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Type 2 diabetes mellitus is a complex metabolic disease that is caused by insulin resistance and �-cell dysfunction.
Furthermore, type 2 diabetes has an evident genetic component and represents a polygenic disease. During the
last decade, considerable progress was made in the identification of type 2 diabetes risk genes. This was crucially
influenced by the development of affordable high-density single nucleotide polymorphism (SNP) arrays that
prompted several successful genome-wide association scans in large case-control cohorts. Subsequent to the
identification of type 2 diabetes risk SNPs, cohorts thoroughly phenotyped for prediabetic traits with elaborate
in vivo methods allowed an initial characterization of the pathomechanisms of these SNPs. Although the
underlying molecular mechanisms are still incompletely understood, a surprising result of these pathomecha-
nistic investigations was that most of the risk SNPs affect �-cell function. This favors a �-cell-centric view on the
genetics of type 2 diabetes. The aim of this review is to summarize the current knowledge about the type 2
diabetes risk genes and their variants’ pathomechanisms. (Endocrine Reviews 30: 557–585, 2009)
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I. Introduction

Type 2 diabetes mellitus is characterized by chronic hy-
perglycemia due to insulin resistance of peripheral

tissues (skeletal muscle, liver, adipose tissue) and probably
also the brain and insufficient compensatory insulin se-
cretion by pancreatic �-cells (1, 2). In contrast to insulin
resistance, the decline in �-cell function is considered a late
event (3) and was shown to be, at least in part, caused by
an irreversible loss of �-cell mass (4). It is commonly ac-

cepted that type 2 diabetes results, on the one hand, from
population aging and, on the other hand, from adverse
environmental factors of the modern world (i.e., high-ca-
loric diets, physical inactivity, and a sedentary lifestyle)
which favor the development of obesity. In fact, excess
body weight represents a major risk factor for type 2 di-
abetes (5–7). However, some 10% of type 2 diabetic pa-
tients display normal weight, and many obese subjects
never develop type 2 diabetes, indicating that type 2 dia-
betes is not exclusively caused by environmental factors.

Because recent genome-wide association (GWA) studies
revealed convincing evidence for the contribution of genes to
thepathogenesisof type2diabetes (8)andsubsequentefforts
in thoroughly and uniquely phenotyped cohorts provided
first insights into these genes’ pathomechanistic roles (9), it is
the purpose of this review to summarize the currently avail-
able information about (confirmed and potential) type 2 di-
abetes risk genes and to describe the current understanding
of their pathomechanisms.

II. Genetics of Type 2 Diabetes

Type 2 diabetes clearly represents a multifactorial disease,
and several findings indicate that genetics is an important
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contributing factor. First, certain ethnic minorities and
indigenous groups with low population admixture (e.g.,
Pima Indians, Micronesians and other Pacific Islanders,
Australian Aborigines, and Mexican-Americans) show
exceptionally high type 2 diabetes prevalence (up to 21%
in Pima Indians) (10–12). Second, type 2 diabetes clusters
within families and first-degree relatives have, compared
with the general population, an up to 3.5-fold higher risk
to develop the disease (13, 14). Finally, twin studies dem-
onstrated a markedly higher concordance for type 2 dia-
betes in monozygotic compared with dizygotic twins (�70
vs. 10%) (15). Type 2 diabetes does not follow simple
Mendelian inheritance and, therefore, is considered a
polygenic disease. According to the generally accepted
common variant-common disease hypothesis (16), com-
plex diseases, such as type 2 diabetes, are caused by the
simultaneous occurrence of common DNA sequence vari-
ations (minor allele frequencies �5%) in many genes.
Each of these DNA alterations is supposed to exert only
moderate effects on the affected genes’ function and/or
expression, but in their sum, these variations confer an in-
creased susceptibility toward the adverse environmental fac-
tors mentioned above. Single nucleotide polymorphisms
(SNPs), exchanges of single base pairs, cover approximately
90% of the sequence variation within the human genome
(SNP Fact Sheet of the Human Genome Project; available at
http://www.ornl.gov/sci/techresources/Human_Genome/faq/
snps.shtml) and are therefore regarded as the major de-
terminants of the individual predisposition to complex
diseases. Thus, strong efforts are currently ongoing to map
and catalog these sequence variations (The International
HapMap Project at http://www.hapmap.org/index.html.
en). However, the less frequent copy number variations
(due to deletion and/or duplication of DNA segments one
kilobase to several megabases in size) and smaller DNA
insertions, deletions, duplications, and inversions may
also play a role. All of these findings initiated an intensive
search for the genes, or better gene variants, responsible
for the genetic predisposition to type 2 diabetes.

Two main approaches dominate the search for type 2
diabetes genes: the candidate gene approach and the
hypothesis-free GWA scan (13). Candidate genes usu-
ally arise from diverse research directions (see below).
They are combed through for common genetic variants,
and these variants’ allele frequencies are finally ana-
lyzed for being altered in type 2 diabetes cases compared
with healthy controls. Areas generating candidate genes
include:

• Basic research: a plethora of cell and mouse studies on
insulin action, insulin secretion, obesity, mitochondrial
dysfunction, etc., provided several bona fide biological
candidates. Among these, PPARG on chromosome

3p25 (17–35) and KCNJ11 on chromosome 11p15.1
(23, 28–30, 33, 34, 36–46) currently represent the best
replicated diabetes risk genes confirmed by recent
GWA studies. Another well-replicated biological can-
didate gene that was not yet confirmed by GWA studies
or large meta-analyses and, therefore, has still to be
classified as a potential diabetes risk gene is ADIPOQ
on chromosome 3q27 (25, 47–61). Other recently iden-
tified SNPs in the biological candidates SREBF1 on
chromosome 17p11.2 (62–65), PPARGC1A on chro-
mosome 4p15.1 (66–73), AHSG on chromosome
3q27.3 (74, 75), FOXO1 on chromosome 13q14.1 (76,
77), and SGK1 on chromosome 6q23 (78, 79) also ap-
pear to represent very promising potential type 2 dia-
betes risk variants that await further replication in other
populations and across different ethnicities and confir-
mation by large meta-analyses or GWA studies.

• Rodent genetics: positional cloning of genes identified
by cross-breading experiments between diabetes-prone
and diabetes-resistant mouse and rat strains and trans-
lational assessment of their role in humans represent
this approach’s rationale. Recently, with Sorcs1 (hu-
man homolog on chromosome 10q23-q25) (80, 81),
Tbc1d1 (human homolog on chromosome 4p14) (82),
and Ll (human homolog on chromosome 1q24.1) (83),
first candidate genes were reported, but their impor-
tance for human type 2 diabetes still has to be
established.

• Genetics of rare monogenic forms of human diabetes:
common variants located in or near genes, in which rare
mutations are known to exert strong effects and cause
monogenic forms of diabetes [maturity onset diabetes
of the young (MODY), Wolfram syndrome, etc.], rep-
resent plausible risk variants for the more common
form of type 2 diabetes. Such common variants with
confirmed evidence for robust association with typical
type 2 diabetes were recently identified in the HNF1B
(MODY5) gene on chromosome 17q12 (84–86) and
the WFS1 (Wolfram syndrome) gene on chromosome
4p16.1 (34, 87–89). Common variants in the HNF1A
(MODY3) gene on chromosome 12q24.31 (26, 84, 85,
90–96) and the HNF4A (MODY1) gene on chromo-
some 20q13.12 (84, 92, 96–108) have been extensively
studied, but no consistent results were obtained, point-
ing to very weak, if any, effects of these variants on type
2 diabetes risk.

• Human family linkage studies: positional cloning of
genes located between or near diabetes-linked chromo-
somal markers turned out to be difficult due to: 1) the
non-Mendelian mode of inheritance of human type 2
diabetes; and 2) the size of the chromosomal areas iden-
tified in this way that often encompass up to hundreds
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of genes. Nevertheless, common diabetes-associated vari-
ants in CAPN10 on chromosome 2q37.3 (109–118),
ENPP1 on chromosome 6q22-q23 (26, 32, 119–127),
and TCF7L2 on chromosome 10q25.3 (28–31, 34, 35,
45, 89, 128–161) were identified by this labor-intensive
approach and replicated in several populations and eth-
nicities, and were confirmed in prospective studies and
meta-analyses. TCF7L2 was additionally confirmed by
GWA studies. With an overall allelic relative risk of
1.56 (9), TCF7L2 currently represents the most con-
vincing diabetes risk gene.

The most recent and most successful approach to iden-
tify novel risk alleles is the hypothesis-free systematic
genotyping of several hundred thousand SNPs in tens of
thousands of cases and controls using high-density SNP
arrays. A substantial drop in the cost of these arrays
initiated a revolution in the genetics of complex dis-
eases. Until now, the most frequently used arrays had
approximately 500,000 SNPs spotted and covered nearly
65% of all known informative SNPs in the human genome
with r2 � 0.8 (http://www.illumina.com/downloads/
GWASArrayWhitePaper.pdf). In these GWA studies, the
frequency of all these genotyped SNPs was then compared
between cases and controls, and alleles significantly more
frequent in cases than in controls (commonly assumed
genome-wide significance level, P � 5�10�8) are consid-
ered risk alleles. In early 2007, Sladek et al. (144) were the
first not only to confirm TCF7L2, but also to identify four
novel type 2 diabetes risk loci, namely SLC30A8 (chro-
mosome 8q24.11), HHEX (chromosome 10q23.33),
EXT2 (chromosome 11p12-p11), and the hypothetical
gene LOC387761 (chromosome 11p12) using this meth-
odology. Among these, SLC30A8 (28–30, 34, 46, 89,
162–166) and HHEX (28–31, 34, 46, 161, 163, 164,
167–171) could be confirmed as diabetes risk genes in
several subsequent case-control and prospective studies,
whereas the association of variants in or near EXT2 (31,
46, 166, 169) and LOC387761 (46, 166) with type 2 di-
abetes could not be replicated. Using SNP arrays, FTO on
chromosome 16q12.2 was the next gene to be character-
ized as a reliable obesity and type 2 diabetes risk gene (28,
30, 31, 34, 35, 89, 162, 163, 169, 172, 173). Just a few
months later, three back-to-back publications not only
reported replication and, thus, confirmation of HHEX,
SLC30A8, TCF7L2, FTO, KCNJ11, and PPARG, but
also revealed, by GWA analysis, three novel diabetes risk
loci: CDKAL1 (chromosome 6p22.2), IGF2BP2 (chro-
mosome 3q27.2), and a genomic region between
CDKN2A and CDKN2B on chromosome 9p21 (28–30).
Robust replication of these new loci was provided shortly
after (31, 34, 35, 46, 89, 161–164, 166, 167, 169,
174–178).

In 2008, a meta-analysis of GWA scans with data from
a total of approximately 60,000 subjects delivered six
additional risk loci with probably low effect sizes (odds
ratios, 1.09 –1.13), i.e., JAZF1 (chromosome 7p15.2-
p15.1), THADA (chromosome 2p21), ADAMTS9 (chro-
mosome 3p14.1), NOTCH2 (chromosome 1p13-p11),
and two intergenic regions, one between CDC123 and
CAMK1D on chromosome 10p13 and another between
TSPAN8 and LGR5 on chromosome 12q21-q22 (33).
Among these, only JAZF1, ADAMTS9, and NOTCH2
could be verified in two prospective studies up to now (34,
89). Very recently, confirmed diabetes risk alleles of
KCNQ1 on chromosome 11p15.5 were reported in Asian
GWA studies that also included European replication co-
horts (177, 179, 180). Finally, a meta-analysis of 13 GWA
scans (�83,000 subjects) revealed common variation in
the MTNR1B gene on chromosome 11q21-q22 that con-
fers an increased risk for type 2 diabetes (181), and this
was verified in cross-sectional and prospective studies
published back to back (182, 183).

All of these genetic research efforts of the last decade
have led to the identification of at least 27 (confirmed and
potential) type 2 diabetes susceptibility genes, and their
time-course of discovery or initial publication is depicted
in Fig. 1.

III. Gene Variants Affecting Insulin Secretion

Insulin secretion is regulated by different humoral stimuli
that activate respective molecular pathways within pan-
creatic �-cells. The two most important physiological
stimuli are glucose and incretins. Glucose triggers insulin
release via a complex series of cellular events (184): glu-

FIG. 1. Time-course of the discovery/initial publication of confirmed
and potential type 2 diabetes risk genes. The numbers of genes
identified by candidate gene approaches are represented by white
bars and those of genes derived from GWA studies by black bars.
Confirmed risk genes are given in black letters and potential risk genes
in gray letters.
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cose is taken up via glucose transporters, phosphorylated
by glucokinase, and metabolized via the glycolytic path-
way and the tricarboxylic acid cycle; during glucose ca-
tabolism, ATP is generated that causes closure of the ATP-
sensitive potassium channel; this provokes membrane
depolarization and subsequent opening of a voltage-de-
pendent calcium channel; calcium influx raises the cyto-
solic calcium concentration, and this promotes exocytosis
of insulin granules. Incretins, like glucagon-like peptide 1
(GLP-1) and gastric inhibitory polypeptide (GIP), enhance
(in the presence of glucose) insulin secretion via binding to
specific G protein-coupled transmembrane receptors; this
activates adenylyl cyclase and leads to cAMP formation;
cAMP activates protein kinase A, which in turn mediates
induction of the insulin gene and exocytosis of insulin
granules (185).

It has been hypothesized for a while that individual
differences in insulin secretion capacity are predominantly
determined by genetics (186, 187). This is now clearly
strengthened by the finding that, among the 27 confirmed
(Table 1) and potential (Table 2) diabetes risk genes men-
tioned above, 18 genes affect �-cell function, namely
CAPN10 (188), CDC123/CAMK1D (189), CDKAL1
(166, 174, 190–193), CDKN2A/B (34, 167, 193),
ENPP1 (194), FOXO1 (77), HHEX (167, 190, 193, 195,
196), IGF2BP2 (34, 166, 167), JAZF1 (189), KCNJ11
(38, 41, 193), KCNQ1 (180, 197), MTNR1B (181–183),
PPARGC1A (198), SGK1 (79), SLC30A8 (34, 166),
TCF7L2 (129, 134, 138, 160, 193, 199, 200), TSPAN8/
LGR5 (189), and WFS1 (201–203). This was revealed by
calculating fasting state- and oral glucose tolerance test
(OGTT)-derived (plasma insulin- and C-peptide-based)
surrogate indices for insulin secretion that do not allow
further dissection of the aspects of �-cell function affected,
such as insulin maturation, glucose sensitivity, or incretin
sensitivity. From these rough estimates of �-cell function,
pathomechanisms showing how these common gene vari-
ants impair �-cell function were only proposed for the bio-
logical candidates KCNJ11, FOXO1, and SGK1, which
have been well studied in vitro as well as in mice in vivo.

KCNJ11 (potassium inwardly-rectifying channel, sub-
family J, member 11; OMIM entry no. 600937) encodes
the pore-forming subunit Kir6.2 of the ATP-sensitive po-
tassium channel of �-cells, which couples glucose sensing
with membrane depolarization and exocytosis of insulin
granules. The best studied and confirmed diabetes risk
variant E23K (rs5219) was shown in vitro to increase the
probability of the channel’s open state, to enhance its ac-
tivity, and to impair its ATP sensitivity, thereby inhibiting
�-cell excitability and insulin release (204, 205). Further-
more, the same variant was suggested to impair insulin
secretion due to its enhanced response to the channel-ac-

tivating effect of intracellular acyl coenzyme As, fatty acid
metabolites known to be elevated in obese and type 2
diabetic subjects (206).

By scanning the FOXO1 (forkhead box O1; OMIM
entry no. 136533) locus for common genetic variation
associated with prediabetic traits, we very recently iden-
tified two weakly linked intronic SNPs (rs2721068 and
rs17446614; r2 � 0.5) that were associated with reduced
insulin secretion (77). The FOXO1 gene encodes a tran-
scription factor of the forkhead box family, and its prod-
uct FoxO1 is known to mediate insulin actions in liver,
skeletal muscle, and adipose tissue (207). In addition,
FOXO1 is expressed in pancreatic �-cells, and FoxO1’s
nuclear localization exerts inhibitory effects on insulin
resistance-induced �-cell mass expansion and �-cell pro-
liferation via repression of PDX1 (208–210). Insulin- or
incretin-stimulated activation of the serine/threonine ki-
nase Akt, via insulin receptor substrate 2 and phosphati-
dylinositol 3�-kinase, promotes FoxO1 phosphorylation
and nuclear exclusion followed by PDX1 induction (209,
211–213). PDX1 expression stimulates �-cell prolifera-
tion and function (214). Due to this central function of
FoxO1 within pancreatic �-cells, it appears obvious that
the aforementioned SNPs (probably affecting FOXO1 ex-
pression) exert direct effects inside the �-cell, although
their molecular functionality remains to be proven.

The biological candidate and potential diabetes risk
gene SGK1 (serum/glucocorticoid-regulated kinase 1;
OMIM entry no. 602958) encodes the ubiquitously ex-
pressed serine/threonine kinase Sgk1 which displays high-
est expression levels in the pancreas (215). Sgk1 partici-
pates in glucose homeostasis by regulating cellular glucose
transport (216–219), insulin signaling (220), and insulin
secretion (221, 222). In �-cells, Sgk1 stimulates the activ-
ity of voltage-gated potassium channels, which in turn
reduces calcium influx and inhibits insulin release (221).
Another Sgk1-dependent molecular mechanism that im-
pairs insulin secretion is activation of the sodium/potas-
sium ATPase during plasma membrane repolarization
(222). In support of these functions in �-cells, a SNP in the
3�-flanking region of the SGK1 gene (rs9402571) was re-
cently shown to affect insulin secretion and diabetes risk
in different European populations (79).

A. SNP effects on glucose-stimulated insulin secretion
The procedures best suited to assess glucose sensitivity

of insulin secretion in vivo are measurement of plasma
insulin, or even better C-peptide (insulin is rapidly cleared
by the liver), levels during a frequently sampled iv glucose
tolerance test or a hyperglycemic clamp. These state-of-the
art methods allow determination of the individual’s insu-
lin secretion capacity in response to glucose and in the
absence of interfering incretin effects. Based on these tech-
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TABLE 1. Effects of SNPs in confirmed type 2 diabetes genes on prediabetic traits

Gene Chr.
Tissue expression (reproductive

system not included)
Variants (app. RAF in

Europeans) Risk allele effects

ADAMTS9 3 Skeletal muscle, breast, thymus,
kidney, prostate, pancreas, heart,
lung, spinal cord, brain, all fetal
tissues

rs4607103 (80%) Unknown

CAPN10 2 Thymus, colon, bladder, brain, spleen,
prostate, skeletal muscle, pancreas,
heart, lymph node, lung, kidney

rs3792267 (70%), rs3842570
(40%), rs5030952 (90%)

Glucose-stimulated insulin secretion2;
proinsulin conversion2; whole-body
insulin sensitivity2

CDC123/CAMK1D 10 Bone marrow, smooth muscle, kidney,
prostate, colon, bladder, spleen,
lung, lymph node, skin, breast,
brain, liver, thymus/skin, retina,
spleen, skeletal muscle, lung

rs12779790 (20%) Insulin secretion2

CDKAL1 6 Bone marrow, breast, liver, spleen,
prostate, retina, brain, lung, kidney,
thymus, pancreas, skeletal muscle

rs7754840 (30%) Glucose-stimulated insulin secretion2;
proinsulin conversion2

CDKN2A/CDKN2B 9 Ubiquitous/bladder, colon, lung,
spleen, skin, liver, breast, skeletal
muscle, prostate, kidney, brain,
pancreas, adipose tissue

rs10811661 (80%) Glucose-stimulated insulin secretion2

ENPP1 6 Thyroid gland, kidney, skeletal muscle,
breast, liver, skin, thymus, salivary
gland, brain capillaries

rs1044498/K121Q (10%) Whole-body insulin sensitivity2;
insulin secretion2

FTO 16 Brain, pancreas, skeletal muscle,
prostate, retina, heart, skin, breast,
lung, kidney, liver, thymus, fetal
brain, fetal kidney, fetal liver

rs8050136 (40%), rs9939609
(40%)

Overall fat mass1; energy intake1;
cerebrocortical insulin sensitivity2

HHEX 10 Thyroid gland, brain, lymph node,
spleen, liver, lung, kidney, breast,
pancreas, thymus, skin, prostate,
fetal pancreas

rs7923837 (60%) Glucose-stimulated insulin secretion2

HNF1B 17 Colon, kidney, liver, thymus, retina,
pancreas, prostate, lung

rs757210 (40%) Unknown

IGF2BP2 3 Smooth muscle, colon, lung, retina,
skeletal muscle, skin, kidney,
thymus, fetal liver, fetal brain,
pancreas

rs4402960 (30%) Glucose-stimulated insulin secretion2

JAZF1 7 Lymph node, retina, pancreas,
thymus, brain, skin, liver, skeletal
muscle, lung, spleen, prostate

rs864745 (50%) Insulin secretion2

KCNJ11 11 Pancreas, heart, pituitary gland,
skeletal muscle, brain, smooth
muscle

rs5219/E23K (50%) Insulin secretion2; glucose-dependent
suppression of glucagon secretion2

KCNQ1 11 Thyroid gland, bone marrow,
prostate, heart, pancreas, lung,
thymus, skin, liver, kidney

rs2237892 (90%), rs151290
(80%)

Insulin secretion2; incretin secretion2

MTNR1B 11 Retina, brain, pancreas rs10830963 (30%), rs10830962
(40%), rs4753426 (50%)

Glucose-stimulated insulin secretion2

NOTCH2 1 Lung, skin, thyroid gland, skeletal
muscle, smooth muscle, kidney,
bladder, lymph node, breast, colon,
prostate, spleen, brain, thymus,
heart, liver, pancreas

rs10923931 (10%) Unknown

PPARG 3 Adipose tissue, colon, lung, kidney,
breast, spleen, skin, prostate, bone
marrow, brain, skeletal muscle, liver

rs1801282/P12A (80%) Whole-body insulin sensitivity2;
adipose tissue insulin sensitivity2;
insulin clearance2

SLC30A8 8 Pancreas, kidney, lung, breast,
amygdala

rs13266634/R325W (70%) Glucose-stimulated insulin secretion2;
proinsulin conversion2

TCF7L2 10 Brain, lung, bone marrow, thyroid
gland, colon, pancreas, skin, breast,
kidney, liver, thymus, prostate

rs7903146 (30%), rs12255372
(30%), rs7901695 (30%)

Incretin-stimulated insulin secretion2;
proinsulin conversion2; whole-body
insulin sensitivity2; hepatic insulin
sensitivity2

(Continued)
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niques, it was demonstrated that glucose sensitivity of
�-cells is influenced by variants in CAPN10 (223),
CDKAL1 (192, 224), CDKN2A/B (167), HHEX (195,
225), IGF2BP2 (167, 224), MTNR1B (182, 226), and
SLC30A8 (195, 227).

Three unlinked intronic polymorphisms in CAPN10
(calpain 10; OMIM entry no. 605286), i.e., SNP
rs3792267 (formerly UCSNP-43), the insertion/deletion
polymorphism rs3842570 (formerly UCSNP-19), and
SNP rs5030952 (formerly UCSNP-63), as well as haplo-
type combinations thereof probably confer a modest risk
of type 2 diabetes. Themost investigatedconfirmeddiabetes
risk SNP rs3792267 was shown to alter glucose-stimulated
insulin secretion (223), and it is conceivable that this is me-
diated by altered CAPN10 expression. Calpain 10 is an im-
portantmolecule inperipheralglucose-sensingcellsaswellas
in pancreatic �-cells (228). It belongs to the calcium-depen-
dent papain domain-containing family of cysteine proteases
(228). In �-cells, calpain 10 overexpression enhances insulin
secretion (229). Molecularly, calpain 10 was suggested to
function as a calcium sensor that, upon increments in cyto-
solic calcium, triggers actin reorganization and stimulates
exocytosis of insulin granules by proteolytic cleavage of syn-
aptosomal-associated protein of 25 kDa, an essential com-

ponent of the granule/target membrane docking and fusion
machinery (229, 230).

In recent GWA studies, the HHEX (hematopoietically
expressed homeobox; OMIM entry no. 604420) locus
was newly identified and confirmed as a diabetes risk lo-
cus, and a SNP (rs7923837) located in the 3�-flanking
region of the gene was subsequently found to associate
with glucose-stimulated insulin secretion (195, 225).
HHEX encodes a transcription factor that is expressed in
the embryonic ventral-lateral foregut that gives rise to the
ventral pancreas and the liver (231). Hhex knockout in
mice was shown to impair proliferation of endodermal
epithelial cells, positioning of ventral foregut endoderm
cells relative to the mesoderm, and budding and morpho-
genesis of the ventral pancreas (231). This genetic manip-
ulation finally provoked lethality during mid-gestation
(231). Although its functionality remains to be estab-
lished, the association of SNP rs7923837 with differences
in glucose-stimulated insulin release could arise from mild
alterations in the embryonic organogenesis of the ventral
pancreas. This suggestion, however, awaits further phys-
iological and molecular clarification.

SLC30A8 [solute carrier family 30 (zinc transporter),
member 8; OMIM entry no. 611145] displays prominent

TABLE 2. Effects of SNPs in selected potential type 2 diabetes genes on prediabetic traits

Gene Chr.
Tissue expression (reproductive

system not included)
Variants (app. RAF in

Europeans) Risk allele effects

ADIPOQ 3 Adipose tissue, heart, breast, thymus,
brain, kidney

rs266729 (30%), rs2241766 (20%),
rs1501299 (70%)

Whole-body insulin sensitivity2

AHSG 3 Liver, breast, skeletal muscle, brain rs2077119 (50%) Adipose tissue insulin sensitivity2
FOXO1 13 Lymph node, retina, bladder, kidney,

bone marrow, thyroid gland, skin,
pancreas, prostate, liver, lung,
skeletal muscle, brain, heart,
thymus, breast

rs2721068 (30%), rs17446614
(20%)

Insulin secretion2

PPARGC1A 4 Liver, kidney, colon, heart, lung,
skeletal muscle, brain, pancreas,
thymus, prostate

rs8192678/G482S (40%) Whole-body insulin sensitivity2;
insulin secretion2

SGK1 6 Ubiquitous rs9402571 (80%) Insulin secretion2
SREBF1 17 Thymus, brain, prostate, skin, retina,

bladder, pancreas, thyroid gland,
breast, kidney, lung, spleen,
adipose tissue, adrenal gland

rs1889018 (30%) Whole-body insulin sensitivity2

Genes are listed in alphabetical order. Chr., Chromosome; RAF, risk allele frequency.

TABLE 1. Continued

Gene Chr.
Tissue expression (reproductive

system not included)
Variants (app. RAF in

Europeans) Risk allele effects

THADA 2 Ubiquitous rs7578597/T1187A (90%) Unknown
TSPAN8/LGR5 12 Spinal cord, colon, skeletal muscle,

prostate, liver, lung, pancreas,
kidney/skeletal muscle, skin, brain,
spinal cord

rs7961581 (30%) Insulin secretion2

WFS1 4 Ubiquitous rs10010131 (60%) Incretin-stimulated insulin secretion2

Genes are listed in alphabetical order. Chr., Chromosome; RAF, risk allele frequency.
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expression in the pancreas, and its product ZnT-8 acts as
a zinc transporter in the secretory granules of �-cells pro-
viding zinc for insulin maturation and storage (232, 233).
This important molecular function, together with the con-
firmed association of the SLC30A8 variant R325W
(rs13266634) with type 2 diabetes, renders this gene a very
plausible candidate for �-cell dysfunction. In keeping with
this, implication of the R325W variant in glucose-stimu-
lated insulin secretion could clearly be demonstrated (195,
227). Interestingly, the same authors reported lack of as-
sociation with insulin secretion as measured during an
OGTT. Thus, R325W could also exert additional insulin
secretion-modulating effects that mask this variant’s di-
rect effect on glucose-stimulated insulin secretion. These
alternative mechanisms remain to be established.

Although confirming in vivo data are still lacking, a
study published in 2008 provided convincing ex vivo ev-
idence that the potential type 2 diabetes risk SNP
rs8192678 in the PPARGC1A (peroxisome proliferator-
activated receptor �, coactivator 1 �; OMIM entry no.
604517) gene, which encodes the amino acid exchange
G482S in this gene’s product PGC-1�, markedly reduces
human pancreatic islet PPARGC1A expression and con-
comitantly impairs glucose-stimulated insulin secretion
(198). The mechanistic relevance of PGC-1� for insulin
secretion of human pancreatic islets was proven by down-
regulation of PPARGC1A expression using RNA inter-
ference (198). The effect of the G482S variant on glucose-
stimulated insulin secretion was explained by the role of
PGC-1� as a central regulator of mitochondrial function
(Ref. 234 and Section IV) and the importance of mito-
chondrial ATP formation for stimulus-secretion coupling
in �-cells (235).

The molecular pathways by which the novel GWA-
derived confirmed diabetes risk SNPs in or near CDKAL1
(rs7754840), IGF2BP2 (rs4402960), CDKN2A/B
(rs10811661), and MTNR1B (rs10830963, rs10830962,
rs4753426) affect glucose-stimulated insulin secretion, as
reported (167, 182, 192, 224, 226), are currently unclear
due to these genes’ broad expression profile and/or un-
known pancreas-specific functions.

B. SNP effects on incretin sensitivity or incretin secretion
The secretory response of pancreatic �-cells is markedly

enhanced by incretins. Thus, both incretin production/
release by enteroendocrine cells and incretin signaling
in �-cells represent important determinants of insulin
secretion.

Recently, two moderately linked intronic SNPs
(rs7903146 and rs12255372; r2 � 0.7) in the confirmed
diabetes risk gene TCF7L2 [transcription factor 7-like 2
(T-cell-specific, HMG-box); OMIM entry no. 602228]
were shown to affect GLP-1 responsiveness of �-cells, as

evidenced by a hyperglycemic clamp combined with
GLP-1 infusion (199). This was confirmed by comparison
of the effect of the representative SNP rs7903146 on in-
sulin secretion upon an oral vs. an iv glucose load (200).
Plasma GLP-1 levels were not different between the ge-
notypes (199, 200). TCF7L2 encodes a component of the
bipartite transcription factor complex �-catenin/tran-
scription factor 7-like 2 that is involved in the Wnt sig-
naling pathway (236). Using knockdown by RNA inter-
ference and overexpression by transfection, it was
demonstrated, in human and murine islets, that TCF7L2
is required for �-cell survival and �-cell proliferation as
well as for glucose- and incretin-stimulated insulin secre-
tion (237). Furthermore, expression of the insulin gene
was found to strongly correlate with TCF7L2 expression
(200) and was decreased after TCF7L2 knockdown, sug-
gesting that the insulin gene represents a direct target gene
of transcription factor 7-like 2 (238). Importantly, novel
results of Maedler’s group (239) revealed that the expres-
sion of GLP-1 and GIP receptors in human islets likewise
depends on the presence of transcription factor 7-like 2
providing a plausible explanation for this gene’s involve-
ment in incretin responsiveness of �-cells.

Using the hyperglycemic clamp method combined with
GLP-1 infusion, we could very recently show also that an
intronic SNP (rs10010131) in the confirmed diabetes risk
gene WFS1 [Wolfram syndrome 1 (wolframin); OMIM
entry no. 606201] affects GLP-1-induced insulin secretion
(203). Again, this was not associated with altered plasma
incretin levels (203). Although the molecular role of the
ubiquitously expressed WFS1 gene in incretin responsive-
ness is far from being understood, its product wolframin
clearly controls �-cell functions: Wfs1 knockout mice de-
velop glucose intolerance and overt diabetes due to in-
creased �-cell endoplasmic reticulum stress, reduced �-cell
proliferation, progressive apoptotic �-cell loss, and hence
insufficient insulin secretion (240–242).

Confirmed diabetes risk SNPs in the KCNQ1 (potas-
sium voltage-gated channel, KQT-like subfamily, member
1; OMIM entry no. 607542) gene were recently found to
associate with insulin secretion after an OGTT, but not an
iv glucose tolerance test (197). Interestingly, one of these
intronic SNPs (rs151290) was the first diabetes risk vari-
ant described to affect plasma GIP and GLP-1 levels (197).
Whether this gene’s product, a voltage-gated potassium
channel, plays a role in incretin production/secretion of
enteroendocrine cells remains to be shown in mouse mod-
els and in vitro experiments.

C. SNP effects on proinsulin conversion
The insulin gene encodes a monomeric precursor pro-

tein called proinsulin that comprises, from the N to the C
terminus, the insulin B-cain sequence, the C-peptide, and
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the A-chain sequence. During insulin maturation in the
endoplasmic reticulum and Golgi complex, proinsulin is
cleaved by proprotein convertases 1 and 2 and car-
boxypeptidase E and converted into the mature het-
erodimeric insulin molecule consisting of one A- and one
B-chain (and C-peptide produced in equimolar ratios)
(243). Only a small part (�10%) of the newly synthesized
proinsulin escapes from this conversion process and gets
into the circulation upon �-cell degranulation. The plasma
proinsulin-to-insulin ratio therefore represents an esti-
mate for the efficiency of proinsulin conversion.

First evidence of the existence of gene variants that de-
termine the individual’s efficiency of insulin maturation
came from studies on the CAPN10 gene (see Section
III.A): using the poststimulus proinsulin-to-insulin ratio
assessed during a hyperglycemic clamp, it was demon-
strated that the genotype of SNP rs3792267 is associated
with proinsulin conversion (223). With proinsulin-to-in-
sulin ratios derived from the fasting state or an OGTT,
also SNPs in the TCF7L2 (158, 244–246), SLC30A8
(245), and CDKAL1 (245) loci were shown to affect pro-
insulin conversion. A suggestion about how these genes
are involved in the insulin maturation process is up to now
only available for TCF7L2 (see Section III.B): the genes
encoding proprotein convertase 1 and 2 (PCSK1 and
PCSK2) contain bona fide binding sites for transcription
factor 7-like 2 in their promoters (244).

IV. Gene Variants Affecting Insulin Sensitivity

Insulin resistance provokes a critical challenge for the pan-
creatic �-cell that has to be compensated for by increments
in insulin secretion to maintain normoglycemia. Thus, ge-
netically determined �-cell defects may only become ap-
parent in the presence of insulin resistance (9, 247). Insulin
resistance is therefore considered an early and crucial step
in the pathogenesis of type 2 diabetes. Undoubtedly, in-
sulin resistance is strongly associated with obesity. Al-
though the cause-effect relationship is far from being clear,
insulin resistance is often suggested to result from obesity
and to be predominantly caused by environmental factors,
such as high-caloric diet and/or physical inactivity (248,
249). However, the genetic investigations of the last 10 yr
revealed that certain gene variants impair insulin sensitiv-
ity without influencing the overall fat mass. Recent ad-
vances in the field, mainly based on candidate gene ap-
proaches, also strengthen the role of genetics in the
establishment of insulin resistance.

Among the confirmed and potential type 2 diabetes risk
genes described in Tables 1 and 2, eight genes influence
whole-body or peripheral insulin sensitivity: ADIPOQ (47,
52, 250–257), AHSG (75, 258), CAPN10 (259–264),

ENPP1 (265–271), PPARG (272–283), PPARGC1A (284,
285), SREBF1 (65), and TCF7L2 (133, 151, 286, 287).

A. SNP effects on peripheral insulin sensitivity
Whole-body insulin sensitivity can be assessed either by

using rough estimates derived from plasma glucose and
insulin levels in the fasting state or, more state of the art,
by calculating (plasma glucose- and insulin-based) indices
derived from an OGTT or a hyperinsulinemic-euglycemic
clamp. The measurement of tissue-specific insulin sensi-
tivity is more intricate and requires tracer methods with
stable isotopes or ex vivo investigations using freshly iso-
lated tissue specimens.

The most intensely studied and confirmed diabetes risk
SNP (rs1801282) with clear and obesity-independent effects
on whole-body insulin sensitivity (272–283) is located in
exon 2 of the PPARG (peroxisome proliferator-activated
receptor �; OMIM entry no. 601487) gene and results in the
amino acid exchange P12A. PPARG encodes the lipid-acti-
vated nuclear receptor and transcription factor peroxisome
proliferator-activated receptor � (PPAR�). Two isoforms
were described, PPAR�1 and PPAR�2, that are formed by
alternative promoter usage and divergent splicing (288).
Whereas PPAR�1 is expressed in a number of tissues and
cell types at moderate levels, the expression of PPAR�2 is
prominent in, but also largely restricted to, adipose tissue,
where it represents a master regulator of fat cell differen-
tiation (289). Because exon 2, harboring the P12A variant,
is only present in the PPAR�2-encoding transcript, it ap-
pears more than plausible that this variant exerts its insu-
lin-sensitizing effect directly inside adipose tissue. That
PPAR� is a central mediator of whole-body insulin sensi-
tivity was clearly supported by the finding that PPAR� is
the specific molecular target of thiazolidinediones, a clin-
ically relevant class of insulin-sensitizing drugs (290, 291).
The major allele of P12A, representing the risk allele, was
shown to have a higher affinity to PPAR response elements
and a higher ability to transactivate responsive promoters
(272). How such a gain-of-function mutation can be rec-
onciled with reduced antilipolytic insulin sensitivity of ad-
ipose tissue (275) is still a matter of debate. Nevertheless,
increased release of fatty acids as a consequence of im-
paired adipose tissue insulin sensitivity represents an at-
tractive molecular mechanism of this SNP because fatty
acids are well known to impair insulin sensitivity of skel-
etal muscle and liver (292, 293).

The nonsynonymous confirmed diabetes risk SNP
K121Q (rs1044498) in the ENPP1 (ectonucleotide pyro-
phosphatase/phosphodiesterase 1; OMIM entry no.
173335) gene represents a functional variant with repli-
cated effects on whole-body insulin sensitivity (265–271).
ENPP1 encodes a class II transmembrane glycoprotein
that is identical to nucleotide diphosphatase (EC 3.6.1.9),
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phosphodiesterase I (EC 3.1.4.1), and plasma cell glyco-
protein 1 (PC-1). PC-1 was reported to directly interact
with the insulin receptor �-subunit and to inhibit the in-
sulin receptor tyrosine kinase activity in human cells
(294–297). Moreover, Enpp1 overexpression in rodents
provokes insulin resistance and hyperglycemia in vivo
(298, 299). Finally, the PC-1 content of skeletal muscle
and adipose tissue was shown to negatively correlate with
whole-body insulin sensitivity and insulin receptor ty-
rosine kinase activity in humans (300, 301). The finding
that the K121Q amino acid exchange results in a PC-1
molecule with stronger inhibitory effects on the insulin
receptor tyrosine kinase (302) provides a plausible expla-
nation for the reported SNP effects.

SNPs in CAPN10 affect glucose-stimulated insulin se-
cretion and proinsulin conversion (see Sections III.A and
III.C). In addition, the CAPN10 SNPs rs3792267,
rs3842570, and rs5030952 affect whole-body insulin sen-
sitivity (259–264). In accordance with this clinical obser-
vation, the risk allele of SNP rs3792267 was shown in
Pima Indians to associate with reduced CAPN10 mRNA
levels in skeletal muscle (259, 303). Furthermore, phar-
macological inhibition (304) and RNA interference-me-
diated knockdown (305) of calpain-10 in human skel-
etal muscle cells blocked insulin-stimulated glucose
uptake downstream of Akt without affecting glycogen
synthesis. Because calpain-10 is necessary to reorganize
actin filaments and to stimulate exocytosis of intracel-
lular vesicles, as was shown in pancreatic �-cells (see
Section III.A) and 3T3-L1 adipocytes (306), impaired
CAPN10 expression was suggested to prevent the exo-
cytosis of glucose transporter 4-containing vesicles,
thus provoking insulin resistance of skeletal muscle and
adipose tissue glucose uptake (307).

The ADIPOQ (adiponectin, C1Q, and collagen do-
main containing; OMIM entry no. 605441) gene encodes
the adipocyte-derived hormone (adipokine) adiponectin.
Adiponectin has potent antisteatotic, insulin-sensitizing,
antiinflammatory, and atheroprotective properties (308),
and its plasma levels are inversely correlated with overall
and, in particular, visceral fat mass (309–313). Adiponec-
tin’s antisteatotic and insulin-sensitizing effects in skeletal
muscle and liver were shown in vitro as well as in mice in
vivo to be mediated by 1) the AMP-activated protein ki-
nase/acetyl-coenzyme A carboxylase/carnitin-palmitoyl
transferase 1 pathway that enhances fatty acid import into
mitochondria, and 2) peroxisome proliferator-activated
receptor � activation that induces the expression of
�-oxidative genes (314–317). The diabetes risk alleles of
several SNPs located within the promoter region (with
SNP rs266729 being the best explored), of the silent SNP
rs2241766 in exon 2, and of SNP rs1501299 in intron 2

associate with decreased plasma adiponectin levels (48,
52, 57, 318–322). In line with the aforementioned mo-
lecular data from mouse and in vitro studies, hypoadi-
ponectinemia due to these SNPs is associated with reduced
whole-body insulin sensitivity (47, 52, 251, 255, 256).

The potential type 2 diabetes risk variant G482S
(rs8192678) of the PPARGC1A gene (see Section III.A)
was reported to decrease whole-body insulin sensitivity
(284, 285) and to diminish exercise-induced increments in
aerobic physical fitness (285). PGC-1�, the PPARGC1A
gene product, is an important coactivator of nuclear re-
ceptors, such as estrogen-related receptor � and peroxi-
some proliferator-activated receptor �, and, via these tran-
scription factors, controls the expression of genes involved
in oxidative phosphorylation and �-oxidation (323–325).
In consequence of these gene-regulatory events, PGC-1�

modulates mitochondrial activity, mitochondriogenesis,
and the fiber-type composition of skeletal muscle (234).
Thus, the impact of SNP G482S on aerobic physical fitness
reflects the importance of PGC-1� for mitochondrial func-
tion of skeletal muscle. The growing body of evidence
pointing to a close connection between mitochondrial dys-
function, excess intramyocellular lipid deposition, and in-
sulin resistance (326, 327) finally provides a plausible ra-
tionale for the effect of this SNP on insulin sensitivity.

We recently reported that several tagging SNPs, cover-
ing the complete common genetic variation (with r2 � 0.8)
in the potential diabetes risk locus AHSG (�2-HS-glyco-
protein; OMIM entry no. 138680), are functional insofar
as they determine the plasma concentration of this gene’s
product �2-HS-glycoprotein, the human homolog of an-
imal fetuin-A (328). Plasma �2-HS-glycoprotein levels are
positively associated with whole-body insulin resistance
and ectopic lipid deposition in the liver, the main site of its
production (329, 330). Furthermore, SNP rs2077119 in
the promoter region of the gene, probably affecting this
gene’s transcription rate, was shown to confer a reduction
in adipose tissue insulin sensitivity, as evidenced by an
impairment of insulin-stimulated lipogenesis and insulin-
suppressed lipolysis (75, 258). At least two of �2-HS-
glycoprotein’s properties could explain this SNP’s inter-
ference with insulin signaling in the adipocyte: first,
�2-HS-glycoprotein directly binds the insulin receptor
and inhibits the receptor’s tyrosine kinase activity (331–
335); and second, �2-HS-glycoprotein decreases the ex-
pression of the insulin-sensitizing adipokine adiponectin
probably via induction of an inflammatory response in
adipocytes and macrophages (336). How SNP rs2077119
ultimately affects adipose tissue insulin sensitivity remains
to be molecularly elucidated.

A recent report in the literature also provided first ev-
idence that the intronic SNP rs1889018 in the potential
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type 2 diabetes risk gene SREBF1 (sterol regulatory element-
binding transcription factor 1; OMIM entry no. 184756),
encoding the transcription factors sterol regulatory element-
binding protein 1a and 1c, alters whole-body insulin sen-
sitivity (65). Both gene products arise from the differential
use of alternative transcription start sites and display
broad tissue expression including all insulin-sensitive tis-
sues (337). Although these transcription factors appear to
play an essential role in lipogenesis (337) and insulin-de-
pendent gene regulation (337–342), the exact molecular
mechanism by which SNP rs1889018 impairs insulin sen-
sitivity is still unknown.

Interestingly, SNPs in TCF7L2 that were convincingly
shown to affect �-cell function (see Sections III.B and
III.C) concomitantly appear to influence whole-body
(133, 151, 286) and hepatic insulin sensitivity (287). The
molecular pathways underlying this observation are to
date unclear, and future work should shed more light on
this issue.

B. SNP effects on insulin clearance
The main sites of insulin clearance are the insulin-de-

grading, enzyme-expressing organs liver and kidney
(343). Insulin clearance can be measured in vivo using
C-peptide- and insulin-based indices from the hyperinsu-
linemic-euglycemic clamp (reflecting hepatic and periph-
eral insulin clearance) or from the OGTT or hyperglyce-
mic clamp (both reflecting predominantly hepatic insulin
extraction). The only SNP currently known to affect in-
sulin clearance, as assessed with all three methods, is the
P12A variation in the PPARG gene (see Section IV.A)
(344). Because this SNP most probably exerts a direct role
in adipose tissue, the idea of metabolic and/or humoral
cross-talk between adipose tissue and the liver appears
very attractive (344). In this respect, adipose tissue-derived
fatty acids represent promising candidate mediators of this
SNP’s effect on insulin clearance because 1) P12A affects
adipose tissue lipolysis (275), and 2) fatty acids promote he-
patic steatosis and hepatic insulin resistance, which are close
inverse correlates of hepatic insulin clearance (345).

C. SNP effects on cerebrocortical insulin sensitivity
A growing body of evidence indicates that the brain

belongs to the insulin-sensitive organs, and insulin recep-
tor expression was detected in the olfactory bulb, hypo-
thalamus, cerebral cortex, cerebellum, and hippocampus
(346,347).Elegant studies in rodentmodelsdemonstrated
that insulin blocks the release of orexigenic and stimulates
the release of anorexigenic neuropeptides from hypotha-
lamic neurons of the arcuate nucleus, thus inducing satiety
and inhibiting food intake (348). Moreover, insulin ap-
pears to be involved in the regulation of neuronal survival,

learning, and memory (349). In humans, we were recently
able to show that insulin stimulates cerebrocortical activ-
ity, as measured by magnetoencephalography, in lean, but
not in obese, subjects (350). These data point to a potential
modulation of cerebrocortical functions, such as vision,
audition, touch, or control of voluntary movements, by
insulin, and they demonstrate that cerebrocortical insulin
resistance is a close reflection of obesity. In subsequent
studies, we could furthermore demonstrate that the in-
tronic confirmed diabetes risk SNP rs8050136 in the obe-
sity gene FTO (see Section VI) impairs insulin-stimulated
cerebrocortical activity, and interestingly, this was seen
even after correction for body mass index (BMI) (351).
This finding therefore provides first evidence that cere-
brocortical insulin resistance results not only from envi-
ronmental factors but also from obesity-independent ef-
fects of genetic variation.

V. Gene Variants Affecting Glucagon Secretion

Dysregulated hepatic glucose production, arising from in-
crements in gluconeogenesis and/or glycogenolysis, rep-
resents another pathomechanism provoking hyperglyce-
mia and type 2 diabetes (352). Hepatic glucose production
is controlled by hormones: insulin suppresses, whereas
glucagon (and catecholamines) stimulates both glucone-
ogenesis and glycogenolysis. Therefore, it is conceivable
that, in addition to impaired insulin secretion and reduced
hepatic insulin sensitivity, increased glucagon secretion
and/or enhanced hepatic glucagon sensitivity contribute
to the dysregulation of glucose production (353). In fact,
one SNP, namely the KCNJ11 E23K variant (see Section
III), was shown to impair glucose-dependent suppression
of glucagon secretion, thereby causing elevated plasma
glucagon levels during a hyperglycemic clamp (354). This
finding is in good agreement with the presence of ATP-
sensitive potassium channels in pancreatic �-cells (355,
356) and the recently reported role of these channels in
glucose-dependent suppression of glucagon secretion
(357): increased glucose metabolism, via ATP formation,
promotes closure of the ATP-sensitive potassium channel
triggering membrane depolarization. In contrast to the
situation in �-cells, membrane depolarization does not
open a voltage-dependent calcium channel, but it inacti-
vates an N-type calcium channel. This blocks the exocy-
tosis of glucagon granules. Because the E23K variant of
the potassium channel’s Kir6.2 subunit leads to reduced
ATP sensitivity (204, 205), the polymorphism probably
blunts �-cell excitability and, in this way, favors activation
of N-type calcium channels and glucagon secretion.
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VI. Gene Variants Affecting Adiposity

Obesity is a major risk factor for type 2 diabetes mellitus
(see Section I). Hence, genetic variation affecting adiposity
is expected to likewise influence the diabetes risk. In-
deed, a set of SNPs (including the representative SNPs
rs8050136 and rs9939609) in the first intron of the FTO
(fat mass- and obesity-associated; OMIM entry no.
610966) gene was recently found and, in the meantime,
repeatedly confirmed to affect both overall adiposity (163,
172, 173, 358–373) and type 2 diabetes risk (28, 31, 34,
35, 89, 162, 163, 172, 173, 363) in cross-sectional and
prospective studies and across several ethnic groups. As
reported, the association with type 2 diabetes was abol-
ished by adjustment for BMI (172, 173, 363), clearly dem-
onstrating that the association of these SNPs with type 2
diabetes is fully explained by their effect on adiposity. On
average, FTO SNP carriers display an increase in BMI of
0.4 kg/m2 per risk allele (172). The FTO gene encodes a
nuclear Fe(II)- and 2-oxoglutarate-dependent DNA de-
methylase (374) and, hence, could play a role in the reac-
tivation of genes silenced by DNA methylation. In mice
and humans, FTO expression was found to be most abun-
dant in the brain, particularly in the hypothalamic nuclei
governing energy balance (172, 374), and in mice, its hy-
pothalamic expression was shown to be regulated by feed-
ing and fasting (374). In accordance with this gene’s hy-
pothalamic expression, recent in vivo findings in humans
provided clear evidence that FTO SNPs increase food in-
take (but not energy expenditure) (374–379). That the
FTO gene is indeed of importance for human brain func-
tions is additionally underscored by its reported impact on
cerebrocortical insulin sensitivity (see Section IV.C).

In 2008, two SNPs located 3� of a second genetic locus,
the MC4R gene, were shown to robustly associate with
variation in BMI (�0.2 kg/m2 per risk allele) (380). An
association with type 2 diabetes could, however, not be
demonstrated. Very recently, more than 15 novel obesity
loci were identified by GWA analyses, and four of them
(GNPDA2, TMEM18, BCDIN3D/FAIM2, and NCR3/
AIF1/BAT2) also tended to associate with type 2 diabetes
(381–383). This, however, awaits further confirmation by
replication.

VII. Summary and Perspective

During the last decade, at least 27 (confirmed and poten-
tial) diabetes susceptibility genes were identified (Fig. 1
and Tables 1 and 2), and the greatest success in type 2
diabetes genetics arose from the development and use, in
large case-control cohorts, of high-density SNP arrays.
Most of the genes, or better gene variants, could be con-

firmed in many ethnicities (e.g., TCF7L2, SLC30A8,
HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO),
whereas others, probably due to divergent risk allele fre-
quencies, may have higher relevance for certain ethnic
groups [e.g., ENPP1 for African-Americans (384, 385)].
Recent studies also provided evidence that diabetes risk
SNPs act in an additive manner to increase the diabetes
risk (up to 4-fold, when assessing the GWA-derived SNPs
only) (163, 386). Although significantly contributing to
the type 2 diabetes risk, these gene-gene interactions do,
however, not yet allow a substantially better disease pre-
diction than clinical risk factors (e.g., BMI, age, gender,
family history of diabetes, fasting glucose level, blood
pressure, and plasma triglycerides) alone (34, 388, 389),
nor do they explain the heritability of type 2 diabetes
(386). These flaws may possibly be overcome by 1) the
identification of further robust risk genes by applying new
methods and strategies (see below), and 2) the fine-map-
ping, by “deep sequencing”, of the known genes’ causal
variants, which are supposed to be in linkage with and to
display greater effect sizes than the array-derived “lead
SNPs”. Notably, no gender-specific differences in the
known genes’ impact on the diabetes risk were observed.
Furthermore, many of the identified SNPs are intronic or
located in the 5�- or 3�-flanking regions of genes. How
such noncoding SNPs influence the genes’ function is not
clear, but alteration of binding sites for transcription fac-
tors and enhancer-binding proteins with respective
changes in the genes’ transcription rate represents a con-
ceivable and plausible hypothesis.

Subsequent to the identification of the risk SNPs, very
elaborate in vivo methods and thoroughly phenotyped hu-
man cohorts enabled the initial characterization of their
pathomechanisms (Tables 1 and 2). From Fig. 2, which
depicts these gene variants’ anatomical sites of action, it is
evident that the majority affects �-cell function, and this
might favor the notion that �-cell dysfunction is primarily
determined by genetics, whereas insulin resistance pre-
dominantly results from environmental influences (9,
390). Of course, this could be true, and statistical herita-
bility estimates (h2) from twin studies indeed suggest a
stronger heritability of insulin secretion (ranging from
0.35 to 0.84) compared with insulin sensitivity (ranging
from 0.28 to 0.55) (187, 391, 392). On the other hand,
some reasons for insulin resistance genes appearing un-
derrepresented among the identified type 2 diabetes sus-
ceptibility genes are conceivable: 1) There may indeed be
fewer insulin resistance genes or risk alleles that, however,
upon accumulation could confer a substantial increase in
diabetes risk, but this remains to be determined. 2) The
insulin resistance genes may strictly depend on the inter-
action with specific environmental factors to cause type 2
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diabetes. These factors may be still unknown and, there-
fore, may not have been appropriately accounted for in
previous studies. 3) Insulin resistance genes may be un-
derrepresented on the SNP arrays used in the published
GWA studies. The development of arrays with higher SNP
densities and near-complete genome coverage will soon
overcome this issue. 4) There may be a plethora of insulin
resistance genes with each single one exerting only a very
tiny effect. Their detection would require huge well-
defined case-control cohorts encompassing several hun-
dred thousand cases or, alternatively, large cohorts of
several thousand subjects thoroughly phenotyped for
whole-body or tissue-specific insulin sensitivity using very
elaborate and time-consuming state-of-the-art measures,
such as the hyperinsulinemic-euglycemic clamp or in vivo
tracer methods, respectively.

As estimated from the currently achieved genome cov-
erage, the next generation of high-density SNP arrays is
expected to provide about half a dozen novel type 2 dia-
betes risk loci in the near future using the same case-con-
trol setting. Alternative settings, such as correlational
analyses with state-of-the-art measures for glucose- and
incretin-stimulated insulin secretion, whole-body and
tissue-specific insulin sensitivity, will probably further in-
crease this number. Moreover, future studies on the role of
copy number variants, with their obvious impact on gene
dosage, could once more extend our appreciation of the
genetic component of type 2 diabetes. Finally, taking into
account that gene-environment interactions contribute to
the development of type 2 diabetes (393, 394), well-de-

fined intervention studies have a good poten-
tial to discover risk variants that remain cryptic
in cross-sectional settings. The current emer-
gence of diabetes-relevant genes susceptible to
persistent and partly inheritable epigenetic reg-
ulations, i.e., DNA methylation and histone
modifications, further underscores the impor-
tance of gene-environment interactions and the
complexity of type 2 diabetes genetics (198,
395, 396). Because epigenetic modifications
clearly affect gene expression, the establish-
ment of diabetes-related gene expression pro-
files of metabolically relevant tissues or easily
available surrogate “tissues”, such as lympho-
cytes, could help identify novel candidate genes
for type 2 diabetes.

What will be the clinical benefit of all this
genetic knowledge beyond its use for predic-
tion of the individual’s type 2 diabetes risk?
One major advantage of knowing an at-risk
person’s genotype could be to offer an individ-
ually tailored lifestyle intervention program to
prevent or, at least, to significantly retard the

onset of overt diabetes. This aim requires extensive future
work to understand the interaction between risk genes and
lifestyle modifications, such as diet (this research area is
called nutrigenomics) and exercise regimens (this research
area is called physiogenomics). In this regard, data from
the Diabetes Prevention Program provided evidence that
behavioral intervention can mitigate or even abolish the
diabetes risk conferred by TCF7L2 or ENPP1, respec-
tively (127, 129). In the Finnish Diabetes Prevention
Study, physical activity was shown to reduce the type 2
diabetes risk of PPARG risk allele carriers (387). Another
advantage of the genetic knowledge could be to offer type
2 diabetic patients an individually tailored pharmacolog-
ical therapy with currently available or newly developed,
e.g., risk gene-targeting, antidiabetic drugs. Thus, future
pharmacogenomic studies have to thoroughly investigate
the interaction between risk genes and drugs. Understand-
ing these interactions appears important also because it
could help to reduce the therapeutical use of drugs (with
their side effects) that are ineffective in certain genotypes.
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FIG. 2. Principal anatomical sites of action of confirmed and potential type 2
diabetes SNPs. Effects of type 2 diabetes risk SNPs were described in brain, pancreas,
liver, skeletal muscle, and adipose tissue (see text for details). Most SNPs affect
pancreatic �-cell function. Gene symbols represent SNPs in or near these gene loci.
Confirmed risk genes are given in black letters, and potential risk genes in gray
letters.
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42. Laukkanen O, Pihlajamäki J, Lindström J, Eriksson J,
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101. Hansen SK, Rose CS, Glümer C, Drivsholm T, Borch-
Johnsen K, Jørgensen T, Pedersen O, Hansen T 2005 Vari-
ation near the hepatocyte nuclear factor (HNF)-4� gene

associates with type 2 diabetes in the Danish population.
Diabetologia 48:452–458

102. Winckler W, Graham RR, de Bakker PI, Sun M, Almgren
P, Tuomi T, Gaudet D, Hudson TJ, Ardlie KG, Daly MJ,
Hirschhorn JN, Groop L, Altshuler D 2005 Association
testing of variants in the hepatocyte nuclear factor 4� gene
with risk of type 2 diabetes in 7,883 people. Diabetes 54:
886–892

103. Vaxillaire M, Dina C, Lobbens S, Dechaume A, Vasseur-
Delannoy V, Helbecque N, Charpentier G, Froguel P 2005
Effect of common polymorphisms in the HNF4� promoter
on susceptibility to type 2 diabetes in the French Caucasian
population. Diabetologia 48:440–444

104. Hara K, Horikoshi M, Kitazato H, Ito C, Noda M, Ohashi
J, Froguel P, Tokunaga K, Tobe K, Nagai R, Kadowaki T
2006 Hepatocyte nuclear factor-4� P2 promoter haplo-
types are associated with type 2 diabetes in the Japanese
population. Diabetes 55:1260–1264

105. Andrulionyte L, Laukkanen O, Chiasson JL, Laakso M
2006 Single nucleotide polymorphisms of the HNF4� gene
are associated with the conversion to type 2 diabetes mel-
litus: the STOP-NIDDM trial. J Mol Med 84:701–708

106. Tanahashi T, Osabe D, Nomura K, Shinohara S, Kato H,
IchiishiE,NakamuraN,YoshikawaT,TakataY,Miyamoto
T,ShiotaH,KeshavarzP,YamaguchiY,KunikaK,Moritani
M, Inoue H, Itakura M 2006 Association study on chromo-
some 20q11.21–13.13 locus and its contribution to type 2
diabetes susceptibility in Japanese. Hum Genet 120:527–542

107. Lehman DM, Richardson DK, Jenkinson CP, Hunt KJ,
Dyer TD, Leach RJ, Arya R, Abboud HE, Blangero J,
Duggirala R, Stern MP 2007 P2 promoter variants of the
hepatocyte nuclear factor 4� gene are associated with type
2 diabetes in Mexican Americans. Diabetes 56:513–517

108. Johansson S, Raeder H, Eide SA, Midthjell K, Hveem K,
Søvik O, Molven A, Njølstad PR 2007 Studies in 3,523
Norwegians and meta-analysis in 11,571 subjects indicate
that variants in the hepatocyte nuclear factor 4 � (HNF4A)
P2 region are associated with type 2 diabetes in Scandina-
vians. Diabetes 56:3112–3117

109. Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M,
Hara M, Hinokio Y, Lindner TH, Mashima H, Schwarz
PE, del Bosque-Plata L, Horikawa Y, Oda Y, Yoshiuchi I,
Colilla S, Polonsky KS, Wei S, Concannon P, Iwasaki N,
Schulze J, Baier LJ, Bogardus C, Groop L, Boerwinkle E,
Hanis CL, Bell GI 2000 Genetic variation in the gene en-
coding calpain-10 is associated with type 2 diabetes mel-
litus. Nat Genet 26:163–175

110. Evans JC, Frayling TM, Cassell PG, Saker PJ, Hitman GA,
Walker M, Levy JC, O’Rahilly S, Rao PV, Bennett AJ,
Jones EC, Menzel S, Prestwich P, Simecek N, Wishart M,
Dhillon R, Fletcher C, Millward A, Demaine A, Wilkin
T, Horikawa Y, Cox NJ, Bell GI, Ellard S, McCarthy MI,
Hattersley AT 2001 Studies of association between the
gene for calpain-10 and type 2 diabetes mellitus in the
United Kingdom. Am J Hum Genet 69:544–552

111. Malecki MT, Moczulski DK, Klupa T, Wanic K, Cyganek
K, Frey J, Sieradzki J 2002 Homozygous combination of
calpain 10 gene haplotypes is associated with type 2 dia-
betes mellitus in a Polish population. Eur J Endocrinol
146:695–699

112. Cassell PG, Jackson AE, North BV, Evans JC, Syndercombe-
Court D, Phillips C, Ramachandran A, Snehalatha C,

Endocrine Reviews, October 2009, 30(6):557–585 edrv.endojournals.org 573

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/30/6/557/2355053 by guest on 19 April 2024



Gelding SV, Vijayaravaghan S, Curtis D, Hitman GA 2002
Haplotype combinations of calpain 10 gene polymorphisms
associate with increased risk of impaired glucose tolerance
andtype2diabetes inSouth Indians.Diabetes51:1622–1628

113. Weedon MN, Schwarz PE, Horikawa Y, Iwasaki N, Illig T,
Holle R, Rathmann W, Selisko T, Schulze J, Owen KR,
Evans J, Del Bosque-Plata L, Hitman G, Walker M, Levy
JC, Sampson M, Bell GI, McCarthy MI, Hattersley AT,
Frayling TM 2003 Meta-analysis and a large association
study confirm a role for calpain-10 variation in type 2
diabetes susceptibility. Am J Hum Genet 73:1208–1212

114. Iwasaki N, Horikawa Y, Tsuchiya T, Kitamura Y,
Nakamura T, Tanizawa Y, Oka Y, Hara K, Kadowaki T,
Awata T, Honda M, Yamashita K, Oda N, Yu L, Yamada N,
Ogata M, Kamatani N, Iwamoto Y, Del Bosque-Plata L,
Hayes MG, Cox NJ, Bell GI 2005 Genetic variants in the
calpain-10 gene and the development of type 2 diabetes in the
Japanese population. J Hum Genet 50:92–98

115. Kang ES, Kim HJ, Nam M, Nam CM, Ahn CW, Cha BS,
Lee HC 2006 A novel 111/121 diplotype in the Calpain-10
gene is associated with type 2 diabetes. J Hum Genet 51:
629–633

116. Tsuchiya T, Schwarz PE, Bosque-Plata LD, Geoffrey
Hayes M, Dina C, Froguel P, Wayne Towers G, Fischer S,
Temelkova-Kurktschiev T, Rietzsch H, Graessler J, Vcelák
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199. Schäfer SA, Tschritter O, Machicao F, Thamer C, Stefan
N, Gallwitz B, Holst JJ, Dekker JM, ’t Hart LM, Nijpels G,
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203. Schäfer SA, Müssig K, Staiger H, Machicao F, Stefan N,
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Häring HU, Fritsche A 2006 The cerebrocortical response to
hyperinsulinemia is reduced in overweight humans: A mag-
netoencephalographic study. Proc Natl Acad Sci USA 103:
12103–12108

351. Tschritter O, Preissl H, Yokoyama Y, Machicao F, Häring
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2002 The prevalent Glu23Lys polymorphism in the po-
tassium inward rectifier 6.2 (KIR6.2) gene is associated
with impaired glucagon suppression in response to hyper-
glycemia. Diabetes 51:2854–2860

355. Suzuki M, Fujikura K, Inagaki N, Seino S, Takata K 1997
Localization of the ATP-sensitive K� channel subunit
Kir6.2 in mouse pancreas. Diabetes 46:1440–1444

356. Bokvist K, Olsen HL, Høy M, Gotfredsen CF, Holmes WF,
Buschard K, Rorsman P, Gromada J 1999 Characterisa-
tion of sulphonylurea and ATP-regulated K� channels in
rat pancreatic A-cells. Pflugers Arch 438:428–436

357. MacDonald PE, De Marinis YZ, Ramracheya R, Salehi A,
Ma X, Johnson PR, Cox R, Eliasson L, Rorsman P 2007 A
K ATP channel-dependent pathway within � cells regulates
glucagon release from both rodent and human islets of
Langerhans. PLoS Biol 5:e143

358. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J,
Najjar S, Nagaraja R, Orrú M, Usala G, Dei M, Lai S,
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