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The IGF system plays critical roles in somatic growth in an endocrine fashion (somatomedin hypothesis) as well
as proliferation and differentiation of normal and malignant cells in a paracrine/autocrine fashion. IGFBP-3 is
known to modulate the actions of IGFs in circulation as well as the immediate extracellular environment.
Interestingly, apart from the ability to inhibit or enhance IGF actions, IGFBP-3 also exhibits very clear, distinct
biological effects independent of the IGF/IGF-I receptor axis. Over the past decade it has become widely ap-
preciated that IGF/IGF-IR-independent actions of IGFBP-3 (antiproliferative and proapoptotic effects) contribute
to improving the pathophysiology of a variety of human diseases, such as cancer, diabetes, and malnutrition.
Recent studies have implicated interaction of IGFBP-3 with a variety of proteins or signaling cascades critical to
cell cycle control and apoptosis; however, the actual mechanism of IGFBP-3 action is still unclear. This review
reinforces the concept in support of the IGF/IGF-IR axis-independent actions of IGFBP-3 and delineates potential
underlying mechanisms involved and subsequent biological significance, focusing in particular on functional
binding partners and the clinical significance of IGFBP-3 in the assessment of cancer risk. (Endocrine Reviews 30:
417–437, 2009)

I. Introduction
A. The IGF system

II. Structure of IGFBP-3
A. The conserved N-terminal domain
B. The highly variable midregion
C. The conserved C-terminal domain

III. IGF/IGF-IR-Dependent and IGF/IGF-IR-Independent
Actions of IGFBP-3

IV. Cell Surface Association of IGFBP-3 with Putative Re-
ceptors and Downstream Actions
A. Interaction with IGFBP-3 cognate receptors
B. Induction of apoptosis
C. Inhibition of NF-�B
D. Other evidence for cell surface association

V. Nuclear Association and Actions of IGFBP-3
VI. Factors That Influence the Induction or Increased Ex-

pression of IGFBP-3
VII. Factors That Influence the Suppression or Decreased

Expression of IGFBP-3
VIII. Other Important Binding Partners of IGFBP-3

IX. Clinical Significance of IGFBP-3 in Assessment of Can-
cer Risk

A. Evidence from epidemiologic studies
B. Genetic polymorphisms of IGFBP-3

X. Concluding Comment

I. Introduction

A. The IGF system

The IGF system is well characterized, with profound
effects on the growth and differentiation of normal

and malignant cells. The established components of the
IGF system include GH, IGF-I/-II peptides, type I and II
IGF receptors, IGF binding proteins (IGFBPs), and IGFBP
proteases.

1. GH
GH is the major regulator of IGF synthesis in the liver.

GH binding to the hepatic GH receptor stimulates IGF-I
synthesis and release from the liver, and IGF-I is trans-
ported to the main target organs via circulation to act as
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kinase; IR, insulin receptor; MMP, matrix metalloproteinase; NF-�B, nuclear factor �B; PGI,
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phism; TGF-�RI, type I TGF-� receptor; TGF-�RII, type II TGF-� receptor; TGF-�RV, type V
TGF-� receptor.
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an endocrine factor (1). Circulating IGF-I further exerts
negative feedback on the somatotropic axis and sup-
presses the release of GH from the pituitary (1).

2. IGF-I/-II peptides
These hormones share approximately 50% homology

to insulin. They are ubiquitously expressed, highly homol-
ogous small peptide hormones of approximately 7 kDa
molecular mass with multiple endocrine and paracrine/
autocrine activities (2). Most circulating IGF-I is produced
by the liver and is responsible for growth and develop-
ment. However, recent studies of knockout mice with spe-
cific gene deletion of liver IGF-I demonstrated that the
reduction of circulating IGF-I (�75%) has no discernible
effect on postnatal body growth, raising a question about
the endocrine function of circulating liver IGF-I (3, 4).
Increased GH and extrahepatic tissue IGF-I production
may compensate for the lack of the liver IGF-I.

3. Type I and II IGF receptors
IGFs interact with specific cell surface receptors, des-

ignated type I and type II IGF receptors, and can also
interact with the insulin receptor (IR). The type I IGF re-
ceptor (IGF-IR) is a transmembrane heterotetramer con-
sisting of two �-subunits and two �-subunits. There is
approximately 60% sequence homology between IGF-IR
and IR (5). IGF-IR, like IR, possesses intrinsic tyrosine
kinase activity. IGF-II and insulin also bind to IGF-IR but
with 2- to 15-fold and 1000-fold lower affinity, respec-
tively (5). The type II IGF receptor (IGF-IIR), which is
identical to the cation-independent mannose-6-phosphate
receptor, binds IGF-II with 500-fold increased affinity
over IGF-I (6). IGF-IIR does not bind insulin. Most of the
biological actions of IGF-II are thought to be mediated via
IGF-IR (6). IGF-IIR is known to function primarily as a
scavenger receptor, regulating the internalization and deg-
radation of extracellular IGF-II, thus regulating the circu-
lating IGF-II levels. IR does not bind IGF-I and IGF-II with
high affinity. However, the IR isoform and the IR-IGF-IR
hybrid bind IGFs as well as insulin. IR-A, the IR fetal
isoform, binds not only insulin but also IGF-II. Secondly,
the insulin-IGF-I hybrid receptors containing an insulin
half receptor and IGF-I half receptor have broad binding
specificity because they bind IGF-I and also IGF-II and
insulin. These IR isoform and hybrid receptors mediate
certain actions of IGFs and insulin (7).

4. The IGFBPs
A total of six high-affinity binding proteins have been

identified: IGFBP-1 through IGFBP-6 (8). Hepatic IGF-I
circulates almost entirely (�99%) bound to IGFBPs.
IGFBP-3, a major IGFBP species in circulation, binds 75 to
90% of circulating IGF-I in a large ternary complex con-

sisting of IGFBP-3, acid-labile subunit (ALS), and IGF. It
has been postulated that circulating IGFBP-3 originates in
the liver and is regulated by GH based upon the presence
of a putative GH-response element in IGFBP-3 gene (9,
10). However, recent findings demonstrated that GH ad-
ministration had no effect on the expression of hepatic
IGFBP-3 mRNA but increased circulating IGFBP-3 in hu-
man subjects, due to increased formation of the ternary
complex (11). ALS is produced in the liver as a direct effect
of GH. The ALS stabilizes the IGF–IGFBP-3 complex, re-
duces the passage of IGF-I to the extravascular compart-
ment, and extends its half-life (12). It has become clear that
IGFBPs 1–6 have intrinsic biological activity (IGF/IGF-
IR-independent actions) in addition to their actions to
bind IGFs and sequester the active hormone, thereby re-
ducing IGF biological activity (IGF/IGF-IR-dependent ac-
tions) (8, 13–17). This IGF/IGF-IR-independent action, in
particular IGFBP-3’s action, will be discussed in detail in
Section III.

5. IGFBP proteases
The IGF/IGFBP complex can be dissociated by pro-

teases that cleave IGFBP-3. To date, several proteases for
IGFBP-3 have been described in a variety of cell culture
systems. These include serine proteases, cathepsins, and
matrix metalloproteinases (MMPs) (18). IGFBP-degrad-
ing proteases favor the release of IGF, which then becomes
available for biological actions. In addition, certain free
IGFBPs can also be acted upon by proteases, resulting in
loss of high affinity for IGFs.

II. Structure of IGFBP-3

IGFBP-3 is a multifunctional protein that is found to play
a variety of roles in circulation, in the extracellular envi-
ronment, and inside the cell. Mature deglycosylated hu-
man IGFBP-3 has a molecular mass of 28.7 kDa and is
comprised of 264 amino acids. The primary structures of
mammalian IGFBPs appear to contain three distinct do-
mains of roughly equivalent sizes, with additional critical
subdomains or functional motifs within each major do-
main that contribute to their diverse actions (Fig. 1). In
addition to the structural and sequence homology among
IGFBPs, some IGFBPs possess distinctive characteristics
such as integrin recognition sequences in IGFBP-1 and
IGFBP-2; phosphorylation on serine residues of IGFBP-1
and IGFBP-3; heparin binding motifs in IGFBP-3, -5, and
-6; and nuclear localization sequences in IGFBP-3 and
IGFBP-5. These distinctive characteristics could be im-
portant for the ability of IGFBPs to modulate IGF/IGF-
IR-dependent actions as well as IGF/IGF-IR-indepen-
dent actions (8).
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A. The conserved N-terminal domain
In the mature IGFBP-3 peptide, the N-terminal third of

the protein contains 87 amino acid residues after the signal
peptide. IGFBP-3 along with all the other members of the
IGFBP superfamily (both high affinity and low affinity
IGF binders) share a common IGFBP motif —GCGC-
CXXC—a conserved N-terminal cysteine rich domain.
IGFBP-3 contains a total of 18 cysteines, 12 of which are
located in this domain, which leads to the presence of six
disulfide bonds within this domain. Important IGF-bind-
ing residues are known to be located within this domain
(19, 20). Although no other major functional motifs have
been identified in the amino-terminal domain, the ob-
servation that amino-terminal proteolytic fragments of
IGFBP-3 cause IGF-independent inhibition of mitogenesis
(21, 22) implies the presence of another active subdomain in
this region. This subdomain remains to be identified.

B. The highly variable midregion
The midregion segment of IGFBP-3 contains 95 amino

acids. This region separates the N-terminal domain from
the C-terminal domain and shares less than 15% similarity
with other IGFBPs. Intriguingly, posttranslational modi-
fications (glycosylation, phosphorylation) of the IGFBPs
have been found in the midregion, but not in the N- or C-
terminal domains. IGFBPs might be differentially targeted to
tissues depending upon both their primary structure and
their posttranslational modifications. Thus, glycosylation
can affect cell interactions, phosphorylation can affect
IGF-binding affinity and susceptibility to proteases, and
proteolysis can affect both IGF/IGF-IR-dependent and
IGF/IGF-IR-independent actions (23). Three sites of N-
linked glycosylation exist in IGFBP-3 (24). Carbohydrate
increases the core protein size of IGFBP-3 from 29 kDa to
forms estimated to be 40–43 kDa. Of the three potential
glycosylation sites at Asn89, Asn109, and Asn172, the first

two are always glycosylated, carrying an estimated 4 kDa
and 4.5 kDa of carbohydrate, respectively, whereas the
third site alternatively contains either undetectable or
about 5 kDa of carbohydrate, accounting for the charac-
teristic doublet form of the protein (24). Other sites of
posttranslational modification such as potential phos-
phoacceptor sites also reside in this central domain.
Studies conducted by Yamanaka et al. (25) suggest that
IGFBP-3 binds to human breast cancer cell surface with
typical receptor-ligand interaction and the midregion of
the IGFBP-3 molecule is responsible for the interaction.

C. The conserved C-terminal domain
The C-terminal domain is cysteine rich (six cysteines),

with three disulfide bonds within this domain. This
IGFBP-3 region is also important in IGF binding (26–28).
Because residues involved in IGF binding are present in
both the N-terminal and C-terminal domains, the findings
imply the likely existence of an IGF-binding pocket in-
volving both domains. A functionally important 18-resi-
due basic motif with heparin-binding activity has also
been identified at residues 215-232. Apart from heparin
binding, certain other glycosaminoglycans (29) as well as
cell surface proteoglycans (30) are bound by this 18-res-
idue basic motif. Furthermore, IGFBP-3 as well as IGFBP-
3-IGF-I complexes bind fibrinogen, fibrin (31), and plas-
minogen (32) via this binding domain. The basic region
Lys 228-Arg 232 (14) has also been shown to be essential
for interactions with the ALS. Additional basic residues
that reside within this domain interact with the cell surface
and matrix, the nuclear transporter importin-� and other
proteins (discussed in Section V). Singh et al. (33) have also
identified a short metal-binding domain in the C-terminal
region of IGFBP-3 that binds metals and also has intrinsic
effects. Although in vitro studies do not suggest a potential
role for iron in IGF-independent biological actions of
IGFBP-3, it reveals a dose-dependent effect of iron on
IGFBP-3 binding to integrins�v and �1, caveolin-1, and
transferrin receptor by unmasking of metal-binding do-
main epitopes in the IGFBP-3 molecule (33). IGFBP-3
binding to transferrin has been shown to be dependent on
a region in the C-terminal domain (34). Furthermore, a
caveolin-scaffolding domain consensus sequence also re-
sides in this region.

Recent studies have determined three-dimensional
structures of IGFBPs including IGFBP-1, -2, -4, and -5
using nuclear magnetic resonance spectroscopy and x-ray
crystallography (35–39). These structural analyses not
only confirm the previous findings indicating IGF binding
sites in the N- and C-terminal domains of IGFBPs but also
further reveal that a rigid disulfide bond ladder-like struc-
ture and the first five amino acids in the N-terminal do-
main are critical for IGF binding and masking IGF residues
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FIG. 1. Structure of human IGFBP-3. This figure depicts the three
distinct domains of the IGFBP-3 molecule and lists the important
functions and motifs of each of these key regions. The vertical lines
represent cysteine residues.
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responsible for IGF-I receptor binding. The C-terminal
domain and the midregion of IGFBPs also contribute to
inhibiting the interaction between IGF-I and IGF-IR either
by directly blocking the IGF-IR-binding region of IGF-I or
by steric hindrance. Thus, these structural data provide an
understanding of the roles of each domain of IGFBP in
enhancing/stabilizing IGF binding and modulating IGF
binding to IGF-IR. Although the structure of IGFBP-3 has
not yet been determined, IGFBP-3 should have very sim-
ilar structures in those critical domains responsible for
cooperative binding to IGF and blocking of the IGF-IR-
binding region of IGF-I.

III. IGF/IGF-IR-Dependent and IGF/IGF-IR-
Independent Actions of IGFBP-3

IGF binding to and subsequent activation of the IGF-IR
usually results in diverse biological effects in a wide range
of cell types, including cellular proliferation and differen-
tiation, an increase in metabolic activity, and cell survival
via antiapoptotic pathways. The IGFBPs are known to
modulate the actions of IGFs in the circulation as well as
the immediate extracellular environment (40). Interest-
ingly, apart from the ability of IGFBPs to inhibit or en-
hance IGF actions, IGFBPs also exhibit very clear, distinct
biological effects independent of the IGF/IGF-IR axis (Fig.
2). These IGF/IGF-IR-independent actions contribute to
the diversity of biological outcomes due to IGFBPs.
IGFBP-3 is a well-documented inhibitor of cell growth
and/or promoter of apoptosis. Although its antiprolifera-
tive functions are truly achieved through the attenuation
of IGF/IGF-IR interaction (41), to date much light has
been shed on the ability of these bioactivities to occur via
an IGF/IGF-IR axis-independent means (42–46).

The data for IGFBP-3 are the very first to show clear
evidence in support of the IGF-independent actions of
IGFBPs. The protein inhibitory diffusible factor 45 (now

recognized to be IGFBP-3) was originally isolated as a
novel inhibitory factor, being able to inhibit the stimula-
tion of chick embryo fibroblasts (CEF) in the absence as
well as the presence of IGF-I, yet when bound to IGF-I,
serum-induced growth stimulation of CEF was attainable,
suggesting two opposing activities for inhibitory diffusible
factor 45 (47). This study was quickly followed by another
supporting this hypothesis, where fibroblast growth factor-
stimulated DNA synthesis in CEF and mouse embryo fi-
broblasts was inhibited by mouse IGFBP-3—an action in-
dependent of IGFs yet attenuated by the presence of IGFs
(48). Similarly, the overexpression of human IGFBP-3 in
Balb/c mouse fibroblasts resulted in the inhibition of cel-
lular proliferation in the presence/absence of IGFs or in-
sulin (49). Although it is clear that IGFBP-3 achieves bi-
ological effects independent of the IGF/IGF-IR axis, the
mechanisms by which these effects are achieved are still
not entirely understood. Evidence to date suggests the ex-
istence of multiple pathways by which IGFBP-3 elicits its
proapoptotic and antiproliferative IGF/IGF-IR-indepen-
dent effects in an array of different cell systems.

On the other hand, IGFBP-3 also has been shown to
stimulate cell growth or other cell functions in an IGF-
independent manner in a variety of cell types. Martin et al.
(50) demonstrated that IGFBP-3 stimulates growth in
MCF-10A human breast epithelial cells via increased epi-
dermal growth factor receptor phosphorylation and acti-
vation of p44/42 and p38 MAPK signaling pathways. Sim-
ilar effect of IGFBP-3 was observed in breast cancer cells.
Although expression of IGFBP-3 initially inhibited the
growth of T47D human breast cancer cells, long-term cul-
ture of these cells resulted in growth stimulation due to an
enhanced responsiveness of these cells to the proliferative
effects of epidermal growth factor (51). Granata et al. (52)
reported that IGFBP-3 exerts dual effects on human um-
bilical vein endothelial cells, potentiating doxorubicin-in-
duced apoptosis but enhancing survival in serum-starved
conditions. This study further demonstrated that IGFBP-3
antiapoptotic effects were mediated through activation of
sphingosine kinase and increased expression of sphin-
gosine kinase 1. Furthermore, it has been reported that
IGFBP-3 has proangiogenic effects on endothelial precur-
sor cells inducing the migration, tube formation, and dif-
ferentiation of these cells into endothelial cells, thereby
promoting proper revascularization and repair after isch-
emic injury (53, 54). These studies indicate that IGFBP-3
enhances cell growth or other cell functions depending on
specific conditions. However, the underlying molecular
mechanisms involved in these biological actions of
IGFBP-3 are largely unknown.

The remainder of this review will focus on the role of
IGFBP-3 in human diseases—mainly through its proapop-

FIG. 2. IGF/IGF-IR-dependent and IGF/IGF-IR-independent actions of
IGFBP-3.
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totic and antiproliferative IGF/IGF-IR-independent ac-
tions. Our aim is to clearly present the evidence to date
regarding the IGF/IGF-IR-independent actions and to fur-
ther characterize the different mechanisms of action of
IGFBP-3 in various human diseases.

IV. Cell Surface Association of IGFBP-3 with
Putative Receptors and Downstream Actions

A. Interaction with IGFBP-3 cognate receptors
The very first evidence for the IGF/IGF-IR-independent

actions of IGFBP-3 in human cells was demonstrated using
breast cancer cells.Oh et al. (42,55) initiallydemonstrated
cell surface binding between IGFBP-3 and cell surface pro-
teins in Hs578T and MDA-MB-231 human breast cancer
cells. An evaluation of IGFBP’s binding sites on breast
cancer cell membranes by competitive binding studies
with IGFBP-1 through -6 and various forms of IGFBP-3
including synthetic IGFBP-3 fragments revealed the exis-
tence of high-affinity binding sites for IGFBP-3, typical of
receptor-ligand interactions. Further analysis revealed
that IGFBP-3 binding was specific and not attributed to
nonspecific interaction with glycosaminoglycans.

Recent evidence suggests an interaction between
IGFBP-3 and the TGF-� signaling pathways as well as an
interaction with a TGF-� receptor. TGF-� is a multifunc-
tional growth factor secreted by many types of cells.
TGF-� signaling from the cell surface to the nucleus re-
quires a series of interdependent events. It is initiated by
the association between TGF-� and the type II TGF-�
receptor (TGF-�RII), resulting in the recruitment of the
type I TGF-� receptor (TGF-�RI) into a heteromeric com-
plex, which allows TGF-�RII to phosphorylate and acti-
vate TGF-�RI (56). Signaling intermediates Smad2 and 3
are phosphorylated by active TGF-�RI followed by their
association with Smad 4 and the translocation of hetero-
meric Smad complexes to the nucleus where they can po-
tentially regulate the transcription of target genes either
through binding to elements in the DNA or indirectly by
binding to other transcription factors (57, 58). Fanayan et
al. (59) demonstrated that IGFBP-3 inhibitory signals re-
quire an active TGF-� signaling pathway and implicate
Smad 2 and 3 in IGFBP-3 signal transduction. On the other
hand, IGFBP-3 has been proposed as a functional ligand
for the serine/threonine kinase type V TGF-� receptor
(TGF-�RV) and interaction of IGFBP-3 with TGF-�RV
causes cell growth inhibition (44, 60).

The cell signaling pathways activated by IGFBP-3/
TGF-�RV interactions are distinct from those TGF-�RI/
TGF-�RII signaling cascades outlined above because the
key signaling proteins, Smad 2 and 3, are not phosphor-
ylated by IGFBP-3. To date, the cell signaling pathways for

IGFBP-3/TGF-�RV remain to be elucidated. Recent struc-
tural and functional analyses of purified TGF-�RV have
revealed that TGF-�RV is identical to the low-density li-
poprotein receptor-related protein-1/activated �2M re-
ceptor, which is known as an endocytic receptor and has
been shown to mediate the biological functions of the li-
gands, TGF-�1 and IGFBP-3 (61).

B. Induction of apoptosis
One of the ways in which IGFBP-3 can exert its actions

on target cells is by inducing apoptosis or programmed cell
death. This has been demonstrated by studies showing
that IGFBP-3 increases the ratio of proapoptotic (Bax and
Bad) to antiapoptotic (Bcl-2 and Bcl-XL) proteins in ap-
optotic breast cancer cells (62). In paclitaxel-treated
Hs578T breast cancer cells, caspase-3 activity and
IGFBP-3 levels in conditioned media are increased (63).
Although it is well documented that apoptosis is promoted
by IGFBP-3, to date the underlying mechanism of action
by which it achieves these effects remains elusive.

Apoptosis can be triggered by internal signals (the in-
trinsic or mitochondrial pathway) or external signals (the
extrinsic or death receptor pathway) (64, 65). The initial
caspase in the mitochondrial pathway is caspase-9, which
subsequently activates the executioner caspase-3, -6, and
-7. In contrast, the initial caspase of the death receptor
pathway is caspase-8. Caspase-8 (like caspase-9) further
activates the cascade of executioner caspases (-3, -6, and
-7). Having obtained data to support the existence of a
putative receptor for IGFBP-3, through which it can
achieve its IGF-independent actions, Oh and colleagues
(66) went on to show through a series of caspase activity
studies (using specific caspase substrates and/or caspase
inhibitors) that the growth inhibitory effect of IGFBP-3
results mainly from its induction of apoptosis via activa-
tion of caspase-8 and -7. Further analyses of caspase-9 and
measurement of release of cytochrome c into the cytosol
confirmed that the mitochondria-mediated pathway is not
involved. These findings suggest that IGFBP-3 induces ap-
optosis through the activation of caspases, via a death
receptor-mediated pathway. Hence, IGFBP-3 could inter-
act with the known death receptors such as TNF-� recep-
tor or a unique yet unidentified death receptor (Fig. 2). On
the other hand, recent studies also demonstrated that
IGFBP-3 induces apoptosis through the mitochondrial
pathway (for details, see Section V).

In addition, other studies indicate that IGFBP-3 is es-
sential for TNF-�-induced apoptosis and show that this
IGFBP-3 effect includes the inactivation of Bcl-2 through
serine phosphorylation (67). However, the exact mecha-
nism for IGFBP-3 involvement on the TNF-� signaling
pathways is largely unknown.
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C. Inhibition of NF-�B
Nuclear factor �B (NF-�B) represents a family of in-

ducible transcription factors found ubiquitously in all
cells. Unlike most cells where the basal level of active
NF-�B is minimal, many cancers express elevated levels of
active NF-�B (68, 69). Much evidence exists in the liter-
ature to support the presence of constitutively active
NF-�B in a variety of different cancers, including prostate
cancer (68, 69). Active NF-�B complexes are dimers of
various combinations of the Rel family of polypeptides,
the major NF-�B dimer in most cell types being the p65
(Rel A)/p50 (NF-�B1) heterodimer. In most resting cells,
NF-�B is retained in the cytoplasm by binding to the
inhibitory protein I�B�, which blocks the nuclear lo-
calization sequences of NF-�B (70). NF-�B is activated
in response to a wide variety of stimuli that promote the
dissociation of I�B� through phosphorylation, ubiq-
uitination, and degradation, thus unmasking the nu-
clear localization sequence of NF-�B and allowing
NF-�B to enter the nucleus and bind �B-regulatory el-
ements (71). The phosphorylation of I�B� is a critical
step in the pathway leading to NF-�B activation, which
is catalyzed by the I�B� kinase (IKK) complex (consist-
ing of IKK-�, IKK-�, and IKK-�/NEMO) (72). Active
NF-�B is commonly known to participate at multiple
steps in the pathways associated with cancer, two of
which are to block apoptosis and promote cell prolif-
eration (73, 74).

Withrespect topotential interactionbetweenIGFBPsand
NF-�B signaling cascade, Butt et al. (75) reported that
IGFBP-5, but not IGFBP-3, sensitized MDA-MB-231
breast cancer cells to the inhibitory effects of TNF-�
through blockage of TNF-�-induced nuclear transloca-
tion of Rel A. On the other hand, H-Zadeh et al. (76)
reported that IGFBP-3 inhibits TNF-�-induced NF-�B
activity in human colonic carcinoma cells. In this report,
they further demonstrated that the secreted 16-kDa
1-95:IGFBP-3 fragment is as effective as the intact
IGFBP-3 protein at potentiating apoptosis as well as in-
hibiting NF-�B activity. Williams et al. (77) also demon-
strated that IGFBP-3 significantly enhances TNF-related
apoptosis-inducing ligand-induced cell death in colonic
carcinoma-derived cell lines by inhibiting NF-�B activa-
tion in response to the induction of apoptosis by TNF-
related apoptosis-inducing ligand. Thus, in terms of un-
raveling the IGF/IGF-IR-independent actions of IGFBP-3,
there is now evidence to show that IGFBP-3 interferes with
NF-�B signaling cascades. However, the underlying mech-
anisms of action by which IGFBP-3 achieves inhibition of
NF-�B signaling cascades are yet to be elucidated. In ad-
dition, because a persistent constitutive nuclear activation
of NF-�B has been shown to induce resistance to various

chemotherapeutic agents and radiotherapy (78–81), IG-
FBP-3 may have therapeutic potential for treatment of
chemodrug- and radiotherapy-resistant cancer associated
with activated NF-�B.

D. Other evidence for cell surface association
Mishra and Murphy (82) have used cross-linking strat-

egies to show that IGFBP-3 bound to multiple, unknown
proteins on the cell membrane of a different breast cancer
cell line T47D. Their studies further suggest that binding
of IGFBP-3 to breast cancer membranes is accompanied
by phosphorylation at the plasma membrane and that
both processes are inhibited by IGF-I. However, once
phosphorylated, the ability of IGFBP-3 to bind to IGF-I is
enhanced, resulting in increased association of IGF-I with
the cell membrane. Mishra and Murphy (83) have also
provided evidence that tissue transglutaminase has intrin-
sic kinase activity and that it is a major component of the
IGFBP-3 kinase activity present on breast cancer cell mem-
branes. Further evidence for IGFBP-3 association with cell
membrane comes from the identification of an autocrine
motility factor (AMF)/phosphoglucose isomerase (PGI)/
IGFBP-3 complex from cross-linking experiments of bio-
tinylated IGFBP-3 to breast cancer cell membranes (84).
AMF/PGI, apart from its enzymatic function, is an anti-
apoptotic cytokine that stimulates proliferation and mi-
gration of a variety of cells in an autocrine fashion. Current
findings suggest that IGF/IGF-IR-independent actions
of IGFBP-3 are mediated, at least in part, through the
interaction with a variety of cell surface proteins, includ-
ing the known receptors such as TGF-�RV and other cell
surface proteins such as AMF/PGI.

V. Nuclear Association and Actions of IGFBP-3

Apart from evidence supporting the IGF/IGF-IR axis-
independent signaling from several potential cell surface
receptors, there exists evidence to suggest that IGFBP-3
can translocate into the nucleus from the extracellular
compartment in rapidly dividing human breast cancer
cells even if bound to IGFs (85). Nuclear localization of
IGFBP-3 is a well-described phenomenon that has been
demonstrated in a wide variety of cellular models (45,
86–88). IGFBP-3 possesses a consensus bipartite nuclear
localization sequence (89), and nuclear transport is facil-
itated by importin-� factor (46). Recent evidence shows
that the nuclear retinoid X receptor (RXR)-� is a binding
partner of IGFBP-3 (45, 90). RXRs belong to the nuclear
receptor superfamily, consisting of a large number of
ligand-regulated transcription factors that mediate the di-
verse physiological functions of their ligands, such as ste-
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roid hormones, retinoids, thyroid hormone, and vitamin
D3, in embryonic development, growth, differentiation,
apoptosis, and homeostasis (91, 92). In addition, RXRs
form heterodimers with many members of subfamily 1 of
nuclear receptors, including the orphan receptor Nur77
(91, 92). Heterodimerization of RXR with its partners
dramatically enhances their DNA binding and subsequent
transcriptional regulation. Nur77 is a nuclear receptor
transcription factor and is an important regulator of ap-
optosis in different cells (93). In response to synthetic ap-
optotic stimuli, Nur77 translocates from the nucleus to the
mitochondria to induce cytochrome c release and apopto-
sis in leukemia (94) and lung (95), ovary (96), stomach
(97), colon (98), and prostate cancer cells (99). The sub-
cellular localization of Nur77 is important in determining
its biological function. Nur77 functions as a transcription
factor in the nucleus whereby it mediates cell proliferation
events. Nur77 also heterodimerizes with RXR� and par-
ticipates in its transcriptional activities (100). However,
Nur77 functions as a mediator of apoptosis when targeted
to the mitochondria. Studies by Lee et al. (101) show that
in response to IGFBP-3, Nur77 rapidly undergoes trans-
location from the nucleus to the mitochondria, initiating
an apoptotic cascade resulting in caspase activation
(Fig. 3). Furthermore, IGFBP-3 and Nur77 possess ad-
ditive effects in inducing apoptosis, and RXR� is re-
quired in this process (101). Because IGFBP-3 is a bind-
ing partner of RXR�, Lee et al. (101) proposed that
IGFBP-3 modifies the RXR�/Nur77 heterodimeric
DNA binding complex, thus shifting the heterodimer
from a DNA-binding state to one that targets the mi-
tochondria and induces apoptosis. More recently, Lee et
al. (102) demonstrated that IGFBP-3 and Nur77 asso-

ciate in the cytoplasmic compartment in 22RV1 pros-
tate cancer cells, and dose-response experiments further
revealed that a small component of IGFBP-3-induced
apoptosis is Nur77-independent.

Further work by Cohen and colleagues (103) showed
that phosphorylation of IGFBP-3 at S156 by DNA-depen-
dent protein kinase (DNA-PK) is a critical step in the
growth-inhibitory and apoptosis-promoting actions of
IGFBP-3 in prostate cancer cells. Their results revealed
that DNA-PK-mediated phosphorylation enhanced the
nuclear accumulation of IGFBP-3 and is also critical for
interactions with its nuclear binding partner RXR� (103).
It was also demonstrated that nuclear translocation of
IGFBP-3 requires IGFBP-3 secretion and reuptake. The
authors further found the involvement of distinct endo-
cytic pathways for IGFBP-3 internalization via binding to
transferrin and caveolin (104). It should be noted that
another study showed that when a mutant form of
IGFBP-3 failed to translocate to the nucleus, IGFBP-3 can
still induce apoptosis in breast cancer cells, suggesting ei-
ther that RXR-IGFBP-3 interaction between these pro-
teins may not be required for apoptosis or possibly that the
interaction between these proteins in the cytoplasm may
be sufficient (105). Recent studies from Bhattacharyya
and Rechler’s groups (106, 107) further confirmed that
IGFBP-3 is capable of inducing apoptosis without being
secreted and concentrated in the nucleus or binding RXR�

in human prostate cancer cells. These findings indicate
that IGFBP-3 is a potent antiproliferative and proapop-
totic factor in cancer cells whose biological action is me-
diated through the interaction with a variety of binding
partners on the cell surface and within the cells.

FIG. 3. Nuclear localization of IGFBP-3. In response to IGFBP-3, Nur77 rapidly translocates from the nucleus to the mitochondria and induces
apoptosis.

Endocrine Reviews, August 2009, 30(5):417–437 edrv.endojournals.org 423

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/30/5/417/2355020 by guest on 10 April 2024



VI. Factors That Influence the Induction or
Increased Expression of IGFBP-3

GH, the main regulator of IGF-I, acts by inducing hepatic
as well as local tissue production of IGF-I and also stim-
ulates IGFBP-3 directly or indirectly through enhancing
IGF-I production (108, 109). IGFBP-3, by binding to
IGF-I, prolongs its half-life and also plays a crucial role in
modulating human growth. IGFBP-3 concentrations in
the circulation are usually low in individuals with GH
deficiency (110, 111) and in contrast, IGFBP-3 is increased
in cases of acromegaly and GH excess (112). Insulin is
another important hormone in IGFBP-3 up-regulation
(108). Furthermore, IGFBP-3 can be induced by many cell
cycle regulators and growth-inhibitory (and apoptosis-in-
ducing) agents such as TGF-�1 (113–115), retinoic acid
(114, 116, 117), TNF-� (116–118), vitamin D (119), an-
tiestrogens such as tamoxifen (120), antiandrogens (121),
and tumor suppressors.

The antiproliferative actions of vitamin D in prostate
cancer cells, acting via its hormonally active form calcit-
riol, are in part due to its ability to stimulate IGFBP-3
expression (122, 123). High concentrations of androgens
arealsoantiproliferative inLNCaPhumanprostate cancer
cells in culture, and this effect is also mediated by induc-
tion of IGFBP-3 (124). Calcitriol and androgens both have
been demonstrated to up-regulate IGFBP-3 expression di-
rectly through interaction with each cognate receptor, vi-
tamin D receptor and androgen receptor, respectively. The
receptor complex subsequently binds with the corre-
sponding response elements (vitamin D receptor element
or androgen receptor element) within the IGFBP-3 pro-
moter in androgen-responsive LNCaP cells (122–125).
The two response elements, separated by approximately
400 bp, appear to interact to regulate the level of IGFBP-3
expression. Calcitriol and androgens in combination not
only result in a synergistic increase in IGFBP-3 mRNA and
protein levels but also inhibit cell growth better than either
hormone alone (126, 127). IGFBP-3 contributes to the
antiproliferative actions of both calcitriol and high con-
centrations of androgens in part through stimulation of
p21 and p27 pathways (122, 127). Androgens cause bi-
phasic effects on the growth of the LNCaP human prostate
cancer cells in culture, with low concentrations stimulat-
ing growth and high concentrations inhibiting growth
(126, 128, 129). In a recent study, Peng et al. (127) showed
that this concentration-dependent effect of androgens was
in part the result of differential regulation of IGFBP-3 ex-
pression by androgens. Low concentrations of androgens
failed to induce increased IGFBP-3 expression allowing
LNCaP growth to be stimulated. Higher concentrations of
androgens stimulated IGFBP-3 expression and resulted in
growth inhibition. Knock-down of IGFBP-3 with small

interfering RNA prevented the growth inhibition, con-
firming a role for IGFBP-3 in the antiproliferative activity
of high androgen concentrations in cultured LNCaP cells.

IGFBP-3 is one of the genes transcriptionally activated
by the tumor suppressor gene p53 (130, 131). p53 nor-
mally resides in low concentrations in a latent form but is
activated to induce cell cycle arrest or apoptosis and thus
prevents the propagation of damaged cells. Studies con-
ducted by Grimberg et al. (132) show that IGFBP-3 is
induced by physiological conditions that also induce p53,
although p53 is not always required. They demonstrated
that genotoxic drugs such as etoposide and adriamycin
increased IGFBP-3 protein levels and secretion in tumor
cell lines in a p53-independent manner. Evidence also sup-
ports induction by IGFBP-3 of p53-independent apoptosis
in a prostate cancer cell line (42). Another tumor suppres-
sor gene, PTEN, up-regulates IGFBP-3 at the transcrip-
tional level via an Akt-dependent pathway in human gas-
tric cancer cells (133). Additionally, 2R4’R8’R-�-vitamin
E succinate exerts its antiproliferative and proapoptotic
effects via up-regulation of IGFBP-3 in prostate cancer
cells (134). It is clear that IGFBP-3 could mediate a variety
of biological effects of many hormones and peptides, par-
ticularly antiproliferative and proapoptotic effects of tu-
mor suppressors.

VII. Factors That Influence the Suppression or
Decreased Expression of IGFBP-3

IGFBP-3 can be down-regulated at multiple levels, such
as transcriptional, posttranscriptional, and posttransla-
tional levels. DNA methylation and histone modifications
are common mechanisms for epigenetic regulation of gene
expression (135). These epigenetic modifications play an
important role in the pathophysiology of cancer as well as
other human disease by silencing specific genes, including
tumor suppressor genes such as p53 (136–138). DNA hy-
permethylation and histone deacetylation of CpG islands
within the promoter regions of tumor suppressor genes
result in undesirable gene silencing and are found in vir-
tually every type of human cancer (139, 140). Recent stud-
ies have demonstrated that DNA methyltransferase as well
as histone deacetylase inhibitors can reactivate epigeneti-
cally silenced tumor suppressor genes and decrease tumor
cell growth in vitro and in vivo (141, 142).

Aberrant DNA methylation and histone acetylation
have been shown to play an important role in the silencing
of IGFBP-3 expression in several human cancers, includ-
ing gastric cancer (143), colorectal cancer (143), breast
cancer (143), malignant mesothelioma (143), ovarian can-
cer (144), renal cancer (145), and hepatocellular carcino-
mas (146). Chang et al. (147, 148) reported that IGFBP-3
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is frequently methylated in lung cancer and its methylation
status is significantly associated with poor prognosis in
stage I non-small-cell lung cancer. Yamashita et al. (149)
showed that IGFBP-3 expression is significantly up-regu-
lated by 5-Aza-CdR treatment in gastric cancer cell lines.
This provides further supporting evidence to suggest that
IGFBP-3 expression is regulated by DNA methylation in
human cancer. A recent study identified a response ele-
ment for the methylation-dependent transcription factor
in close proximity to the IGFBP-3 promoter that partici-
pates to insulin-stimulated transcriptional activity of the
IGFBP-3 promoter in liver cells (150). These findings
strongly suggest that methylation status of IGFBP-3 also
affects its responsiveness to insulin. Furthermore, it has
been shown that histone deacetylase inhibitors, sodium
butyrate, trichostatin A, and valproic acid also induce in-
creased synthesis and secretion of IGFBP-3 in a variety of
human cancer cells including hepatocellular carcinoma,
breast, and prostate cancer cells (151–154). The current
findings suggest that these epigenetic modifications of the
IGFBP-3 gene may play an important role not only in
cancer development, progression, and prognosis but also
in the pathology of many other diseases.

A variety of transcription factors are involved in re-
pression of the IGFBP-3 transcription. CDX2, a Drosoph-
ila caudal-related homeobox transcription factor has been
reported to promote tumorigenicity in a subset of human
colorectal cancer cell lines (155). CDX2 also negatively
regulates IGFBP-3 by specifically binding to the IGFBP-3
gene promoter and repressing IGFBP-3 transcription, pro-
tein expression, and secretion (155). Interestingly, CDX2
has recently been identified as a transcriptional regulator
essential for trophoblast differentiation (156). Taken to-
gether with findings that IGFBP-3 is the only IGFBP pro-
duced by trophoblasts and that these cells produce a neu-
tral IGFBP-3 protease, CDX2 might play a critical role in
the production and biological actions of IGFBP-3 in pla-
centa (157).

An Ewing’s sarcoma fusion protein, EWS/FLI1, binds
the IGFBP-3 promoter in vitro and in vivo and can repress
the activity of IGFBP-3 (158, 159). Ewing’s sarcoma is a
rare disease in which cancer cells are found in the bone or
in the soft tissue. It is the result of translocation between
chromosomes 11 and 22, which fuses the EWS gene of
chromosome 22 to the FLI1 gene of chromosome 11.
When the EWS/FLI1 fusion gene in Ewing’s cells is inac-
tivated by RNA interference, the loss of expression of
EWS/FLI1 results in complete growth arrest of the Ewing’s
sarcoma by induction of apoptosis. Gene profiling of these
Ewing’s cells identified IGFBP-3 as a crucial downstream
target of the fusion gene (158). These findings provide
evidence that identifies the repression of IGFBP-3 as a key

event in the development of Ewing’s sarcoma. Further
study confirmed that IGFBP-3 inhibits the growth, migra-
tion, invasion, as well as angiogenic and metastatic po-
tential of Ewing’s cells (159). These data thus indicate that
IGFBP-3 may hold therapeutic promise for the treatment
of patients with Ewing’s sarcoma.

IGFBP proteases also modulate the actions of IGFBPs,
especially IGFBP-3. Prostate-specific antigen in seminal
plasma was the first IGFBP protease to be identified (160).
Prostate-specific antigen fragmented IGFBP-3s have lower
affinity for IGFs and less inhibitory effects on cell growth
(161). Other kallikrein-like serine proteases that cleave
IGFBP-3 include �-nerve growth factor (162) and plasmin
(163). More recently, studies indicate that human kal-
likrein 11 expressed in estrogen receptor (�) breast cancer
cells may play a crucial role in breast cancer progression by
increasing the bioavailability of IGFs via degradation of
IGFBP-3 (164). Inflammation-related proteases (cathep-
sin D and elastase) also play a key role in IGFBP-3 pro-
teolysis. Research shows that these two proteases cleave
IGFBP-3 in vitro and in vivo in a concentration-dependent
manner (165). The aspartic protease cathepsin D is also
reported to be involved in the proteolytic processing of
IGFBP-3 (166, 167). More recent evidence also supports
the involvement of the cysteine protease cathepsin L in the
intracellular degradation of IGFBP-3 (168).

MMPs are a key family of proteolytic enzymes involved
in tissue remodeling by degradation of extracellular ma-
trix and basement membrane components. The activity of
MMPs has been implicated in tumor cell invasion, mor-
phogenesis, trophoblast invasion, cartilage and bone re-
pair and turnover, wound healing, and angiogenesis
(169–173). In addition to this general role of MMPs,
MMP-7, which is exclusively synthesized by cancer cells,
has been implicated in the activation of growth factors
and cytokines by degrading their precursors or inhibi-
tors, thereby allowing the cancer cells to control the
tissue microenvironment (174 –176). Recent evidence
by Miyamoto et al. (177) indicates that MMP-7 produced
by various cancer cells also catalyzes the proteolysis of
IGFBP-3 in vitro, thereby regulating IGF-I bioavailability.
Mochizuki et al. (178) showed that MMP-7 first activates
proADAM28 and further that ADAM28 digests IGFBP-3.
ADAM28, a member of a disintegrin and metalloprotein-
ase (ADAM) family, has two isoforms, membrane-type
form (ADAM28m) and secreted form (ADAM28 s). Al-
though ADAM28 is expressed and synthesized in a pre-
cursor form (proADAM28) by lymphocytes and some
cancer cells, its activation mechanism and substrates re-
main unclear. The authors reported that proADAM28 s of
65 kDa is processed with active MMP-7 to 42- and 40-kDa
forms, which corresponds to active ADAM28 s without
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propeptide. Processed ADAM28 s digested IGFBP-3 in
both free and complex forms with IGF-I or IGF-II, and the
digestion was prevented by EDTA, 1,10-phenanthroline,
KB-R7785, and tissue inhibitor of metalloproteinase-3
and -4 (178). More recently, Mitsui et al. (179) found
overexpression of ADAM28 in human breast carcinoma
cells. They found that the ADAM28 was expressed in the
active form and the levels of expression correlated with the
proliferation rate of the cells. They suggested that
ADAM28 was involved in stimulating breast cancer cell
proliferation by enhancing the bioavailability of IGF-I by
cleavage of IGFBP-3.

Grzmil et al. (180) demonstrated that a direct correla-
tion exists between the inhibition of IGF-IR gene expres-
sion and either up-regulation of IGFBP-3 or down-regu-
lation of MMP-2 expression in androgen-independent
PC-3 prostate cancer cells. Unlike most other MMPs,
MMP-19 is expressed in undifferentiated basal keratino-
cytes of healthy human skin. MMP-19 has also been
shown to be associated with degradation of IGFBP-3, and
Sadowski et al. (181) concluded that MMP19 could be the
major IGFBP-3 degrading MMP in the quiescent epider-
mis. This activity might have widespread consequences for
the behavior of epidermal keratinocytes.

Other evidence indicates that MMP-1 levels in asth-
matic airway tissue extracts were 12-fold higher than
those found in control samples (182). In addition,
IGFBP-2 and IGFBP-3, which have previously been dem-
onstrated to be proteolytic substrates of MMP-1, were
found to be cleaved in asthmatic airway tissue extracts.
Furthermore, the asthmatic airway extracts contained
IGFBP proteolytic activity that was shown by immu-
nodepletion studies to be due to MMP-1. These observa-
tions demonstrate that MMP-1 may play a significant role in
inducing airway smooth muscle hyperplasia and airway ob-
struction in asthma by modulating the IGF-IGFBP-IGF-IR
axis (182). MMP-2 and -3 have also been reported to be
functional in the cleavage of IGFBP-3 (183). These findings
strongly indicate that IGFBP-3 is regulated at multiple levels,
including transcriptional regulation by epigenetic modifica-
tion, activation of specific transcription factors, and post-
translational regulation by proteolysis, thereby suggesting
that IGFBP-3 status may be a critical factor for the patho-
genesis of a variety of human disease.

VIII. Other Important Binding Partners
of IGFBP-3

Humanin is a 24-amino acid peptide that is important in
specifically inhibiting neuronal cell death induced by fa-
milial Alzheimer’s disease mutant genes and amyloid-�.
Recent data have identified humanin as an IGFBP-3

binding partner. This interaction is pleiotrophic in na-
ture, may prove to be important in neurological disease
processes, and could provide important targets for drug
development (184).

In addition, several IGFBP-3-interacting proteins have
been discovered using the yeast two-hybrid assay. For ex-
ample, IGFBP-3 can interact with RNA polymerase II
binding subunit 3 (Rpb3). Rpb3 facilitates recruitment of
the polymerase complex to specific transcription factors
and is necessary for the transactivation of many genes. Its
association with IGFBP-3 plays a functional role for
IGFBP-3 in the direct modulation of gene transcription
(185). Although some interacting proteins have been iden-
tified, the ones that are involved in IGFBP-3 signal trans-
duction remain unclear. To understand the molecular
mechanism by which IGFBP-3 induces apoptosis in an
IGF/IGF-IR-independent manner, it is essential to study
the cellular proteins that interact with IGFBP-3. Recently,
Wu et al. (186) used the yeast two-hybrid assay to identify
proteins that bind to IGFBP-3 from a human fetal liver
cDNA library and showed that GalNAc-T14 binds
IGFBP-3 in vitro and in vivo. Its role and that of other
interacting proteins remains to be defined.

IX. Clinical Significance of IGFBP-3 in
Assessment of Cancer Risk

A. Evidence from epidemiologic studies
Accumulating evidence of cancer risk from in vitro cell

growth experiments, in vivo tumor models, and epidemi-
ological studies all suggest that IGFBP-3 contributes to
cancer risk protection (187). Unlike classic tumor sup-
pressors, IGFBP-3 knockout mice do not develop sponta-
neous tumors, and there is no identified IGFBP-3-related
familial cancer syndrome. Thus, IGFBP-3 more likely
serves as one of the multiple, low-penetrance tumor sus-
ceptibility and resistance genes that determine cancer in-
cidence and therapeutic responsiveness (188).

According to early epidemiological studies, higher
IGF-I and lower IGFBP-3 levels were independently asso-
ciated with a greater risk of common cancers, including
prostate cancer (189, 190), colorectal cancer (191), lung
cancer (192), and premenopausal breast cancer (193).
Fewer positive associations were found among postmeno-
pausal women (194–196).

Mammographic breast density is an important deter-
minant of breast cancer risk. Studies have also shown that
low IGFBP-3 levels are associated with increased pre-
menopausal mammographic breast density (197). How-
ever, Becker and Kaaks (198) in a recent study did not find
a consistent relationship between IGF-I or IGFBP-3 and
either mammographic density or breast cancer risk.
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However, more recent studies have not always con-
firmed these findings of an association between IGFBP-3
and reduced cancer risk (199–202). In the study by Severi
et al. (201), IGFBP-3 was associated with increased risk of
prostate cancer. Baglietto et al. (203) found increased
breast cancer risk correlated with IGFBP-3 levels in older
but not younger women. Allen et al. (200), in a large nested
case-control study in the European Prospective Investiga-
tion into Cancer and Nutrition (EPIC), looked into pre-
diagnostic serum concentrations of IGF-I and IGFBP-3 in
630 incident cases of prostate cancer and 630 matched
controls. The IGF-I levels were compatible with a small
increase in risk particularly for advanced-stage disease,
but no association for IGFBP-3 was observed.

More recent breast cancer studies were similarly vari-
able. Several systematic reviews and meta-analyses of both
prospective and case-control studies have been published
on the relationship between total IGF-I and IGFBP-3 con-
centrations in blood and breast cancer (204, 205). The
findings indicated an overall increase in breast cancer risk
in premenopausal women with increasing endogenous
levels of total IGF-I. There was an increase in risk between
42 and 74% for women in the highest IGF-I category vs.
women with IGF-I levels in the lowest category. No asso-
ciation was observed for postmenopausal women. For cir-
culating IGFBP-3, epidemiological studies have shown
heterogeneous relationships with the risk of any cancer,
including breast cancer. These studies (204–206) sug-
gested an overall increase in breast cancer risk with in-
creasing IGFBP-3 levels in blood in premenopausal
women, but results were less consistent than for IGF-I. No
association between IGFBP-3 and breast cancer was ob-
served for postmenopausal women.

Rinaldi et al. (207) in a large case-control study nested
within the EPIC study included 1081 incident breast can-
cers and 2098 matched control subjects. No association
between IGFBP-3 concentrations in blood and breast can-
cer risk in young women was observed. These results do
not confirm the previous suggestion that total IGF-I and
IGFBP-3 concentrations are mainly related to breast can-
cer in young women (204, 206). Some studies showed an
increase in risk with increasing blood levels of IGFBP-3
(194, 195), whereas others reported an inverse association
of IGFBP-3 concentrations with breast cancer risk (193,
200) and also with other cancers (189, 191).

Friedrich et al. (208) studied the IGF axis in nonmeta-
static colorectal cancer. They found no association be-
tween IGF-I or IGFBP-3 on mortality, whereas higher
C-peptide and lower IGFBP-1 levels were associated with
increased mortality. Fuchs et al. (209) found that among
colorectal cancer patients receiving first-line chemother-
apy, increasing levels of IGFBP-3 were associated with an

improved objective response and a prolonged time to pro-
gression. On the other hand, Wolpin et al. (210) found no
association between IGF-I or IGFBP-3 levels and mortality
in nonmetastatic colorectal cancer.

Two meta-analyses were recently published on the IGF
axis and prostate cancer risk. Roddam et al. (211) exam-
ined the IGF axis and prostate cancer risk in 12 prospective
studies including data on 3700 men with prostate cancer
and 5200 matched controls. They found that increasing
baseline levelsof circulating IGFBP-3wereassociatedwith
a significantly longer time to tumor progression and an
improved objective response to therapy. IGF-I levels were
not found to be significantly associated with these out-
comes. Rowlands et al. (212) examined data from 29 stud-
ies, both prospective and retrospective, involving 6541
men with prostate cancer. The data exhibited substantial
heterogeneity. An inverse association between IGFBP-3
levels and prostate cancer risk was found in the retrospec-
tive but not the prospective studies. The analysis did find
that IGF-I was positively associated with prostate cancer
risk, but associations between IGFBP-3 and prostate can-
cer risk were inconsistent.

In studies of benign prostate hyperplasia risk,
Neuhouser et al. (213) concluded that high IGF-I to IGFBP-3
ratio was associated with an increased risk. High IGFBP-3
levels were associated with a decreased risk of benign pros-
tate hyperplasia in men with severe symptoms.

Looking at the overall risk of mortality, Saydah et al.
(214) found no increased risk of the lowest vs. the highest
quartile for IGF-I. However, the adjusted relative hazard
of all-cause mortality for the lowest compared with the
highest quartile of IGFBP-3 was 1.57, and the trend for
risk was significant. However, there was no increased risk
of either cancer or heart disease, so their results suggest
that the association of IGFBP-3 with decreased mortality
may differ from associations with the incidence of partic-
ular diseases. The increased mortality risk of reduced
IGFBP-3 may not be due to increased cancer risk.

There are many possible reasons for the conflicting ep-
idemiological data, including age, ethnicity and racial
group differences, body adiposity and other metabolic su-
perimposed risk factors, environmental factors, endoge-
nous hormonal concentrations and hormonal therapy,
polymorphisms in the critical genes (see below), and es-
pecially problems with the unreliability of assaying these
proteins in frozen stored specimens (215). Rinaldi et al.
(216), studying breast cancer risk in young women,
showed that the strength of the association of IGFBP-3
with increased risk was dependent on the assay used.
Berrigan et al. documented that there was variability in
assay results that was dependent on the storage history of
the samples (217). They showed that quality control, sam-

Endocrine Reviews, August 2009, 30(5):417–437 edrv.endojournals.org 427

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/30/5/417/2355020 by guest on 10 April 2024



ple storage history, and other methodological concerns
result in variation in both IGF-I and IGFBP-3 assay results,
and they stressed the need for care in large studies of bi-
omarkers for cancer risk highlighting this source of het-
erogeneity in past studies of the IGF axis and cancer risk.
It has also been shown that different assays for IGFBP-3
measurements may lead to different conclusions on the
relationship of this protein with cancer (216), and it has
been speculated that different assays may measure dif-
ferent, more or less intact forms of IGFBP-3 present in
blood (216).

B. Genetic polymorphisms of IGFBP-3
The gene for IGFBP-3 is highly conserved among spe-

cies and is present as a single copy on chromosome 7p14-
p12. Several single nucleotide polymorphisms (SNPs)
have been identified in the promoter region of IGFBP-3 by
direct sequencing of genomic DNA. For the most com-
monly studied SNP at the nucleotide �202 locus (relative
to the mRNA CAP site), the genotype was highly corre-
lated to circulating level of IGFBP-3. Significantly higher
promoter activity of the A allele (at the �202 locus) com-
pared with the C allele was documented (218). The fol-
lowing relationship was observed between genotype and
circulating IGFBP-3 concentrations: AA�AC�CC. Fur-
thermore, a positive correlation was also observed be-
tween circulating retinol levels and circulating IGFBP-3
levels, and subset analysis by genotype showed that this
relationship was only present among individuals carrying
an A allele at �202 (218). Studies indicate that more than
half of the interindividual variabilities in the level of
circulating IGF-I and IGFBP-3 are genetically deter-
mined and that the polymorphic variations at the �202
site of the IGFBP-3 gene promoter mediate the level of
circulating IGFBP-3 (219 –221). Polymorphic variation
of IGFBP-3 might thus influence cancer risk. However,
conflicting results in this area are also found. Tamimi et
al. (222) reported that genetic variation in IGF-I corre-
lated with breast mammographic density, but IGFBP-3
variations did not. Cheng et al. (223) studied whether
common genetic variations in IGF-I, IGFBP-1, and
IGFBP-3 influence circulating levels of the proteins in a
cross-sectional study of a multiethnic cohort. They
found a correlation with five IGFBP-3 SNPs and circu-
lating levels of IGFBP-3 across all five racial/ethnic
groups. Thus, not only does the SNP at �202 in the
IGFBP-3 promoter alter expression of the gene, but mul-
tiple genetic variations contribute to differences in the
IGFBP-3 blood levels found.

In a study of polymorphisms in premenopausal breast
cancer, Fletcher et al. (205) found that five of eight IGF-I
studies and four of six IGFBP-3 studies of circulating levels
showed that women in the highest category had more than

twice the risk of developing breast cancer of those in the
lowest, although in some this effect was only apparent at
young ages. In postmenopausal women, however, there
was no consistent effect. For the A/C polymorphism at the
�202 locus in the IGFBP-3 promoter, all three studies
were consistent with a modest effect on circulating levels
of IGFBP-3, but no evidence of a direct effect on breast
cancer risk was seen in the only relevant study. Fletcher
et al. (205) concluded that variations within the refer-
ence range of IGF-I and IGFBP-3 may confer only mod-
est increases in breast cancer risk, and any single poly-
morphism may only account for a small proportion of
that variation. Patel et al. (224) studied common genetic
variation in the IGF-I, IGFBP-1, and IGFBP-3 genes in
relation to circulating IGF-I and IGFBP-3 levels and
breast cancer risk within the National Cancer Institute
Breast and Prostate Cancer Cohort Consortium (BPC3).
They concluded, similar to Fletcher et al. (205), that the
impact of genetic variation in igf1 and igfbp3 genes on
circulating IGF levels does not appear to substantially
influence breast cancer risk among primarily Caucasian
postmenopausal women.

X. Concluding Comment

IGFBP-3 may thus serve as an important factor in eval-
uating cancer risk, in prognosis and in the future, as a
treatment. Although epidemiological studies vary in
their conclusions about IGFBP-3 and reduced cancer
risk, many population variables and assay problems
may contribute to this lack of uniformity. However,
extensive basic science experimentation indicates a
strong benefit of IGFBP-3 for the reduction of carcino-
genesis and cancer progression. It is possible that
IGFBP-3 can be developed as a very effective therapeutic
agent for cancer patients. Current investigation in this
area has opened new horizons for our understanding of
IGFBP-3’s IGF/IGF-IR-independent actions. Much more
research needs to be done because IGFBP-3 may also hold
promise in areas of treatment where to date increased con-
centrations of cytotoxic drugs and higher dosages of irra-
diation fail to improve the response to therapy. IGFBP-3
may be able to play a unique role in instances where cur-
rent therapy fails due to the development of resistance to
apoptosis in cancer cells. Since IGFBP-3 is a highly effec-
tive proapoptotic factor in tumor cells by a variety of
mechanisms, therapy directly with exogenous IGFBP-3 or
indirectly with hormonal or other up-regulators of IG-
FBP-3 may be an important mode of cancer therapy in the
future.
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