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There is growing interest in the possible health threat posed by endocrine-disrupting chemicals
(EDCs), which are substances in our environment, food, and consumer products that interfere
with hormone biosynthesis, metabolism, or action resulting in a deviation from normal ho-
meostatic control or reproduction. In this first Scientific Statement of The Endocrine Society,
we present the evidence that endocrine disruptors have effects on male and female repro-
duction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, me-
tabolism and obesity, and cardiovascular endocrinology. Results from animal models, human
clinical observations, and epidemiological studies converge to implicate EDCs as a significant
concern to public health. The mechanisms of EDCs involve divergent pathways including (but
not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated recep-
tor �, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neuro-
transmitter receptors and systems; and many other pathways that are highly conserved in
wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models.
Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides
and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are
present in the environment or are in widespread use. We make a number of recommendations
to increase understanding of effects of EDCs, including enhancing increased basic and clinical
research, invoking the precautionary principle, and advocating involvement of individual and
scientific society stakeholders in communicating and implementing changes in public policy
and awareness. (Endocrine Reviews 30: 293–342, 2009)
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I. General Introduction to Endocrine
Disruption

An endocrine-disrupting compound was defined by the
U.S. Environmental Protection Agency (EPA) as “an

exogenous agent that interferes with synthesis, secretion,
transport, metabolism, binding action, or elimination of
natural blood-borne hormones that are present in the
body and are responsible for homeostasis, reproduction,
and developmental process.” Our understanding of the
mechanisms by which endocrine disruptors exert their ef-
fect has grown. Endocrine-disrupting chemicals (EDCs)
were originally thought to exert actions primarily through
nuclear hormone receptors, including estrogen receptors
(ERs), androgen receptors (ARs), progesterone receptors,
thyroid receptors (TRs), and retinoid receptors, among
others. Today, basic scientific research shows that the
mechanisms are much broader than originally recognized.
Thus, endocrine disruptors act via nuclear receptors, non-
nuclear steroid hormone receptors (e.g., membrane ERs),
nonsteroid receptors (e.g., neurotransmitter receptors
such as the serotonin receptor, dopamine receptor, nor-
epinephrine receptor), orphan receptors [e.g., aryl hydro-
carbon receptor (AhR)—an orphan receptor], enzymatic
pathways involved in steroid biosynthesis and/or metab-
olism, and numerous other mechanisms that converge
upon endocrine and reproductive systems. Thus, from a
physiological perspective, an endocrine-disrupting sub-
stance is a compound, either natural or synthetic, which,
through environmental or inappropriate developmental
exposures, alters the hormonal and homeostatic systems
that enable the organism to communicate with and re-
spond to its environment.

The group of molecules identified as endocrine dis-
ruptors is highly heterogeneous and includes synthetic
chemicals used as industrial solvents/lubricants and their
byproducts [polychlorinated biphenyls (PCBs), polybro-
minated biphenyls (PBBs), dioxins], plastics [bisphenol A
(BPA)], plasticizers (phthalates), pesticides [methoxychlor,
chlorpyrifos, dichlorodiphenyltrichloroethane (DDT)], fungi-
cides (vinclozolin), and pharmaceutical agents [diethylstilbes-
trol (DES)].

Natural chemicals found in human and animal food
(e.g., phytoestrogens, including genistein and coumestrol)
can also act as endocrine disruptors. These substances,
whereas generally thought to have relatively low binding
affinity to ERs, are widely consumed and are components
of infant formula (1, 2). A recent study reported that uri-
nary concentrations of the phytoestrogens genistein and
daidzein were about 500-fold higher in infants fed soy
formula compared with those fed cow’s milk formula (3).
Therefore, the potential for endocrine disruption by phy-
toestrogens needs to be considered.
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A challenge to the field of endocrine disruption is that
these substances are diverse and may not appear to share
any structural similarity other than usually being small
molecular mass (�1000 Daltons) compounds. Thus, it is
difficult to predict whether a compound may or may not
exert endocrine-disrupting actions. Nevertheless, in very
broad terms, EDCs such as dioxins, PCBs, PBBs, and pes-
ticides often contain halogen group substitutions by chlo-
rine and bromine. They often have a phenolic moiety that
is thought to mimic natural steroid hormones and enable
EDCs to interact with steroid hormone receptors as ana-
logs or antagonists. Even heavy metals and metalloids may
have estrogenic activity, suggesting that these compounds
are EDCs as well as more generalized toxicants. Several
classes of EDCs act as antiandrogens and as thyroid hor-
mone receptor agonists or antagonists, and more recently,
androgenic EDCs have been identified.

The sources of exposure to EDCs are diverse and vary
widely around the world. The situation is constantly
evolving because some EDCs were banned decades ago
and others more recently, with significant differences be-
tween countries. In this respect, migrating people provide
a model to study cessation and/or onset of exposure de-
pending on contamination of the original and new milieus.
There are also several historical examples of toxic spills or
contamination from PCBs and dioxins that show a direct
causal relationship between a chemical and the manifes-
tation of an endocrine or reproductive dysfunction in hu-
mans and wildlife. However, these types of single expo-
sures are not representative of more common widespread
persistent exposure to a broad mix of indoor and outdoor
chemicals and contaminants. Industrialized areas are
typically characterized by contamination from a wide
range of industrial chemicals that may leach into soil
and groundwater. These complex mixtures enter the
food chain and accumulate in animals higher up the
food chain such as humans, American bald eagles, polar
bears, and other predatory animals. Exposure occurs
through drinking contaminated water, breathing con-
taminated air, ingesting food, or contacting contami-
nated soil. People who work with pesticides, fungicides,
and industrial chemicals are at particularly high risk for
exposure and thus for developing a reproductive or en-
docrine abnormality.

Some EDCs were designed to have long half-lives;
this was beneficial for their industrial use, but it has
turned out to be quite detrimental to wildlife and hu-
mans. Because these substances do not decay easily, they
may not be metabolized, or they may be metabolized or
broken down into more toxic compounds than the par-
ent molecule; even substances that were banned decades
ago remain in high levels in the environment, and they

can be detected as part of the body burden of virtually
every tested individual animal or human (4, 5). In fact,
some endocrine disruptors are detectable in so-called
“pristine” environments at remote distances from the
site they were produced, used, or released due to water
and air currents and via migratory animals that spend
part of their life in a contaminated area, to become
incorporated into the food chain in an otherwise un-
contaminated region. Others, such as BPA, may not be
as persistent [although recent evidence (e.g., Ref. 6) sug-
gests longer half-lives) but are so widespread in their use
that there is prevalent human exposure.

A. Important issues in endocrine disruption
A number of issues have proven to be key to a full

understanding of mechanisms of action and consequences
of exposure to EDCs. These have been reviewed previ-
ously in detail (7), and several of them are listed here
in brief.

1. Age at exposure
Exposure of an adult to an EDC may have very dif-

ferent consequences from exposure to a developing fe-
tus or infant. In fact, the field of endocrine disruption
has embraced the terminology “the fetal basis of adult
disease” (8) to describe observations that the environ-
ment of a developing organism, which includes the
maternal environment (eutherian mammals), the egg
(other vertebrates), and the external environment, in-
teracts with the individual’s genes to determine the
propensity of that individual to develop a disease or
dysfunction later in life. In this Scientific Statement, we
extend this concept beyond the fetal period to the early
postnatal developmental period when organs continue
to undergo substantial development. Thus, we will
henceforward use the terminology “the developmental
basis of adult disease.”

2. Latency from exposure
The developmental basis of adult disease also has

implicit in its name the concept that there is a lag be-
tween the time of exposure and the manifestation of a
disorder. In other words, consequences of develop-
mental exposure may not be immediately apparent
early in life but may be manifested in adulthood or dur-
ing aging.

3. Importance of mixtures
If individuals and populations are exposed to an EDC,

it is likely that other environmental pollutants are involved
because contamination of environments is rarely due to a
single compound. Furthermore, effects of different classes
of EDCs may be additive or even synergistic (9).
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4. Nontraditional dose-response dynamics
There are several properties of EDCs that have caused

controversy. First, even infinitesimally low levels of expo-
sure—indeed, any level of exposure at all—may cause en-
docrine or reproductive abnormalities, particularly if ex-
posure occurs during a critical developmental window
(10). Surprisingly, low doses may even exert more potent
effects than higher doses. Second, EDCs may exert non-
traditional dose-response curves, such as inverted-U or
U-shaped curves (11). Both of these concepts have been
known for hormone and neurotransmitter actions, but
only in the past decade have they begun to be appreciated
for EDCs.

5. Transgenerational, epigenetic effects
EDCs may affect not only the exposed individual but

also the children and subsequent generations. Recent ev-
idence suggests that the mechanism of transmission may in
some cases involve the germline (12) and may be non-
genomic. That is, effects may be transmitted not due to
mutation of the DNA sequence, but rather through mod-
ifications to factors that regulate gene expression such as
DNA methylation and histone acetylation.

B. The role of endocrinologists in discerning effects of
EDCs

The field of endocrine disruption has particular perti-
nence to endocrinologists. In general, persistent endocrine
disruptors have low water solubility and extremely high
lipid solubility, leading to their bioaccumulation in adi-
pose tissue. The properties of these substances are partic-
ularly well suited for study by endocrinologists because
they so often activate or antagonize hormone receptors.
There is no endocrine system that is immune to these sub-
stances, because of the shared properties of the chemicals
and the similarities of the receptors (13) and enzymes in-
volved in the synthesis, release, and degradation of hor-
mones (Fig 1). Therefore, the role of this Scientific State-
ment is to provide perspectives on representative
outcomes of exposures to endocrine disruptors and evi-
dence for their effects in wildlife, laboratory animals, and
humans.

II. Overview of Endocrine Disruption and
Reproductive Health from a Clinical
Perspective

A. Clinical aspects of endocrine disruption in humans
For a clinician taking care of an individual patient, there

are numerous challenges in ascertaining EDC involvement
in a particular disorder. Each person has unique exposure
to a variety of both known and unknown EDCs. Individ-

ual differences in metabolism and body composition will
create considerable variability in the half-life and persis-
tence of EDCs, as well as their degradation in body fluids
and tissues. Susceptibility to EDCs may vary according to
genetic polymorphisms. In addition, human disorders are
more likely the result of chronic exposure to low amounts
of mixtures of EDCs. The latency between exposure to
EDCs and occurrence of clinical disorders creates further
challenges when one attempts to establish a relationship at
the level of a given individual.

Epidemiological studies at the level of populations in a
country or a region are crucial to alert researchers about
geographical or secular trends in prevalence of disorders
pointing to possible environmental factors. Registries
with data on particular diseases or cell/organ donors may
provide valuable contributions. For instance, the obser-
vation of adverse trends in male reproductive health to-
gether with declining sperm count in Denmark and other
countries has led to the hypothesis of environmental con-

FIG. 1. Model of the endocrine systems targeted by endocrine-
disrupting chemicals as discussed in this article. This figure
demonstrates that all hormone-sensitive physiological systems are
vulnerable to EDCs, including brain and hypothalamic neuroendocrine
systems; pituitary; thyroid; cardiovascular system; mammary gland;
adipose tissue; pancreas; ovary and uterus in females; and testes and
prostate in males.
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taminants being harmful to reproduction (14). Unfortu-
nately, it is virtually impossible to make direct links be-
tween such epidemiological observations and exposure to
given chemicals. Regional differences in certain reproduc-
tive disorders (infertility, cancer) that may be tied to con-
tamination by compounds used locally such as in agricul-
ture, industrial accident, or product misuse/abuse in
subpopulations can also be informative (14, 15). Finally,
a comparison of disorders before and after migration to a
new environment may reveal exposure and/or susceptibil-
ity to exposure to EDCs (16).

As already mentioned, a critical concern is the potential
lag between exposure to EDCs and the manifestation of a
clinical disorder. In humans, this period may be years or
decades. In the case of reproduction, infertility cannot be
assessed until the exposed individual has attained a certain
age, again resulting in a lag between early exposure and
manifestation of a dysfunction. Delayed or early puberty
cannot be assessed until this event actually takes place,
although timing of puberty could involve programming
many years earlier during fetal life. Interestingly, an in-
creased likelihood of early puberty was observed in sub-
jects born with intrauterine growth retardation (IUGR)
(17, 18), suggesting a link between developmental pro-
gramming and reproductive maturation. As discussed be-
low, development of vaginal adenocarcinoma in women
exposed fetally to DES (19) and the association of car-
cinoma in situ in the fetal testis with the development of
testicular cancer in adulthood (14, 20) are examples of
links between the fetal environment and the occurrence
of adult disease.

The timing of exposure is key to human disease because
there are critical developmental periods during which there
may be increased susceptibility to environmental endocrine

disruptors. In those cases in which disruption is directed
toward programming of a function, e.g., reproductive
health, this may interfere with early life organization, fol-
lowed by a latent period, after which the function becomes
activated and the dysfunction can become obvious. For
reproductive function in both humans and animals, fetal
life is most vulnerable because there are rapid structural
and functional events. The roles of sex steroids in sexual
differentiation and thyroid hormones in brain develop-
ment are of paramount importance at that time. Early
postnatal life is also a time when maturation is still rapid
(e.g., the central nervous system undergoes significant de-
velopment at this time, including the hypothalamus which
controls reproduction; see Section VII). The organization
of the neuroendocrine control of reproduction is not com-
pleted at birth and remains sensitive to the interaction of
steroids or EDCs neonatally such as has been shown for
the control of ovulation in rodents. Breast or formula feed-
ing could be of particular significance due to the capacity
of human milk to concentrate EDCs in the former and the
potential high intake of phytoestrogens in soy milk and/or
plasticizers in formula-containing cans in the latter. It is
apparent that the developmental basis of adult disease is an
important concept for understanding endocrine disruption
of reproductive function in humans.

B. Clinical dimorphism of EDCs on male and female
reproduction

A spectrum of disorders throughout life, some of which
are sexually dimorphic, can be related to endocrine disrup-
tion (Table 1). Male sexual differentiation is androgen-de-
pendent (and potentially estrogen-dependent), whereas fe-
male differentiation occurs largely independently of estrogens
and androgens. Therefore, it is expected that different dis-

TABLE 1. Disorders of the human reproductive system possibly involving EDCs in their pathogenesis: A sexually
dimorphic life cycle perspective

Fetal/neonatal Prepubertal Pubertal Adult

Processes Intrauterine growth Adrenarche Gonadarche Spermatogenesis
Sexual differentiation Ovulation

Hormonal control of prostate,
breast, uterus, and
lactation

Male disorders IUGR (15) Premature pubarche Small testes and high FSH (18) Oligospermia (14, 20)a

Cryptorchidism (14, 20)a Early puberty (25) Testicular cancer (14, 20)a

Hypospadias (14, 20)a Delayed puberty (25) Prostate hyperplasia (24)
Female disorders IUGR Premature thelarche (25) Secondary central precocious puberty

(17, 27)
Vaginal adenocarcinoma

(19, 28)
Peripheral precocious puberty

(17)
PCOS (18, 25) Disorders of ovulation (29)

Premature pubarche (18) Delayed ovulatory cycles (17, 18) Benign breast disease (29, 31)
Breast cancer (30, 31)
Uterine fibroids (29)
Disturbed lactation (29)

a Cryptorchidism, hypospadias, oligospermia and testicular cancer are four components of the �testicular dysgenesis syndrome� as a common entity.
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ordersare seen inmalesandfemalesasa resultofEDCeffects
that overall mimic estrogens and/or antagonize androgens.

In the male (Table 2), cryptorchidism, hypospadias,
oligospermia, and testicular cancer have been proposed to
be linked as the testicular dysgenesis syndrome (TDS) aris-
ing from disturbed prenatal testicular development (14,
21). Such links are important because they could mean
that several disorders occur at different periods through-
out life in a single individual as a result of exposure to a
given EDC (or mixture) at a particular period. The epide-
miological data relating TDS with environmental disrup-
tors are indirect, and we still lack direct evidence of EDC
involvement in the pathogenesis of TDS in humans (see
Section V). In the rodent, however, aTDS-like conditioncan
be observed after fetal exposure to phthalates (20), and the
reduced anogenital distance observed in the rat (22) was ob-
servedinarecentepidemiological studyonhumanmalenew-
borns (23). Several studies have shown a strong association
of low birth weight with hypospadias and cryptorchidism,
suggesting that they have a common determinant (15).

Other pathologies in males are linked to EDC exposure.
Prostate hyperplasia has been described after exposure to
BPA (24). In adolescence, boys born with IUGR have small
testes and elevated serum FSH, together with low inhibin
B levels (18) that could be related to some of the TDS
disorders. Divergent data have been reported on effects of
EDCs on pubertal timing in the male (25).

In the female (Table 3), premature thelarche has been
reported in girls exposed to phthalates (26), although
these data need to be replicated. Sexual precocity presum-

ably of peripheral origin initially and secondarily central
could be related to exposure to the insecticide DDT in girls
migrating for international adoption (17). A neuroendo-
crine mechanism is suggested by experiments in a rodent
model (27) (see Section VII). An association of premature
pubarche and ovulatory disorders with EDCs is suggested
indirectly by links with IUGR at birth and metabolic syn-
drome in adulthood (18).

In the adult female, the first evidence of endocrine dis-
ruption was provided almost 40 yr ago through observa-
tions of uncommon vaginal adenocarcinoma in daughters
born 15–22 yr earlier to women treated with the potent
synthetic estrogen DES during pregnancy (19). Subse-
quently, DES effects and mechanisms have been substan-
tiated in animal models (28). Thus, robust clinical obser-
vations together with experimental data support the
causal role of DES in female reproductive disorders. How-
ever, the link between disorders such as premature
pubarche and EDCs is so far indirect and weak, based on
epidemiological association with both IUGR and ovula-
tory disorders. The implications of EDCs have been pro-
posed in other disorders of the female reproductive sys-
tem, including disorders of ovulation and lactation,
benign breast disease, breast cancer, endometriosis, and
uterine fibroids (29–32).

C. Experimental and clinical evidence of EDCs and
potential mechanisms

In Tables 2 and 3, some experimental and clinical ob-
servations of disturbed reproductive systems are listed for

TABLE 2. Effects of some specific EDCs on the male reproductive system

EDC Exposed animal and effects
Possible translation to the clinical

condition Potential mechanisms

Vinclozolin Fetal rat: hypospadias (36); undescended testes,
prepubertal (37); delayed puberty (38),
prostate disease among subsequent
generations (34)

Epigenetic: altered DNA methylation
in germ cell lines (12, 34)

DES Fetal rats: hypospadias, cryptorchidism,
micropenis, increased transmitted
susceptibility to malignancies (28)

Hypospadias, cryptorchidism, micropenis,
epididymal cysts (28)

Increased ER� expression in
epididymis (43)

Reduced insulin-like factor 3 (465)
DDT Adult rats: decreased fertility (466) Cryptorchidism
DDE Cryptorchidism
Phthalates Reduced anogenital distance (22) Reduced anogenital distance (23) and

Leydig cell function, hypospadias
Decreased testosterone

synthesis (468)
Cryptorchidism (467) Cryptorchidism (14, 20)
Oligospermia Reduced fertility (14, 20)

PCBs Fetal rat: decreased spermatogenesis, delayed
puberty

Reduced penile length, delayed sexual
maturation, reduced fertility

Fetal: testis cancer
BPA Increased prostate size (469)

Aberrant development of prostate and urethra
(470)

Prostate cancer (122)
Increased anogenital distanceAltered periductal

stroma in the prostate (471)

Increased ER� expression in
hypothalamus (42)

Increased AR expression in prostate
(469)
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selected EDCs. The evidence from human epidemiological
studies is partial and indirect (see Section V). Mechanistic
studies are ethically and practically very limited in humans
and have to rely on data obtained using animal experi-
ments (in vivo and in vitro models), although these models
can have limitations. Clinical and experimental studies
correlate DES effects quite convincingly in both sexes. In
the male, rodent studies using phthalates and, to a lesser
extent, PCBs model TDS entirely or partly. In the female,
some rodent studies are consistent with DDT/dichlorodi-
phenyldichloroethylene (DDE) involvement in sexual
precocity.

The following considerations emphasize some of the
concepts emerging from the available data.

1. Heritability
There may be transgenerational effects of EDCs due

to overt mutation or to more subtle modifications of
gene expression independent of mutation (i.e., epige-
netic effects). Epigenetic effects of EDCs include con-
text-dependent transmission (e.g., the causal factor per-
sists across generations; Ref. 33) or germline-dependent
mechanisms (i.e., the germline itself is affected; Refs.
12, 34, and 35). An example of germline transmission of
an epigenetically modified trait is shown in a rat model
for the fungicide vinclozolin and is manifested by a
higher likelihood of metabolic disorders, tumors, and

reproductive dysfunctions in the next four generations
(12, 34 –38). In the case of DES, there are both human
and experimental observations indicating heritability
(19, 28, 39).

2. Diversity and complexity of mechanisms
EDCs often act via more than one mechanism. Some

EDCs have mixed steroidal properties: for example, a sin-
gle EDC may be both estrogenic and antiandrogenic.
EDCs may be broken down or metabolized to generate
subproducts with different properties. For instance, the
estrogen agonist DDT is metabolized into the androgen
antagonist DDE (27). The balance between estrogenic and
androgenic properties of EDCs can be biologically signif-
icant because reproduction of both sexes involves an in-
terplay of androgens and estrogens. In humans, early
breast development occurs in girls with a highly active
variant of CYP3A4, a cytochrome p450 enzyme involved
in inactivating testosterone (40), and premature thelarche
occurs with antiandrogenic phthalates (25). Similar an-
drogen-estrogen interactions have been reported in DES-
treated rats in which reduced androgen secretion or action
sensitized the animals to the estrogenic effects of DES (41).
Moreover, many organs are targeted by sex steroids and
are thereby vulnerable to endocrine disruption, including
the hypothalamic-pituitary-gonadal system, breast,
uterus, cervix, vagina, brain, and nonreproductive tissues

TABLE 3. Effects of some specific EDCs on the female reproductive system

EDC Exposed animal and effects
Possible translation to the clinical

condition Potential mechanisms

Vinclozolin Fetal rat: multisystem disorders including
tumors (12)

Epigenetic: altered DNA methylation in germ
cell line (12); reduced ER� expression in
uterus (44)

DES Fetal mouse: transmitted susceptibility to
malignancies (39)

Vaginal adenocarcinoma in daughters
of women treated with DES during
pregnancy (19)

DDT/DDE Immature female rat: sexual precocity
(27)

Precocious and early puberty (17)
Reduced fertility in daughters of

exposed women (472)
�15 yr: increased breast cancer risk

Neuroendocrine effect through estrogen
receptors, kainate receptors, and
AhRs (27)

BPA Inhibited mammary duct development
and increased branching (145)

Increased mammary gland density,
increased number of terminal ends
(146)

Reduced weight of vagina (473)
Endometrial stimulation (473)
Early puberty (474, 475)

Miscarriages Inhibition of apoptotic activity in breast (145)
Increased number of progesterone receptor-

positive epithelial cells
Reduced sulfotransferase inactivation of

estradiol (45, 46)
Nongenomic activation of ERK1/2 (476)

PCBs Fetal and early postnatal rat:
neuroendocrine effects in two
generations, and behavioral changes
(296, 477)

Actions on estrogen receptors,
neurotransmitter receptors

Dioxins Fetal rat: altered breast development
and increased susceptibility for
mammary cancer (478)

Inhibition of cyclooxygenase2 via AhR (479)

Early pubertal rat: blocked ovulation
Phthalates Premature thelarche (25)
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such as bone, muscle, and skin (Fig. 1). In the case of
humans, a peripheral effect in the reproductive system
(e.g., breast development) can result from direct EDC ef-
fects (peripheral puberty) and/or endogenous estrogen in-
crease through premature neuroendocrine maturation
(central puberty) (17, 27), but these may be difficult to
distinguish. For instance, EDC effects can involve altered
ER� expression in hypothalamus (42) and epididymis (43)
or uterus (44). Along with the direct influence of EDCs on
estrogen or androgen actions, they can affect endogenous
steroid production through negative and positive feed-
back, effects that may differ depending on developmental
stage. Also, there are multiple levels of interactions with
steroid action (receptor or promoters), synthesis (e.g., aro-
matase stimulation by atrazine), and metabolism [e.g., sul-
fotransferase (45)]. Finally, there are coexisting mechanisms
not directly mediated at the hypothalamic-pituitary-gonadal
(HPG) system. For instance, reproductive dysfunction can
result from thyroid disruption (46) or nonspecific interfer-
ence of reduced energy intake (47).

3. Limits of translational models
The in vivo animal models may be difficult to extrap-

olate to humans for several reasons, including species dif-
ferences in ontogeny of reproductive system and func-
tions, differences in metabolism of sex steroids, difficulty
in estimating exposure to mixtures, and variable body bur-
dens. As already mentioned, exposure to EDCs is com-
plex. For example, mixtures are likely to be the usual form
of exposure to EDCs, but they are difficult to approximate
in experimental models. Moreover, the effects may not be
additive; nevertheless, a combination of low doses of sub-
stances that individually are inactive may result in a bio-
logical perturbation (48). Despite these limitations, con-
sidering the substantial conservation of endocrine and
reproductive processes across species, it is certainly rea-
sonable to use animal models for understanding human
processes, as long as these potential differences are taken
into account.

III. Clinical and Translational Impacts of EDCs
on Female Reproduction

A. Introduction to female reproductive development
and function

Development and function of the female reproductive
tract depends on coordinated biological processes that, if
altered by endogenous or exogenous factors during criti-
cal periods of development or during different life stage,
could have significantly adverse effects on women’s health
and reproductive function and outcomes. For example,
the full complement of cell types in the human ovary de-

pends on successful germ cell migration from the yolk sac
during the first trimester and differentiation into oocytes
with associated somatic cells to form the functional unit of
the primordial follicle by the second to third trimesters of
gestation. Factors that interfere with germ cell migration
or follicle formation can result in abnormal functioning of
this tissue with significant reproductive consequences.
Also, the oocyte is arrested in the diplotene stage of late
prophase until meitic divisions occur beginning at puberty
(meiosis I) and after fertilization (meiosis II), and abnor-
malities in these processes can have a profound impact on
reproductive outcomes, such as aneuploidy, premature
ovarian failure (POF), and miscarriage. In addition,
whereas Mullerian tract formation begins at 8 wk gesta-
tion with fusion of the Mullerian ducts and subsequent
differentiation into the uterus (endometrium, myome-
trium), cervix, and upper vagina, uterine differentiation
with regard to formation of luminal epithelium, glandular
epithelium, and stromal components is mostly a postnatal
event, with functionality of response to steroid hormones
beginning at puberty. Interference with these processes
can predispose women to infertility, ectopic gestation,
poor pregnancy outcomes, and other reproductive disor-
ders that may be programmed during development (e.g.,
endometriosis, uterine fibroids). Thus, abnormal devel-
opment or alterations at other times in the life cycle can
alter anatomy and functionality of the female reproductive
tract and thus can alter the reproductive potential of af-
fected individuals and their offspring.

Most female reproductive disorders are well described
with regard to clinical presentation, histological evalua-
tion of involved tissues where applicable, and diagnostic
classification. However, whereas few are polygenic inher-
ited traits and some are due to infections, the pathogenesis
of the vast majority of female reproductive disorders is not
well understood. This has hindered a preventive strategy
to their development and/or exacerbation, and in some
cases limited the development of effective therapies for
symptoms and associated morbidities.

A key question arises as to whether EDCs contribute to
the development of female reproductive disorders, partic-
ularly those occurring during a critical window of suscep-
tibility: in utero, neonatally, in childhood, during puberty,
and during adulthood. There are increasing data from
wildlife studies and laboratory studies with rodents, un-
gulates, and nonhuman primates that support a role of
EDCs in the pathogenesis of several female reproductive
disorders, including polycystic ovarian syndrome, aneu-
ploidy, POF, reproductive tract anomalies, uterine fi-
broids, endometriosis, and ectopic gestation (for reviews,
see Refs. 29 and 49–54; also see Table 4). Many of the
mechanisms are understood and, moreover, are conserved
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between animals and humans. Herein, we describe some
of the clinical implications of these associations.

B. Polycystic ovarian syndrome (PCOS)
PCOS is a heterogeneous syndrome characterized by per-

sistent anovulation, oligo- or amenorrhea, and hyperandro-
genism in the absence of thyroid, pituitary, and/or adrenal

disease (55–57). At the level of the ovary, there is recruit-
ment and growth of follicles to the small antral stage, with-
out selection of a dominant, preovulatory follicle, leading
to accumulation of multiple, small, antral follicles (58).
Hyperfunctioning of the theca and relative hypofunction-
ing of the granulosa cells accompany the acyclicity of the
syndrome. Many, but not all women with PCOS have

TABLE 4. Female reproductive disorders and their possible relationships to EDCs: Some experimental and human
data

Female
reproductive

disorder Experimental data Human epidemiological data

Reproductive tract
abnormalities/
malignancies

Mice prenatally exposed to DES have structural abnormalities
of the oviduct, uterus, cervix, and vagina, leiomyoma,
infertility-subfertility, immune dysfunction, ovarian cysts,
ovarian tumors, vaginal adenocarcinoma (480)

In utero exposure to DES: abnormal cervical,
uterine, and oviduct anatomy (481), vaginal
adenocarcinoma (19), subfertility and infertility,
ectopic pregnancy (480)

Endometriosis Adult monkey exposed to TCDD (dioxin): promotion of
growth and survival of endometriosis impants (110)

1 plasma concentrations of DEHP in women with
endometriosis vs. controls (113);1 levels of
phthalates (DnBP, BBP, DnOP, DEHP) in Indian
women with endometriosis vs. controls (114)

Precocious puberty Immature female rat exposed to DDT: sexual precocity (27) High levels of the DDT metabolite p,p�-DDE, in
plasma from foreign immigrant girls with
precocious puberty in Belgium (482)

Female mouse fetuses exposed to BPA: early puberty (474) Breastfed girls exposed to high levels of PBB in
utero (�7 ppm): earlier age at menarche (483)

Premature thelarche Higher levels of phthalates and its major
metabolite mono-(2-ethylhexyl) phthalate in
serum of girls from Puerto Rico with premature
breast development (26)

Disturbed lactation Rodents exposed to atrazine: impaired lactation through
prolactin inhibition (484)

Negative correlation between DDE (metabolic
product of DDT) and duration of lactation (484)

Breast abnormalities/
cancer

Fetal rats exposed to dioxins (TCDD): altered breast
development and1 susceptibility for mammary cancer
(478)

Limited and conflicting evidence

Mice exposed to BPA: altered organization of the mammary
anlagen, accelerated ductal development, and inhibition
of lumen formation in the fetus (128)

Mice exposed to BPA: increased number of epithelial
structures (145, 146)

Rats exposed perinatally to BPA: development of
preneoplastic lesions (intraductal hyperplasias) and
carcinomas in situ (148)

Rats exposed perinatally to BPA; increased susceptibility to
neoplastic development (149)

Rats: lactational exposure to BPA: shortening of the latency
period and increased tumor multiplicity after carcinogen
challenge (150)

Mice exposed to BPA: development of preneoplastic lesions
(intraductal hyperplasias) (147)

M2 polymorphism in the cytochrome P450 1A1
gene modify the association between PCB
exposure and risk of breast cancer (51)

PCOS Prenatal exposure to high levels of testosterone results in
fetal programming of PCOS traits (60, 61)

Increased levels of serum AGEs in women with
PCOS and positive correlation between AGE
proteins and testosterone levels (64)

Rats fed with high vs. low AGE diet:1 androgens–1
ovarian volume and AGE ovarian deposition (461)

In polycystic ovaries, increased immunostaining of
colocalized AGEs, RAGEs, and activated nuclear
factor-�B (211, 485)

Fertility and fecundity Mice prenatally exposed to DES (480) Isolation of persistent organochlorine chemicals
from ovarian follicular fluid of women
undergoing IVF (51)

Indications that exposure to pesticides may
contribute to female infertility in some
occupationally exposed groups (484)

1, Increased; DEHP, di-(2-ethylhexyl) phthalate; DnBP, di-n-butyl phthalate; BBP, butyl benzyl phthalate; DnOP, di-n-octyl phthalate.
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relatively high circulating levels of LH, compared with
FSH, believed to be due to insensitivity to steroid hormone
feedback. However, this does not fully account for the
observed increase in thecal androgen production or the
relative quiescence and sometimes frank FSH resistance of
the granulosa cells. This complex disorder likely has its
origins both within and outside the hypothalamic-pitu-
itary-ovarian axis, and metabolic, neuroendocrine, and
other endocrine regulators likely contribute to its mani-
festation. Obesity and insulin resistance occur in about
50% of women with PCOS, and obese women have a 12%
risk of having PCOS (59). PCOS has multiple physiolog-
ical processes (e.g., neuroendocrine functioning and feed-
back mechanisms, ovarian steroidogenesis, insulin resis-
tance, and obesity) that are regulated by hormonal and
metabolic parameters. Hence, endocrine disruption by en-
vironmental chemicals may indeed contribute to the
pathogenesis of PCOS.

In sheep and rhesus monkeys, prenatal exposure to
high levels of testosterone results in fetal programming
of PCOS traits (60). Specifically, high levels of testos-
terone exposure at gestational d 40 – 60 and 100 –115
result in rhesus monkey females who, in adulthood,
have anovulatory infertility, hypersecretion of LH, ele-
vated circulating levels of testosterone, neuroendocrine
feedback defects, central adiposity and compensatory in-
sulin resistance, and polycystic ovaries with ovarian hy-
perandrogenism and follicular arrest in adulthood (60,
61). In the sheep model, a similar PCOS phenotype, along
with IUGR and compensatory catch-up growth after
birth, derives from prenatal exposure to exogenous tes-
tosterone (60, 62). In rhesus monkey and sheep, unlike
rodents, follicular differentiation is completed during fetal
life. Thus, it is plausible that in utero exposure of human
female fetuses to androgen-like EDCs could result in
PCOS in adulthood, along with associated metabolic dis-
orders. Very recent evidence for androgenic properties of
personal-care products such as triclocarban (63) add to
the possibility of environmental androgens, although a
connection to PCOS has not yet been drawn.

There are numerous candidate genes associated with
predisposition to developing PCOS in women (57, 64),
and how and if these interact with prenatal androgen-like
factors to promote the PCOS phenotype in women has not
been determined. Nonetheless, PCOS is a debilitating dis-
order in women, occurring in 6.6% of the reproductive-
age population (65–67); it is a leading cause of subfertility
and is associated with increased lifetime risks for cardio-
vascular disease and type II diabetes (55). In addition to
these clinical impacts on patients, the cost to the health
care system for PCOS diagnosis and treatment is substan-
tial, totaling in 2004 about $4.4 billion in the United States

alone (68). These facts underscore the need to understand
potential EDC contributions to the development of PCOS
in an effort to minimize such exposures and maximize
prevention.

Other pathways may be involved in endocrine disrup-
tion of PCOS. Women with PCOS have higher levels of the
EDC BPA (69), and increased testosterone in these women
is consistent with decreased clearance of BPA (70). Al-
though adult exposures do not necessarily imply earlier
exposures in life, especially with EDCs of relatively short
half-lives, there are data demonstrating nearly 5-fold
higher levels of BPA in amniotic fluid compared with other
body fluids, suggesting significant prenatal exposure (71).
Although a cause and effect of BPA and PCOS have not
been demonstrated definitively, the biological plausibility
is interesting and worthy of further consideration.

C. Premature ovarian failure, decreased ovarian reserve,
aneuploidy, granulosa steroidogenesis

POF (cessation of proper ovarian function before the
age of 40) occurs in about 1% of reproductive-age women
(72). Although in some cases the causation is known, for
the vast majority of women with POF this is not the case,
and there are stages of susceptibility during organogenesis
and adult exposures that could contribute to POF.

Because the total ovarian follicle complement is estab-
lished before birth in humans (73), anything that interferes
with this, resulting in a decreased ovarian follicle resting
pool, can result in POF. For example, disruption of germ
cell migration from the genital ridge into the developing
gonad results in ovarian dysgenesis. The resting pool un-
dergoes a baseline level of apoptosis, and TNF-�, Fas li-
gand, and androgens stimulate this in the resting pool, as
well as in the growing pool (74). Also, once a cohort of
follicles is recruited during a given cycle in women, sur-
vival factors (FSH, estradiol, and growth factors, e.g.,
IGFs) are important for escape from apoptosis of the dom-
inant follicle. Recent data in the mouse show that selective
activation of the K-ras pathway in the oocyte results in
rapid follicular development and depletion (75). Interest-
ingly, adult and in utero exposures of mice to BPA have
resulted in damage to oocytes (76, 77). Specifically, adult
exposures result in abnormalities in alignment of chro-
mosomes on the meiotic spindle and aneuploidy, which,
while not leading to ovarian senescence, does lead to ane-
uploid gametes and offspring (76). However, BPA given to
pregnant dams during midgestation affects the developing
ovary with resulting abnormalities in meiotic prophase,
including synaptic defects, and mature animals exposed in
utero have an increase in aneuploid oocytes and embryos
(77). Such alterations also lead to cell cycle arrest and
oocyte death, thus depleting the complement of normal
oocytes (77). Currently, there are no data on in utero or
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adult exposure to BPA and aneuploidy in humans, but the
possibility that there are parallels is compelling.

Interestingly, mice exposed in utero to DES, between d
9–16 gestation, have a dose-dependent decrease in repro-
ductive capacity, including decreased numbers of litters
and litter size and decreased numbers of oocytes (30%)
ovulated in response to gonadotropin stimulation with all
oocytes degenerating in the DES-exposed group, as well as
numerous reproductive tract anatomic abnormalities
(78). In women with in utero exposure to DES, Hatch et
al. (79) reported an earlier age of menopause between the
43–55 yr olds, and the average age of menopause was 52.2
yr in unexposed women and 51.5 yr in exposed women.
TheeffectofDES increasedwith cumulativedoses andwas
highest in a cohort of highest in utero exposure during the
1950s (79). These observations are consistent with a
smaller follicle pool and fewer oocytes ovulated, as in
DES-exposed mice after ovulation induction (78).

Of interest are human data that demonstrate unequiv-
ocally that adult exposure in women to cigarette smoke
results in decreased fecundity, decreased success rates in in
vitro fertilization (IVF), decreased ovarian reserve (higher
basal cycle d 3 FSH and stimulated parameters), earlier
menopause by 1–4 yr, and an increased miscarriage rate
(80, 81). The mechanism appears to be mediated by the
AhR-mediated apoptosis of oocytes, with accelerated loss
of ovarian follicles. Interestingly, exposure of rats to
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero
and through the end of reproductive life results in a dose-
dependent onset of premature reproductive senescence,
likely due to direct effects on ovarian function (82).

Thus, whereas POF may occur in a relatively small per-
centage of the population, there are several alarming sig-
nals that should not be ignored. For example, the age
group with the fastest growing rate of involuntary sub-
fertility is 15- to 24-yr-old women (83). Also, the known
effects of environmental contaminants on oocyte survival,
aneuploidy, decreased ovarian reserve, and infertility de-
scribed above underscore how much at risk the population
may be for reproductive compromise.

With regard to ovarian granulosa steroidogenesis, sev-
eral EDCs have effects on this process (84). For example,
TCDD (10 ppm) decreases FSH-stimulated LH receptor
mRNA expression and half-life in cultured granulosa (85).
DDE increases vascular endothelial growth factor and
IGF-I expression in luteinized granulosa from IVF pa-
tients, suggesting a contribution to impaired steroidogen-
esis and perhaps infertility (86). Recently, Kwintkiewicz
and Giudice (87, 88) have shown, in preliminary studies,
that BPA decreases proliferation and FSH-induced aro-
matase expression via activation of peroxisome prolifera-
tor-activated receptor � (PPAR-�) and increases IGF-I and

IGF receptor type I in human granulosa-like tumor cells
and luteinized human granulosa from IVF subjects. These
data suggest that EDCs may have local effects on ovarian
function in adult women.

D. Reproductive tract anomalies
Disruption of female reproductive tract development

by the EDC DES is well documented (89). A characteristic
T-shaped uterus, abnormal oviductal anatomy and func-
tion, and abnormal cervical anatomy are characteristic of
this in utero exposure, observed in adulthood (90), as well
as in female fetuses and neonates exposed in utero to DES
(91). Some of these effects are believed to occur through
ER� (92) and abnormal regulation of Hox genes (93, 94).
Clinically, an increased risk of ectopic pregnancy, preterm
delivery, miscarriage, and infertility all point to the dev-
astating effect an endocrine disruptor may have on female
fertility and reproductive health (89). It is certainly plau-
sible that other EDCs with similar actions as DES could
result in some cases of unexplained infertility, ectopic
pregnancies, miscarriages, and premature deliveries. Al-
though another major health consequence of DES expo-
sure in utero was development of rare vaginal cancer in
DES daughters, this may be an extreme response to the
dosage of DES or specific to pathways activated by DES
itself. Other EDCs may not result in these effects, although
they may contribute to the fertility and pregnancy com-
promises cited above. Of utmost importance clinically is
the awareness of DES exposure (and perhaps other EDC
exposures) and appropriate physical exam, possible col-
poscopy of the vagina/cervix, cervical and vaginal cytol-
ogy annually, and careful monitoring for fertility potential
and during pregnancy for ectopic gestation and preterm
delivery (89, 95).

E. Uterine leiomyomas
Uterine leiomyomas (fibroids) are benign smooth mus-

cle tumors of the myometrium that can cause morbidity
for women, including menorrhagia, abdominal pain, pel-
vic prolapse, and infertility and miscarriage (96). They are
the most common tumor of the reproductive tract in
women and comprise the leading cause for hysterectomy
and the second leading cause of inpatient surgery in the
United States, with health care costs exceeding $2 billion
in 2004 (97). The prevalence rate of uterine leiomyomas is
approximately 25–50%, with a preponderance occurring
in African-American women (97). The greatest risk factor
in adult women is prolonged exposure to unopposed es-
trogen. Whether in utero exposure to DES increases a
woman’s lifetime risk of developing uterine fibroids is con-
troversial, as the method to detect fibroids in two different
studies influenced the outcome (98, 99). Specifically, in a
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study of 1731 women exposed to DES and 848 matched
unexposed controls, no association was found (P � 0.68)
when histological confirmation after myomectomy or hys-
terectomy was used to document uterine fibroids (98). In
contrast, when ultrasound was used to determine the pres-
ence of fibroids in DES-exposed vs. DES-unexposed
women, a significant relationship was found (odds ratio,
2.4; 95% confidence interval, 1.1–5.4) in DES-exposed
women and uterine fibroids (99). However, there are
strong animal data to support development of uterine fi-
broids in adulthood after in utero exposure to EDCs, es-
pecially DES (for reviews, see Refs. 49, 50, and 52). New-
bold et al. (100) reported that CD-1 mice develop uterine
leiomyomas if exposed in utero or neonatally to DES,
whereas unexposed mice do not. Furthermore, the Eker
rat, which has a germ-line mutation in the rat homolog of
the tuberus sclerosis complex 2 tumor suppressor gene,
spontaneously develops uterine leiomyomas (101). The
number, size, and growth rate of the fibroids increase sig-
nificantly when the rat is exposed to DES on postnatal d
3–5 and 10–12, but not 17–19 (102), an effect that can be
diminished with prior oophorectomy (102). These data
overall strongly suggest developmental programming and
gene-environment interactions for the increased risk of
uterine lyomyomas in this rat model (103). In addition to
mice, the Eker rat, and some dogs, the Baltic gray seal that
has high organochlorine body burden also develops uter-
ine leiomyomas (104). As with most environmental causes
of abnormalities in the reproductive tract (and other tis-
sues and organs), direct cause and effect relationships are
difficult to establish. However, as in many of the other
abnormalities in this Scientific Statement, the likelihood of
such a relationship is plausible.

F. Endometriosis
Endometriosis is an estrogen-dependent gynecological

disorder associated with pelvic pain and infertility. It oc-
curs in 6–10% of women and up to 50% of women with
pelvic pain and infertility. In 2002, the total health care
costs estimated in the United States for diagnosis and treat-
ment of endometriosis totaled approximately $22 billion
(105). There are suggestive animal data of adult exposure
to EDCs and development of or exacerbation of existing
disease, and there is evidence that in utero exposure in
humans to DES results in an increased relative risk � 1.9
(95% confidence interval, 1.2–2.8) (106). Most striking
are the observations of rhesus monkeys administered dif-
ferent doses of TCDD and their subsequent development
of endometriosis (107, 108). Although this study had low
sample size and confounding variables that brought into
question the relationship between endometriosis and
TCDD (49, 52, 109), another study revealed that adult
exposure of cynomolgus monkey to TCDD promotes

growth and survival of endometriosis implants (110), in-
dicating that this EDC is involved in the progression, if not
pathogenesis, of this disorder. Similar data were obtained
in rodent models of endometriosis in which human endo-
metrium is transplanted into mouse and rat peritoneum,
and the established lesions grew larger when animals were
exposed to TCDD in utero and as adults (111, 112), un-
derscoring the estrogen (and EDC) dependence of this
disorder.

There are also correlative findings of phthalate levels in
plasma and endometriosis. For example, Cobellis et al.
(113) found high plasma concentrations of di-(2-ethyl-
hexyl)-phthalate in women with endometriosis, and an
association of phthalate esters with endometriosis was
found among Indian women (114). Thus, the evidence is
accumulating of correlations between EDCs in the circu-
lation of women with endometriosis, although a cause-
and-effect relationship has yet to be established, which is
not uncommon in reproductive environmental toxicity.

Endometriosis is believed to be due to retrograde men-
struation and transplantation of endometrial fragments
and cells into the peritoneal cavity. Because nearly all
women have retrograde menstruation but relatively few
have endometriosis, the disorder is also believed to involve
a dysfunctional immune response, i.e., activated macro-
phages in the peritoneal cavity with robust secretion of
inflammatory cytokines but without clearance of disease.
An interesting model of early-life immune insult and de-
velopmental immunotoxicity suggests that in utero expo-
sures to specific insults may reprogram the immune
system, resulting in disorders such as chronic fatigue syn-
drome, cancer, and autoimmune disorders. Whether this
has any relevance to the development or progression of
endometriosis in adult women has not been explored but
warrants further evaluation. Interestingly, TCDD and a
therapy for endometriosis, danazol, both have effects on
the adult immune system, although effects on the devel-
oping immune system are not known.

Although the infertility associated with endometri-
osis for the most part can be treated with advanced
reproductive technologies, less success has been
achieved with treatment of endometriosis-related pain.
Because the pathogenesis of the associated pain is not
known with certainty, therapies are empiric and include
agents directed to minimize inflammation (nonsteroidal
antiinflammatory drugs, danazol), progestins and andro-
gens (to oppose estrogen actions), GnRH analogs (to in-
hibit gonadotropin secretion and thus ovarian estradiol
production), and aromatase inhibitors (to inhibit estra-
diol synthesis by the ovary and endometriotic lesions),
as well as surgical ablation or excision of the disease,
when possible. Most of these therapies are effective in
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up to 50 – 60% of affected women, with either intoler-
able side effects (e.g., profound hypoestrogenism) or
recurrence of pain (e.g., after surgery) (115). Thus, pre-
vention is key to this disorder, as is understanding the
pathogenesis so that therapies for pain can be devised
appropriately and administered.

IV. Endocrine Disruptors, Mammary Gland
Development, and Breast Cancer

It has been hypothesized that the significant increase of
the incidence of breast cancer in the industrialized world
observed during the last 50 yr may be due to exposure to
hormonally active chemicals, particularly xenoestrogens
(116). A similar increase in the incidence of testicular can-
cer and malformations of the male genital tract and de-
creased quantity and quality of human sperm have been
observed during the same half century, again suggesting a
link to the introduction of these chemicals into the envi-
ronment (117) (see Sections II and V).

A. Windows of vulnerability to carcinogenic agents and
“natural” risk factors

The standard risk factors for developing breast cancer
include age at menarche, first pregnancy, menopause, lac-
tation, and parity. All of these factors are related to life-
time exposures to ovarian hormones. It is also known that
there are developmental periods of enhanced vulnerability
(see Section I). For example, sensitivity to radiation is
highest during puberty. Additionally, pregnancy increases
the risk of breast cancer in the short term (118) and de-
creases it in the long term (119). More recently, epidemi-
ological studies have revealed that the intrauterine envi-
ronment may also influence the risk to develop breast
cancer later in life. Studies comparing human dizygotic
twins and single births revealed that the propensity to
breast cancer is enhanced in female twins, and this out-
come was attributed to excess estrogen exposure in dizy-
gotic twins during gestation (120).

B. Theories of carcinogenesis
A majority of researchers support the idea that cancer

is due to the accumulation of mutations in a cell [the so-
matic mutation theory (121)]. In contrast, supporters of
the theory of developmental origins of adult disease are
proposing that changes in the epigenome play a central
role in carcinogenesis (see Section VI).

Both the genetic and epigenetic theories of carcinogen-
esis imply that cancer originates in a cell that has under-
gone genetic and/or epigenetic changes, which ultimately
results in dysregulated cell proliferation (122). Alterna-
tively, the tissue organization field theory postulates that

carcinogenesis represents a problem of tissue organiza-
tion, comparable to organogenesis gone awry, and that
proliferation is the default state of all cells (123–125).
According to this theory, carcinogens, as well as terato-
gens, would disrupt the normal dynamic interaction of
neighboring cells and tissues during early development
and throughout adulthood (126).

During postnatal life, the mammary gland undergoes
massive architectural changes, comparable to those usu-
ally associated with organogenesis. These changes occur in
response toalterations inendogenoushormone levels suchas
those associated with puberty and pregnancy and can be
induced experimentally by endocrine manipulation. Many
studies of endocrine disruptors have illustrated that devel-
opmental exposure to these exogenous hormone mimics can
alter normal patterns of tissue organization and hence dis-
rupt stromal-epithelial interactions (127, 128). These
changes may disturb important regulatory mechanisms and
enhance the potential for neoplastic lesions.

C. Susceptibility of the breast during puberty and
adulthood

Several epidemiological studies explored the link be-
tween exposure to endocrine disruptors and breast cancer
incidence. In general, these are case-control studies that
usually measure exposure to a single chemical at the time
of breast cancer diagnosis. This type of study has produced
inconsistent results. Prospective studies that measured ex-
posure several years before cancer diagnosis revealed a
positive link between breast cancer and chemical exposure
to toxaphene (129) and DDT (130). In particular, a study
linked DDT with an increased risk of breast cancer when
the exposure was measured before 14 yr of age. This study
used samples taken before the banning of DDT for agri-
cultural use and hence represents higher exposures than
those measured today. Humans, however, are exposed to
a plethora of hormonally active chemicals with different
metabolic profiles. Moreover, individuals living in the
same area may be exposed to a different mixture of chem-
icals due to different diets and to migration history. These
facts imply that a single chemical cannot be construed as
a marker of total exposure. Not surprisingly, one case-
control study reported a significant correlation between
total xenoestrogen exposure and breast cancer (131).

How xenoestrogen exposure during the period of sex-
ual maturity may result in mammary gland carcinogenesis
remains unsolved; this is not surprising because the mech-
anisms underlying hormonal carcinogenesis are still un-
known. One possibility, compatible with all the cancer
hypotheses briefly discussed above, is that xenoestrogens
may extend the length of the period of ductal growth and
alveologenesis during the menstrual cycle. This period is
also characterized by proliferative activity in the glandular
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epithelium. For example, ductal cell proliferation in the
breast is maximal from the late follicular phase and
throughout the luteal phase, i.e., when endogenous estro-
gen levels are high (132). The ubiquitous presence of xe-
noestrogens in foods, their persistence, and their lack of
binding to the plasma carrier protein SHBG (127) may
result in relatively constant levels in blood. These xe-
noestrogens would act additively with ovarian estrogens
and thus advance by a few days the period of ductal
growth. Hence, a small and maintained increase of estro-
genic activity during the period of low ovarian output
could be sufficient to “promote” carcinogenesis by in-
creasing the number of cells that undergo proliferation
menstrual cycle after menstrual cycle, an explanation con-
sistent with the somatic mutation theory. An alternative
explanation, consistent with the tissue organization field
theory, is that estrogens acting as morphogens would en-
hance tissue remodeling through stroma epithelium inter-
actions and increase the likelihood of producing alter-
ations of tissue architecture. This notion is supported by
data showing that recombination of normal mammary
epithelial cells with stroma exposed to carcinogenic agents
results in the development of epithelial neoplasias (133)
and that conversely, recombination of mammary carci-
noma cells with stroma from multiparous animals (which
are refractory to carcinogens) results in the normalization
of the neoplastic phenotype (126).

D. Susceptibility of the mammary gland during the
perinatal period

Direct evidence of prenatal estrogen exposure and
breast cancer risk is being gathered from the cohort of
women born to mothers treated with DES during preg-
nancy and is discussed above (see Sections II and III).
These women are now reaching the age at which breast
cancer becomes more prevalent. In the cohort of these
women who are aged 40 yr and older, there is a 2.5-fold
increase in the incidence of breast cancer compared with
unexposed women of the same age (134, 135), suggesting
that indeed, prenatal exposure to synthetic estrogens may
play an important role in the development of breast neo-
plasms. Consistent with this, experiments in rats showed
that prenatal exposure to DES resulted in increased mam-
mary cancer incidence during adulthood (136, 137).
These experiments illustrated that rats exposed prenatally
to DES and challenged with the chemical carcinogen dim-
ethylbenzanthracene (DMBA) at puberty had a signifi-
cantly greater incidence of palpable mammary tumors at
10 months of age than animals exposed prenatally to ve-
hicle. In addition, the tumor latency period was shorter in
the DES-exposed compared with the vehicle-exposed
group (130). Both the epidemiological and experimental
data are consistent with the hypothesis that excessive es-

trogen exposure during development may increase the risk
of developing breast cancer.

In utero exposure to tamoxifen, an estrogen antagonist
and partial agonist, has also been shown to increase the
incidence of mammary tumors when the exposed off-
spring are challenged with DMBA at puberty. Eighteen
weeks after the challenge, 95% of the tamoxifen-exposed
animals developed tumors, compared with 50% of the
vehicle-treated rats (138). However, in the above-men-
tioned studies, both DES and tamoxifen were adminis-
tered at high pharmacological doses to reflect the medical
use of these agents, whereas the effects of twinning men-
tioned above represent a physiological range of endoge-
nous hormone levels to which developing fetuses are
exposed.

E. Perinatal exposure to environmentally relevant levels
of endocrine disruptors

There is a third type of exposure that needs to be ad-
dressed: the inadvertent and continuous exposure of fe-
tuses to environmentally active chemicals, such as dioxins
and BPA (Table 4).

1. Dioxins
Depending on the context (time of exposure, organ,

presence or absence of estrogens) dioxins have either es-
trogenic or antiestrogenic effects. Despite cross-talk be-
tween the aryl hydrocarbon and ERs (139), the mecha-
nisms underlying these opposite effects have yet to be
elucidated. Rats exposed prenatally (gestational d 15) to
TCDD and challenged with the chemical carcinogen
DMBA at 50 d of age showed increased tumor incidence,
increased number of tumors per animal, and shorter la-
tency period than rats exposed prenatally to vehicle and to
DMBA at 50 d of age. These TCDD-exposed animals had
increased numbers of terminal end buds at puberty (140).
Because these structures are believed to be the site where
mammary cancer arises, these results were interpreted as
evidence that TCDD increased the propensity to cancer
by altering mammary gland morphogenesis. Interest-
ingly, Fenton (31) showed that prenatal exposure to
TCDD results in impaired development of terminal end
buds that remain in the gland for prolonged periods,
whereas in the normal animals terminal end buds are
transient structures that regress when ductal develop-
ment is completed.

2. BPA, a ubiquitous xenoestrogen
The ubiquitous use of BPA provides great potential for

exposure of both the developing fetus, indirectly through
maternal exposure, and the neonate, directly through in-
gestion of tinned food, infant formula, or maternal milk
(11). Indeed, BPA has been measured in maternal and fetal

306 Diamanti-Kandarakis et al. Endocrine-Disrupting Chemicals Endocrine Reviews, June 2009, 30(4):293–342

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/30/4/293/2355049 by guest on 10 April 2024



plasma and placental tissue at birth in humans (141). A
recently published study conducted by the Centers for Dis-
ease Control, the first using a reference human population,
showed that 92.6% of over 2500 Americans had BPA in
their urine (142). Measured urine concentrations were sig-
nificantly higher in children and adolescents compared
with adults. BPA has also been measured in the milk of
lactating mothers. These data indicate that the developing
human fetus and neonate are readily exposed to this
chemical.

In rodents, BPA has been shown to readily cross the
placenta (143, 144) and bind �-fetoprotein (the estrogen-
binding protein that prevents maternal estrogen from en-
tering the circulation of the fetus) with negligible affinity
relative to estradiol; this results in enhanced bioavailabil-
ity during neonatal development. BPA is present in the
mouse fetus and amniotic fluid during maternal exposure
in higher concentrations than that of maternal blood.

The U.S. EPA has established the safe daily intake of
BPA to be 50 �g/kg body weight/d based on the assump-
tion that the main source of exposure is oral through food
ingestion. However, recent publications suggest that food
is not the only relevant source of exposure and that the
half-life of BPA in humans is longer than expected (6).
Numerous publications addressing fetal exposures to BPA
have used parenteral administration. This practice was
based on one hand on the fact that the fetus is exposed to
BPA through the internal milieu of the mother, and on the
other hand that parenteral administration via an osmotic
minipump allows for a precise and constant level of ex-
posure. Using this route of administration, exposure of a
pregnant mouse dam to 25 and 250 ng BPA/kg body
weight/d (namely, 2000 and 200 times lower than the safe
dose) for 14 d beginning on d 8 gestation has been shown
to impact certain aspects of development in their female
offspring. When examined on gestational d 18, fetuses of
mothers exposed to the higher dose of BPA exhibited al-
tered growth parameters of the mammary gland anlagen.
Changes in the appearance of the mammary epithelium
were observed, such as decreased cell size and delayed
lumen formation, as well as increased ductal area. In the
stroma, BPA exposure promoted advanced maturation of
the fat pad and altered localization of fibrous collagen
(128). Because maturation of the fat pad is the driving
event for ductal growth and branching, it is likely that the
increased ductal area in BPA-exposed animals is due to the
accelerated formation of their fat pads. By postnatal d 10,
in the offspring born to mothers exposed to either dose of
BPA, the percentage of proliferating epithelial cells was
significantly decreased relative to those not exposed. At
30 d of age, the area and number of terminal end buds
relative to the gland ductal area increased, whereas cell

death in these structures decreased in BPA-exposed off-
spring compared with controls. It is likely that the reduced
cell death in the terminal end buds of BPA-exposed females
may be the cause of the observed ductal growth delay
because cell death is essential for both the hollowing and
the outward growth of the subtending duct. Collectively,
these effects observed at puberty may be attributed to an
increased sensitivity to estradiol that has been observed in
the BPA-exposed animals (145). Because of the new epi-
demiological data cited above and the effects found in the
low-dose animal studies using parenteral exposure, the
EPA recommendations need to be reevaluated.

In animals exposed perinatally to BPA, there was also
a significant increase of ductal epithelial cells that were
positive for progesterone receptor at puberty. These pos-
itive cells were localized in clusters, suggesting future
branching points. Indeed, lateral branching was signifi-
cantly enhanced at 4 months of age in offspring born to
mothers exposed to 25 ng BPA/kg body weight/d (145).
These results are compatible with the notion that in-
creased sensitivity to estrogens drives the induction of pro-
gesterone receptors in epithelial cells, leading to an in-
crease in lateral branching. By 6 months of age, perinatally
exposed virgin mice exhibit mammary glands that resem-
ble those of a pregnant mouse, as reflected by a significant
increase in the percentage of ducts, terminal ends, terminal
ducts, and alveolar buds (146). Additionally, intraductal
hyperplasias, which are considered preneoplastic lesions,
were observed starting at 3 months of age (147).

To explore the links between prenatal BPA exposure
and mammary gland neoplasia, a rat model was chosen
because it closely resembles the human disease regarding
estrogen dependency and histopathology. BPA was ad-
ministered to pregnant dams at doses of 2.5, 25, 250, and
1000 �g/kg body weight/d. Fetal exposure to BPA, from
gestational d 9 to postnatal d 1, resulted in the develop-
ment of carcinomas in situ in the mammary glands of 33%
of the rats exposed to 250 �g/kg body weight/d, whereas
none of the unexposed animals developed neoplasias
(148). These cancers were only observed after the animals
had reached young adult age. Fetal exposure to BPA sig-
nificantly increased the number of precancerous lesions
(intraductal proliferation) by three to four times, an effect
also observed in puberty and during adult life. The lesions
observed in the BPA-exposed animals were highly prolif-
erative and contained abundant ER-positive cells, suggest-
ing that the proliferative activity in these lesions may be
estrogen mediated. Comparable preneoplastic lesions
were found in a study using a different rat strain (149).
Additionally, this study found stromal alterations such as
desmoplasia and mast cell invasion; these features are of-
ten observed during neoplastic development. Moreover,
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when challenged with a subcarcinogenic dose of nitro-
somethylurea, only the BPA-exposed animals developed
palpable tumors (carcinomas). The period of vulnerability
of the mammary gland to BPA does not cease at the neo-
natal stage. BPA exposure during lactation followed to
exposure to the carcinogen DMBA resulted in mammary
tumor multiplicity and reduced tumor latency compared
with control animals (exposed solely to DMBA) (150).
These results indicate that perinatal exposure to environ-
mentally relevant doses of BPA results in persistent alter-
ations in mammary gland morphogenesis, development of
precancerous lesions, and carcinoma in situ. Moreover,
the altered growth parameters noted in the developing
mammary gland on embryonic d 18 suggest that the fetal
gland is a direct target of BPA, and that these alterations
cause the mammary gland phenotypes observed in peri-
natally exposed mice at puberty and adulthood.

In summary, exposure to estrogens throughout a wom-
an’s life, including the period of intrauterine development,
is a risk factor for the development of breast cancer. The
increased incidence of breast cancer noted during the last
50 yr may have been caused, in part, by exposure of
women to estrogen-mimicking chemicals that have been
released into the environment from industrial and com-
mercial sources. Epidemiological studies suggest that ex-
posure to xenoestrogens such as DES during fetal devel-
opment, to DDT around puberty, and to a mixture of
xenoestrogens around menopause increases this risk. An-
imal studies show that exposure in utero to the xenoestro-
gen BPA increases this risk. Moreover, these animal stud-
ies suggest that estrogens act as morphogens and that
excessive perinatal exposure results in structural and func-
tional alterations that are further exacerbated by exposure
to ovarian steroids at puberty and beyond. These altered
structures include preneoplastic lesions, such as intraduc-
tal hyperplasias, and carcinomas in situ. Additionally,
these mammary glands are more vulnerable than their nor-
mal counterparts to carcinogenic stimuli. Exposures to
other endocrine disruptors that are not estrogenic, such as
dioxins, were reported to increase breast cancer incidence
in humans and to alter mammary gland development in
animal models. Collectively, these data support the notion
that endocrine disruptors alter mammary gland morpho-
genesis and that the resulting dysgenic gland becomes
more prone to neoplastic development.

V. Male Reproductive and Developmental
Health: The Human Evidence

A. Introduction to male reproductive health
The mechanisms through which environmental chem-

icals alter the endocrine system are elucidated through

experimental animal studies and in vitro systems. In epi-
demiological studies it is generally not possible to explore
potentialmechanisms.Nevertheless, epidemiological studies
are essential to our understanding of the potential risks, or
lack thereof, of EDCs on human reproductive function and
development.

Human evidence of altered male reproductive and de-
velopmental health in relation to EDCs is limited (Table
2). As has been shown in the recent Third National Report
by the Center for Disease Control (151), humans are ex-
posed, at a minimum, to hundreds of environmental chem-
icals, of which dozens are known EDCs. A major limita-
tion of epidemiological studies is that they generally only
measure human exposure to a single EDC, or at best to a
set of isomers or congeners within a family of EDCs. A
fuller understanding of potential human health risks re-
quires studying the complex mixtures to which we are
exposed. This limitation, already raised in other sections,
should be kept at the forefront as the current epidemio-
logical evidence on health risks from EDCs is presented.

For the purposes of this report, the male reproductive
health endpoints under consideration include, among oth-
ers: 1) disrupted reproductive function, manifest as re-
duced semen quality and infertility; 2) altered fetal devel-
opment, manifest as urogenital tract abnormalities,
including hypospadias and cryptorchidism; and 3) testic-
ular germ cell cancer (TGCC).

B. Male reproductive function and development

1. TDS: A unifying hypothesis

Skakkebaek et al. (21) hypothesized that diminished
semen quality, TGCC, and male urogenital tract anoma-
lies may share a common causal pathway. They defined
this triad as the TDS. The hypothesis invokes a common
pathway by which EDCs, and other environmental chem-
icals and genetic factors, may lead to abnormal develop-
ment of the fetal testis, producing testicular dysgenesis
that can manifest as an increased risk of urogenital ab-
normalities in newborn males, as well as altered semen
quality and TGCC in young men. As a cautionary note, the
manifestations (or symptoms) of TDS have other causes
apart from testicular dysgenesis.

It is hypothesized that TDS is due to prenatal Leydig
and Sertoli cell dysfunction with secondary androgen in-
sufficiency and impaired germ cell development. This
should not be confused with the clinical diagnosis of dys-
genetic testes, which is associated with genital ambiguity
and a high risk of testicular malignancy (152). The exis-
tence of TDS as a distinct clinical entity and of possible
associations with EDCs is an area of active research.
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C. Semen quality: Temporal trends and EDC exposure
The epidemiological evidence on temporal trends in

semen quality remains inconsistent. Some studies suggest
that human semen quality has declined during the previ-
ous 50 yr (153–155), whereas other studies have not re-
ported a decline (156–158). Despite the potential impor-
tance and relevance of early life exposure to EDCs, the
epidemiological evidence on the relationship between se-
men quality and exposure to EDCs is limited to the as-
sessment of adult exposure to EDCs. In the cases of PCBs,
pesticides (persistent and nonpersistent), and phthalates,
limited epidemiological evidence supports a relationship
between adult exposure and reduced semen quality. How-
ever, most studies are cross-sectional in design; thus ex-
posure and semen parameters were assessed at the same
point in time. Although there are few studies in humans on
the effects of developmental exposures to chemicals and
semen quality in adulthood, this has been shown in animal
models. Anway and Skinner (12) showed direct as well as
transgenerational effects of EDCs on semen quality after
intrauterine exposure.

1. Phthalates and semen quality
The diesters of 1,2-benzenedicarboxylic acid (phthalic

acid), commonlyknownasphthalates, are agroupofman-
made chemicals widely used in industrial applications.
They are primarily used as plasticizers in the manufacture
of flexible vinyl plastic which, in turn, is used in consumer
products, flooring, and wall coverings, food contact ap-
plications, and medical devices (159–161). They are also
used in personal-care products (e.g., perfumes, lotions,
cosmetics), as solvents and plasticizers for cellulose ace-
tate, and in making lacquers, varnishes, and coatings, in-
cluding those used to provide timed releases in some phar-
maceuticals (159, 162, 163).

Human exposure to phthalates is widespread and oc-
curs through ingestion, inhalation, and dermal contact
(160–165). Parenteral exposure from medical devices and
products containing phthalates are important sources of
high exposure to phthalates, primarily di-(2-ethylhexyl)
phthalate (DEHP) (161, 166). Phthalates have biological
half-lives measured in hours, are rapidly metabolized, and
are excreted in urine and feces (160–163). The most com-
mon biomonitoring approach for investigating human
exposure to phthalates is the measurement of urinary con-
centrations of phthalate metabolites.

There are few epidemiological studies on phthalates
and semen quality. A large study on male partners of sub-
fertile couples from an infertility clinic in Massachusetts
(167, 168) found associations between monobutyl phtha-
late (MBP; the hydrolytic metabolite of dibutyl phthalate)
and below World Health Organization (WHO) reference
value sperm motility and sperm concentration. There was

also a dose-response relationship between monobenzyl
phthalate (MBzP, the primary hydrolytic metabolite of
butylbenzylphthalate) and below WHO reference value
sperm concentration. In contrast to the U.S. study, in a
Swedish study there were no relationships of MBP or
MBzP with any of the semen parameters (169). Potential
reasons explaining why the two studies found differing
results include differences in age and fertility of the study
populations. The Swedish study population consisted of
young men (median age, 18 yr; range, 18–21 yr) from the
general population, whereas in the U.S. study the median
age of the men from an infertility clinic was 35.5 yr and
ranged from 22 to 54 yr. None of the men from the infer-
tility clinic were 21 yr of age or younger. Men presenting
to an infertility clinic may be more “susceptible” to re-
productive toxicants, including phthalates, than men from
the general population. Furthermore, it is also unclear
whether middle-aged men, compared with young men, are
more susceptible to reproductive toxicants because of an
age-related response to the toxicant.

2. PCBs and semen quality
PCBs are a class of synthetic, persistent, lipophilic, ha-

logenated aromatic compounds that were widely used in
industrial and consumer products for decades before their
production was banned in the late 1970s. PCBs were used
in cutting oils, lubricants, and as electrical insulators. As
a result of their extensive use and persistence, PCBs remain
ubiquitous environmental contaminants. They are biolog-
ically concentrated and stored in human adipose tissue.
The general population is exposed primarily through in-
gestion of contaminated foods (e.g., fish, meat, and dairy
products), because PCBs can bioaccumulate up the food
chain. As a result of their persistence and ubiquity, mea-
surable levels of serum PCBs are found in the majority of
the U.S. general population (170). Serum levels of PCBs
are an integrated measure of internal dose, reflecting ex-
posure from all sources over the previous years; depending
on the congener, the half-life of PCBs in the blood ranges
from 1 to 10 or more years (171, 172). Notably, there are
209 different possible chlorine substitutions on the biphe-
nyl backbone of PCBs, with the resulting PCB molecules
having different structural, functional, and toxicological
properties (173, 174).

The epidemiological evidence on the relationship be-
tween PCBs and semen quality support an inverse associ-
ation of PCBs with reduced semen quality, specifically
reduced sperm motility. Such relationships have been con-
sistently reported across studies performed in different
countries (India, The Netherlands, Taiwan, Sweden, and
the United States). The associations were found across a
range of PCB levels, suggesting that there was not a thresh-
old. The PCB levels in these studies ranged from low back-
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ground levels (175–177), to high background levels due to
consumption of contaminated fish (178), to even higher
exposure levels due to ingestion of contaminated rice oil
(179, 180).

3. Dioxins and semen quality
A recently published study of dioxin exposure and se-

men quality suggested that timing of exposure may have
an impact upon the response (181). A chemical plant ex-
plosion in 1976 in Seveso, Italy, led to environmental con-
tamination with high levels of TCDD. Exposed men in
three age groups (1–9, 10–17, and 18–26 yr of age in
1976) were studied in 1998. Interestingly, the men ex-
posed prepubertally (1 to 9 yr) had an inverse association
between serum TCDD concentrations and semen quality,
specifically sperm count and motility, whereas the men
exposed at ages 10–17 yr had a positive association with
semen quality, referred to as stimulatory by the authors.
The men exposed at 18–26 yr of age had no associations
of TCDD with semen quality. Men exposed at both 1–9
and 10–17 yr of age had lower estradiol and higher FSH
concentrations compared with unexposed men. These re-
sults suggest that the timing of exposure, i.e., life stage,
may have importance in determining the impact of envi-
ronmental exposures.

4. Nonpersistent pesticides and semen quality
Nonpersistent pesticides (also referred to as “contem-

porary-use pesticides”) are chemical mixtures that are cur-
rently available for application to control insects (insec-
ticides), weeds (herbicides), fungi (fungicides) or other
pests (e.g., rodenticides), as opposed to pesticides that
have been banned from use in most countries (e.g., many
of the formerly popular organochlorine pesticides such as
DDT). Three common classes of nonpersistent pesticides
in use today include organophosphates, carbamates, and
pyrethroids. Although environmentally nonpersistent, the
extensive use of pest control in these various settings re-
sults in a majority of the general population being exposed
to some of the more widely used pesticides at low levels.
Exposure among the general population occurs primarily
through the ingestion of foods that contain low levels of
pesticide residue or through inhalation and/or dermal ex-
posure in or around the home and in other indoor
environments.

Several epidemiological studies suggest an association
between nonpersistent pesticide exposure and altered se-
men quality. Most of the data are from occupational stud-
ies involving simultaneous exposure to several pesticides
(182–191). Two recent studies found associations be-
tween pesticide exposures representative of the general
population and reduced semen quality (192, 193).

In a small study on male partners of pregnant women,
Swan et al. (192) compared urinary concentrations of pes-
ticide biomarkers in 34 men with sperm concentration,
motility, and morphology below the median (defined as
cases) to 52 men with above-median semen parameters
(defined as controls). They found elevated odds ratios for
poorer semen quality in relation to urinary concentrations
of alachlor mercapturate, 2-isopropoxy-4-methyl-pyrim-
idinol (diazinon metabolite), atrazine mercapturate,
1-naphthol (carbaryl and naphthalene metabolite), and
3,5,6-trichloro-2-pyridinol (chlorpyrifos metabolite).

In a study among 272 men from an infertility clinic,
Meeker et al. (193) found inverse associations between
urinary levels of 1-naphthol, a metabolite of both carbaryl
and naphthalene, with sperm concentration and motility.
They also found a suggestive inverse relationship between
the urinary metabolite of chlorpyrifos (3,5,6-trichloro-2-
pyridinol) and sperm motility.

In summary, in addition to evidence from occupational
studies, there are limited human studies suggesting re-
duced semen quality in relation to nonoccupational ex-
posure to nonpersistent pesticides, specifically some her-
bicides and insecticides.

D. Male urogenital tract malformations
Epidemiological studies provide inconclusive evidence

on temporal trends in cryptorchidism and hypospadias.
Studies show that the prevalence of cryptorchidism is vari-
able and geographically specific (194), with temporal up-
ward trends noted in some studies but not others (15, 195,
196). The prevalence data for cryptorchidism are difficult
to interpret because of the limitations of registry-based
data and how they are obtained, changes in clinical prac-
tice that emphasize earlier diagnosis and treatment, con-
founding factors such as birth weight and prematurity,
and inaccurate diagnosis related to changes in testicular
position (spontaneous descent or secondary “ascent”)
over time (197). Similarly, data for hypospadias preva-
lence are difficult to interpret. Although prevalence tem-
porally increased in some locations, other reports showed
no trends over time (195, 198–200). Ascertainment bias
may also easily exist for this anomaly, particularly for
milder forms, because both false-negative and false-posi-
tive diagnoses may be made in newborns based on cir-
cumcision status.

Epidemiological evidence for EDC exposure and cryp-
torchidism or hypospadias is limited. Maternal serum con-
centrations of PCBs, DDT, or DDE (primary metabolite of
DDT) were weakly associated or not associated with cryp-
torchidism or hypospadias in offspring (201–204).

The relationship of parental or general community pes-
ticide exposure with hypospadias or cryptorchidism is
suggestive (205–210), but there is the need for further
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research that explores maternal and/or paternal exposure
to specific pesticides with urogenital anomalies.

In one of the only human studies on phthalates and
male genital development, Swan et al. (23) determined
“anogenital index” (anogenital distance/body weight)
and testicular position in young boys (mean age, 16
months) and corresponding maternal levels of urinary
phthalate metabolites at three separate clinical sites. In this
study, the authors found significant inverse relationships
between the highest maternal levels of MBP, MBzP, mo-
noethyl phthalate, and monoisobutyl phthalate and ano-
genital index (odds ratio for MBP, 10.2; 95% confidence
interval, 2.5–42.2), although MEP has not been linked to
reproductive anomalies in rodent studies based on oral
administration rather than transdermal, which is the route
for human exposure via its use in personal-care products
(197). The implication of a reduced anogenital index in
rats is well defined, but the clinical implications of reduced
anogenital index in human male infants is unknown.

In summary, the strongest epidemiological data that
link EDC exposure to cryptorchidism and/or hypospadias
are those suggesting an association between residency in
agricultural areas and/or measures of direct parental ex-
posure to nonorganochlorine pesticides, without provid-
ing insight into specific potentially causative agents. How-
ever, these data are not necessarily consistent for both
anomalies or congruent with observations made in animal
experiments. Further studies will be needed to provide a
clearer understanding of the role(s) of specific EDCs in the
etiology of genital anomalies in man.

E. Testicular germ cell cancer
Epidemiological studies show both geographical vari-

ability and dramatic recent upward trends in the incidence
rate of TGCC (212–216). The steep temporal rise over a
relatively short period of several decades suggests that ge-
netic factors alone cannot explain it. Therefore, environ-
mental and lifestyle factors have been hypothesized to play a
role. Evidence for environmental and lifestyle factors is sup-
ported by migration studies in which the first generation of
immigrants have incidence rates similar to their country of
origin (birth), but their offspring had rates similar to men in
the country in which they were born and raised (217).

The earliest suggestion of epidemiological evidence re-
lated to prenatal estrogen exposure and increased risk of
TGCC came from a study in 1979 (218). However, other
studies have not consistently confirmed these earlier re-
sults (219). At present, the evidence on EDCs and risk of
TGCC is very limited. Interestingly, in a novel case-control
study on EDCs and TGCC, Hardell et al. (220, 221) did
not find associations between serum concentrations of or-
ganochlorines among cases and controls and risk of
TGCC, but instead found that blood organochlorine lev-

els measured in their mothers, decades after their sons’
birth, were predictive of increased risk. The organochlo-
rines measured included PCBs, p,p�-DDE (primary long-
lived metabolites of DDT), and hexachlorobenzene, a fun-
gicide. The study was small (44 case mothers and 45
control mothers), and the median time from the fetal pe-
riod until blood sampling for the cases and controls was
approximately 30 yr. It is important to keep in mind that
despite the long period between the etiological relevant
exposure window and measurement of organochlorines,
their long half-lives, on the order of years to a decade,
makes it possible to estimate historic exposure using the
mothers’ blood samples. Therefore, the limited studies
suggest that in utero exposure to environment EDCs rep-
resents the relevant etiological window of exposure. If this
is borne out to be true, it will mean that epidemiologists
need to consider innovative study designs to better assess
prenatal exposure windows for endpoints that may not
manifest for decades. Prospective pregnancy cohort fol-
low-up studies for TGCC would be difficult and costly to
implement because TGCC is a rare cancer and prospective
study would require unrealistically large cohorts.

F. Conclusions
This section has tried to provide highlights and insights

into the current state of the epidemiological evidence on
the relationship between EDCs and male reproductive and
developmental health. The overview was not meant to be
an exhaustive review of the evidence, but rather a synthesis
of the current knowledge in an ever-changing field of in-
quiry and discovery. Although there is current scientific,
public, and governmental interest in the potential health
risks of exposure to EDCs, the human evidence on asso-
ciations of EDCs with altered male reproductive health
endpoints remains limited and, in certain instances, in-
consistent across studies. This highlights the need for fur-
ther epidemiological research on these classes of EDCs.

VI. Prostate Cancer

A. Introduction to prostate cancer
Prostate cancer is the most common solid cancer in

males and the second leading cause of cancer deaths in
American men (222). In addition, benign prostatic hyper-
plasia is the most common benign neoplasm, occurring in
approximately 50% of all men by the age of 60. The basis
for these high rates of abnormal prostatic growth is not
well understood despite decades of extensive research on
the topic. Nonetheless, it is accepted that steroids play a
fundamental role in the initiation and progression of pros-
tate cancer, which forms the basis for hormonal treatment
strategies. Men who have undergone early castration do
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not develop prostatic carcinoma (223). Charles Huggins
received the Nobel Prize for his work revealing that re-
gression of prostate cancer can be initially achieved by
castration and androgen blockade (224). In addition to
androgens, it has been proposed that estrogens are in-
volved in the etiology of benign prostatic hyperplasia and
prostatic cancer (225–227), and the use of antiestrogens
has been recently recognized to have a therapeutic role in
prostate cancer management (228, 229). The prostate
gland contains both ER� and ER� during development and
into adulthood, with ER� primarily found in stromal cells
and ER� in differentiated epithelium (230). It is also believed
that prostatic developmental events under the regulation by
steroidsearly in lifemaybelinkedtothepredispositionof this
structure to high rates of disease in adult men (231, 232).
Moreover, the prostate gland is particularly sensitive to es-
trogen exposures during the critical developmental period
relative to adult estrogenic responses (233).

The established risk factors for prostate cancer are age
and race. African-American men have the highest inci-
dence of prostate cancer worldwide, at rates 2-fold those
for Caucasian-American counterparts. Family history (ge-
netics), diet, and environmental factors are also recog-
nized to impact prostate cancer risk. However, in the hu-
man population, direct connections between EDCs and
prostate cancer risk have not been established. Due to the
hormonal basis of this disease and the evidence that di-
etary compounds high in phytoestrogens (e.g., genistein)
can control prostate cancer growth in humans, there is
reasonable cause to evaluate and understand any potential
relationship between environmental EDCs and prostate
cancer risk. Because there are difficulties in directly asso-
ciating prostate cancer risk in humans with EDC expo-
sures, potential risk(s) will have to be ascertained from
research with animal models, particularly those that are
responsive to environmentally relevant exposures. The
sections below summarize the evidence obtained from ep-
idemiological studies, in vitro studies with human prostate
cells, and in vivo studies in animal models that indicate
associations between EDCs and prostate cancer, carcino-
genesis, and/or susceptibility (Fig. 1).

B. Evidence and mechanisms for EDC effects on the
prostate

1. Farming and pesticides
The most compelling data for a link between prostate

cancer and environmental factors outside of diet in hu-
mans comes from the established occupational hazard of
farming and increased prostate cancer rates (234–236).
Although several variables may contribute to this associ-
ation, chronic or intermittent exposures to pesticides are
the most likely explanation (236, 237). A large epidemi-

ology study (Agricultural Health Study) conducted col-
laboratively between the National Cancer Institute, the
National Institute of Environmental Health Sciences, and
the EPA examined agricultural lifestyles and health in ap-
proximately 90,000 participants in North Carolina and
Iowa since 1993 (www.aghealth.org). Evaluation of more
than 55,000 pesticide applicators revealed a direct link
between increased prostate cancer rates and exposure to
methyl bromide, a fungicide with unknown mechanism of
action (236). In addition, six pesticides (of 45 common
agricultural pesticides) showed significant correlation
with exposure and increased prostate cancer rates in
men with a familial history of the disease, suggesting
gene-environment interactions. These six agents were
chlorpyrifos, fonofos, coumaphos, phorate, permethrin,
and butylate (236, 238). The first four compounds are
thiophosphates that share a common chemical structure.
These agents are acetylcholine esterase inhibitors and have
not been shown to have direct estrogenic or antiandro-
genic activities. However, a literature search found that
these compounds have marked capacity to inhibit p450
enzymes. Chlorpyrifos, fonofos, and phorate strongly in-
hibit CYP1A2 and CYP3A4, which are the major p450s
that metabolize estradiol, estrone, and testosterone in the
liver (239, 240). Thus it is possible that exposure to these
compounds can interfere with metabolism of steroid hor-
mones and, in so doing, disturb the normal hormonal bal-
ance that might contribute to increased prostate cancer
risk. A similar mechanism of endocrine disruption in vivo
has been identified for PCBs and polyhalogenated aro-
matic hydrocarbons (including dioxins, BPA, and diben-
zofurans) through marked inhibition of estrogen sulfo-
transferase, which in turn elevates bioavailable estrogens
in target organs (45, 241).

2. Environmental estrogens
In men, chronically elevated estrogens have been asso-

ciated with increased risk of prostate cancer (227). In ro-
dents, natural estrogens combined with androgens induce
prostate cancer (225, 242). For simplicity, we herein refer
to environmental estrogens as molecules with identified
estrogenic activity (estrogen mimics), primarily through
ER activation.

a. DES. In utero DES exposure is an important model of
endocrine disruption and provides proof-of-principle for
exogenous estrogenic agents altering the function and pa-
thology of various end-organs. Maternal usage of DES
during pregnancy resulted in more extensive prostatic
squamous metaplasia in human male offspring than ob-
served with maternal estradiol alone (243). Although this
prostatic metaplasia eventually resolved during post-
natal life, ectasia and persistent distortion of ductal ar-
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chitecture remained (244). These findings have led to
the postulation that men exposed in utero to DES may
be at increased risk for prostatic disease later in life
(245), although the limited population studies con-
ducted to date have not identified an association (245).
Nonetheless, several studies with DES in mouse and rat
models have demonstrated significant abnormalities in
the adult prostate, including increased susceptibility to
adult-onset carcinogenesis after early DES exposures
(246 –249). It is important to note that developmental
exposure to DES, as with other environmental estro-
gens, has been shown to exhibit a biphasic dose-
response curve with regard to several end-organ
responses, and this has been shown to be true for pros-
tatic responses as well (250). Low-dose fetal exposure
to DES or BPA (see below) resulted in larger prostate
size in adulthood compared with controls, an effect
associated with increased levels of prostatic ARs. This con-
trasts with smaller prostate sizes, dysplasia, and aging-
associated increases in carcinogenesis found after perinatal
high-dose DES exposures as noted above. This differential
prostatic response to low vs. high doses of DES and other
EDCs must be kept in mind when evaluating human expo-
sures to EDCs because the lack of a response at high doses
may not translate into a lack of negative effects at low, en-
vironmentally relevant doses of EDCs.

b. BPA. BPA is a synthetic monomer used in the production
of polycarbonate plastics and epoxy resins and is one of
the highest production synthetic compounds worldwide.
Importantly, conjugated BPA was detected in the urine of
93% of the U.S. population in a recent screen conducted
by the Center for Disease Control. Although the relative
binding affinity of BPA for ER� and ER� and its capacity
to activate ER-dependent transcription is approximately
1,000 to 10,000 lower than estradiol or DES (1, 251), BPA
was capable of activating an estrogen-responsive lucif-
erase reporter at levels that were 50% of 17�-estradiol
activation (252). Thus, whereas BPA may have a signifi-
cantly lower potency than endogenous estrogens in vitro,
it is a full agonist for both ER� and ER�. Furthermore,
BPA induces ER through nongenomic pathways with an
EC50 equivalent to 17�-estradiol, suggesting that in vivo
estrogenic activity of BPA may be due to nongenomic ac-
tivation of ER (253, 254).

The carcinogenic potential of BPA was recently evalu-
ated by an expert panel convened by the EPA and the
National Institute of Environmental Health Sciences,
and the written report, which includes prostate cancer
findings, has been published (255). In summary, there is
evidence using in vitro prostate cell cultures and rodent
models showing that BPA can modulate prostate cell pro-
liferation and increase susceptibility of the prostate gland
to hormonal carcinogenesis. Using transcriptional as-
says, BPA (1 nM) was found to activate a mutated AR
(AR-T877A) that is frequently found in advanced pros-

tate cancers of patients who relapsed after androgen
deprivation therapy (256). Furthermore, BPA exposure led
to unscheduled cell cycle progression and cellular prolifera-
tionintheabsenceofandrogeninLNCaPcells thatexpressed
this mutant AR. Because BPA had no impact on wild-type
AR, these findings demonstrate that the common gain-of-
function AR mutant had attained the ability to utilize BPA as
an agonist. Importantly, the BPA effects were greatest at
lower doses of BPA compared with high-dose exposures. In
vivo analyses of the impact of BPA on human prostate tumor
growth and recurrence was performed utilizing a xenograft
model (257). At low doses equivalent to human exposures,
prostate tumor size increased after BPA exposure when com-
pared with placebo control mice. Additionally, mice in the
BPA cohort demonstrated an earlier rise in prostate-specific
antigen (biochemical failure), which indicates that BPA sig-
nificantly shortened the time to therapeutic relapse. These
outcomes underscore the need for further study of the effects
of BPA on tumor progression and therapeutic efficacy.

Recent studies using a rat model have shown that early-
life exposure to environmentally relevant levels of BPA can
increase susceptibility to prostate carcinogenesis, possibly
by developmentally reprogramming carcinogenic risk
(122, 258). Rats were exposed to low doses of BPA (10
�g/kg body weight) during the early postnatal period
when the prostate undergoes morphogenesis. In adult-
hood, estradiol levels were elevated 3-fold through the
use of implants for 16 wk. Rats exposed neonatally
showed a significant increase in the incidence (100 vs.
40%) and grade of prostatic intraepithelial neoplasia
lesions compared with rats neonatally exposed to oil
alone. These lesions in BPA-exposed rats exhibited high
levels of proliferation and apoptosis suggestive of per-
turbed homeostasis leading to pathological lesions. Fur-
thermore, prostates from BPA-exposed animals were
shown to have permanent epigenetic changes with al-
tered DNA methylation patterns in multiple genes that
resulted in altered gene transcription. Together, these
findings indicate that BPA may “imprint” the prostate
through epigenetic modifications, resulting in predis-
position to carcinogenesis.

c. PCBs. PCBs are persistent organic pollutants that are
fat-soluble and bioaccumulate in human body fat depos-
its. Many PCBs have estrogenic or antiandrogenic activity
and as such, may perturb the prostate gland. A recent
analysis in Swedish men with and without prostate cancer
of adipose tissue PCB concentrations revealed a significant
association between PCB levels in the higher quadrants
and prostate cancer odds ratio, with the most marked as-
sociations for PCB 153 and transchlordane (259). An ex-
tensive epidemiological study of capacitor manufacturing
plant workers exposed to high levels of PCBs revealed a
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strong exposure-response relationship for prostate cancer
mortality (260). These results support previous findings of
correlations between PCB 153 and 180 and prostate can-
cer risk in electric utility workers (261, 262). Although
estrogenic activity of these compounds is a suspected
mode of action, there is also evidence that PCBs inhibit
estrogen sulfotransferase activity in the liver and effec-
tively increase bioavailable estrogen in the body (45). Fur-
ther investigation using animal models is warranted for
PCBs and prostate cancer risk.

d. UV filters. Recent reports have shown that UV light filters
used to protect against the sun have estrogenic activity (263).
In particular, 4-methylbenzylidene camphor and 3-benzi-
dene camphor are ER� ligands (264). Although there are no
studies on these UV filters and human prostate cancer, two
reports indicate that early life exposure to these compounds
can alter prostate gland development, growth, and gene ex-
pressionintheratprostate (263,265).Thus, it ispossible that
the fetal prostate in humans may be affected after maternal use
of these compounds, although this remains to be examined.

e. Cadmium. Cadmium has been shown to act as a ligand
for the ER and function as an estrogenic mimic. Although
some large epidemiological studies indicated a relation-
ship between cadmium exposure and rates of prostate can-
cer, these findings have been challenged in other reports
(266). Cadmium has been shown to have proliferative ac-
tion on human prostate cells in vitro through an ER-de-
pendent mechanism, and this exposure was associated
with progression to androgen independence (267). In ad-
dition, prostatic tumors have been experimentally induced
by oral exposure to cadmium (268). Because cadmium
bioaccumulates in the body, further epidemiological anal-
ysis of cadmium and prostate cancer risk is warranted,
particularly in men with occupational exposures.

f. Arsenic. Exposure to arsenic has long been associated
with a number of diseases, including cancers (269). More
recently, it has been documented that arsenic may mediate
some of these effects through endocrine disruption, spe-
cifically through interaction with ERs and activation of
estrogen-regulated genes (270). A recent report has found
that arsenic induced malignant transformation of prostate
epithelial cells in vitro, driving them toward an androgen-
independent state (271). Progression to androgen-inde-
pendent growth was shown to be mediated through Ras-
MAPK pathways, and thus, it is possible that membrane
ERs may mediate this effect. Epidemiological studies have
shown an association between arsenic exposure and pros-
tate cancer mortality in Taiwan (272), a finding that was
substantiated in a more recent study in the United States
(273). Thus it remains a possibility that endocrine disrup-
tion by arsenic can contribute to prostate cancer risk, and
further research on this topic is essential.

3. Antiandrogens
Endocrine disruption that might affect the prostate

gland can also be derived through antiandrogenic path-
ways. Because prostate cancer is an androgen-dependent
disease, a brief review of known effects of some of these
agents on the prostate gland is presented.

a. Vinclozolin. Vinclozolin is a fungicide that is used as a
pesticide on crops. It possesses known antiandrogenic
properties through interference with AR activity (274).
Rats exposed to vinclozolin during early development
were reported to have reduced prostate gland growth and
size (275). Recently, maternal exposure to vinclozolin
was shown to produce transgenerational effects with
adverse consequences on the prostate gland, including
atrophy and prostatitis for four generations (34, 276).
However, because vinclozolin functions through AR
antagonism, it is unexpected that vinclozolin will lead
to prostate cancer.

b. DDT/DDE. DDT and its metabolic derivative p,p�-
DDE were widely used as pesticides in the United States,
and their use is still in effect in other countries. Although
many reproductive abnormalities have been found with
DDT/DDE, there is no known association between its
exposure and prostate cancer risk (277). Again, due to
its antiandrogenic actions, it is not expected to drive prostate
cancer. A number of key questions remain unresolved but
merit future investigation, not just in prostate cancer but in
other fields (Boxes 1 and 2). Spanning from the molecular to
theclinical, theyhighlight theneedforabetterunderstanding
of the pathogenesis of prostate cancer and the potential role
of EDCs in this process.

BOX 1. Recommendations for research on prostate
cancer

● It remains unclear whether EDC exposures directly induce or pro-
mote prostate cancer. If either occurs, it will be necessary to de-
termine the mode of action.

● It will be important to determine whether estrogenic or antian-
drogenic EDCs modulate disease risk or progression in the adult
male. One possibility may be that EDC exposure may influence
prostate cancer susceptibility in subpopulations of men. If so, it
would be important to determine the other risk factors that EDCs
might synergize with to influence prostate cancer incidence
and/or progression.

● It is unknown whether there is an additive or synergistic effect
from EDC mixtures and prostate cancer risk or growth.

● It is necessary to determine whether the in utero developing human
prostate is sensitive to EDCs and whether this may influence the
prostate cancer risk in the aging male.

● Epidemiology studies need to be undertaken to evaluate the long-
term outcome for prostate cancer incidence, grade, stage, and pro-
gression in DES-exposed sons.

● The most appropriate life stages for examining EDC and prostate
cancer risk need to be assessed.

● An unexplored and important issue is whether there may be a
transgenerational risk for prostate cancer as a function of EDC
exposures.

● Are there epigenetic pathways that mediate developmental expo-
sures to EDCs and prostate disease with aging?

● It will be important to establish molecular markers for EDC ex-
posures as they relate to prostate disease risk.
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BOX 2. Recommendations for research and practice regarding EDCs

● Clinical research
In newborns with IUGR and/or anomalies of sexual differentiation including cryptorchidism and hypospadias, screen for EDCs in maternal

serum and in breast milk, and archive biological samples for further screening.
Prioritize a search for early (i.e., neonatal period and infancy) biomarkers of EDC effects and early indicators of exposure to EDCs during

fetal life.
Identify groups at high or low risk of exposure to EDCs for prospective studies correlating indicators of early exposure with subsequent

clinical characteristics throughout infancy, childhood, and adolescence.
Search for and study polymorphisms in enzymes (e.g., CYP enzymes) that predispose groups/individuals to greater/lesser vulnerability to

EDCs.
Develop intervention strategies to decrease or reverse the influence of EDCs on prostate health.
Identify the chemical or chemicals in pesticides that negatively impact risk for prostate cancer, breast cancer, endometriosis, and others

in humans.
Develop markers for total xenoestrogens or antiandrogen exposure in humans.

● Basic science
Molecular studies in vitro and with in vivo animal models are needed to identify pathways for EDC influence on endocrine tissues.
The mechanisms by which EDCs affect neuroendocrine systems need to be ascertained. In addition, studies on EDCs on several of these

systems are very underrepresented, and these fields need to be expanded.
Roles of steroid and nonsteroid pathways need to be better differentiated and ascertained.
More information on low-dose effects of EDCs and their mechanisms is needed.
The transgenerational, epigenetic effects of EDCs need to be much more broadly studied across different endocrine and reproductive

systems.
The interaction of EDCs with central nervous system developmental processes dependent on thyroid hormones (e.g., cochlear development)

or sex steroids (e.g., hippocampal development) warrant early in vitro and in vivo studies.
The effects in animal stem cells or progenitor cells in different tissues could decipher EDC-sensitive genes possibly used as reporters in early

biomarking.
Basic science research on effects of EDCs on diabetes and glucose intolerance is merited.
There is a gap in knowledge about the mechanisms by which EDCs act as �obesogens,� particularly in how these processes develop.

● Epidemiology
Large prospective epidemiological studies need to be undertaken to examine the relationships between EDC exposures, particularly agents

with estrogenic and antiandrogenic activity, and relevant endpoints as identified in this report. The National Children’s Study will be
especially critical to this undertaking.

Identify populations or subgroups with high exposures to EDCs and conduct exposure-response studies among these populations.
Perform epidemiological studies that incorporate measurement of exposure to multiple EDCs, allowing for the study of human health effects

from chemical mixtures.
Develop and incorporate validated biomarkers of EDC exposures and relevant outcomes into new and ongoing epidemiological studies.
Observations from occupational and environmental exposures in humans and their corresponding disease states should inform what animal

studies should be performed and which EDCs should be studied, and should be used to inform policy decisions regarding human exposures
to EDCs.

● Clinical practice
Set up early detection programs for testis cancer in the follow-up management of infertile men with poor semen quality.
Take a careful history of onset of reproductive disorders along with an occupational and environmental exposure history.
Think �epidemiologically� about the patients: that is, consider possible exposure to EDCs in geographical or community subgroups showing

unexpectedly high prevalence of any of the disorders possibly related to EDCs.
Clinicians can advise patients about exposures, minimizing risks, and abiding by the �precautionary principle� to preserve their reproductive

health and that of generations thereafter.
Health care professionals need to be educated in sources and effects of environmental contaminant exposures in utero and across the life

span.
Health care professionals need to have access to straightforward and accurate health information tools to share with patients.
Clinicians should be made aware of the potential risks posed by EDCs. This would, for instance, help them to seek evidence for exposure

when treating patients presenting with early thelarche or puberty.

VII. Neuroendocrine Targets of EDCs

The central neuroendocrine systems of the body serve as
an interface between the brain and the endocrine systems in
the rest of the body. These neuroendocrine systems control
diverse functions such as reproduction, stress, growth, lac-
tation, metabolism and energy balance (including thyroid),
osmoregulation, and other processes involved in homeosta-
sis. Considering that these neuroendocrine systems mediate
the ability of the organism to respond to its environment
through rapid (neuronal) and more sustained (endo-
crine) responses, it is not surprising that they are tar-
geted by environmental EDCs (reviewed in Refs. 7, 278,
and 279). Furthermore, neuroendocrine cells in the
brain have both neuronal and endocrine properties,
which is important in the context of endocrine disrup-

tion because EDCs can have neurobiological and neu-
rotoxic effects (279), along with the endocrine effects
discussed in this Scientific Statement.

The physiological processes controlled by central neu-
roendocrine systems are highly complex, making an un-
derstanding of neuroendocrine disruption a particular
challenge. Each of these neuroendocrine systems com-
prises several interdependent levels of organization: the
brain (specifically the hypothalamus), the pituitary gland,
and often a target organ. These levels of organization
may each produce a unique hormone(s) or a complex
protein (e.g., breast milk), and each level also responds
to the hormones produced by the other levels via feed-
back mechanisms (280). Here, we will discuss the evi-
dence for central neuroendocrine systems as targets for
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EDCs (Fig. 1). The bulk of the literature to date has
studied primarily the reproductive (HPG) system and
secondarily the thyroid neuroendocrine system. The lat-
ter will be considered in detail in Section VIII, so the former
(reproductive neuroendocrinology) will be the focus of the
current discussion. Other neuroendocrine systems remain
understudied and are only briefly mentioned. Nevertheless,
they merit much more investigation in the future.

A. Endocrine disruption of reproductive neuroendocrine
systems

1. GnRH neurons
Of the neuroendocrine systems, the reproductive HPG

axis is best studied in the arena of endocrine disruption.
The control of reproductive neuroendocrine function in-
volves a group of neurons in the basal hypothalamus that
synthesize and release the decapeptide GnRH (281).
GnRH release drives reproduction throughout the life cy-
cle, and this is the primary stimulus to the rest of the re-
productive axis (the pituitary and gonads). GnRH release
stimulates gonadotropin release from the anterior pitu-
itary gland, which in turn activates steroidogenesis and
gametogenesis in the ovary and testis. Steroid hormones
produced by the gonad act on other target tissues that
express estrogen, progestin, and/or ARs, a concept that is
fundamental to endocrine disruption because so many
EDCs act to interfere with steroid hormone actions. A
second important concept is that sex steroids also control
the hypothalamic GnRH neurons, but this involves indi-
rect effects because GnRH neurons do not express most of
the receptors for steroid hormones (282). This introduces
the important point that other cells in the brain that ex-
press steroid hormone receptors and that regulate GnRH
cells through afferent neural inputs are targets for EDCs.
These points also relate to evidence that EDCs can act
upon neurotransmitter systems that, at first glance, may
not seem to have relevance to neuroendocrine control. For
example, EDCs have been shown to cause neurotoxicity of
noradrenergic, serotonergic, dopaminergic and other neu-
rotransmitter-containing neurons (reviewed in Refs. 2 and
279). Considering that all of these neuronal types have
been shown to express steroid hormone receptors and all
of these cell types can project to and regulate GnRH neu-
rons (281), this is a mechanism for convergence of effects
of EDCs on the link between neural and endocrine
systems.

One of the biggest challenges with the neuroendocrine
system is gaining access to it. Hypothalamic neuroendo-
crine cells such as GnRH neurons are located in the hy-
pothalamus at the base of the brain, making them difficult
to access in animal models and impossible in humans. The
hypothalamic-releasing hormones are not released in suf-

ficiently high quantities to be detectable in peripheral cir-
culation. Therefore, assays of hypothalamic function rely
on hormone measurements of their corresponding pitu-
itary hormones. If the pituitary sensitivity to hypothalamic
output is compromised, then it is impossible to distinguish
aprimaryhypothalamicorpituitary effectof anEDC.This
has necessitated the use of animal models or in vitro assays
to directly ascertain effects of EDCs on neuroendocrine
peptide gene expression or release.

A reliable model for the GnRH system is the hypotha-
lamic GT1 cell lines that have been used for nearly two
decades as a proxy for the GnRH neuron in vivo (283). For
example, PCBs (284) and organochlorine pesticides (me-
thoxychlor, chlorpyrifos) (285) have been tested in this
context. Application of these EDCs to GT1 cells caused
significant changes in GnRH gene expression, GnRH pep-
tide release, and the morphology of the GT1–7 cells. In-
terestingly, these substances often acted by nonlinear
dose-response curves, with intermediate dosages exerting
the greatest effects, typical of hormonally-active sub-
stances (286, 287). Moreover, unlike traditional toxico-
logical studies, effects of these environmental contami-
nants were in many cases stimulatory to the GnRH
response. When comparisons were made to estradiol, at
least some of the effects of these EDCs mimicked effects of
estrogens on GT1 cell morphology, proliferation, and
gene expression. In addition, blockade of ERs with ICI
182,780 diminished some of the actions of EDCs. To-
gether, these data suggest that EDCs may directly target
GnRH cell lines. Nevertheless, caution must be taken in
interpreting these data, because the GT1 cells express
some molecules not detectable in the animal’s GnRH cell,
including some nuclear steroid hormone receptors. Other
cell line models for neuroendocrine cells are available and
may be useful in screening substances for neuroendocrine
disrupting activities.

Studies using explanted hypothalamic dissections in a
perifusion model from 15-d-old female rats tested effects
of several EDCs on glutamate-evoked GnRH release, the
latter model used as a reliable way of stimulating GnRH
secretion (288). Of the EDCs tested, o,p�-DDT had the
greatest stimulation of glutamate-evoked GnRH release,
and BPA had a lesser effect. Not all EDCs were stimula-
tory; methoxychlor and p,p�-DDE had no effect in this in
vitro model. Collectively, these data suggest EDC effects
on GnRH release in a hypothalamic explant model (288).
Finally, antagonists to the ER or AhR blocked effects of
DDT, suggesting mediation of these endocrine-disrupting
properties by these nuclear receptors and invoking a po-
tential mechanism of action. In another study, this same
group showed that DDT, but not DDE, decreased the in-
terpulse interval of GnRH pulses (i.e., increased pulse fre-
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quency), again consistent with stimulatory effects of these
EDCs on GnRH release (27).

Mammalian in vivo studies also implicate GnRH neu-
rons as targets for EDCs. O’Byrne’s laboratory (289) has
shown that coumestrol suppresses LH release (a proxy for
GnRH) and the GnRH pulse generator. Bourguignon’s
laboratory (27) reported that DDT accelerated the timing
of puberty in female rats and altered the LH response to
GnRH, although surprisingly, this was decreased in the
DDT animals. Not all aspects of GnRH function are af-
fected by all EDCs: Patisaul et al. (290) showed that ex-
pression of the immediate early gene fos in GnRH neurons
was not altered by neonatal genistein or BPA. By contrast,
data from Gore’s laboratory (291) suggest that EDCs can
stimulate GnRH mRNA levels in laboratory rats. In the
rabbit, prenatal vinclozolin (an endocrine-disrupting fun-
gicide) decreased numbers of GnRH neurons in selected
brain regions (292). Together, these results suggest actions
of EDCs on GnRH neurons, although much more research
is necessary to reconcile these data and better understand
the mechanisms. These findings are not really surprising,
considering that GnRH neurons act as the interface be-
tween endocrine and neural systems, but they are impor-
tant because they show this level of regulation with the
HPG axis.

Studies in fish also demonstrate effects of EDCs on the
GnRHsystem.Thestrongestworkhasbeenpublishedby the
collaboration of Khan and Thomas (293). Using the Atlantic
croaker as an experimental model, these labs showed that
PCBs decreased preoptic-hypothalamic GnRH content, pi-
tuitaryGnRHreceptors,andtheLHresponsetoGnRHchal-
lenge (293). This effect was mimicked by an inhibitor of se-
rotonin synthesis suggesting the possible mediation of effects
of PCBs by the serotonergic pathway.

2. EDC effects on sexually dimorphic brain regions and
behavior

The regions of the hypothalamus that control repro-
ductive neuroendocrine systems undergo development
during specific time periods, in large part due to exposures
to endogenous steroid hormones such as estrogens and
androgens. Although this is a simplification, it is specu-
lated that the brains of male mammals become masculin-
ized and defeminized due to actions of estradiol and tes-
tosterone produced by the developing (embryonic and
early postnatal) testis. In female rodents, the best-studied
model for endocrine disruption, the ovary is relatively qui-
escent during these developmental periods, and their
brains are thought to be feminized and demasculinized due
to the relative absence of exposure to these steroid hor-
mones (reviewed in Ref. 294). However, it is important to
note that the human ovary does produce estradiol (295),
so there are species differences. Nevertheless, the devel-

opmental basis of adult disease applies to the development
of the reproductive neuroendocrine system through ac-
tions during critical periods of sexual differentiation.

It should be apparent that exogenous hormones that
may perturb steroidal actions through actions such as
binding to steroid receptors, changing steroid metabolism,
and others would have effects on the developing neuroen-
docrine system in a sexually dimorphic manner. There has
been considerable and consistent research that shows that
PCBs, phytoestrogens, fungicides, pesticides, and other
xenobiotics can disrupt brain sexual differentiation (294).
This type of disruption has a high likelihood of affecting
both reproductive physiology and behavior later in life,
and indeed, there is strong evidence in rodent models that
reproductive success is diminished as a consequence (re-
viewed in Ref. 7). Early life exposure (late embryonic
and/or early postnatal) to low doses of PCBs (296–298) or
soy (299) significantly and adversely affected mating be-
haviors in female rats. Early postnatal treatment with
coumestrol (a phytoestrogen) diminished masculine and
feminine sexual behaviors (300, 301). These results are
consistent with a functional outcome for effects of EDCs
in the neuroendocrine hypothalamus.

A recently published collaborative study demonstrated
significant effects of prenatal vinclozolin on mate prefer-
ence behavior in F3 descendents. In brief, pregnant rats
were treated with vinclozolin or vehicle. The F1 vinclo-
zolin male offspring developed latent disease in adult-
hood, consistent with the developmental basis of adult
disease (35). Moreover, this phenotype was passed on to
subsequent generations (through F3) via paternal germ-
line transmission, due to epigenetic modification of spe-
cific genes. We evaluated the attractiveness of the male F3
vinclozolin descendents in comparison to F3 vehicle de-
scendants in a mate preference test in which females were
given the opportunity to spend time with a descendent of
both treatments. The results showed a profound differ-
ence, with females spending significantly more time with
an F3-vehicle compared with an F3-vinclozolin descen-
dant male (302). These results show differences in behav-
ior, as well as evolutionary impact on mating success,
caused by endocrine disruption. Notably, these F3 descen-
dants had no personal body burden or exposure to vin-
clozolin, and it has been postulated that the basis of the
discrimination in the mate choice test was due to a trans-
generational, epigenetically transmitted trait (302).

B. Hypothalamic-pituitary-adrenal (HPA) effects of EDCs
As articulated by Harvey et al. (303), “The adrenal is

arguably the neglected organ in endocrine toxicology, and
the lack of recognition of the importance of adrenal func-
tion in a regulatory endocrine disruption context and the
need for an adrenal toxicology assessment strategy has

Endocrine Reviews, June 2009, 30(4):293–342 edrv.endojournals.org 317

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/30/4/293/2355049 by guest on 10 April 2024



beenpointedout.”Numerouspharmaceuticalscanaffect the
HPA axis, but this phenomenon has not, to our knowledge,
been systematically studied for EDCs. Findings that the HPA
axis is sensitive to HPG hormones suggest a potential mech-
anism by which EDCs may disrupt the HPA axis as well.
Alternatively,EDCsmayactdirectlyupontheglucocorticoid
or mineralocorticoid receptors or on steroidogenic path-
ways. EDCs including PCBs, dioxin, lindane, and others can
affect synthesis of adrenal steroids, but specific effects on the
neuroendocrine control of HPA function are lacking (303).
This is an important area for future research.

C. Thyroid, metabolism, and growth
The hypothalamic-pituitary-thyroid (HPT) axis pro-

vides a critical test of the developmental basis of adult
disease hypothesis because normal development and the
acquisition of adult functions are dependent upon a eu-
thyroid environment in the developing organism (304).
Just a few examples are provided in this section because
Section VIII provides a comprehensive review of endo-
crine disruption of thyroid systems. In rats, PCB congeners
can affect the HPT axis at several levels, including a re-
duction in the T4 or TSH response to TRH (305). Low-
dose exposure of pregnant rats to polybrominated diphe-
nyl ether (PBDE) on d 6 of gestation reduced T4 levels in
both dams and offspring (the latter measured on postnatal
d 22), although it is unknown whether this is due to direct
thyroid or neuroendocrine actions (306). Gray seals with
higher blubber concentrations of industrial organochlo-
rine compounds have lower total and free T3 concentra-
tions (307). Considerably more information on the subject
of thyroid disruption is provided in Section VIII.

The control of metabolism and energy balance extends
well beyond the HPT axis. In the context of endocrine
disruption, there are reports on effects of fetal DES, the
prototypical estrogenic endocrine disruptor, on obesity in
adulthood and even on a successive generation of mice
(308). Although the exact mechanisms for such effects are
not understood, the fact that the hypothalamus contains a
complex neural circuitry that regulates energy and meta-
bolic homeostasis suggests the possibility for this being a
neuroendocrine action. Further discussion of this topic is
in Sections VIII and IX of this Scientific Statement.

To our knowledge, there is little published work on neu-
roendocrine disruption of somatic growth. Although studies
in fish show reductions in the gonadosomatic index, animals
exposed to refuse or water waste (309), the mechanism for
these effects and the respective roles of the growth, as op-
posed to the reproductive, axes are not known.

D. Hormonal targets of neuroendocrine disruption
There are both hormonally dependent and independent

pathways by which EDCs exert neuroendocrine actions.

EDCs may act upon nuclear hormone receptors that are
expressed in hypothalamic or pituitary cells, thereby ex-
erting feedback effects. Steroid hormone receptors are ex-
pressed abundantly in hypothalamus and other brain ar-
eas that control neuroendocrine functions (310–312).
Along with “classical” nuclear steroid hormone-mediated
actions, EDCs may exert actions via membrane steroid
receptors (313, 314) (reviewed in Ref. 315). These and
other steroid-sensitive pathways are obvious targets by
which EDCs act upon neuroendocrine systems.

The neuroendocrine actions of EDCs may occur via
nonhormonally mediated mechanisms. Numerous neuro-
transmitter systems such as dopamine, norepinephrine,
serotonin, glutamate, and others are sensitive to endocrine
disruption (reviewed in Ref. 2). This point is important
because it explains neurological effects of EDCs on cogni-
tion, learning, memory, and other nonreproductive behav-
iors, but it may also relate to reproductive neuroendocrine
systems. As already mentioned, these neurotransmitters may
coexpresssteroidhormonereceptors,sothissteroid-sensitive
circuitry may be an important target of EDC actions on
neurotransmission.

Neuroendocrine systems are critically involved in the
control of vertebrate homeostasis and physiology. Al-
though we tend to think of them as independent systems,
in fact there is considerable cross-talk among them. This
is an important consideration in determining effects of
EDCs; whereas no discernible effect may be determined in
one system, it is important to evaluate the other systems
for subtle but physiologically relevant effects. Therefore,
there is a great need for additional interdisciplinary re-
search on effects of EDCs in neuroendocrine systems.
However, high-throughput assays for neuroendocrine ef-
fects of EDCs are difficult to develop due to the nature of
these complex physiological systems. For example, it is im-
possible to test the “developmental basis of adult disease”
hypothesis in a cell line. Animal studies are by nature labor
intensive, particularly when they necessitate exposures dur-
ing critical periods and when performed in species that give
birth to litters as opposed to individuals, an intrauterine or-
ganizationthat isverydifferent fromthesituation inhumans.
Thus, carefully designed neuroendocrine studies on EDCs in
rodents need to take the litter composition and intra- and
interlitter variability into consideration.

VIII. Thyroid Disruption

A. Introduction to thyroid systems
Thyroid hormone is essential for normal brain devel-

opment, for the control of metabolism, and for many as-
pects of normal adult physiology. Therefore, changes in
the function of the thyroid gland or interference with the
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ability of thyroid hormone to exert its action may produce
effects on development, metabolism, or adult physiology.
The goal of this section is to provide a brief overview of the
literature regarding the mechanisms by which environ-
mental chemicals may interfere with thyroid hormone ac-
tion, which will require a brief background of thyroid
endocrinology. In addition, we will describe some of the
information in humans that indicate the extent to which
environmental chemicals may be acting on thyroid hor-
mone signaling in humans.

B. Environmental chemicals impacting thyroid function
A large number of industrial chemicals have been

shown to reduce circulating levels of thyroid hormone.
Brucker-Davis (316) and Howdeshell (317) have exten-
sively reviewed this topic. Howdeshell categorized these
chemicals (more than 150 in all) according to the mech-
anism by which the chemical was known to cause a re-
duction in serum thyroid hormone (see Table 1 in Ref. 317
for a full list). This point serves to illustrate clearly that
there are many industrial chemicals that can interfere with
thyroid function by acting on different points of regulation
of thyroid hormone synthesis, release, transport through
the blood, metabolism of thyroid hormone, and thyroid
hormone clearance. In addition, many natural substances
are known to affect thyroid function, including low iodine
as well as goitrogens in various foods (318, 319). The
current section on thyroid disruption will emphasize the
mechanisms by which chemicals are known to interfere
with thyroid hormone action and highlight some recent
information on the effects of chemicals on thyroid hor-
mone receptors.

The first step in thyroid hormone synthesis is the uptake
of iodide into the thyrocyte by the sodium/iodide sym-
porter (NIS) (320). Iodine is essential for thyroid hormone
synthesis, and iodine deficiency is an important public
health problem worldwide (321). Thus, chemicals that
interfere with the NIS may interfere with thyroid hormone
synthesis or may exacerbate problems of iodine deficiency.
A good example of this is that of perchlorate. This chem-
ical is used as an oxidant in solid rocket propellants, in
ordnance, fireworks, airbag deployment systems, and oth-
ers (322). Because of the environmental stability of per-
chlorate, it has become a widespread contaminant in
drinking and irrigation waters and in food (323), such that
perchlorate contamination is nearly ubiquitous in the U.S.
population (324). Experimental studies in humans indi-
cate that the serum half-life of perchlorate is about 8 h and
that a dose of about 5.2 �g/kg�d is sufficient to begin to
reduce iodide uptake into the thyroid gland (325). Thus,
it was surprising that Blount et al. (326) found that urinary
perchlorate levels were associated with serum TSH in the
general population of women (not in men). It is perhaps

not surprising that this association was greater in women
with urinary iodine below 100 �g/liter and stronger still
among these women who smoke (327) because cigarettes
contain thiocyanates that also inhibit iodine uptake. Be-
cause infants are particularly vulnerable to thyroid hor-
mone insufficiency (328) and because perchlorate levels
are particularly high in breast milk (329), it is of concern
that perchlorate may be affecting thyroid hormone sig-
naling in early infant development in some proportion of
the U.S. population (330). However, several studies have
failed to identify such a relationship. For example, Amitai
et al. (331) recently reported that newborn T4 levels, taken
aspartof thenewbornscreeningprogram,werenotdifferent
on average in babies born in neighborhoods known to be
highly contaminated with perchlorate in drinking water
compared with babies born in neighborhoods with lower-
level perchlorate contamination. These findings are more
consistent with a number of studies employing newborn T4

screening data and location of residence as a proxy measure
of perchlorate contamination (for review, see Ref. 322).

There are a number of chemicals that can interfere with
iodide uptake by the NIS (332), including chlorate, thio-
cyanate, and nitrates that are particularly prevalent. It is
likely that the effect of one of these chemicals (e.g., per-
chlorate) on iodide uptake will depend on the presence and
concentration of the others and with iodine itself (333).

Iodide, the form of iodine that enters the cell, must be
oxidized to a higher oxidation state before it is transferred
to the precursor of thyroid hormone, thyroglobulin (334).
Of the known biological oxidizing agents, only H2O2 and
O2 are capable of oxidizing iodide (335). Organification
of iodine is controlled by the enzyme thyroperoxidase
(TPO), a heme-containing enzyme. A number of com-
pounds are known to block TPO. A prototypical one is
6-propyl-2-thiouracil (PTU), a methylmercaptoimidazole
that has been intensively studied in animals and in humans
and is used therapeutically to treat patients with Graves’
disease (336). As a class (the 2-mercapto-4-hydroxy-6-
propyl-pyrimidines), PTU is representative of compounds
found in the environment that can affect thyroid function.
PTU is well known to reduce circulating levels of T4 and
T3 and to increase circulating levels of TSH (405) and has
been extensively used in mechanistic research focused on
identifying the role of thyroid hormone in brain develop-
ment. The ability of PTU to reduce circulating thyroid
hormone levels has been exploited in the treatment of hy-
perthyroidism in humans, including in pregnant and lac-
tating women (337). PTU is generally believed to produce
deleterious effects in animals by causing a dose-dependent
reduction in circulating levels of thyroid hormone. This
reduction is caused by the ability of PTU to inhibit directly
the function of the TPO enzyme (338).
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Other TPO inhibitors include the isoflavones, espe-
cially those found in soy protein (e.g., genistein, coumes-
terol; reviewed in Ref. 339). In humans, goiter has been
reported in infants fed soy formula (340–342). In addi-
tion, teenage children diagnosed with autoimmune thy-
roid disease were found to have twice the rate of occur-
rence if they had consumed soy formula as infants (343).
Boker et al. (344) recently reviewed the dietary sources of
a variety of isoflavones, showing that these are common
dietary components. These isoflavones are also so-called
“phytoestrogens,” which are highly enriched in some
commercial preparations.

C. Environmental chemicals impacting thyroid hormone
transport, metabolism, and clearance

Once secreted into the blood, thyroid hormones are
carried by specific proteins. In humans, about 75% of T4

is bound to T4-binding globulin (TBG), 15–20% is bound
to transthyretin (TTR; also called T4 binding prealbumin
or TBPA), and the remaining 5–10% is bound to albumin
or is free (0.02%) (345, 346).

The role of serum binding proteins for thyroid hormone
in thyroid homeostasis is not well understood. No single
serum T4 binding protein is essential for good health or for
the maintenance of a euthyroid state in humans (347).
There are a number of clinical situations in which serum
binding proteins are elevated or reduced (even completely
absent) and the thyroid state is normal. Therefore, despite
large increases or decreases in serum total T4 and T3 con-
centrations in some of these patients, serum free hormone
and TSH are normal (348). In contrast, there is evidence
that the role of serum binding proteins such as TBG is to
allow the equal distribution of hormone delivery to a tis-
sue. Mendel et al. (349) found that 125I-T4 was evenly
distributed in the rodent liver after a single pass through
the tissue only if serum binding proteins were present in
the perfusate. However, the identity of the serum binding
protein (e.g., TTR vs. TBG) did not alter the pattern or
intensity of T4 uptake.

There is some evidence that TTR is important in trans-
port of thyroid hormone across the blood-brain barrier. In
large part, this concept is derived from the observation
that TTR is produced in the choroid plexus (350–352).
However, this concept is not supported by the observation
that mice carrying a targeted deletion of the TTR gene
have normal concentrations of T4 in the brain (353, 354).
A number of chemicals have been shown to displace T4

from TTR in vitro. In fact, some chemicals bind to TTR
with higher affinity than does T4 itself (355–357); how-
ever, the consequences of this binding are not completely
clear. One hypothesis is that chemicals can reduce serum
total T4 levels by inhibiting T4 binding to TTR (358).
Perhaps this displacement may also increase T4 clearance

by the liver. However, TTR in the choroid plexus appears
to be important for thyroid hormone action in the brain
(359), and TTR may mediate transport of environmental
chemicals into various compartments such as placenta
(360). Thus, chemical binding to the TTR may not only
decrease the availability of thyroid hormone to various
tissues, it may also selectively target these chemicals for
transport and uptake.

Many chemicals are known to decrease the serum half-
life of T4 by inducing liver enzymes that glucuronidate T4

(361–363). These enzymes uridine diphosphate glucuro-
nyl transferase can be induced by dioxin-like compounds
acting on the AhR or through the pregnane X-receptor or
constitutive androstane receptor nuclear receptors (364).
These chemicals fall into many industrial categories in-
cluding pesticides of many types (365). The classes of in-
dustrial chemicals known to interact with the thyroid sys-
tem have been reviewed previously and will not be
emphasized here (see Refs. 316, 317, 365, and 366).

Once in the serum, thyroid hormones can be taken up
into tissues by selective transporters (367) to enter cells.
This issue has been particularly investigated because the
finding that children with a genetic defect in the MCT8
gene exhibit severe neurological and behavioral disorders
(Allan-Herndon-Dudley syndrome; Ref. 368). There are a
number of transporters that are likely to be important in
the control of thyroid hormone uptake into various tissues
and cells. However, little is known—or has been tested—
about the ability of specific environmental or industrial
chemicals to interfere with T4 or T3 transporter function.

Inside the cell, T4 can be converted to T3 by the type 1
or type 2 deiodinase. These outer-ring deiodinases are es-
sential for thyroid hormone action (369). For example, the
type 2 deiodinase knockout mouse exhibits a form of pi-
tuitary resistance to thyroid hormone negative feedback in
which both serum T4 and TSH are elevated (370), indi-
cating that the conversion of T4 to T3 in pituitary cells is
an important step in thyroid hormone action. A number of
environmental chemicals affect deiodinase activity includ-
ing PCBs (360, 371, 372) and others (317). Environmental
chemicals that affect deiodinase activity may have effects
that are not entirely consistent with the appearance of
“hypothyroidism” and, therefore, may be difficult to rec-
ognize in the absence of mechanistic studies.

D. Environmental chemicals impacting the thyroid
hormone receptor

1. PCBs
Despite early speculations that environmental chemi-

cals may act as imperfect thyroid hormone analogs (373),
few studies had tested this hypothesis until recently. Now,

320 Diamanti-Kandarakis et al. Endocrine-Disrupting Chemicals Endocrine Reviews, June 2009, 30(4):293–342

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/30/4/293/2355049 by guest on 10 April 2024



several recent reports show that a broad range of chemi-
cals to which humans are routinely, and inadvertently,
exposed can bind to TRs and may produce complex effects
on thyroid hormone signaling. Perhaps the best example is
that of PCBs—industrial chemicals consisting of paired
phenyl rings with various degrees of chlorination (374).
Although the production of PCBs was banned in the mid
1970s, these contaminants are routinely detected in the
environment (375) and in human tissues (376). PCB body
burden is associated with lower full-scale IQ, reduced vi-
sual recognition memory, attention deficits, and motor
deficits (377–381).

PCBs can reduce circulating levels of T4 in animals
(382–384), and some authors propose that PCBs exert
neurotoxic effects on the developing brain by causing a
state of relative hypothyroidism (385, 386). In addition,
PCB body burden has been found to be associated with
thyroid hormone in some, but not all, human studies (366,
387). Interestingly, measures of thyroid function at birth
are associated with maternal, infant, and delivery factors,
and this may explain why some studies fail to identify an
association between PCB exposures and measures of thy-
roid function at birth (388, 389).

The concept that PCBs can exert a neurotoxic effect on
the developing brain by causing a state of relative hypo-
thyroidism is supported by the observations that the oto-
toxic effect of PCB exposure in rats can be partially ame-
liorated by T4 replacement (390), and that the cerebellum,
a tissue highly sensitive to thyroid hormone insufficiency
(391), is targeted by PCB exposure. PCBs alter motor be-
havior associated with cerebellar function, as well as cer-
ebellar anatomy (392). Interestingly, PCB exposure is as-
sociated with an increase in expression of glial fibrillary
acidic protein (392), which is also increased by thyroid hor-
mone insufficiency (393). Finally, in young children, the as-
sociation between PCB body burden and behavioral mea-
sures of response inhibition is stronger in those children that
have a smaller corpus callosum (394), an area of the brain
affected by thyroid hormone (395). Thus, it is possible that
PCBsexertat least someneurotoxic effectson thedeveloping
cerebellum by causing a state of relative hypothyroidism.

However, PCB exposure does not produce consistent
effects on animals that are indicative of thyroid hormone
insufficiency, such as body weight gain during develop-
ment (382) or the timing of eye opening (390). In addition,
despite the reduction in serum T4, PCB exposure increases
the expression of several thyroid hormone-responsive
genes in the fetal (396, 397) and neonatal (382) brain.
These observations are consistent with the hypothesis that
at least some individual PCB congeners, or their metabo-
lites, can act as TR agonists in vivo. Recently, Kitamura et
al. (398) reported that nine separate hydroxylated PCB

congeners can bind to the rat TR with an IC50 as low as 5
�M. In addition, using a human neuroprogenitor cell line,
Fritsche et al. (399) found that a specific PCB congener
couldmimic theabilityofT3 in increasingoligodendrocyte
differentiation and that this effect was blocked by the se-
lective TR antagonist NH3. Finally, Arulmozhiraja and
Morita (400) have identified several PCB congeners that
exhibit weak thyroid hormone activity in a yeast two-
hybrid assay optimized to identify such activity.

Not all recent reports indicate that PCBs act as agonists
on the TR. Kimura-Kuroda et al. (401) have found that
two separate hydroxylated PCBs interfere with T3-depen-
dent neurite outgrowth in mouse cerebellar granule cell
primary cultures. In addition, Bogazzi et al. (402) found
that a commercial mixture of PCBs (Aroclor 1254) exhib-
ited specific binding to the rat TR� at approximately 10
�M. This concentration inhibited TR action on the malic
enzyme promoter in a chloramphenicol acetyltransferase
assay, and this effect required an intact thyroid response
element (TRE). However, the PCB mixture did not alter
the ability of TR to bind to the malic enzyme TRE in a gel
shift assay. In contrast, Iwasaki et al. (403) found that a
specific hydroxylated PCB congener inhibits TR-mediated
transcriptional activation in a luciferase assay at concen-
trations as low as 10�10

M. This effect was observed in
several cell lines, but was not observed using a glucocor-
ticoid response element. Miyazaki et al. (404) followed
this report by showing that PCBs can dissociate TR:reti-
noic X receptor (RXR) heterodimers from a TRE.

It is clear that PCBs are neurotoxic in humans and an-
imals and that they can interact directly with the TR. How-
ever, the consequences of PCB exposure on TR action
appear to be quite complex. This complexity includes act-
ing as an agonist or antagonist and may include TR iso-
form selectivity inasmuch as most studies have been per-
formed using the TR�, leaving the TR� relatively
unstudied in this context. In addition, considering that
there are 209 different chlorine substitution patterns on
the biphenyl backbone and that these can be metabolized
[hydroxyl and methylsulfonyl metabolites (173, 174)], it
is possible that different chemical species exert different
effects. Finally, PCBs may exert different actions on TRs
depending on associated heterodimer partners, promoter
structure, or different cofactors. This complexity will be
important to pursue because the effect of PCB exposure in
humans is far better studied than for structurally related
compounds such as PBBs and PBDEs. Thus, mechanistic
studies on PCBs can be more easily and effectively coupled
to specific human health outcomes.

2. BPA
BPA (4,4� isopropylidenediphenol) is produced at a rate

of more than 800 million kilograms annually in the United
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States alone (418) and is used primarily in the manufacture
of plastics including polycarbonate plastics, epoxy resins
that coat food cans, and in dental sealants (406, 407).
Howe et al. (406) estimated human consumption of BPA
from epoxy-lined food cans alone to be about 6.6 �g per
person per day. BPA has been reported in concentrations
of 1–10 ng/ml in serum of pregnant women, in the amni-
otic fluid of their fetus, and in cord serum taken at birth
(71, 408). Moreover, BPA concentrations of up to 100
ng/g were reported in placenta (408). BPA is also haloge-
nated (brominated or chlorinated) to produce flame re-
tardants. TetrabromobisphenolA(TBBPA) is themostcom-
monly used, with more than 60,000 tons produced annually
(409, 410). Thomsen et al. (411) recently reported that bro-
minated flame retardants, including TBBPA, have increased
in human serum from 1977–1999 with concentrations in
adults ranging from 0.4 to 3.3 ng/g serum lipids. However,
infants (0–4 yr) exhibited serum concentrations that ranged
from 1.6 to 3.5 times higher (411).

Considering this pattern of human exposure, it is po-
tentially important that BPA has been shown to bind to the
TR (412). Although best studied for its actions on the
nuclear ER (413), binding with a Ki of approximately
10�5

M (414, 415), and more recently for the membrane
ER (416), BPA also binds to and antagonizes T3 activation
of the TR (412, 417) with a Ki of approximately 10�4

M.
As little as 10�6

M BPA significantly inhibits TR-mediated
gene activation (412). Moreover, Moriyama et al. (412)
found that BPA reduced T3-mediated gene expression in
culture by enhancing the interaction with nuclear receptor
corepressors. Interestingly, Zoeller et al. (418) found that
developmental exposure to BPA in rats produces an en-
docrine profile similar to that observed in thyroid resis-
tance syndrome (419). Specifically, T4 levels were elevated
during development in the pups of BPA-treated animals,
but TSH levels were not different from controls (418). This
profile is consistent with BPA inhibition of TR�-mediated
negative feedback. However, the thyroid hormone-
response gene RC3 was elevated in the dentate gyrus of
theseBPA-treatedanimals (418).Because theTR� isoformis
expressed in the dentate gyrus, the authors concluded that
BPA could be a selective TR� antagonist in vivo.

If BPA acts as a TR antagonist in vivo, it is predictable
that specificdevelopmental events andbehaviorswouldbe
affected by developmental exposure to BPA. In this regard,
Seiwa et al. (420) have shown that BPA blocks T3-induced
oligodendrocyte development from precursor cells. In ad-
dition, there may be an association between the thyroid re-
sistance syndrome and attention deficit-hyperactivity disor-
der in humans (421) and in rats (422); therefore, it is
potentially important that BPA-exposed rats exhibit atten-
tion deficit-hyperactivity disorder-like symptoms (423).

Despite the antagonistic effects of BPA on the TR�,
halogenatedBPAsappear toact asTRagonists (417).Both
TBBPA and tetrachlorobisphenol A can bind to the thy-
roid hormone receptor and induce GH3 cell proliferation
and GH production (417). Thus, these compounds may
exert agonistic effects on the TR, and this could be im-
portant during early brain development. For example,
thyroid hormone of maternal origin can regulate gene ex-
pression in the fetal brain (424–426); one of these genes
codes for Hes1 (397). Considering the role of HES proteins
in fate specification in the early cortex (427, 428), the ob-
servation that industrial chemicals can activate the TR and
increase HES expression (397) may indicate that these chem-
icals can exert subtle effects on early differentiative events.

3. PBDEs
PBDEs may also bind to the thyroid hormone receptor

(reviewed in Ref. 429). Marsh et al. (430) demonstrated
that two hydroxylated PBDEs can bind to both TR� and
TR�, but with a significant preference for TR�.

IX. Environmental Chemicals, Obesity, and
Metabolism

A. Introduction to EDCs and the obesity epidemic
Obesity, defined as body fat greater than 25% in men

or greater than 30% in women, is fast becoming a signif-
icant human health crisis (431). More than 30% of adults
in the United States are defined as clinically obese (431,
432), and an analogous rise is observed in pediatric pop-
ulations, with a tripled increase in the obesity rate from
ages 6–19 yr during the last five decades (433). The prev-
alence of obesity has risen dramatically in wealthy devel-
oped countries, and it is also on the rise in poor nations.
The WHO has declared excessive weight as one of the top
10 health risks in the world and has estimated that the
number of overweight people in the world is now greater
than the number of undernourished. The rise in the inci-
dence in obesity matches the rise in the use and distribution
of industrial chemicals that may be playing a role in gen-
eration of obesity (434), suggesting that EDCs may be
linked to this epidemic.

Obesity has deleterious effects on human health by in-
creasing the risk of associated metabolic abnormalities
such as insulin resistance, hyperinsulinemia, hyperten-
sion, and dislipidemia—all components of the metabolic
syndrome—which constitute, in turn, major risk factors
for the development of diabetes mellitus type 2 and cor-
onary heart disease. The etiology of the obesity epidemic
has been partly attributed to alterations in food intake,
with the prevalence of a Westernized-style diet character-
ized by high caloric uptake as well as a lack of physical
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activity representative of a sedentary lifestyle. However,
the mechanisms still remain unclear, and except for a ge-
netic predisposition and lifestyle modifications, scientific
research implies the impact of environmental substances
in the generative roots of obesity. Grün and Blumberg
(435, 436) have coined the terminology “obesogens” in
reference to molecules that inappropriately regulate lipid
metabolism and adipogenesis to promote obesity.

Obesity also relates to the fetal (developmental) origins
of adult disease. Children of women who experienced
famine during pregnancy exhibit symptoms of the meta-
bolic syndrome as adults (437). Moreover, it is becoming
evident that an important risk factor for development of
this metabolic syndrome is low birthweight (438, 439).
These studies indicate that developmental events occur-
ring in utero and perhaps in the immediate perinatal pe-
riod can affect metabolic functions that can lead to the
metabolic syndrome in adulthood (431).

B. Environmental estrogens and obesity
White adipose tissue metabolism is under the control of

the sympathetic nervous system and is modulated by hor-
mones including sex steroids. The impact of environmen-
tal estrogens on adipose tissue may be through direct mod-
ulation of lipogenesis, lipolysis, and adipogenesis, or
indirect by affecting food consumption and leptin secre-
tion targeting the central nervous system or lipid ho-
meostasis in liver (440).

The estrogenic pharmaceutical chemical DES illumi-
nates the relationship between perinatal exposures and
latent development of high body weight and obesity.
Moreover, there is a complex relationship between the
concentration of estrogen to which pregnant animals are
exposed and the weight of the offspring in adulthood
(432). Specifically, according to a recent experiment by
Newbold et al. (432), mice neonatally exposed to DES
experience increased body weight in adulthood associated
with excess abdominal body fat. Interestingly, the dose of
DES determines the chronic manifestation of the observed
alterations, with high doses leading to initially decreased
body weight and a peripubertal “catch-up” and low doses
causing an increase in weight detectable only in adult-
hood. Moreover, the timing is important because gesta-
tional administration in rodents results in the offspring’s
low birth weight, an unchanged metabolic characteristic
throughout life (432). Along with an increase in body fat
stores, the adipokines leptin and adiponectin, IL-6 (an
inflammatory marker), and triglycerides were all elevated
in DES-exposed mice (432).

An in vitro study using a culture system of 3T3-L1 prea-
dipocytes showed that 4-nonylphenol and BPA stimulated
lipid accumulation, accelerating their differentiation to
mature adipocytes in a time- and concentration-depen-

dent way (441). The underlying mechanism appeared to
involve up-regulation of gene expression involved in lipid
metabolism and adipocyte differentiation. In the second
part of the experiment, fat accumulation was observed in
human hepatocellular carcinoma cell lines exposed to those
endocrine disruptors (441). These findings are consistent
withprevious invitro studiesusingmouse fibroblast cell lines
in which a link between environmental chemicals including
nonylphenol, BPA, and genistein in the development of body
weight imbalance was suggested (431, 432).

C. Peroxisome proliferator-activated receptor (PPAR) �

and organotins
PPAR� is a member of the nuclear receptor superfamily

and constitutes a major regulator of adipogenesis. It is
primarily expressed in adipose tissue, and its activation
promotes adipocyte differentiation as well as the induc-
tion of lipogenic enzymes. Additionally, it contributes to
maintenance of metabolic homeostasis through transcrip-
tional activation of genes implicated in energy balance
(442). During its activation, PPAR� forms a heterodimer
with RXR-�, and the complex binds to PPAR response
elements in the regulatory regions (promoters) of target
genes ultimately involved in the regulation of fatty acid
storage and the repression of lipolysis.

Experimental evidence highlights that nuclear receptor
superfamily and specifically PPAR� are molecular targets
for endocrine disruptors, in particular organotin com-
pounds such as tributyltin (TBT) and triphenyltin, which
have been widely used in agriculture and industry. Ka-
nayama et al. (443) showed that TBT and triphenyltin func-
tionedasagonistsofPPAR�andRXR,actingashigh-affinity
ligands at levels comparable to known endogenous ligands.
Moreover, administration of those xenobiotics in preadipo-
cyte cell lines resulted in adipocyte differentiation through
PPAR� (443). In mice, TBT induced the differentiation of
adipocytes in vitro and increased adipose mass in vivo by
RXR and PPAR� activation (444).

It is possible that PPAR� signaling can interact with
that of estrogen to influence adipogenesis. These findings
have been reviewed recently (435, 436, 444) and represent
an important example of the mechanism by which envi-
ronmental chemicals can interfere with body weight reg-
ulation. In addition, at high doses, TBT can inhibit aro-
matase enzyme activity in adipose tissue directly, leading
to decreased estradiol levels and down-regulation of ER
target genes. TBT at moderate to high doses inhibits the
activity of 11�-hydroxysteroid dehydrogenase 2, result-
ing in decreased inactivation of cortisol. It has been hy-
pothesized that the increased local glucocorticoid levels
could influence late stages in adipocyte differentiation and
thus, metabolic regulation (435, 436).
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D. Phytoestrogens
In recent years, efforts to implement healthier eating

habits have resulted in an increased consumption of soy
products and supplements and hence, increased exposure
to phytoestrogens. Genistein is the principal phytoestro-
gen in soy and has a wide range of biological actions. It
binds to ER� and ER� but also displays antiestrogenic
action (445). At low concentrations, genistein was found to
act as estrogen and exert an inhibitory effect on lipogenesis.
There are also sex differences in the effect of genistein on
adipose deposition and insulin resistance, an effect that in-
volves the ER� (446). At higher concentrations, genistein
promotes lipogenesis through the molecular pathway of
PPAR�, an �R-independent pathway (445).

E. Endocrine disruptors, diabetes, and glucose
homeostasis

The incidence of diabetes mellitus has tripled over re-
cent decades, with an estimated 177 million people af-
fected worldwide (447). It is speculated that by the year
2030 the prevalence of diabetes will increase to 4.4%
worldwide (from 2.8% in 2000) with more than 300 mil-
lion diabetic adults (448). Regarding the young popula-
tion, epidemiological studies show an alarming increase in
the incidence of diabetes mellitus type 2 (449).

Based on the links between endocrine disruptors and
disturbances of reproduction, metabolism, and links to
adult dysfunctions and cancer, it is reasonable to propose
a connection between EDCs and diabetes as well as pre-
diabetic disturbances. Indeed, epidemiological studies
have linked high dioxin levels with increased risk for di-
abetes or altered glucose metabolism (450). Animal mod-
els also support this hypothesis. Alonso-Magdalena et al.
(447) undertook an in vivo experiment to evaluate the
impact of BPA on pancreatic �-cell function. Its biological
action was compared with 17�-estradiol. The results
showed that acute treatments with either estradiol or BPA
caused a temporary hyperinsulinemia, whereas longer-
term exposure provoked insulin resistance with chronic
increased insulin levels, an aggravating factor for the de-
velopment of diabetes mellitus (447). Recently, in condi-
tioned media from human breast, sc and visceral adipose
explants, it was demonstrated that BPA at environmen-
tally relevant doses (0.1 and 1 nM) inhibits the release of
adiponectin, an adipocyte-specific hormone that increases
insulin sensitivity. Therefore, factors that suppress adi-
ponectin release could aggravate insulin resistance and
susceptibility to obesity-related syndromes like metabolic
syndrome and type 2 diabetes mellitus. However, the
mechanisms by which BPA suppresses adiponectin and the
receptors involved remain to be determined (451).

Pancreatic �-cells have also been suggested as potential
targets for endocrine disruption. Low doses of BPA and

DES were shown to impair the molecular signaling that
leads to secretion of glucagon by suppressing intracellular
calcium ion oscillations in �-cells in response to low blood
glucose levels through a nongenomic mechanism (452).

The above experiments suggest that low doses of en-
docrine disruptors can disrupt pancreatic physiology, af-
fecting both insulin- and glucagon-secretory cells, leading
to changes in the regulation of glucose and lipid metabo-
lism. The underlying mechanisms involve at the very least
classical ER-mediated but also nongenomic actions. Fur-
ther investigations are required to elucidate the potential
associations with human health. Importantly, whereas
current evidence represents experimental data from lab-
oratory animals or in vitro studies, no direct association
with humans has yet been established, with the exception
of the epidemiological studies discussed above.

F. Endocrine disruptors and cardiovascular systems
The obesity phenotype may lead to a dysmetabolic state

with atherogenic, inflammatory, prothrombotic abnor-
malities that not only accelerate the progression of car-
diovascular disease but also create favorable “subsoil” for
an acute myocardial infarct (453). Therefore, the cardio-
vascular system is also a target of environmental chemicals
that interfere with intracellular signaling of hormonal and
inflammatory pathways.

G. Estrogenic EDCs and cardioprotection
Phytoestrogens have been shown to exert cardiopro-

tective effects. Female rats fed a high phytoestrogen diet
exhibited cardioprotection against adverse left ventricular
remodeling (454) and reduction of myocardial necrosis,
increased myocardial contractility, and decreased occur-
rence of ventricular arrhythmias. Genistein was also as-
sociated with reduced levels of TNF-� and blunted myo-
cardial intercellular adhesion molecule-1 expression
(455). Moreover, it was shown that in people at high risk
of cardiovascular events, a greater isoflavone intake is as-
sociated with better vascular endothelial function and
lower carotid atherosclerotic burden (456).

Regarding human populations, there are some epide-
miological studies that suggest that high phytoestrogen
intake is inversely associated with cardiovascular risk fac-
tors and development of cardiovascular disease (457).
Moreover, it was shown that in people at high risk of
cardiovascular events, a greater isoflavone intake is asso-
ciated with better vascular endothelial function and lower
carotid atherosclerotic burden (456). However, these ep-
idemiological observations need clinical confirmation.

H. Advanced glycation end-products (AGEs)
Recent data clearly suggest that a heterogeneous group

of exogenous advanced glycation end-products (AGEs)
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have a negative impact on cardiometabolic tissues. To-
bacco use (458) and food cooked at high temperatures,
precooked meals, and some beverages contain large
amounts of AGEs that are absorbed from the human gas-
trointestinal tract (459). AGEs cause tissue injury through
intracellular generation of free radicals and triggering ox-
idative stress, through the interaction of AGEs with a mul-
tiligand, cell surface receptor called RAGE, and endocrine
signaling pathway. There is evidence in experimental an-
imals and humans for a link between exogenous AGEs and
an increase in cardiometabolic risk markers. It is notable
that mice chronically fed a high-AGE diet, compared with
those fed a low-AGE, high-fat diet exhibited relative in-
sulin resistance accompanied by modifications in pancre-
atic cellular architecture compatible with hyperplasia and
hypertrophy and loss of islet of Langerhans structure
(460). Another in vivo chronic experiment involved feed-
ing intact female rats a high-AGE diet for 6 months. This
resulted in increased fasting glucose and insulin levels inde-
pendent of the degree of obesity as well as hormonal alter-
ations (461). Uribarri et al. (462) showed that a single oral
administration of an AGE-rich beverage acutely (within 90
min) resulted in temporarily impaired endothelial function
assessed by flow-mediated arterial vasodilation, increased
serum C-reactive protein, and plasminogen activator inhib-
itor-1 levels in both diabetic and healthy subjects.

I. Conclusions
The literature demonstrates a role of EDCs in the eti-

ology of complex diseases such as obesity, diabetes mel-
litus, and cardiovascular disease, yet these processes are
still poorly understood. Although the evidence is limited,
accumulating data are pointing to the potential role of
endocrine disruptors either directly or indirectly in the
pathogenesis of adipogenesis and diabetes, the major ep-
idemics of the modern world. Taking into consideration
the wide spectrum of industrial chemicals to which an
average consumer might be exposed, a rational hypothesis
is that the scientific community may inadvertently ignore
the effect of several other compounds that might in turn
constitute potential “obesogens” or promoters of glyce-
mic disturbances. Further research is required to elucidate
all potential interactions between environmental sub-
stances and metabolic dysregulation.

X. Recommendations for the Future

A. Linking basic research to clinical practice
It should be clear from this Scientific Statement that

there is considerable work to be done. A reconciliation of
the basic experimental data with observations in humans
needs to be achieved through translation in both direc-

tions, from bench to bedside and from bedside (and pop-
ulations) to bench. An example of how human observa-
tion and basic research have successfully converged was
provided by DES exposure in humans, which revealed that
the human syndrome is faithfully replicated in rodent
models. Furthermore, we now know that DES exposure in
key developmental life stages can have a spectrum of ef-
fects spanning female reproduction, male reproduction,
obesity, and breast cancer. It is interesting that in the case
of breast cancer, an increased incidence is being reported
now that the DES human cohort is reaching the age of
breast cancer prevalence. The mouse model predicted this
outcome 25 yr before the human data became available. In
the case of reproductive cancers, the human and mouse
data have since been confirmed in rats, hamsters, and
monkeys (463). This is a compelling story from the per-
spective of both animal models and human exposures on
the developmental basis of adult endocrine disease.

Another estrogenic compound, BPA, is also linked to a
wide variety of endocrine dysfunction. BPA exposure, par-
ticularly in development, increases the risk of mammary
cancer, obesity, diabetes, and reproductive and neuroen-
docrine disorders. The human evidence for BPA is mount-
ing; recently, Lang et al. (464) published a cross-sectional
analysis on the relationship between concentrations of uri-
nary BPA and chronic disease states in over 1400 adults in
the United States. They found a significant correlation
between BPA concentrations in urine with cardiovascular
disease and abnormal concentrations of liver enzymes. It
would be really interesting to be able to relate the rela-
tionship of these outcomes with developmental/fetal ex-
posure to BPA and other xenobiotics. However, epidemi-
ological research on fetal exposure would be logistically
difficult and costly because exposures must be measured at
several different time points, including gestation, whereas
the outcome may not be manifest in some cases until 50 or
more years after the initial fetal exposure. Given the re-
producibility of the human DES syndrome in rodents and
recent evidence for commonalities in a relationship be-
tween BPA and cardiovascular endocrine disease, it is ob-
vious that more research in animal models is necessary to
enrich our knowledge of the mechanisms by which endo-
crine disruptors increase the risk of disease.

A challenge to understanding the relationship between
EDCs and health abnormalities is that EDCs are a “mov-
ing target.” Individuals and populations are exposed to
ever-changing patterns of production and use of these
compounds. They also tend to be released into the envi-
ronment as mixtures, rather than individual chemicals.
Therefore, it is important to understand the effects of si-
multaneous coexposures to these chemicals, which may
interact additively, multiplicatively (synergistically), or
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antagonistically (48). There are limited data on the inter-
actions between chemicals within a class or across classes
of chemicals. Presently, there are good analytical methods
for measuring exposures to a variety of endocrine disrup-
tors in humans. An increased understanding of the poten-
tial human health risks of exposure to mixtures of EDC is
important but remains very understudied. Hence, mea-
surement of body burden of the most prevalent xenobi-
otics would probably be the best strategy for finding a link
between exposure and effect. Once known, this could be
related to mechanistic studies in laboratory models, and
future experiments could be designed to evaluate the ef-
fects of combinations of common EDCs in the laboratory,
with theobvious caveat that itwill notbepossible tomimic
every possible combination and dose. Despite these chal-
lenges, evolving and innovative technologies designed to
improve the assessment of human exposure and repro-
ductive and endocrine health endpoints should provide
enhanced opportunities for improving our understanding
of these relationships.

B. Endocrine disruption and the public
At the recent Summit on Environmental Challenges to

Reproductive Health and Fertility at the University of Cal-
ifornia, San Francisco, recommendations were made re-
garding future research, health care, policy, community
action, and occupational health (49). Included in these
recommendations were enhancing collaborations among
and between researchers and granting agencies and pro-
moting critical research directions, including prenatal ex-
posures in the National Children’s Health Study, leverag-
ing specific laboratory data into the National Health and
Nutrition Examination Survey study, developing biomar-
kers of exposure and disease, and increasing the funding
for effects of chemicals on the epigenome, developmental
programming, transgenerational effects, and cross-talk
among endocrine systems and metabolic and immune sys-
tems (49). In addition, for health care professionals, being
educated in sources and effects of environmental contam-
inant exposures in utero and across the life span, as well as
having straightforward health information tools to share
this information with patients and for public education in
general are recommended.

C. Prevention and the “precautionary principle”
Although more experiments are being performed to find

thehowsandwhys,what shouldbedone toprotecthumans?
The key to minimizing morbidity is preventing the disorders
in the first place. However, recommendations for prevention
are difficult to make because exposure to one chemical at a
given time rarely reflects the current exposure history or on-
going risks of humans during development or at other life

stages, and we usually do not know what exposures an in-
dividual has had in utero or in other life stages.

In the absence of direct information regarding cause
and effect, the precautionary principle is critical to en-
hancing reproductive and endocrine health (49). As en-
docrinologists, we suggest that The Endocrine Society ac-
tively engages in lobbying for regulation seeking to
decrease human exposure to the many endocrine-disrupt-
ing agents. Scientific societies should also partner to pool
their intellectual resources and to increase the ranks of
experts with knowledge about EDCs who can communi-
cate to other researchers, clinicians, community advo-
cates, and politicians.

D. Specific recommendations for future research
Although direct causal links between exposures to

EDCs and disease states in humans are difficult to draw,
results from basic research and epidemiological studies
make it clear that more screening for exposures and tar-
geting at-risk groups is a high priority. In addition to en-
hancing research in these areas, an important and effective
approach is prevention of disease. Our chemical policies at
local, state, and national levels, as well as globally, need to
be formulated, financed, and implemented to ensure the
best public health. Additional specific recommendations
of this group are shown in Box 2. By communicating these
priorities to basic and clinical researchers, physicians,
community advocates, and the public at large, we are
hopeful that early identification and intervention will be
facilitated.
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104. Bäcklin BM, Eriksson L, Olovsson M 2003 Histology of
uterine leiomyoma and occurrence in relation to reproduc-
tive activity in the Baltic gray seal (Halichoerus grypus).
Vet Pathol 40:175–180

105. Simoens S, Hummelshoj L, D’Hooghe T 2007 Endome-

triosis: cost estimates and methodological perspective.
Hum Reprod Update 13:395–404

106. Missmer SA, Hankinson SE, Spiegelman D, Barbieri RL,
Michels KB, Hunter DJ 2004 In utero exposures and the
incidence of endometriosis. Fertil Steril 82:1501–1508

107. Rier SE, Martin DC, Bowman RE, Dmowski WP, Becker
JL 1993 Endometriosis in rhesus monkeys (Macaca mu-
latta) following chronic exposure to 2,3,7,8-tetrachlorod-
ibenzo-p-dioxin. Fundam Appl Toxicol 21:433–441

108. Rier SE, Turner WE, Martin DC, Morris R, Lucier GW,
Clark GC 2001 Serum levels of TCDD and dioxin-like
chemicals in Rhesus monkeys chronically exposed to di-
oxin: correlation of increased serum PCB levels with en-
dometriosis. Toxicol Sci 59:147–159

109. Guo SW 2004 The link between exposure to dioxin and
endometriosis: a critical reappraisal of primate data. Gy-
necol Obstet Invest 57:157–173

110. Yang JZ, Agarwal SK, Foster WG 2000 Subchronic expo-
sure to 2,3,7,8-tetrachlorodibenzo-p-dioxin modulates the
pathophysiology of endometriosis in the cynomolgus mon-
key. Toxicol Sci 56:374–381

111. Cummings AM, Metcalf JL, Birnbaum L 1996 Promotion
of endometriosis by 2,3,7,8-tetrachlorodibenzo-p-dioxin
in rats and mice: time-dose dependence and species com-
parison. Toxicol Appl Pharmacol 138:131–139

112. Nayyar T, Bruner-Tran KL, Piestrzeniewicz-Ulanska D,
Osteen KG 2007 Developmental exposure of mice to
TCDD elicits a similar uterine phenotype in adult animals
as observed in women with endometriosis. Reprod Toxicol
23:326–336

113. Cobellis L, Latini G, De Felice C, Razzi S, Paris I, Ruggieri
F, Mazzeo P, Petraglia F 2003 High plasma concentrations
of di-(2-ethylhexyl)-phthalate in women with endometri-
osis. Hum Reprod 18:1512–1515

114. Reddy BS, Rozati R, Reddy BV, Raman NV 2006 Asso-
ciation of phthalate esters with endometriosis in Indian
women. BJOG 113:515–520

115. Burney R, Giudice LC 2008 Pathogenesis of endometrio-
sis. In: Nezhat CR, ed. Operative gynecologic laparoscopy:
principles and techniques. Oxford, UK: Cambridge Uni-
versity Press; 253–259

116. Davis DL, Bradlow HL, Wolff M, Woodruff T, Hoel DG,
Anton-Culver H 1993 Medical hypothesis: xenoestrogens
as preventable causes of breast cancer. Environ Health Per-
spect 101:372–377

117. Sharpe RM, Skakkebaek NE 1993 Are oestrogens involved
in falling sperm counts and disorders of the male repro-
ductive tract? Lancet 341:1392–1395

118. Williams EM, Jones L, Vessey MP, McPherson K 1990
Short term increase in risk of breast cancer associated with
full term pregnancy. BMJ 300:578–579

119. Lambe M, Hsieh CC, Chan HW, Ekbom A, Trichopoulos
D, Adami HO 1996 Parity, age at first and last birth, and
risk of breast cancer: a population-based study in Sweden.
Breast Cancer Res Treat 38:305–311

120. Trichopoulos D 1990 Is breast cancer initiated in utero?
Epidemiology 1:95–96

121. Hahn WC, Weinberg RA 2002 Modelling the molecular
circuitry of cancer. Nat Rev Cancer 2:331–341

122. Ho SM, Tang WY, Belmonte de Frausto J, Prins GS 2006
Developmental exposure to estradiol and bisphenol A in-
creases susceptibility to prostate carcinogenesis and epige-

330 Diamanti-Kandarakis et al. Endocrine-Disrupting Chemicals Endocrine Reviews, June 2009, 30(4):293–342

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/30/4/293/2355049 by guest on 10 April 2024



netically regulates phosphodiesterase type 4 variant 4.
Cancer Res 66:5624–5632

123. Sonnenschein C, Soto AM 1999 The society of cells: cancer
and control of cell proliferation. New York: Springer-Verlag.

124. Sonnenschein C, Soto AM 2008 Theories of carcinogene-
sis: an emerging perspective. Semin Cancer Biol 18:372–
377

125. Soto AM, Sonnenschein C 2004 The somatic mutation
theory of cancer: growing problems with the paradigm?
Bioessays 26:1097–1107

126. Maffini MV, Calabro JM, Soto AM, Sonnenschein C 2005
Stromal regulation of neoplastic development: age-depen-
dent normalization of neoplastic mammary cells by mam-
mary stroma. Am J Pathol 167:1405–1410

127. Markey CM, Rubin BS, Soto AM, Sonnenschein C 2002
Endocrine disruptors: from wingspread to environmental
developmental biology. J Steroid Biochem Mol Biol 83:
235–244

128. Vandenberg LN, Maffini MV, Wadia PR, Sonnenschein C,
Rubin BS, Soto AM 2007 Exposure to environmentally
relevant doses of the xenoestrogen bisphenol-A alters de-
velopment of the fetal mouse mammary gland. Endocri-
nology 148:116–127

129. Høyer AP, Grandjean P, Jørgensen T, Brock JW, Hartvig
HB 1998 Organochlorine exposure and risk of breast can-
cer. Lancet 352:1816–1820

130. Cohn BA, Wolff MS, Cirillo PM, Sholtz RI 2007 DDT and
breast cancer in young women: new data on the signifi-
cance of age at exposure. Environ Health Perspect 115:
1406–1414

131. Ibarluzea Jm J, Fernández MF, Santa-Marina L, Olea-
Serrano MF, Rivas AM, Aurrekoetxea JJ, Expósito J,
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367. Köhrle J 2007 Thyroid hormone transporters in health and
disease: advances in thyroid hormone deiodination. Best
Pract Res Clin Endocrinol Metab 21:173–191

368. Schwartz CE, May MM, Carpenter NJ, Rogers RC, Martin
J, Bialer MG, Ward J, Sanabria J, Marsa S, Lewis JA,
Echeverri R, Lubs HA, Voeller K, Simensen RJ, Stevenson
RE 2005 Allan-Herndon-Dudley syndrome and the mono-
carboxylate transporter 8 (MCT8) gene. Am J Hum Genet
77:41–53

369. St Germain DL, Hernandez A, Schneider MJ, Galton VA
2005 Insights into the role of deiodinases from studies of
genetically modified animals. Thyroid 15:905–916

370. Schneider MJ, Fiering SN, Pallud SE, Parlow AF, St Germain
DL, Galton VA 2001 Targeted disruption of the type 2 sel-
enodeiodinasegene (DIO2)results inaphenotypeofpituitary
resistance to T4. Mol Endocrinol 15:2137–2148

371. Kato Y, Ikushiro S, Haraguchi K, Yamazaki T, Ito Y,
Suzuki H, Kimura R, Yamada S, Inoue T, Degawa M 2004
A possible mechanism for decrease in serum thyroxine level
by polychlorinated biphenyls in Wistar and Gunn rats.
Toxicol Sci 81:309–315

372. Morse DC, Wehler EK, Wesseling W, Koeman JH, Brouwer
A 1996 Alterations in rat brain thyroid hormone status fol-
lowing pre- and postnatal exposure to polychlorinated bi-
phenyls (Aroclor 1254). Toxicol Appl Pharmacol 136:269–
279

373. McKinney JD, Waller CL 1994 Polychlorinated biphenyls
as hormonally active structural analogues. Environ Health
Perspect 102:290–297

374. Chana A, Concejero MA, de Frutos M, González MJ,
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