified as the cation-sensing receptor that
is responsible for the sensitivity of the parathyroid chief cells
to changes in Ca2�

o, and it was suggested to be the primary
player in Ca2�

o homeostasis. Adding to its importance in
Ca2�

o metabolism was the subsequent cloning of the same
CaR from various other tissues that are also involved in
maintaining constant Ca2�

o levels, including the kidney (26,
27), thyroid C cells (28), the colon (29), osteoclasts (30, 31), and

FIG. 1. A schematic representation of the human CaR, the human
ortholog of the receptor that was initially cloned from the bovine
parathyroid, demonstrating the localization of activating (�) and
inactivating (�) mutations that were identified in various diseases of
Ca2�

o sensing, thereby producing either hypo- or hypercalcemia (see
text). The CaR is a GPCR, consisting of seven transmembrane helices
and a characteristically long N terminal. It preferentially couples to
G proteins, especially the G�i and G�q/11 families, leading to ac-
tivation of various intracellular pathways or inhibition of adenyl-
ate cyclase.
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recently also osteoblasts (32). However, it has been shown that
the CaR is also expressed by various cells not involved in Ca2�

o

homeostasis, such as the brain (33), lens epithelial cells (34), the
pancreas (35), and antral gastrin-secreting cells of the stom-
ach (36), to name a few.

The CaR has recently also been documented to be ex-
pressed in a variety of benign tumors and malignancies,
often at expression levels that differ from those in their
healthy counterparts, as has been described in breast can-
cer (37, 38), prostate cancer (39), as well as in cancers
originating from organs involved in Ca2�

o homeostasis,
including colorectal cancer (29) and parathyroid adeno-
mas and carcinomas (40 – 43).

C. The role of CaR in Ca2�
o homeostasis

Serum Ca2� levels are maintained at constant levels,
mainly through the concerted actions of PTH, calcitonin, and
1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], the active form of
vitamin D (44). The CaR has been demonstrated to play a
vital and central role in the maintenance of Ca2�

o homeosta-
sis by modulating PTH secretion from the parathyroid (18,
20). In parathyroid cells, high Ca2�

o levels activate the CaR,
leading to inhibition of PTH secretion, PTH gene expression,
and parathyroid cell proliferation (45). Although the precise
mechanisms by which the CaR regulates PTH secretion re-
main elusive, they may involve modulation of intracellular
cAMP and Ca2� levels as well as activation of ERK1/2 and
other kinases (46–48). In contrast, when a decrease in Ca2�

o

concentration is sensed by the CaR, the inhibition of PTH
secretion is reduced, resulting in increased release of pre-
formed PTH from the chief cells of the parathyroid. This is
then followed within minutes by an increase in net PTH
production as a result of a decrease in intracellular degra-
dation (49, 50), and within hours, the transcription of the
prepro-PTH mRNA is increased (51). The resultant increase
in circulating PTH then normalizes the Ca2�

o levels by its
actions on the kidneys, bones, and indirectly, intestines (19,
52). Additional events in Ca2�

o homeostasis that occur when
changes in Ca2�

o are detected and have been attributed to
the CaR include direct regulation by the CaR of the renal
synthesis of 1,25-(OH)2D3, and stimulation of calcitonin
secretion from the C cells in the thyroid when Ca2�

o levels
are high (25, 28).

D. Genetic diseases of the CaR gene

Shortly after the CaR was cloned, it was recognized that
mutations of the CaR gene cause several inherited disorders
of Ca2�

o sensing (Fig. 1). Disorders due to loss of function of
the CaR include familial hypocalciuric hypercalcemia (FHH)
(53) and neonatal severe hyperparathyroidism (53). These
conditions are caused by inactivating mutations in the CaR
gene, which right-shift the set-point for Ca2�

o inhibition of
PTH secretion and for stimulation of urinary Ca2� excretion.
FHH is usually caused by heterozygous inactivating muta-
tions of the CaR, whereas neonatal severe hyperparathy-
roidism results from homozygous or compound heterozy-
gous mutations (54, 55). Autosomal dominant hypocalcemia,
in contrast, is a disorder caused by gain-of-function muta-
tions of the CaR (56, 57), as is Bartter Syndrome type V (58).

In addition to elucidating the pathobiology of the CaR, these
conditions have provided formal proof of the importance of
the receptor in Ca2�

o homeostasis. Interestingly, alterations
in the general risk of cancer have not been reported in pa-
tients suffering from these disorders, although the number of
available cases for study is somewhat limited and a change
in cancer risk may not have been specifically sought. As
described in Sections II–V, numerous studies have reported
firm evidence of the contribution of the CaR in different
cancers.

II. The Role of the CaR in Prostate and
Breast Cancers

A. Bone metastases

Breast and prostate cancers are the most frequent forms of
cancer in women and men, respectively, and they are second
only to lung cancer as cancer-related causes of death (59–61).
Both breast and prostate cancer preferentially metastasize to
bone. Approximately 75% of patients who develop advanced
breast cancer will have secondary tumors in the bone, with
the majority being osteolytic (62, 63). Prostate cancer almost
exclusively metastasizes to bone, and about 90% of patients
dying of advanced prostate cancer develop bone metastases,
with the majority being blastic, although mixed blastic and
lytic metastases also occur (63, 64). Both breast and prostate
cancers are preferentially attracted to bones displaying high
rates of bone turnover owing to active remodeling (64–66),
such as the femur, pelvis, rib cage, skull, and humerus (67).
Development of bone metastases leads to numerous adverse
effects, including severe pain, spinal cord compression,
higher risk of fractures and hypercalcemia, and greatly in-
creased mortality rates (63, 68). Although in the case of pros-
tate cancer it is possible to live for long periods of time with
localized cancer, bone metastases can be life threatening (63,
64). Therefore, discerning the precise mechanisms that lead
to the attraction of cancer cells to bone has been considered
to be of vital importance in the search for more effective
therapeutic agents combating the development of bone
metastases.

The bone environment is believed to provide favorable
conditions for the growth of certain types of cancer, such as
breast, prostate, and lung, due to bone-derived factors re-
leased during bone turnover that attract the cancer cells and
facilitate their metastasis and subsequent growth (69). This
concept has been supported by numerous animal studies that
have demonstrated that inhibitors of bone resorption, in-
cluding osteoprotegerin, bisphosphonates (70–72), and in-
hibitors of cathepsin K (73), also decrease tumor growth in
the bone in animal models of cancer metastasis. For example,
zoledronic acid, a bisphosphonate that inhibits osteoclasto-
genesis and osteoclast activity, decreases the frequency and
size of skeletal metastases in prostate cancer (65), as was
shown in athymic mice inoculated with luciferase-tagged
PC-3 prostate cancer cells (65). Additionally, increased bone
turnover produced by PTH was shown to increase prostate
cancer metastasis to bone (65), and moreover, increased bone
resorption induced by dietary Ca2� deficiency promotes the
growth of bony metastases of breast cancer (74). Chemoat-
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tractant factors such as TGF�, IGF-I, IGF-II, and platelet-
derived growth factor are believed to attract cancer cells to
their metastatic location and increase their survival and pro-
liferation (66, 75). TGF�, IGF-I, and IGF-II are laid down in
the bony matrix during bone formation and are released by
bone resorption, thereby contributing to the propensity of
breast and prostate cancers to metastasize to regions of active
bone resorption.

An important contributor to the perpetuation of this vi-
cious cycle initiated by bony metastases is PTHrP, which is
believed to be a mediator in approximately 70% of malignant
osteolysis in cancers such as breast and prostate (76). PTHrP
binds to the same receptor as PTH, the type 1 PTH receptor
(77), thereby activating bone turnover, including the forma-
tion and activity of osteoclasts. Although PTHrP was first
isolated from renal, lung, and breast cancers, it also has
numerous other roles in normal tissues, such as in the de-
velopment of skin, teeth, and the mammary gland (78). In
normal breast cells, similarly to PTH release, the secretion of
PTHrP is inhibited by increases in the Ca2�

o concentration.
Interestingly, in breast and prostate cancer cells, PTHrP re-
lease is augmented, rather than inhibited, by activation of the
CaR (38, 79) (Fig. 2). Recently, it has been revealed that the
change between inhibition and stimulation of PTHrP release
by Ca2�

o occurs as a result of a switch in G protein activation
by the cancerous cells (80). Thus, in normal mammary cells
it was shown that the CaR couples to G�i, leading to inhi-
bition of cAMP formation and, consequently, PTHrP release,
whereas in cancerous cells, namely MCF7 and Comma-D
cells, the CaR was shown to activate G�s, thereby promoting
PTHrP release.

In the bone microenvironment, an important system reg-
ulating osteoclastogenesis exists, involving the receptor ac-
tivator for nuclear factor �B (RANK), present on the surface
of cells of the osteoclast lineage, and its ligand, RANKL,
which is expressed by the preosteoblastic/stromal cells
and/or released by these cells in a soluble form. Binding of
RANKL to RANK leads to the fusion of preosteoclastic cells
into multinucleated cells, and it also results in an increase in
their activity and survival (81). PTHrP stimulates osteoclas-
togenesis by increasing the expression of RANKL on osteo-
blasts, thereby stimulating the formation and activity of ma-
ture osteoclasts (82). In this manner, PTHrP contributes to
increased bone resorption and the further release of the che-
moattractant factors noted earlier (e.g., TGF�, IGF-I, IGF-II,
and platelet-derived growth factor), which are implicated in
the induction and development of the vicious cycle. Another
factor released during osteolysis is Ca2�, whose concentra-
tions range from 8–40 mm in the proximity of active oste-
oclasts to 2 mm near nonresorbing bone (83, 84). Elevated
Ca2�

o levels, at concentrations of 0.8 or 0.9 mm higher than
serum Ca2� concentrations, activate the CaR, producing ad-
ditional release of PTHrP from the cancer cells, thus feeding
the vicious cycle. This phenomenon occurs in breast cancer
cell lines (38), prostate cancer cell lines (39), oral squamous
cancer cells (85), rat testicular cancer cells (86, 87), astrocy-
tomas, and meningiomas (88).

Interestingly, metastatic breast cancer cells present in the
bone have been shown to express higher PTHrP levels, com-
pared with primary breast cancer cells or cells metastatic to
nonskeletal sites (89–91), and there is a positive correlation
between PTHrP expression by primary breast cancer cells

FIG. 2. The vicious cycle of metastatic breast cancer in bone. Factors released during osteolysis, such as Ca2�, act on malignant cells in the
microenvironment, promoting the release of agents that stimulate further bone breakdown and liberation of additional Ca2� and other factors
stimulating PTHrP secretion. This results in a vicious cycle. In contrast, stimulation of the CaR in normal breast cells leads to reduced PTHrP
secretion.
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and the risk of developing bone metastases (92). As has been
shown by Guise et al. (93), injection of anti-PTHrP monoclo-
nal antibody reduces skeletal metastases of MDA-MB-231
breast cancer cells in nude mice. Due to the role of PTHrP in
bone metastasis and its functional interaction with the CaR,
it is conceivable that the CaR represents a new pharmaco-
logical target in the treatment of bone metastases.

B. The CaR and prostate cancer

1. CaR-mediated PTHrP release in prostate cancer. Sanders et al.
(39) initially demonstrated that CaR mRNA is expressed by
the human-derived, prostate cancer cell line, PC-3. Upon
stimulation by CaR agonists, including Ca2�

o, neomycin, and
spermine, these cells secreted PTHrP in a concentration-de-
pendent manner. This effect was demonstrated to be medi-
ated through the activation of the CaR because the intro-
duction of a dominant-negative CaR into the cells by
adenovirus-mediated infection suppressed the response. In-
terestingly, TGF�, which is released from resorbing bone
along with Ca2�, produces a synergistic effect with Ca2� on
PTHrP secretion: pretreatment of the PC-3 cells with TGF�
increased both basal and Ca2�

o-induced PTHrP secretion.
This suggests that Ca2� and TGF� released into the bony
microenvironment by PTHrP-induced osteolysis may, in
turn, synergistically increase PTHrP secretion, leading to
further bone resorption and contributing to the vicious cycle
noted above (39). Yano et al. (79) have discerned more pre-
cisely the mechanism underlying CaR-mediated PTHrP re-
lease in prostate cancer cells. They showed that the activated
CaR transactivates the epidermal growth factor (EGF) re-
ceptor (EGFR), a phenomenon that has been shown to occur
for other GPCRs in earlier studies (94, 95), which is then
followed by ERK1/2 activation and PTHrP release. This was
demonstrated by showing that the stimulation of PTHrP
release from prostate cancer cells by Ca2�

o, as well as the
associated ERK1/2 activation, was abolished by preincuba-
tion with an EGFR kinase inhibitor or an EGFR neutralizing
antibody. A matrix metalloproteinase (MMP) inhibitor also
produced a decrease in ERK1/2 activation, implying that the
transactivation is mediated by the activation of MMP. This is
consistent with previous studies that have suggested that trans-
activation of EGFRs by GPCRs occurs via the activation of
MMPs, which then cleave proheparin-bound (HB)-EGF,
thereby releasing HB-EGF (94, 96).

2. Role played by the CaR in prostate cancer bone metastasis. In
a recent study, Liao et al. (97) investigated the role of the CaR
in prostate cancer proliferation and metastasis. They have
demonstrated that elevated Ca2�

o concentrations increase
the proliferation of the PC-3 and C4-2B prostate cancer cell
lines, which have a high metastatic potential, but not the
LNCaP prostate cancer cells, which do not metastasize to
bone. The CaR-induced proliferation of the PC-3 and C4-2B
cells was correlated with higher CaR expression. In this
study, in vitro cell proliferation and in vivo metastatic pro-
gression were reduced by a knockdown of the CaR by RNA
interference, showing the requirement of this receptor for
these effects. Additionally, Ca2�

o was shown to stabilize
cyclin D, a key regulator of the G1 transition from the G1 to

the S phase, and to increase PC-3 cell attachment in in vitro
assays. The participation of the CaR in prostate cancer pro-
gression noted by Liao et al. is in accordance with previous
microarray data that have also suggested that the CaR contrib-
utes to prostate cancer metastatic potential (98). Taken together,
these studies suggest that Ca2�

o, acting through the CaR, is a
key mediator of prostate cancer metastasis to bone, enabling
malignant prostate cells to proliferate in the bony environment.

C. The CaR and breast cancer

1. CaR expression in normal and malignant breast cells. The
breast is an organ with a physiological function of vectorial
transport of Ca2� during milk production, resulting in the
generation of milk containing approximately 200 mg Ca2�

daily in lactating mothers (99). Therefore, it is not surprising
that the CaR is expressed in healthy and malignant breast
cells and that it regulates diverse functions in this tissue.
VanHouten et al. (100) have described that during lactation
the breast participates in Ca2�

o homeostasis by monitoring
Ca2�

o concentrations through the CaR and adjusting PTHrP
secretion and milk production accordingly. Elevated PTHrP
release increases skeletal Ca2� secretion and renal Ca2� re-
tention. The resultant increased blood Ca2�, by activating the
CaR, promotes transport of Ca2� from blood to milk (101).
CaR expression in the breast was confirmed in a recent clin-
ical study by Mihai et al. (102), who showed that whereas the
CaR is expressed in both normal and malignant breast cells
at both mRNA and protein levels (37, 38), elevated levels are
expressed in highly metastatic breast cancer cells. Among
breast cancer patients with strong CaR expression, 13 of 15
had bone metastases, whereas only two of 23 patients with
a normal bone scan expressed high CaR levels, suggesting
that the CaR may contribute to the preferential metastasis of
breast cancer cells to the bone. Additionally, it has been
shown in earlier studies that the growth and differentiation
of cells derived from the human mammary gland are in-
creased in the presence of elevated Ca2�

o concentrations
(103, 104), further supporting the role of Ca2�

o, and possibly
the CaR, in the modulation of events that may lead to cancer.

2. Dietary Ca2� reduces breast cancer risk. Indirect evidence
supporting the involvement of the CaR in breast cancer pro-
gression has been provided by epidemiological studies, most
of which have shown that high dietary intake of Ca2� de-
creases the risk of developing breast cancer (105, 106), al-
though no effect of dietary Ca2� on breast cancer develop-
ment has also been reported (107). A recent study by Zheng
et al. (74) showed that dietary Ca2� deficiency elevated the
level of PTH in serum, enhancing bone turnover and pro-
ducing an associated increase in breast cancer tumor growth
in bone in mice. In contrast, concurrent treatment with os-
teoprotegerin, a naturally occurring inhibitor of osteoclast
formation and activity, resulted in greatly decreased bone
resorption and completely abolished the increased lytic re-
gion area, tumor area, and cancer cell proliferation observed
in Ca2�-deficient mice, suggesting that increased Ca2� intake
and osteoprotegerin may decrease bone metastasis. These
findings are consistent with clinical observations showing
that breast cancer patients often have low dietary Ca2� intake
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and high bone turnover and that newly diagnosed cancer
patients have a higher risk of developing bone metastasis if
they have high bone turnover (108, 109).

3. Synergistic effect of Ca2�
o and TGF� on PTHrP release. Sim-

ilarly to Ca2�
o, TGF� also up-regulates the production of

PTHrP by some breast cancer cells (110), and previous stud-
ies have shown that osteolysis is reduced in mice injected
with MDA-MB-231 breast cancer cells expressing a domi-
nant-negative type II TGF� receptor compared with control
cells (75). As has been described above for prostate cancer
(39), a synergistic effect of the combination of Ca2�

o and
TGF� on PTHrP release has also been demonstrated in breast
cancer cells (38). In TGF�-pretreated MCF7 and MDA-MB-
231 breast cancer cells, PTHrP release was augmented upon
Ca2�

o treatment, demonstrating a synergism between these
two bone-derived factors and their contribution to the vi-
cious cycle (38).

4. A protective G protein polymorphism in breast cancer bone
metastasis. An analysis of 500 breast cancer patients has re-
vealed that a 825C�T polymorphism in the GNB3 gene,
encoding the G protein �3-subunit, is protective against bone
metastasis (111). The frequency of the double mutant, GNB3
825 TT, was shown to be significantly lower among patients
with bone metastases (3.1%) compared with those with other
metastases (12.8%) or no metastases (13.3%). Although breast
cancer cells express numerous GPCRs that are involved in
bone metabolism, such as the PTH and calcitonin receptors,
the CaR may be one of the receptors whose signaling is
altered when polymorphisms occur in the genes encoding
the G protein subunits. The 825C�T polymorphism in the
GNB3 gene, which leads to increased G protein activation
(112), has been suggested by previous studies to be asso-
ciated with cancer (113–115). However, this polymor-
phism is not associated with the general risk of breast
cancer per se (116).

5. Interaction of the estrogen receptors and the CaR. The estrogen
receptors (ERs), ER� and ER�, are known to have an im-
portant function in breast cancer pathogenesis, having roles
in cell growth and differentiation. These receptors are ex-
pressed in approximately 70% of breast cancers (117, 118).
Recently, the functional association between the CaR and the
ERs has been examined by Journe et al. (119). Ca2�

o was
shown to modulate the function of ER�, and at 20 mm Ca2�

o,
similar to the concentrations encountered by cancer cells in
the bone microenvironment, down-regulation of ER� was
detected and ER� transcriptional activity was increased in
MCF7 cells, possibly through the activation of the CaR. At 3
mm Ca2�

o, increased expression of the progesterone receptor
was also observed. The calcimimetic, NPS R-467, enhanced
the effects of Ca2�

o, whereas a CaR antagonist partly sup-
pressed the Ca2�

o-induced effects, supporting the participa-
tion of the CaR. Interestingly, Mg2�, another CaR agonist,
had no effect, whereas 17�-estradiol produced effects similar
to those of Ca2�

o. An ER antagonist, ICI 182780, also abol-
ished the effects of Ca2�

o, suggestive of a weak estrogenic
effect of Ca2�

o in breast cancer cells (119). This study suggests
that through its interaction with the ER�, the CaR may con-
tribute to breast cancer progression, especially in the bony

microenvironment where these cells are exposed to very high
Ca2�

o concentrations in the vicinity of resorbing osteoclasts.

III. The CaR and Parathyroid Tumorigenesis

As has been described in Section I, the primary role of the
CaR is in the regulation of PTH secretion from the chief cells
of the parathyroid gland. Therefore, it is not surprising that
considerable research has been dedicated to the quest for the
role of the CaR in diseases of the parathyroid (53, 56), in-
cluding cancer. Although cancers of the parathyroid gland
are rare, the CaR is now known to participate in the devel-
opment and/or progression of benign and malignant para-
thyroid tumors.

A. Inhibitory effect of the CaR on parathyroid
cell proliferation

Under normal physiological conditions, one of the func-
tions influenced by the CaR in the parathyroid is cellular
proliferation. Patients with inactivating mutations of the
CaR, especially those homozygous for such mutations, as
well as homozygous CaR knockout mice, demonstrate para-
thyroid hyperplasia, indicating an inhibitory effect of the
CaR on parathyroid cellular proliferation (120–122). Thus the
CaR in the parathyroid can be thought of as serving as a
tumor suppressor gene by virtue of its ability to suppress
parathyroid cell growth. A recent report has described a
decrease of 55 and 41% in the expression of CaR mRNA and
protein, respectively, in hyperplastic parathyroid glands of
uremic rats, and, additionally, it was shown by immunohis-
tochemistry that CaR expression was decreased primarily in
areas of active cell proliferation (122). However, as described
briefly above, the decrease in cellular proliferation in re-
sponse to CaR activation that is observed in the parathyroid
is not a feature common to all cell types. Indeed, in some cell
types, such as fibroblasts, osteoblastic, stromal, monocyte-
macrophage, and prostate cancer cells, activation of the
CaR leads to increased proliferation (97, 123–125), in some
cases involving activation of the c-Src kinase and MAPK
pathways (126). In these cells, the receptor functions more
as a protooncogene.

B. Decreased CaR expression in parathyroid tumors

Previous histological studies have shown that expression
levels of CaR mRNA and protein are also decreased in para-
thyroid adenomas, which is consistent with the weak inhi-
bition of PTH release induced by Ca2�

o in these cells, re-
sulting in hyperparathyroidism, and their abnormal control
of proliferation by Ca2�

o. However, this proliferative effect
normally has an upper limit, and parathyroid adenomas can
be stable for years (40–42, 127, 128). In the study by Farnebo
et al. (127), CaR mRNA and protein expression were reduced
in parathyroid adenomas, demonstrating 64% of the expres-
sion level of normal patients. This was corroborated in a
previous report by Gogusev et al. (40), where an even greater
reduction was seen in CaR mRNA expression in adenoma
cells, with levels at around 29–36% those of normal cells.
Furthermore, in yet another study, a 60% reduction in CaR
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protein immunostaining was detected in parathyroid tumors
compared with normal parathyroid tissue from the same
patients (41, 127). Despite these data documenting reduced
CaR expression in parathyroid adenomas, there was no as-
sociation between adenoma weight and CaR mRNA levels
(42, 127). Additionally, Haven et al. (43) have shown that a
strong down-regulation of the CaR also occurs in parathy-
roid carcinomas with a high proliferative index, a reduction
that was even greater than that observed in adenomas and
hyperplasias, suggesting a possible role of the CaR in para-
thyroid cancers.

C. CaR expression and parathyroid cell proliferation

Although it is now clear that a relationship exists between
CaR down-regulation and parathyroid hyperplasia, the pre-
cise nature of this association is not fully understood. It still
remains to be determined whether increased parathyroid cell
proliferation leads to decreased CaR expression or vice versa.
It is likely that decreased CaR levels are responsible for the
increased PTH secretion set-point; however, serum PTH lev-
els are also greatly influenced by the parathyroid cell mass.
Some of the possible explanations for the reduced CaR
mRNA expression levels in parathyroid adenomas that have
been offered previously include less stable CaR mRNA (129)
or the loss of one of the CaR alleles on chromosome 3q (130).
So far these theories have not been supported, and Farnebo
et al. (42) have shown no loss of heterozygosity in the region
of the CaR gene in 11 parathyroid tumors.

D. Lack of CaR mutations in parathyroid tumors

Moreover, whereas mutations in the CaR gene have been
shown to be associated with abnormal PTH secretion, lead-
ing to either hyperparathyroidism (53) or hypoparathyroid-
ism (56), it seems that mutations and deletions of the coding
region of the CaR gene are not involved in the pathogenesis
of parathyroid tumors (131, 132). In the study by Hosokawa
et al. (131), no mutations were identified in the coding regions
of the CaR in 44 parathyroid tumors, including adenomas,
carcinomas, and primary hyperplasias. In contrast, a variety
of nonsense, missense, deletion, frame shift, insertion, and
splice site mutations have been described in FHH (53). These
findings were also supported by Cetani et al. (132), who also
did not detect any mutations in the CaR gene in 20 para-
thyroid adenomas. Furthermore, despite the presence of re-
duced receptor expression levels, Corbetta et al. (128) have
shown that the CaR acts in a similar way in parathyroid
adenomas as in normal parathyroid cells, producing similar
modulation of intracellular signaling pathways. However,
apart from reduced CaR levels, other factors must be in-
volved in the abnormal Ca2�

o-sensing in parathyroid ade-
nomas, because some adenoma cells express normal CaR
levels, while demonstrating reduced in vitro sensitivity to
Ca2�

o (128). One reason that may account for the defective
Ca2�

o sensing in these cells despite normal CaR expression
levels is the lower content of the G protein, Gq, in some
parathyroid tumors (128).

E. Differential expression of exon 1A in normal parathyroid
cells vs. parathyroid tumors

The human CaR gene, which is encoded by seven exons,
was shown to have two promoters and two 5� untranslated
exons (exons 1A and 1B), and the alternative utilization of
exons 1A and 1B leads to different mRNAs (133). It has been
reported that multiple CaR mRNAs are present in both nor-
mal parathyroid cells and parathyroid adenomas, and they
are expressed at different levels (129, 133). The expression of
exon 1A, containing TATA and CAAT boxes, is reduced in
parathyroid adenomas and is expressed at levels only 60% of
those in normal glands, whereas the expression of exon 1B
is not different between adenomas and normal glands. The
reduced expression of exon 1A in parathyroid tumors com-
pared with normal parathyroid cells demonstrates an alter-
ation that may contribute to tumorigenesis.

F. Role of 1,25-(OH)2D3 in parathyroid tumors

The CaR is not the only contributor to the control of serum
Ca2� levels. As mentioned in Section I, 1,25-(OH)2D3 also
plays a role by negatively regulating PTH synthesis and
parathyroid cell proliferation through activation of the vi-
tamin D receptor (VDR) (121). Previous studies have shown
that PTH secretion is negatively correlated with VDR ex-
pression (134, 135). Yano et al. (136) have demonstrated that
in addition to decreased CaR levels, VDR expression levels
are also significantly lower in parathyroid adenomas com-
pared with normal parathyroid cells. However, as was de-
scribed for the CaR, mutations in the VDR are not believed
to contribute to parathyroid tumor development (137). Be-
cause the two CaR promoters contain vitamin D response
elements (138), it has been proposed that CaR expression
levels are regulated by 1,25-(OH)2D3 (139), which was shown
to up-regulate CaR mRNA levels in parathyroid, kidney, and
thyroid in rat (138). Interestingly, the CaR up-regulates the
VDR, and the CaR and VDR each up-regulate their own
receptors. Therefore, it is not unexpected that a strong pos-
itive relationship between VDR and CaR protein expression
levels exists (136), and it has been hypothesized that the
reduced CaR expression present in parathyroid tumors may
be secondary to the reduced VDR expression.

However, conflicting findings have been described by
Rogers et al. (140), suggesting that CaR mRNA expression
levels are not regulated by either Ca2�

o or 1,25-(OH)2D3 in
rats. Furthermore, the above-mentioned CaR down-regula-
tion in parathyroid tumors was suggested to be more closely
associated with proliferative activity than the decrease in
VDR expression. In fact, the decrease in CaR expression was
suggested to be associated with high proliferation in a man-
ner independent of the VDR (121). Therefore, further inves-
tigation is still necessary to determine the precise nature of
the functional relationship between the CaR and VDR.

G. Possible mechanisms of CaR-induced reduction in
parathyroid cell proliferation

It is not fully understood how activation of CaR leads to
reduced parathyroid cell proliferation, and the precise in-
tracellular pathways involved in this event still remain to be
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elucidated. Cyclin D1 is one possible candidate, and in para-
thyroid tumors it behaves as an oncogene, having a role in
parathyroid cell growth and dysregulated PTH secretion
(141). The cyclin D1 gene is under the influence of the reg-
ulatory region of the PTH gene in occasional parathyroid
tumors as a result of a chromosomal translocation and, as a
result, is overexpressed (142). It is overexpressed more com-
monly without translocation in other parathyroid adenomas
due to uncertain mechanisms (141), and overexpression of
cyclin D1 in a mouse model of primary hyperparathyroidism
reduces CaR expression levels, associated with a rightward
shift in the Ca2�

o-PTH set-point (143–145). In a recent study,
Corbetta et al. (146) have demonstrated that EGF- and FGF-
induced increases in cyclin D1 expression and ERK1/2 phos-
phorylation were inhibited by CaR agonists in parathyroid
adenomas, demonstrating that in parathyroid tumor cells
cyclin D1 expression is modulated by CaR activation in the
presence of growth factors mimicking normal physiological
conditions (146). These CaR-induced effects were not ob-
served in the absence of growth factors. The differential effect
of CaR activation on cyclin D1 expression, depending on the
presence or absence of growth factors, is strongly suggestive
of a transactivation between the CaR and growth factor re-
ceptors, a phenomenon that has been reported in other cell
lines (79). Taken together, these studies show that activa-
tion of the CaR may play an inhibitory role in parathyroid
tumorigenesis through its effects on cyclin D1. Due to
down-regulation of the CaR in many parathyroid tumors,
the normal inhibitory effect of CaR activation on cellular
proliferation of the parathyroid cells is not able to proceed,
leading to detrimental events promoting the development
of parathyroid tumors.

IV. The Function of the CaR in Colon Cancer

A. Dietary Ca2� has preventive effect in colon cancer

The chemopreventive effects of Ca2�
o in colon cancer have

been described in numerous previous studies (147–150).
Most epidemiological studies have shown that the incidence
of human colorectal carcinoma is inversely related to dietary
Ca2� consumption (149–153). However, a minority have re-
ported no influence of dietary Ca2� on the risk of colon
cancer (154). It is not completely understood how this pro-
tective effect occurs. A possible explanation that has been
previously proposed is that low Ca2� reduces the amount of
insoluble Ca2� salts formed from otherwise carcinogenic bile
acids in the lumen of the intestine (155). However, even in in
vitro studies, it has been shown that when human colon
carcinoma cells are kept in Ca2�-free medium, the cells re-
main loosely attached to the substratum and to one another
and proliferation is increased. Conversely, elevated Ca2�

o
decreases the rate of growth, and the cells take on a flattened
appearance and behave as a cohesive epithelial unit (156).
Additional studies conducted by Cross et al. (157, 158)
have also demonstrated that the proliferative potential of
intestinal Caco-2 cells is inversely related to the Ca2�

o
concentration. It is now, therefore, well established that
Ca2�

o is a direct modulator of colonocyte proliferation and
differentiation.

B. The CaR is expressed by colon epithelial cells and is
responsible for Ca2�

o-mediated effects

Caco-2 cells (159), as well as normal colonic epithelium,
have been shown to be able to sense variations in Ca2�

o
through the CaR, leading to the regulation of proliferation
and differentiation (29, 160). The expression of the CaR in the
colon is not unexpected because, apart from diet-derived
Ca2�, numerous other CaR agonists occur naturally in the
colon, such as polyamines, suggestive of a physiological
function of the CaR. In the healthy gut, a gradient of CaR
expression exists in the colonic crypts, and rapidly prolifer-
ating epithelial cells at the bottom of the crypt do not express
the CaR, whereas cells in the middle and top of the crypt do
express this receptor, with the highest level of expression at
the top (161) (Fig. 3). The cells present in the colonic crypts
have been shown to acquire CaR expression as they differ-
entiate and move toward the apex of the crypt (161). A Ca2�

o
concentration gradient has also been postulated to exist in the
colonic crypts, with the highest concentrations at the apex of
the crypt, where CaR expression is the highest and cells are
fully differentiated, and decreased Ca2�

o levels at the bottom
of the crypt, with high cellular proliferation (161). This Ca2�

o
concentration gradient was hypothesized to be responsible
for the differential CaR expression, as well as the enhanced
differentiation, and decreased proliferative activity of the
cells from the bottom to the top of the crypt.

C. CaR expression is reduced in colon cancer

It has been reported in numerous recent studies that CaR
expression is reduced in colon cancer tissue compared with
normal colonic mucosa (29, 160, 161); the greater the decrease
in CaR expression, the greater the progression of malignancy.
CaR expression is decreased in differentiated carcinomas
that exhibited glandular-tubular structures, but very little or
no CaR was shown to be expressed in undifferentiated, in-
vasive carcinomas, with only isolated CaR-positive cells (29,
160). Because elevated Ca2�

o concentrations decrease pro-
liferation and increase differentiation of colon epithelial cells,
it has been hypothesized that the loss or disruption of normal
functionality of the CaR may lead to abnormal differentiation
and proliferation, greatly contributing to the malignant pro-

FIG. 3. The gradient in CaR expression in the colonic crypts. The CaR
is expressed at the lowest levels by the stem cells present at the
bottom of the colonic crypts. These cells acquire CaR expression as
they differentiate and move to the apex of the crypt.
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gression of colon cancer. Additionally, Bhagavathula et al.
(162) have demonstrated in CBS carcinoma cells that down-
regulation of the CaR by small interfering RNA (siRNA)
leads to a lack of Ca2�

o-induced inhibition of proliferation
and an induction of morphological changes. Cells lacking a
functional CaR continue to proliferate and do not flatten or
form cell-cell contacts as the parental cells normally do in the
presence of Ca2�

o (162). Therefore, the chemopreventive ef-
fects of dietary Ca2� normally exerted on the colonic epi-
thelium may not take place in colon cancer cells with reduced
or absent CaR. Thus, colon cancers resemble stem cells of the
colon, where Ca2�

o is also unable to inhibit cell proliferation
and induce differentiation (163). An additional argument in
the support of the involvement of the CaR in the protective
effect of Ca2�

o in colon cancer is the fact that Gd3�, a cell
membrane impermeable CaR agonist, mimics the chemo-
preventive effects of Ca2�

o, and in vitro, proliferation of
Caco-2 colon cancer cells decreases in response to Gd3� (164).
The chemopreventive effects of Ca2�

o in colon cancer depend
on the stage of progression of the malignancy. Ca2�

o inhibits
the proliferation of well-differentiated colon cancer cells, but
not poorly differentiated cells (165), which is consistent with
the fact that CaR expression is lost in undifferentiated cells,
so Ca2�

o cannot induce its effects. The mechanism by which
CaR expression is reduced in colon cancer is not yet fully
understood. Some possibilities include the loss or mutation
of the CaR gene, or the lack of expression may simply be the
result of down-regulation due to unknown mechanisms.

D. The role of E-cadherin and the �-catenin/TCF4 pathway
in CaR-mediated effects

In a study by Chakrabarty et al. (160), it was shown that
Ca2�

o, acting on the CaR, promotes the expression of E-
cadherin in several human colon carcinoma cell lines, in-
cluding FET, SW480, MOSER, and CBS cells, leading to sup-
pression of their malignant properties. E-cadherin belongs to
the superfamily of intercellular adhesion molecules ex-
pressed by intestinal epithelial cells, and it is a tumor sup-
pressor, having a role in various epithelial cancers (166–172).
Dysregulation of E-cadherin plays a role in the transition
from adenoma to carcinoma, which involves the acquisition
of an aggressive phenotype (173, 174), leading to increased
metastasis and invasiveness (175, 176). Consistently, E-cad-
herin is expressed at very low levels in rapidly proliferating
epithelial cells, but it is up-regulated during differentiation
(173). The precise mechanism of the CaR-induced increase in
E-cadherin expression still needs to be elucidated. However,
some recent evidence has shown that in CBS colon carcinoma
cells, ERK1/2 may be involved in the up-regulation of E-
cadherin upon CaR activation, thereby leading to reduced
growth and the onset of differentiation (156). This was dem-
onstrated by treating the cells with the ERK1/2 inhibitor,
U0126, which abolished E-cadherin up-regulation (156).

The tumor-suppressing effects of E-cadherin are believed
to be produced through its interaction with �-catenin, a pro-
tooncogene (177) that is a member of the Wnt pathway family
(178). �-Catenin is known to play a role in colon cancer, and
the expression of this protein is dysregulated at different
stages of carcinogenesis. E-cadherin forms a complex with

�-catenin, which is then linked to the actin-based cytoskel-
eton (179). Only when both �-catenin and E-cadherin are
present at the cell surface, and are functional, do cells within
a given tissue act as a cohesive unit. Otherwise single cells
are able to move and invade surrounding tissues (180). E-
cadherin controls the function of �-catenin by sequestering
this protein from the cytoplasm to the cell membrane, lim-
iting its availability for signaling, thus antagonizing its func-
tions (181). Activation of unsequestered �-catenin leads to its
accumulation in the nucleus, where it interacts with the lym-
phoid enhancer factor-T cell factor (TCF) family of transcrip-
tion factors, leading to expression of various growth-induc-
ing genes, thereby promoting the malignant phenotype (182).
Conversely, suppression of this pathway leads to differen-
tiation of colon epithelial cells. Activation of the CaR by
Ca2�

o, as well as Gd3�, was shown to lead to decreased
binding of �-catenin to TCF4 and suppression of this ma-
lignancy-promoting pathway (160). Recently, it has also been
demonstrated that in CaR-siRNA-transfected CBS cells,
Ca2�

o failed to induce E-cadherin production or the shift of
�-catenin from the cytoplasm to the cell membrane that was
observed in normal cells, thus allowing the progression of
pro-proliferative effects (162). These findings suggest that
induction of E-cadherin expression and suppression of the
�-catenin/TCF4 pathway may contribute to the chemopre-
ventive action of Ca2�

o in colon cancer through activation of
the CaR (160). Although it was initially believed that the
primary adverse effect of dysregulated �-catenin in colon
cancer was through its disruption of cell-to-cell adhesion,
thus promoting invasion and metastasis, it is now clear that
it also produces important effects on cell proliferation and
differentiation (173).

Interestingly, a downstream event following the activation
of �-catenin/TCF is the stimulation of the protooncogenes,
c-myc and cyclin D1 (182, 183). Bhagavathula et al. (162) have
demonstrated a relationship between activation of the CaR
and cell surface �-catenin localization on the one hand, and
reduced expression of c-myc and cyclin D1 on the other,
suggesting that the quiescence induced by Ca2�

o may be
produced through inhibition of the �-catenin/TCF/c-myc/
cyclin D1 sequence of events. It was also shown that in
CaR-siRNA transfected cells, c-myc and cyclin D1 were not
down-regulated by Ca2�

o treatment; however, they were
down-regulated in nontransfected cells, confirming that CaR
activation has a suppressive effect on colonic epithelial cell
proliferation and malignant progression (162). Interestingly,
Kallay et al. (159) have also shown that the c-myc-mediated
stimulation of cell proliferation in the colon was transduced
along the protein kinase C (PKC) pathway, whereas others
(184, 185) have shown that PKC activation exerts a negative
effect on cell proliferation in the colon, suggesting that PKC�
signaling is associated with cyclin D down-regulation (184).
The differentiation of intestinal cells by Ca2�

o was also
shown to involve activation of the PKC pathway by phos-
pholipase C, which is consistent with the reduced PKC ac-
tivity in colon cancer cells compared with normal colon cells,
in parallel with their decreased levels of differentiation (185,
186). The exact role of PKC in colon cancer needs to be
clarified in future studies.
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Apart from c-myc and cyclin D1, the association of �-cate-
nin with the TCF family of transcription factors also leads to
increased expression of MMP7, urokinase plasminogen ac-
tivator receptor, and �-catenin, all of which have roles in the
development and progression of colon cancer (182). Previous
studies have also demonstrated that �-catenin plays a role in
the up-regulation of nuclear factor-�B, possibly through the
p38 MAPK pathway (187), which has previously been sug-
gested to be associated with the induction of differentiation
of intestinal cells. In fact, phosphorylated forms of p38 are
present predominantly in the nuclei of differentiated intes-
tinal cells (188). Additionally, Ca2�

o has been shown to ac-
tivate the cyclin-dependent kinase inhibitors p21 and p27
(161), which potently induce differentiation in intestinal ep-
ithelial cells (189, 190). This is consistent with the observation
that the expression of p21 and p27 is lost in the early stages
of colon tumorigenesis, along with the reduction of CaR
expression (191).

E. The chemopreventive effects of 1,25-(OH)2D3 in
colon cancer

In addition to Ca2�
o, vitamin D has also been shown to

have chemopreventive effects in colon cancer (149, 154). The
majority of epidemiological studies have suggested that an
inverse correlation exists between vitamin D intake or sun-
light exposure and the occurrence of colon cancer (155, 192),
but no effect of vitamin D on colon cancer development has
also been reported (193). The protective effect of vitamin D
may be partly due to its proapoptotic effects on colon cancer
cells through up-regulation of the proapoptotic protein BAK
(BCL2 antagonist/killer) (194), but perhaps is also due to its
role in increasing the absorption of Ca2� from the gut, which
is its primary physiological function. Consequently, high
VDR expression levels have previously been associated with
a favorable prognosis in colon cancer (195, 196), and accord-
ingly, VDR levels are significantly reduced in late stages of
colon carcinogenesis (197).

As mentioned earlier, the two CaR promoters contain a
vitamin D response element (138). Chakrabarty et al. (161)
have shown that an enhanced response occurs in the stim-
ulation of CaR promoter activity in CBS colon carcinoma cells
when Ca2�

o and 1,25-(OH)2D3 are administered together,
leading to enhanced CaR protein expression. This may par-
tially account for the elevated CaR expression as the cells
move up to the top of the crypt because Ca2�

o and 1,25-
(OH)2D3 have a greater opportunity there to stimulate CaR
expression and colon cell differentiation. Therefore, it is
likely that a functional relationship exists between the CaR
and vitamin D in numerous cellular events. It has been
shown that just like Ca2�

o, 1,25-(OH)2D3 also promotes dif-
ferentiation of colon carcinoma cells via the promotion of the
E-cadherin pathway (161, 198). The study by Chakrabarty et
al. (161) showed that Ca2�

o and 1,25-(OH)2D3 can each in-
crease the expression of E-cadherin individually, but that
1,25-(OH)2D3 was less effective in producing this effect than
Ca2�

o, whereas a combination of the two agents was more
effective at stimulating E-cadherin expression than either
alone. Additionally, the ligand-activated VDR competes
with TCF4 for �-catenin binding, thereby reducing the pro-

malignant effects of the �-catenin/TCF4 interaction (198) in
a manner similar to Ca2�

o. It was also shown that upon
treatment with 1,25-(OH)2D3, �-catenin, �-catenin, and
zonula occludens-1, a key regulator of tight junction forma-
tion, are translocated from the nucleus to the plasma mem-
brane, and they are thus unable to produce their promalig-
nant effects. Moreover, 1,25-(OH)2D3 treatment also leads to
reduced expression of c-myc (198). Additionally, in a similar
manner to Ca2�

o, 1,25-(OH)2D3 was also shown to produce
a strong induction of p21 and p27 (161) as it does in para-
thyroid cells (199). Therefore, it seems that 1,25-(OH)2D3,
acting on the VDR or through the regulation of the CaR gene,
may produce its beneficial effects in colon cancer by increas-
ing E-cadherin signaling and inhibiting downstream proma-
lignant pathways, thus modulating cancer progression (161).

V. The Function of the CaR in Other Cancers

From the studies described above, it is clear that the CaR
has a role in many types of cancer. In addition to the above
noted findings, recent studies have revealed that pituitary,
testicular, pancreatic, and brain cancers may be influenced by
the CaR. This receptor is expressed in the human pituitary,
in both normal cells and in pituitary adenomas (200), as well
as in normal and malignant mouse and rat pituitary cells
(201, 202). In human pituitary adenomas, elevated Ca2�

o,
neomycin and Gd3� were shown to produce an increase in
intracellular Ca2�, due to Ca2� mobilization, and an increase
in cAMP levels. Because pituitary adenomas are often char-
acterized by differential hormone secretion compared with
normal pituitary cells, Romoli et al. (200) investigated the
effect of CaR activation on GH secretion. Treatment with CaR
agonists did not result in an increase in GH secretion from
GH-secreting adenomas; however, an amplification of GH
secretory response to GHRH was observed, showing that the
CaR may contribute to the increased GH secretion by pitu-
itary adenomas (200). Supporting the role of the GHRH in
pituitary adenomas, a study by Levy and Lightman (203)
previously described localized and elevated levels of GHRH
mRNA in somatotroph adenomas. A separate study by
Zhang et al. (204) investigating pituitary malignancies dem-
onstrated that a positive correlation exists between the ex-
pression of the pituitary tumor-transforming gene (PTTG)
and the degree of pituitary tumor invasiveness. PTTG is a
putative oncogene overexpressed in most cancers (205–207),
and it is normally associated with cell proliferation and an-
giogenesis (208). The findings by Zhang et al. (204) are in-
teresting in the light of recent evidence suggesting that ac-
tivation of the CaR by Ca2�

o leads to up-regulation of PTTG
mRNA in rat testicular Leydig H-500 cancer cells in a con-
centration-dependent manner (206). Therefore, it is tempting
to speculate that this may also be true for other cell types,
such as pituitary cells, offering a possible direction for future
investigation. The Ca2�

o-induced effect on PTTG expression in
testicular cancer cells was abolished by overexpression of a
dominant-negative CaR, confirming the involvement of this
receptor (206). Additionally, elevated Ca2�

o concentrations also
produced an up-regulation of VEGF, a growth factor involved
in angiogenesis, a process known to occur robustly in testicular
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cancer, because the rapid proliferation of these cells requires an
adequate blood supply (206).

An additional contributor to testicular cancer is nitric ox-
ide (NO), which is produced by testicular cells and acts as a
negative regulator of steroidogenesis while also influencing
processes such as proliferation, apoptosis, and angiogenesis
(209). Chronically high NO levels play a role in carcinogen-
esis, producing a mutagenic effect on testicular cells. Using
Leydig H-500 cancer cells, it has been shown that Ca2�

o,
acting through the CaR, regulates the production of NO by
modulating the levels of expression of the mRNA and pro-
tein for inducible NO synthase (210). Moreover, as has been
described above for breast and prostate cancer, Ca2�

o was
shown to stimulate PTHrP secretion in testicular Leydig
H-500 cancer cells through activation of the CaR (86, 87, 211).
Other CaR agonists, such as Mg2� and neomycin, also in-
creased PTHrP production in a concentration-dependent
manner (86). The intracellular events that are thought to
precede the increase in PTHrP release upon CaR activation
include the PKC, ERK1/2, p38 MAPK, and JNK pathways
(48, 211). The effects of high Ca2�

o on both NO production
and PTHrP secretion were confirmed to be CaR-mediated by
overexpression of a dominant-negative CaR mutant, which
abolished these effects (210, 211).

The CaR has also been shown to be expressed in normal
human pancreas (35) and in rat pancreatic islets (212, 213),
where it is believed to have a physiological role in the reg-
ulation of the Ca2� concentration in the pancreatic juice (212).
Recently, Ca2�

o has been suggested to contribute to the
pathogenesis of several types of endocrine pancreatic can-
cers, including insulinomas (214), gastrinomas (215), and
vasoactive intestinal polypeptide-secreting tumors as well as
carcinoid tumors, which resemble pancreatic endocrine
tumors (216–218). In gastrinomas, Ca2�

o stimulated the se-
cretion of gastrin and modulated the growth pattern of the
cells through activation of the CaR (215). One of the mech-
anisms of action of Ca2�

o in pancreatic cancer has been sug-
gested to involve voltage-gated Ca2� channels, leading to
Ca2� influx into these cells (219). However, in insulinoma
cells, an inhibitor of voltage-dependent Ca2� channels was
shown to be unable to block all the effects of hypercalcemia,
suggesting that another Ca2�

o sensor must be involved, such
as the CaR (214). Komoto et al. (220) have demonstrated that
in human pancreatic islets and insulinoma cells, elevated
Ca2�

o concentrations produced an increase in cytosolic free
Ca2�, and this response was greater in human insulinoma
cells compared with normal islets. An inhibitor of phospha-
tidylinositol-3 kinase abolished the response in insulinoma
cells but not in islets, suggestive of differential intracellular
signaling in healthy vs. malignant cells in response to Ca2�

o,
possibly involving the CaR.

The CaR was shown to be expressed in several regions of
the rat central nervous system, including the striatum (33),
the hippocampus (221, 222), and perivascular sensory nerves
(223) as well as oligodendrocytes (224). In the human brain,
the CaR was detected in primary embryonic astrocytes, the
astrocytoma tumor cell line, U87, and meningiomas (88, 225),
and it was shown to modulate the activities of Ca2�-activated
K� channels and nonselective cation channels as well as other
cellular events, such as proliferation (224–228) and the secretion

of PTHrP (88). Of note in this regard, PTHrP is an important
mediator of astrocytic differentiation in rat brain (229, 230). Due
to the role of the CaR in numerous cellular events, including
proliferation, differentiation, and PTHrP secretion, it seems
possible that this receptor may modulate the malignant pro-
gression of brain-derived cells. However, this topic is currently
still in its early stages of investigation, and further research
clearly needs to be carried out to support these speculations.

VI. Future Perspectives/Clinical Developments

Despite intensive efforts, few effective treatments that
slow or abolish the development and progression of cancer
currently exist. Additional therapeutics are therefore re-
quired to overcome this widespread and frequently deadly
disease. Determining the molecular changes that underlie
cancer development may enable specific targeting of the
malfunctioning molecules and pathways to achieve more
effective cancer therapies. In the case of cancers with mod-
ified CaR expression levels or signaling, this receptor may be
a potential target. Allosteric modulators of the CaR have
recently been identified that interact with the transmem-
brane domain of the CaR, changing the conformation of the
receptor and thus the affinity of the CaR for its agonists. The
calcimimetics enhance CaR agonist activity, resulting in a
left-shift in the Ca2�

o concentration-response curve, whereas
CaR antagonists, so-called calcilytics, decrease the activity of
CaR agonists. These compounds have proved to be of sub-
stantial therapeutic utility in diseases where CaR dysregulation
occurs, such as various forms of hyperparathyroidism. The
calcimimetic, cinacalcet, has been approved by the U.S. Food
and Drug Administration for the treatment of patients with
hyperparathyroidism arising from chronic kidney disease who
are receiving dialysis therapy, as well as in parathyroid cancer
(231). Although effective in reducing serum Ca2� concentration
in patients with mild primary hyperparathyroidism, cinacalcet
has not yet been approved for use in this setting (232).

Due to the diverse functionality of the CaR in various
cancers, the potential for clinical use of allosteric modulators
of the CaR is still unclear. In cancers characterized by re-
duced CaR levels, such as parathyroid and colon cancers, the
use of calcimimetics might be beneficial. In contrast, calci-
lytics, such as NPS 2143, may have a role in the treatment of
cancers where elevated CaR signaling poses a problem, such
as breast and prostate cancer (233). The effect of these com-
pounds on cancer progression still remains to be tested in in
vivo studies. However, as a result of the ubiquitous expres-
sion of the CaR and its role in numerous important physi-
ological functions, the systemic use of allosteric agonists of
the CaR might be associated with unacceptable side effects.
Organ- or tissue-specific targeting methods need to be de-
veloped to mitigate any major adverse effects.

Other approaches that might theoretically produce more
specific effects on the modulation of CaR function include the
use of dominant-negative CaR constructs and siRNA silenc-
ing, the latter producing reduced CaR levels and thus sig-
naling (234). Although these methods are widely used in
research, further investigation into their clinical applications
is needed because their utilization would greatly aid in pro-
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ducing therapeutic effects that are highly specific for the gene
in question. It is probable that the precise role of CaR acti-
vation will have to be determined for each specific cancer
type, due to the heterogeneity in the cell types involved, with
differential receptor and G protein expression levels, which
may influence numerous signaling events. In addition, some
type of targeting of the siRNA and dominant-negative CaR
constructs to malignant tissue would be necessary to avoid
systemic side effects resulting, for example, from reduction
of CaR expression in the parathyroid. The relevant param-
eters of the CaR’s structure and function impacting the re-
ceptor’s therapeutic potential remain to be investigated but
might run the gamut from the choice of a heterodimerization
partner (the CaR heterodimerizes with both the metabotropic
glutamate receptors and GABAB receptors) to intracellular
pathway activation or receptor transactivation. For example,
GPCRs are known to transactivate growth factor receptors,
such as EGFR, an event that has been implicated in various
cancer types, including breast, colon, lung, and prostate (94,
95, 235). Indeed, the CaR has been shown to transactivate the
EGFR in prostate cancer, thereby stimulating PTHrP release
(79). Therefore, there are numerous potential targets for
modulation of CaR signaling. The precise contributors to the
development and progression of different cancers involving
the CaR still remain to be determined.

VII. Conclusion

Apart from its primary role in the maintenance of constant
blood Ca2� levels, the CaR plays diverse roles in the control
of numerous other physiological functions, potentially in-
cluding the development and progression of a wide range of
benign and malignant tumors (Table 1). The numerous mech-
anisms by which the CaR may contribute to tumorigenesis
present challenging problems in terms of determining how
manipulating this receptor may be advantageous in specific
types of cancer. Due to its importance in normal physiolog-
ical functions, especially in Ca2�

o homeostasis, great empha-
sis should be placed on the development of drug-targeting
methods to modulate the activity of the CaR solely in tissues

where its function is dysregulated and thus to avoid poten-
tially major adverse side effects.
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