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Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones.
Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes
in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland
with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an un-
derstanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode
them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a
single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mech-
anisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to
be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cyto-
chrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mito-
chondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the
aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are mod-
ulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The
elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying
the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis
may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some
mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual
differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis. (Endocrine
Reviews 32: 81–151, 2011)
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cyte antigen; H6PHD, hexose-6-phosphate dehydrogenase; HSD, hydroxysteroid dehydroge-
nase; HSL, hormone-sensitive lipase; IMM, inner mitochondrial membrane; LDL, low-density
lipoprotein; MC2R, melanocortin receptor type 2; MLN64, metastatic lymph node clone 64;
MRAP, melanocortin receptor accessory protein; NAD(P)(H), nicotinamide adenine dinucle-
otide (phosphate) (reduced form); 17OHP, 17-hydroxyprogesterone; OMM, outer mitochon-
drial membrane; PAPS, 3�-phosphoadenosine-5�-phosphosulfate; PAPSS, PAPS synthase;
PHA, pseudohypoaldosteronism; POR, P450 oxidoreductase; RODH/CRAD, retinol dehydro-
genase/cis-retinol/androgen dehydrogenase; SDR, short-chain dehydrogenase/reductase;
SF1, steroidogenic factor 1; SREBP, sterol response element binding protein; StAR, steroido-
genic acute regulatory protein; StarD, StAR-related lipid transfer domain; SULT, sulfotrans-
ferase; TIM, triosephosphate isomerase.
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I. Introduction

Steroid hormones regulate a wide variety of develop-
mental and physiological processes from fetal life to

adulthood. Steroidhormonesareall synthesized fromcho-
lesterol and hence have closely related structures based on
the classic cyclopentanophenanthrene 4-ring structure

(Fig. 1).These structureswerepainstakinglydetermined in
the 1930s (1, 2), and precursor/product relationships were
identified, leading to the general understanding of the
pathways of steroidogenesis. Isolation of some key steroi-
dogenic enzymes from animal sources and the cloning of
many of their cDNAs and genes in the 1980s showed that
there were fewer steroidogenic enzymes than there were
steroidogenic reactions and that, in most cases, a partic-
ular steroidogenic reaction was catalyzed by the same en-
zyme in all tissues, dramatically revising the views derived
from steroid chemistry alone; this revolution in the un-
derstanding of steroidogenesis was reviewed in 1988 (3).
The ensuing 23 yr have witnessed major developments in
four areas of steroidogenesis: 1) the cloning of the steroi-
dogenic acute regulatory protein (StAR) and subsequent
study of the mechanisms of intracellular cholesterol trans-
port; 2) the expanding array of hydroxysteroid dehydro-
genases (HSDs); 3) the expanding roles of electron transfer
proteins and other cofactors in disease; and 4) the eluci-
dation of additional pathways of steroidogenesis in clas-
sical and extraglandular tissues. All have added substan-
tial complexity and subtlety to the understanding of
molecular steroidogenesis. Different physiological cate-
gories of steroids (androgens, estrogens, and later miner-
alocorticoids and glucocorticoids) were recognized more
than 70 yr ago (4), but despite efforts to correlate steroid
structures with their activities, this area was not under-

FIG. 1. Structure of pregnenolone, illustrating the cycloperhydropentano-
phenanthrene structure common to all steroids. The carbon atoms are
indicated by numbers, and the rings are designated by letters
according to standard convention. Substituents and hydrogens are
labeled as � or � if they are positioned behind or in front of the plane
of the page, respectively. Pregnenolone is derived from cholesterol,
which has a six-carbon side chain attached to carbon no. 20.
Pregnenolone is a “�5 compound,” having a double bond between
carbons no. 5 and 6; the action of 3�-hydroxysteroid
dehydrogenase/isomerase moves this double bond from the B ring to
carbons 4 and 5 in the A ring, forming �4 compounds. Most of the major
biologically active steroid hormones are �4 compounds. [© R. J. Auchus.]
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stood until the various steroid hormone receptors were
identified and cloned (5–10). Thus, the contemporary def-
inition of each class of steroid is based on the receptor(s)
to which it binds, rather than on the chemical structure of
the steroid.

Substantially more study has been devoted to steroid hor-
mone action than to steroid hormone synthesis, partly be-
cause steroids are such widely used drugs and partly because
disorders of steroid hormone synthesis were formerly
thought to be confined to rare genetic lesions. Work in the
past 30 yr has identified the steroidogenic enzymes and their
genes (Table1), reinvigorating studiesof steroidbiosynthesis
by discoveries of roles for altered regulation of steroidogen-
esis in common disorders such as hypertension and the poly-
cystic ovary syndrome and by discoveries of steroid-modi-
fying enzymes in target tissues that mediate some forms of
apparent tissue specificity of hormone action. Thus, the
study and understanding of steroidogenesis is germane to
broad areas of medicine, physiology, and pharmacology.

II. Cholesterol Uptake, Storage, and
Intracellular Transport

The human adrenal can synthesize cholesterol de novo
from acetate (11), but most of its supply of cholesterol

comes from plasma low-density lipoproteins (LDLs) de-
rived from dietary cholesterol (12). By contrast, rodent
adrenals derive most of their cholesterol from high-density
lipoproteins via a receptor termed scavenger receptor B1,
but this pathway appears to play a minor role in human
steroidogenesis (Fig. 2). The intracellular cholesterol
economy is largely regulated by the sterol response ele-
ment binding protein (SREBPs), a group of transcription
factors that regulate genes involved in the biosynthesis of
cholesterol and fatty acids (13). Adequate concentrations
of LDL will suppress 3-hydroxy-3-methylglutaryl co-en-
zyme A reductase, the rate-limiting enzyme in cholesterol
synthesis. ACTH also stimulates the activity of 3-hydroxy-
3-methylglutaryl co-enzyme A reductase, LDL receptors,
and uptake of LDL cholesterol. LDL cholesterol esters are
taken up by receptor-mediated endocytosis, and are then
storeddirectlyor converted to free cholesterol andused for
steroid hormone synthesis (14). Cholesterol can be ester-
ified by acyl-coenzyme A (CoA):cholesterol acyltrans-
ferase (ACAT), stored in lipid droplets, and accessed by
activation of hormone-sensitive lipase (HSL). ACTH stim-
ulates HSL and inhibits ACAT, thus increasing the avail-
ability of free cholesterol for steroid hormone synthesis.
Cholesterol ester hydrolase and neutral cholesterol ester
hydrolase also hydrolyze cytosolic cholesterol esters, but

TABLE 1. Physical characteristics of human genes encoding steroidogenic enzymes

Enzyme Gene
Gene

size (kb)
Chromosomal

location
Exons

(n)
mRNA size

(kb)

StAR STAR 8 8p11.2 8 1.6
P450scc CYP11A1 30 15q23-q24 9 2.0
P450c11� CYP11B1 9.5 8q21-22 9 4.2
P450c11AS CYP11B2 9.5 8q21-22 9 4.2
P450c17 CYP17A1 6.6 10q24.3 8 1.9
P450c21 CYP21A2 3.4 6p 21.1 10 2.0
P450aro CYP19A1 130 15q21.1 10 1.5–4.5
3�HSD1 HSD3B1 8 1p13.1 4 1.7
3�HSD2 HSD3B2 8 1p13.1 4 1.7
11�HSD1 HSD11B1 7 1q32-q41 6 1.6
11�HSD2 HSD11B2 6.2 16q22 5 1.6
17�HSD1 HSD17B1 3.3 17q11-q21 6 1.4, 2.4
17�HSD2 HSD17B2 63 16q24.1-q24.2 5 1.5
17�HSD3 HSD17B3 67 9q22 11 1.2
17�HSD6 (RODH) HSD17B6 24.5 12q13 5 1.6
AKR1C1 AKR1C1 14.3 10p14-p15 9 1.2
AKR1C2 AKR1C2 13.8 10p14-p15 9 1.3
AKR1C3 AKR1C3 13.0 10p14-p15 9 1.2
AKR1C4 AKR1C4 22.1 10p14-p15 9 1.2
5�-Reductase 1 SRD5A1 36 5p15 5 2.4
5�-Reductase 2 SRD5A2 56 2p23 5 2.4
SULT2A1 SULT2A1 17 19q13.3 6 2.0
PAPSS2 PAPSS2 85 10q24 13 3.9
P450-oxidoreductase POR 69 7q11.2 16 2.5
Ferredoxin FDX1 35 11q22 5 1.0, 1.4, 1.7, 3.2
Ferredoxin reductase FDXR 11 17q24-q25 12 2.0
Cytochrome b5 CYB5A 32 18q23 5 0.9
H6PDH H6PD 36.5 1p36 5 9.1

© R. J. Auchus and W. L. Miller.
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the relative contributions of these three enzymes are not
known (15).

A. Delivery of cholesterol to mitochondria
The first step in steroidogenesis takes place within mi-

tochondria. The mechanisms by which cholesterol is
transported to and loaded into the outer mitochondrial
membrane (OMM) remain an active area of research (16,
17). StAR (see Section IV.A), which governs the acute
steroidogenic response to tropic stimuli, appears to con-
tribute to this step in a minor fashion; the principal action
of StAR is to facilitate the movement of cholesterol from
the OMM to the inner mitochondrial membrane (IMM).
StAR is the first-described member of a family of proteins
that contain so-called START (StAR-related lipid trans-
fer) domains, which are found in most metazoan or-
ganisms (18). Fifteen START domain (StarD) proteins
appear to serve roles in binding and mediating the in-
tracellular transfer of lipids in mammals (19). StarD4
and StarD5 may play roles in moving cholesterol from
intracellular lipid droplets to the OMM, but knockout
of the gene for StarD4 in mice does not disrupt steroi-
dogenesis (20).

Free cholesterol is nearly insoluble (critical micellar
concentration, �25–40 nM) (21). Some cholesterol may
be incorporated into vesicular membranes that then fuse
with other membranes, thus delivering cholesterol from
one intracellular compartment to another, but this ap-
pears to be a minor pathway (22). Instead, cholesterol is

solubilized by binding to proteins. Early work focused on
sterol-carrier protein 2 (SCP-2) and its homolog, SCP-x,
but these appear to be nonspecific lipid binding and trans-
fer proteins that play a minor role in the intracellular cho-
lesterol economy (23). Analysis of SREBP-responsive
transcripts identified a group of proteins termed StarD4,
-5, and -6 that are structurally related to StAR, and appear
to play major roles in intracellular cholesterol transport
(19). These proteins have closely related cDNA, gene, and
protein structures (24). The crystal structure of one of
these, StarD4 (25), is essentially the same as the StAR-like
domain of a protein called MLN64 (metastatic lymph
node clone 64) (26). StarD4, -5, and -6 lack signal se-
quences that target them to specific subcellular organelles;
hence, they appear to be confined to the cytoplasm, where
they bind insoluble lipids, permitting the lipid to be trans-
ported across aqueous cytosol. Mouse StarD4 (but not
StarD5) is regulated by SREBP, and both StarD4 and D5
can exert low levels of StAR-like activity in COS-1 cells
cotransfected with the cholesterol side-chain cleavage en-
zyme system (27). By contrast, StarD6, which appears to
be confined to the male germ line, has greater StAR-like
activity than StAR itself (28). Thus, the current view is that
the family of proteins related to StarD4 are responsible for
delivering cholesterol to the OMM from elsewhere in the
cell (lipid droplets, endoplasmic reticulum) in most cell
types, whereas StAR itself is responsible for delivery from
the OMM to the IMM, but only acts in steroidogenic cells.

B. Disorders of cholesterol synthesis and trafficking
There are several genetic disorders in these early steps in

steroidogenesis, including adrenoleukodystrophy (ALD)
(Schilder disease) and disorders of cholesterol synthesis
and metabolism (e.g., Wolman disease, cholesterol ester
storage disease, and Smith-Lemli-Opitz syndrome).
These diseases typically cause primary adrenal insuffi-
ciency. Their impact on fetoplacental development is
ameliorated by transplacental cholesterol delivered
from the mother (29).

1. Adrenoleukodystrophy
ALD is a relatively common metabolic disorder causing

adrenal failure. The prevalence of ALD is probably be-
tween 1:20,000 and 1:100,000, although the overall fre-
quency may be as high as 1:17,000 (30). Most cases are
caused by mutations in the gene encoding the peroxisomal
membrane protein ALDP (ABCD1, Xq28) (31, 32), which
belongs to the superfamily of ATP-binding cassette trans-
porters. There is also a rare autosomal recessive form that
usually presents in infancy. ALDP imports activated very
long chain fatty acid acyl-CoA derivatives into peroxi-
somes where they are shortened by �-oxidation (33, 34).

FIG. 2. Principal features of the cellular cholesterol economy. Human
cells typically pick up circulating LDLs through receptor-mediated
endocytosis, directing the cholesterol to endosomes. Rodent cells pick
up high-density lipoproteins via scavenger receptor B1 (SRB1) and
direct it to lipid droplets. Cholesterol can also be synthesized de novo
from acetate in the endoplasmic reticulum. Irrespective of source,
cholesterol can be esterified by ACAT and stored in lipid droplets as
cholesterol esters. Free cholesterol, produced by the action of HSL,
may be bound by StarD4 for transcytoplasmic transport to membrane
destinations, including the OMM. In the adrenals and gonads, StAR
is responsible for the rapid movement of cholesterol from the
OMM to the IMM, where it can be taken up by the cholesterol side-
chain cleavage enzyme, P450scc, and converted to pregnenolone.
[© W. L. Miller.]
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ALD is thus characterized by high ratios of C26 to C22 very
long chain fatty acids in plasma and tissues, permitting
accurate diagnosis (35). Carriers can usually be detected
by very long chain fatty acid screening, although genetic
analysis may be necessary in some cases. X-linked ALD
commonly becomes symptomatic in midchildhood, and
its variant, adrenomyeloneuropathy, presents in adult-
hood (36). The same ALDP mutation can cause both ALD
and adrenomyeloneuropathy; hence, it is likely that other
genetic loci are also involved (37). There is central nervous
system (CNS) leukodystrophy causing behavioral changes
and diminishing intellectual function progressing to se-
vere dementia. Symptoms of adrenal insufficiency may
appear before or after the brain symptoms (30, 38, 39).
Adrenomyeloneuropathy typically begins with adrenal
insufficiency in childhood and adolescence, and signs of
neurological disease follow 10 to 15 yr later. Therapeu-
tic options are limited, centering on hematopoietic stem
cell transplantation for early cerebral disease and statin
drugs (30, 34).

2. Wolman disease
Wolman disease (primary xanthomatosis) and choles-

terol ester storage disease are disorders of lysosomal acid
lipase (cholesterol esterase) that hydrolyze cholesterol es-
ters in lysosomes (40). Mutations in the LIPA gene en-
coding this enzyme cause Wolman disease (41). Because
insufficient free cholesterol is available to P450scc, there
is adrenal insufficiency. The disease is less severe than con-
genital lipoid adrenal hyperplasia (lipoid CAH) with re-
spect to steroidogenesis, but because all cells store and
utilize cholesterol, it affects all tissues and is fatal. Cho-
lesterol ester storage disease appears to be a rare, milder
allelic defect in the same enzyme.

3. Smith-Lemli-Opitz syndrome
Smith-Lemli-Opitz syndrome is a defect in cholesterol

biosynthesis, resulting from abnormalities in the sterol �7-
reductase gene, DHCR7 (42). Associated features of this
condition include microcephaly, developmental delay, a
typical facial appearance, proximal thumbs, syndactyly of
the second and third toes, cardiac abnormalities, and
underdeveloped genitalia in males. Adrenal insuffi-
ciency is present in some children, especially during
times of stress or when LDL-derived cholesterol sources
are inadequate (e.g., dietary insufficiency/bile salt de-
pletion) (43).

III. An Overview of Steroidogenic Enzymes

Most enzymes involved in steroid biosynthesis are either
cytochrome P450s (CYPs) or HSDs. These steroidogenic

enzymes are functionally, if not absolutely, unidirectional,
so the accumulation of products does not drive flux back
to the precursor. All P450-mediated hydroxylations and
carbon-carbon bond cleavage reactions are mechanisti-
cally and physiologically irreversible (44). HSD reactions
are mechanistically reversible and can run in either direc-
tion under certain conditions in vitro, but each HSD drives
steroid flux predominantly in either the oxidative or re-
ductive mode in vivo (45). However, two or more HSDs
drive the flux of a hydroxysteroid and its cognate ketos-
teroid in opposite directions, some favoring ketosteroid
reduction and others favoring hydroxysteroid oxidation.

A. Cytochrome P450
Cytochrome P450 is a generic term for a group of ox-

idative enzymes, all of which have about 500 amino acids
and contain a single heme group (46). They are termed
P450 (pigment 450) because all absorb light at 450 nm in
their reduced states complexed with carbon monoxide.
The human genome includes genes for 57 cytochrome P450
enzymes (47, 48). Several nomenclature systems have been
proposed for these genes and enzymes over the past few de-
cades. The genes are now formally termed CYP genes, and a
logical systematic nomenclature for these has been described
(http://drnelson.uthsc.edu/cytochromeP450.html); the en-
coded proteins may be given the same name without the
use of italics (thus the CYP11A1 gene encodes
CYP11A1), but the classic, more widely understood P450
names for the proteins are preferable (thus the CYP11A1
gene encodes P450scc, where the suffix “scc” denotes
“side chain cleavage,” thus identifying the principal ac-
tivity of the enzyme). The formal gene names are given in
Table 1. Seven human cytochrome P450 enzymes are tar-
geted to the mitochondria and are termed “type 1”; the
other 50 human P450 enzymes are targeted to the endo-
plasmic reticulum and are termed “type 2.” All P450
enzymes activate molecular oxygen using their heme cen-
ter and add electrons from the reduced form of nicotin-
amide adenine dinucleotide phosphate (NADPH). The
two types of P450 enzymes are distinguished biochemi-
cally by the mechanisms by which they receive electrons
from NADPH, as well as by their intracellular locations.
Type 1 enzymes receive electrons from NADPH via a
flavoprotein termed ferredoxin reductase and a small
iron-sulfur protein termed ferredoxin, whereas type 2
P450 enzymes receive electrons from NADPH via a single
2-flavin protein termed P450 oxidoreductase (POR) (49).
Each P450 enzyme can metabolize multiple substrates,
catalyzing a broad array of oxidations.

Six P450 enzymes are involved in steroidogenesis (Fig.
3). Mitochondrial P450scc is the cholesterol side-chain
cleavage enzyme catalyzing the series of reactions formerly
termed “20,22 desmolase.” The two isozymes of mito-
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chondrial P450c11, P450c11� (11�-hydroxylase) and
P450c11AS (aldosterone synthase), catalyze 11�-hydrox-
ylase, 18-hydroxylase, and 18-methyl oxidase activities.
In the endoplasmic reticulum, P450c17 catalyzes both
17�-hydroxylase and 17,20-lyase activities, P450c21 cat-
alyzes 21-hydroxylation in the synthesis of both glucocor-
ticoids and mineralocorticoids, and P450aro catalyzes
aromatization of androgens to estrogens.

B. Hydroxysteroid dehydrogenases
The HSDs have molecular masses of about 35 to 45

kDa, do not have heme groups, and require nicotinamide
adenine dinucleotide (phosphates) (NADH/NAD� or
NADPH/NADP�) as cofactors to either reduce or oxidize
a steroid by two electrons via a hydride transfer mecha-
nism (45). Most examples involve the conversion of a sec-
ondary alcohol to a ketone or vice versa, and in the case of
the 3�HSD/�53�4-isomerases (3�HSD), the dehydroge-
nation is accompanied by the isomerization of the adjacent
carbon-carbon double bond from the �5 position (be-
tween carbons 5 and 6) to the �4 position (between car-
bons 4 and 5) (Fig. 1). The human steroid 5�-reductases
types 1 and 2, which are often grouped with the HSDs for
convenience, reduce olefinic carbon-carbon double bonds
to the saturated state rather than acting on carbon centers
bonded to oxygen. Whereas most steroidogenic reactions
catalyzed by P450 enzymes are due to the action of a single

form of P450, each of the reactions catalyzed by HSDs can
be catalyzed by at least two, often very different, isozymes.
The HSDs include the 3�- and 3�-HSDs, the two 11�-
HSDs, and a series of 17�-HSDs.

Based on their structures, these enzymes fall into two
groups: the short-chain dehydrogenase/reductase (SDR)
family, and the aldo-keto reductase (AKR) family (45, 50).
The SDR enzymes are �-�-� proteins where up to seven
parallel �-strands fan across the center of the molecule,
forming the so-called “Rossman fold,” which is charac-
teristic of oxidation/reduction enzymes that use nicotin-
amide cofactors. The AKR enzymes are soluble proteins
that contain a �-barrel or triosephosphate isomerase
(TIM)-barrel motif in which eight parallel �-strands lie in
a slanted circular distribution like the staves of a barrel. In
both cases, the active site contains a critical pair of tyrosine
and lysine residues that participate in proton transfer from
or to the steroid alcohol during catalysis. The SDR en-
zymes include 11�-HSDs 1 and 2 as well as 17�-HSDs 1,
2, and 3; the AKR enzymes include 17�-HSD5, which is
important in extraglandular activation of androgenic pre-
cursors (Table 2).

Based on their activities, it is physiologically more use-
ful to classify the HSDs as dehydrogenases or reductases.
The dehydrogenases use NAD� as their cofactor to oxi-
dize hydroxysteroids to ketosteroids, and the reductases

FIG. 3. Major human steroidogenic pathways. Key enzymes and cofactor proteins are shown near arrows indicating chemical reactions. P450scc
cleaves cholesterol to pregnenolone, the first committed intermediate in steroid biosynthesis. The steroids in the first column are �5-steroids,
which constitute the preferred pathway to C19 steroids in human beings. The dashed arrow indicates poor flux from 17�-hydroxyprogesterone to
androstenedione via P450c17, and the three small arrows below P450c11AS emphasize the three discrete steps with intermediates corticosterone
and 18-hydroxycorticosterone. Not all intermediate steroids, pathways, and enzymes are shown. [© R. J. Auchus]
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mainly use NADPH to reduce ketosteroids to hydroxys-
teroids. Although these enzymes are typically bidirec-
tional in vitro based on pH and cofactor concentrations,
they tend to function mainly in one direction in intact cells,
with the direction determined by the cofactor(s) available
(45, 50). These directional preferences derive primarily
from the relative abundance of the oxidized and reduced
form of cofactors and the relative affinity of each enzyme
for NAD(H) vs. NADP(H), because cofactor concentra-
tions exceed steroid concentrations by many orders of
magnitude (45, 51). Consequently, the directional prefer-
ence of some “reductive” enzymes can be reduced or re-
versed by depleting cells of NADPH or by mutations that
impair NADPH binding (52, 53).

IV. The Steroidogenic Acute
Regulatory Protein

A. Acute regulation of steroidogenesis
Unlike cells that produce polypeptide hormones, which

store large amounts of hormone in secretory vesicles ready
for rapid release, steroidogenic cells store very little ste-
roid. Thus, a rapid steroidogenic response (e.g., adrenal
secretion of aldosterone and cortisol in response to stress
or the “pulsing” of sex steroids in response to an LH surge)
requires rapid synthesis of new steroid. ACTH promotes
steroidogenic cell growth and maintains the steroidogenic
machinery at three distinct levels (LH probably acts sim-
ilarly on gonadal steroidogenic cells, but has not been
studied as thoroughly). First, acting over weeks or months,
as seen in long-term exposure to ACTH (e.g., in Cushing’s
disease), ACTH promotes adrenal growth. This growth
occurs primarily by ACTH stimulating the production of
cAMP, which in turn promotes the synthesis of IGF-II (54,
55), basic fibroblast growth factor (56), and epidermal
growth factor (57). Together, these growth factors stim-
ulate adrenal cellular hypertrophy and hyperplasia, deter-
mining the amount of steroidogenic tissue. Second, acting
over days, ACTH acts through cAMP, and angiotensin II
acts through the calcium/calmodulin pathway to promote
the transcription of genes encoding various steroidogenic
enzymes and electron-donating cofactor proteins, thus de-

termining the amount of steroidogenic machinery in the
cell. Third, ACTH rapidly stimulates StAR gene transcrip-
tion (58) and phosphorylation of Ser195 in extant StAR
(59) to increase the flow of cholesterol from the OMM to
the IMM, where it becomes substrate for the first and
rate-limiting enzyme, P450scc. This acute response occurs
within minutes and is inhibited by inhibitors of protein
synthesis (e.g., puromycin or cycloheximide), indicating
that a short-lived protein species mediates this process.
Orme-Johnson and colleagues (60–62) first showed that
this acute steroidogenic response was accompanied by the
rapid synthesis of a 37-kDa phosphoprotein. Stocco and
Sodeman (63) extended these observations to MA-10 cells
and cloned this factor, which they named the “steroido-
genic acute regulatory protein,” or StAR (64). The history
of the discovery of StAR as this long-sought acute trigger
of steroidogenesis has been reviewed elsewhere (65). Al-
though other proteins are involved in the chronic replen-
ishment of mitochondrial cholesterol, abundant biochem-
ical, clinical, and genetic evidence implicates StAR as this
labile protein mediator (65).

Some steroidogenesis is independent of StAR; when
nonsteroidogenic cells are transfected with the P450scc
system, they convert cholesterol to pregnenolone at about
14% of the StAR-induced rate (66, 67). Furthermore, the
placenta utilizes mitochondrial P450scc to initiate steroi-
dogenesis (68) but does not express StAR (69). The mech-
anism of StAR-independent steroidogenesis is unclear; it
may occur without a triggering protein, or some other
protein may exert StAR-like activity to promote choles-
terol flux, but without StAR’s rapid kinetics. A candidate
for such a protein is MLN64, a 445-amino acid protein
cloned from metastatic breast carcinoma, which has 227
carboxyl-terminal amino acids that are 37% identical and
about 50% similar to the sequence of StAR (70). Intact
MLN64 lacks StAR-like activity, but deleting the amino-
terminal 218 residues produces a protein that closely
resembles StAR and has about half of StAR’s ability to
promote steroidogenesis, both in transfected cells and
when purified and added to steroidogenic mitochondria
in vitro (71, 72). MLN64 is expressed in the placenta
where its amino-terminal domain is cleaved off, suggesting
that an N-terminally deleted form of MLN64 may sub-
stitute for StAR in the placenta (72).

StAR is synthesized as a 37-kDa protein that has a typ-
ical mitochondrial leader sequence that directs it to the
mitochondrion and is cleaved off upon mitochondrial en-
try to yield a 30-kDa intramitochondrial protein. Over-
expression of mouse StAR in mouse Leydig MA-10 cells
increased their basal steroidogenic rate (64), and cotrans-
fection of expression vectors for both StAR and the
P450scc system in nonsteroidogenic COS-1 cells aug-

TABLE 2. Properties of HSDs

Features AKRs SDRs

Quaternary
structure

Monomers Dimers, tetramers

Subunit size (kDa) �35 25–35
Structural motif TIM- (�-)barrel Rossman fold
Catalytic motif Y, K, H, D distant in

linear sequence
Y-X-X-X-K motif

TIM, Triosephosphate isomerase. © R. J. Auchus.
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mented pregnenolone synthesis above that obtained with
the P450scc system alone (66). Mutations in StAR cause
the most common form of lipoid CAH (66, 67), in which
very little steroid is made; and targeted disruption of the
mouse Star gene causes a similar phenotype (73, 74).

B. StAR structure and mechanism of action
The mechanism of StAR’s action has been studied ex-

tensively but remains incompletely understood (17, 75,
76). The short half-life of the 37-kDa cytoplasmic precur-
sor and the longer half-life of the “mature” 30-kDa intra-
mitochondrial form of StAR initially suggested that the
30-kDa form was the biologically active moiety. When
expressed in cytoplasm or added to mitochondria in vitro,
both the 37- and 30-kDa forms of StAR are equally active
(77). When StAR is immobilized on the OMM, it is con-
stitutivelyactive, but StAR is inactivewhen localized to the
mitochondrial intramembranous space or to the matrix
(78). These data demonstrate that StAR acts exclusively
on the OMM (77, 78), and its activity in promoting ste-
roidogenesis is proportional to its residency time on the
OMM (78). Thus, it is StAR’s cellular localization, not its
cleavage, that determines whether or not it is active. StAR
has a sterol-binding pocket that accommodates a single
molecule of cholesterol (26). The interaction of StAR with
the OMM involves conformational changes (79, 80) that
are necessary for StAR to accept and discharge cholesterol
molecules. Although StAR can transfer cholesterol be-
tween synthetic membranes in vitro (81), suggesting that
other protein molecules are not needed for its action, this
activity can also be seen with the inactive mutant R182L,
which is biologically inactive and causes lipoid CAH (82).
Thus StAR’s action to promote steroidogenesis is distinct
from its cholesterol-transfer activity.

Substantial data indicate that the action of StAR also
requires the translocator protein, TSPO (also known as
the peripheral benzodiazepine receptor) on the OMM
(83–85). StAR appears to interact with peripheral benzo-
diazepine receptor (84), voltage-dependent anion channel
1, and phosphate carrier protein (86), all proteins found
on the OMM. Each molecule of StAR appears to be recy-
cled, moving hundreds of molecules of cholesterol before
the cleavage/inactivation event (87). Although StAR is re-
quired for the acute steroidogenic response, steroidogen-
esis persists in the absence of StAR at about 14% of the
StAR-induced rate (67, 75), accounting for the steroido-
genic capacity of tissues that lack StAR (e.g., the placenta
and the brain). Biophysical and partial proteolysis studies
indicate that residues 63–193 of StAR (i.e., the domain
thatdoesnot containmostof the crucial residues identified
by missense mutations) are protease-resistant and consti-
tute a “pause-transfer” sequence, which permits the bio-

active loosely folded carboxy-terminal molten globule do-
main to have increased interaction with the OMM (79).

The sequence of mouse (64) and human (69) StAR ini-
tially suggested that it had a novel structure. However, the
carboxy-terminal 227 amino acids of MLN64 are 37%
identical and about 50% similar to the sequence of StAR
(70), and N-218 MLN64 has about half of the ability of
StAR to promote steroidogenesis (71, 72). MLN64, a re-
lated protein called MENTHO (88, 89), and the NPC
proteins disordered in Niemann-Pick type C disease act in
the trafficking of cholesterol in peroxisomes and lipid
droplets (90). Although the structure of StAR has not been
determined directly, a crystal structure at 2.2 Å resolution
was determined for N-216 MLN64, which corresponds to
N-62 StAR. The structure reveals a globular protein with
an �/� helix-grip fold and an elongated hydrophobic
pocket measuring about 26 Å deep and 10 Å across at its
widest diameter (26). Modeling suggested that N-216
MLN64 could accommodate a single molecule of choles-
terol in this pocket, with the 3�-OH group coordinated by
the two polar residues at the bottom of the pocket. This
structure, the crystal structure of the closely related
StarD4 protein (25) and several computational models of
StAR (91–93) all feature two long �-helixes at the N and
C termini, two short �-helixes, and a set of nine antipar-
allel �-sheets that form a helix-grip fold (Fig. 4A). The
most notable feature is a hollow hydrophobic pocket that
has appropriate dimensions and geometry to bind a single
molecule of cholesterol. The pocket is defined primarily by
the �-sheets and the C-helix, which forms its floor. The
interior surface of the pocket contains only two hydro-
philic residues, E169 and R188. If a cholesterol molecule
is modeled in the pocket, these hydrophyllic residues are
perfectly positioned to coordinate with the 3�-hydroxyl
group of cholesterol, and direct binding assays show that
both N-218 MLN64 and N-62 StAR bind cholesterol with
1:1 stoichiometry (26). Only the exterior surface of the C-
terminal �-helix and small segments of the adjacent �-loops
appear to interact with the OMM to stimulate steroidogen-
esis (Fig. 4B). The �-loops form hydrogen bonds with the
C-terminal helix, prohibiting access of cholesterol to StAR’s
hydrophobic cholesterol binding pocket. The interaction
with the charged phospholipids head groups on the OMM
disrupts these hydrogen bonds, permitting the C-helix to
swing open and closed, governing access of cholesterol to the
sterol-binding pocket. Immobilizing the C-helix by forming
disulfide bonds with the adjacent loops ablates activity, and
disrupting such artificial disulfide bonds restores activity
(80). Thus, the activity of StAR on the OMM requires an
acid-induced disruption of hydrogen bonds and a conse-
quent conformational change in StAR to permit it to bind
and release cholesterol.
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C. Disorders of StAR: classic and nonclassic congenital
lipoid adrenal hyperplasia

Lipoid CAH is the most severe genetic disorder of ste-
roidogenesis, characterized by the absence of significant
concentrations of all steroids, high basal ACTH and
plasma renin activity, an absent steroidal response to long-
term treatment with high doses of ACTH or human cho-

rionic gonadotropin (hCG), and grossly enlarged adrenals
laden with cholesterol and cholesterol esters (94–97).
These findings indicate a lesion in the first step in steroido-
genesis—the conversion of cholesterol to pregnenolone. It
was initially thought that the lesion was in an enzyme
involved in this conversion, and before the role of P450scc
was understood, lipoid CAH was misnamed “20,22-des-
molase deficiency” (97–102). However, the gene for
P450scc is normal in these patients (102), as are the
mRNAs for adrenodoxin reductase and adrenodoxin
(102). Furthermore, placental steroidogenesis persists in
lipoid CAH, permitting normal term gestation, which
would not be expected to happen if P450scc were involved
(103). The normal P450scc system plus the accumulation
of cholesterol esters in the affected adrenal suggested that
the lesion lay in an upstream factor involved in cholesterol
transport into mitochondria (102). The cloning of StAR
permitted its study in patients with lipoid CAH, and the
identification of disease-causing StAR mutations proved
the indispensable role of StAR in adrenal and gonadal (but
not placental) steroidogenesis (66, 67, 104).

Lipoid CAH is a StAR gene knockout experiment of
nature, revealing the complex physiology of the StAR pro-
tein (105). StAR promotes steroidogenesis by increasing
the movement of cholesterol into mitochondria, but in the
absence of StAR, steroidogenic cells make steroids at
about 14% of the StAR-induced level (66, 67, 75, 104).
This observation led to the two-hit model of lipoid CAH
(67) (Fig. 5). The first hit is the loss of StAR itself, leading
to a loss of most, but not all steroidogenesis, leading to a
compensatory rise in ACTH and LH. These hormones
increase cellular cAMP, which increases biosynthesis of
LDL receptors, their consequent uptake of LDL choles-
terol, and de novo synthesis of cholesterol. In the absence
of StAR, this increased intracellular cholesterol accumu-
lates, causing the second hit, which is the loss of all ste-
roidogenic capacity caused by mitochondrial and cellular
damage resulting from the accumulated cholesterol, cho-
lesterol esters, and their autooxidation products (67).

The two-hit model explains the unusual clinical find-
ings in lipoid CAH. In the fetal testis, which normally
makes large amounts of testosterone in fetal life (106), the
Leydig cells are destroyed early in gestation, eliminating
testosterone biosynthesis; hence, an affected 46,XY fetus
does not undergo normal virilization and is born with
female external genitalia and a blind vaginal pouch. How-
ever, Wolffian duct derivatives are well developed, indi-
cating the presence of some testosterone synthesis early in
fetal life (107), as predicted by the two-hit model. The
undamaged Sertoli cells produce Müllerian inhibitory
hormone, so that the phenotypically female 46,XY fetus
has no cervix, uterus, or fallopian tubes. The steroido-

FIG. 4. Model of N-62 StAR. A, Ribbon diagram shows the N terminus
in the upper right-hand corner; the C-terminal helix is in the lower
center, extending out of the plane of the diagram. Residues that
contribute to the associations between this C-terminal helix and
adjacent structures are shown as ball-and-stick representations: carbon
atoms are white; nitrogen, blue; oxygen, red; and hydrogen bonds,
green. The principal associations involve the C-terminal helix residues
Thr263 associating with Asn150, Arg272 associating with Asp106, and
Leu275 associating with Gln128. [Reproduced with permission from
D. C. Yaworsky et al.: J Biol Chem 280:2045–2054, 2005 (92). ©
American Society for Biochemistry and Molecular Biology.] B, Model
showing StAR interacting with a membrane [Cover picture of Ref. 92.].
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genically active fetal zone of the adrenal is similarly
affected, eliminating most dehydroepiandrosterone
(DHEA) biosynthesis, and hence eliminating the fetopla-
cental production of estriol, so that midgestation maternal
and fetal estriol levels are very low (103). The definitive
zone of the fetal adrenal, which differentiates into the zo-
nae glomerulosa and fasciculata, normally produces very
little aldosterone, and because fetal salt and water metab-
olism are primarily maintained by the placenta, stimula-
tion of the glomerulosa by angiotensin II generally does
not begin until birth. Consistent with this, many newborns
with lipoid CAH who have StAR mutations devoid of
measurable function may not have a salt-wasting crisis
until after several weeks of life, when chronic stimulation
then leads to cellular damage (67, 108). Some mineralo-
corticoids may also be produced by StAR-independent ste-
roidogenesis, further delaying the onset of salt loss in li-
poid CAH.

The two-hit model also explains the spontaneous fem-
inization of affected 46,XX females who are treated in
infancy and reach adolescence (109, 110). The fetal ovary
makes little or no steroids and contains no detectable

mRNAs for the steroidogenic enzymes after the first tri-
mester (106); consequently the ovary remains largely un-
damageduntil it is stimulatedbygonadotropinsat the time
of puberty, when it then produces some estrogen by StAR-
independent steroidogenesis. Although the amount of es-
tradiol produced is subnormal, in the absence of opposing
action from adrenal androgens, it is sufficient to feminize
an adolescent female. Continued stimulation results in
cholesterol accumulation and cellular damage, so that bio-
synthesis of progesterone in the latter part of the cycle is
impaired. Because gonadotropin stimulation only recruits
individual follicles and does not promote steroidogenesis
in the whole ovary, most follicles remain undamaged and
available for future cycles. Cyclicity is determined by the
hypothalamic-pituitary axis and remains normal. With
each new cycle, a new follicle is recruited, and more es-
tradiol is produced by StAR-independent steroidogenesis.
Although net ovarian steroidogenesis is impaired, enough
estrogen is produced to induce breast development (espe-
cially in the absence of androgens), feminization, monthly
estrogen withdrawal, and cyclic vaginal bleeding (67, 109,
110). However, progesterone synthesis in the latter half of

FIG. 5. Two-hit model of lipoid CAH. A, In normal adrenal cells, cholesterol is derived by endogenous synthesis and from LDLs, as depicted in Fig.
2. The rate-limiting step in steroidogenesis is the flow of cholesterol from the OMM to the IMM, mediated by StAR. B, Early in lipoid CAH, StAR-
independent mechanisms still permit some cholesterol to enter the mitochondria; however, steroidogenesis is insufficient, and secretion of ACTH
(and LH) increases, stimulating further accumulation of cholesterol esters in lipid droplets. C, The accumulating lipid droplets engorge and damage
the cell through physical displacement and by the action of cholesterol autooxidation products. Steroidogenic capacity is destroyed, and secretion
of tropic hormones continues. In the ovary, follicular cells remain unstimulated and undamaged until puberty, when they are recruited at the
beginning of each cycle, and small amounts of estradiol are produced by StAR-independent means (as in panel B), causing partial feminization,
anovulatory cycles, infertility, and hypergonadotropic hypogonadism. [Reprinted with permission from H. S. Bose, et al.: N Engl J Med 335:1870–
1878, 1996 (67). © 1996 Massachusetts Medical Society. All rights reserved.]
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the cycle is disturbed by the accumulating cholesterol es-
ters so that the cycles are anovulatory. Measurements of
estradiol, progesterone, and gonadotropins throughout
the cycle in affected adult females with lipoid CAH con-
firmed this model (110). Similarly, examination of StAR-
knockout mice confirms the two-hit model (74).

Numerous mutations in the STAR gene have been
found in patients with lipoid CAH (67, 111). Lipoid CAH
is relatively common in Japan; about 65–70% of affected
Japanese alleles and virtually all affected Korean alleles
carry the mutation Q258X (66, 67, 97, 111–113); this
observation first identified the crucial role of the C-termi-
nal helix in StAR’s action. The carrier frequency for this
mutation in these countries appears to be about one in 300
(67, 112) so that one in every 250,000 to 300,000 new-
borns is affected, for a total of about 500 patients in Japan
and Korea. Other genetic clusters are found among Pal-
estinian Arabs, most of whom carry the mutation R182L
(67); in eastern Saudi Arabia, carrying R182H (108); and
in parts of Switzerland, carrying the mutation L260P
(114). Deletion of only 10 carboxy-terminal residues re-
duces StAR activity by half (77), and deletion of 28
carboxy-terminal residues by the common Q258X muta-
tion eliminates all activity. By contrast, deletion of the first
62 amino-terminal residues has no effect on StAR activity
assayed in vitro, although this deletes the entire mitochon-
drial leader sequence and forces StAR to remain in the
cytoplasm (77).

Most patients with lipoid CAH have had similar clin-
ical findings: an infant with normal-appearing female gen-
italia experiences failure to thrive and salt loss in the first
weeks of life (67, 97, 111). However, other clinical pre-
sentations have been described, including apparent sud-
den infant death syndrome (115) and late initial presen-
tation of salt loss at about 1 yr of age (108). Nonclassic
lipoid CAH is an attenuated form of the disease caused by
mutations that retain about 20–25% of normal StAR ac-
tivity. Most of these patients carry StAR mutation R188C,
although other mutations can cause this phenotype (116–
118). These individuals generally experience mild symp-
toms of adrenal insufficiency at 2 to 4 yr of age, and 46,XY
patients have normal-appearing external genitalia, indi-
cating normal intrauterine Leydig cell function leading to
normal male external genital development. Some patients
have very mild disorders of mineralocorticoid secretion,
characterized by normal electrolytes and elevated plasma
renin activity, as well as having rather mild hypergona-
dotropic hypogonadism. As a result of the predominance
of a disorder in glucocorticoid secretion, some of these
patients have been mistaken for having a form of familial
glucocorticoid deficiency (FGD) (117), which is caused by
disorders in the ACTH receptor [melanocortin receptor

type 2 (MC2R)] or melanocortin receptor accessory pro-
tein (MRAP) (119). Thus, the spectrum of clinical presen-
tation of mutations in the StAR protein is substantially
broader than initially appreciated.

Treatment of lipoid CAH consists of physiological re-
placement with glucocorticoids, mineralocorticoids, and
in the newborn period, salt (96, 97). The glucocorticoid
requirement is less than in the virilizing adrenal hyperpla-
sias because it is not necessary to suppress excess adrenal
androgen production, so that growth in these patients
should be normal (97). Genetic males have female external
genitalia and should undergo orchiectomy and be raised
as females (67, 96, 97). Successful pregnancy has been
induced in an adult female with lipoid CAH by clomi-
phene citrate stimulation, followed by progesterone
supplementation to mimic the maternally produced first
trimester progesterone that the affected mother could
not produce (120).

V. Conversion of Cholesterol to Pregnenolone:
P450scc and Its Electron Transfer Proteins

A. P450scc
A cell is said to be steroidogenic if it expresses the cho-

lesterol side-chain cleavage enzyme, P450scc, which cat-
alyzes the first step in steroidogenesis. Conversion of cho-
lesterol to pregnenolone in mitochondria is the first, rate-
limiting, and hormonally regulated stepinthesynthesisofall
steroid hormones (121–123). This process involves three dis-
tinct chemical reactions, the 22-hydroxylation of cholesterol,
20-hydroxylation of 22(R)-hydroxycholesterol, and oxida-
tive scission of the C20–22 bond of 20(R),22(R)-dihydroxy-
cholesterol (the side-chain cleavage event), yielding preg-
nenolone and isocaproaldehyde. P450scc can use the
hydroxysterol intermediates directly as substrate, providing
a useful experimental tool because these hydroxysterols are
somewhat water-soluble and do not require StAR for access
to P450scc (66). However, these reactions are probably not
important in vivo because their kcat/Km ratios are much
higher than that of cholesterol (124), and the high KD of
approximately 3000 nM drives the dissociation of preg-
nenolone from P450scc. The reactions catalyzed by P450scc
are slow,withanet turnovernumberofabout six (125) to20
(124) molecules of cholesterol per molecule of P450scc per
second. Because 20-hydroxycholesterol, 22-hydroxycholes-
terol, and 20,22-dihydroxycholesterol could all be isolated
from bovine adrenals in significant quantities, and because 3
moles of NADPH were required per mole of cholesterol con-
verted to pregnenolone, it was initially thought that three
separate enzymes were involved. However, protein purifica-
tion and reconstitution of enzymatic activity in vitro showed
that a single protein, termed P450scc (where scc refers to the
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side chain cleavage of cholesterol) converted cholesterol to
pregnenolone (126, 127) (for review see Refs. 3 and 128).
These three reactions occur on a single active site that is in
contactwith the IMM.P450scc canalsocleave the side chain
of other hydroxysterols (e.g., 7-dehydrocholesterol) and can
20- and 22-hydroxylate vitamin D3 (129).

Cloning of the bovine cDNA for P450scc (130) preceded
the cloning of the human cDNA (131) and gene (132) (now
termed CYP11A1), which lies on chromosome 15q23-q24
and consists of nine exons spanning about 30 kb. The 2-kb
mRNA encodes 521 amino acids, including a 39- amino acid
mitochondrial leader peptide that is cleaved off during the
entry of P450scc into the mitochondria.

Forms of P450scc engineered to lack the mitochondrial
leader or that are targeted to the endoplasmic reticulum
are inactive, demonstrating that the mitochondrial envi-
ronment is required for activity (133). A spontaneous de-
letion of the rabbit cyp11a1 gene for P450scc (134), its
knockout in the mouse (135), and rare patients with
P450scc mutations (136, 137) result in the loss of all ste-
roidogenesis, indicating that all steroidogenesis is initiated
by this one enzyme. Thus the presence of P450scc renders
a cell ‘steroidogenic’ and able to make steroids de novo, as
opposed to modifying steroids produced elsewhere, which
occurs in many types of cells.

Expression of P450scc is induced by cAMP in the ad-
renal zona fasciculata/reticularis (138), testis (139), and
ovary; and by the calcium/protein kinase C system in the
zona glomerulosa (140, 141). By contrast, placental
P450scc expression is constitutive (68) and requires the
action of several members of the CP2 (grainyhead) family
of transcription factors (142–145). Side-chain cleavage
activity and pregnenolone biosynthesis have been demon-
strated in the rat and human brain (146), and abundant
P450scc expression is found in the rodent brain, especially
in fetal life. Transcription of the CYP11A1 gene encoding
P450scc determines the amount of P450scc enzyme and
the net steroidogenic capacity of a cell. This transcription
is regulated in both tissue-specific and hormonally respon-
sive fashions and can be induced by both the protein kinase
A and protein kinase C second messenger systems, which
act through different DNA elements in the CYP11A1 pro-
moter (141). The expression of P450scc and other steroi-
dogenic enzymes in the adrenal and gonad require the
action of the zinc-finger transcription factor, steroido-
genic factor 1 (SF1) (147, 148); by contrast, expression of
P450scc in the human placenta is independent of SF1 and
requires CP2 proteins (formerly termed LBP proteins)
(142–145) and TreP-132 (149, 150). Thus, long-term cel-
lular stimulation over the course of days will increase the
content of P450scc and the level of basal steroid produced,

as well as the capacity of the cell to mount a steroidogenic
response. A comprehensive overview of the factors regu-
lating the transcription of steroidogenic factors is beyond
the scope of this review, but some recent, more focused
reviews are available (151, 152).

B. P450scc deficiency
Several patients have now been described with muta-

tions in P450scc (136, 137, 153–155). Although these pa-
tients may be clinically and hormonally indistinguishable
from those with lipoid CAH, their StAR genes are normal.
It would seem logical that elimination of P450scc activity
would be incompatible with term gestation because the
placenta, a fetal tissue, must produce progesterone in the
second half of pregnancy to suppress maternal uterine
contractions, thus preventing miscarriage. It is most likely
that these few fetuses with P450scc mutations reached
term gestation because of unusually protracted mainte-
nance of the maternal corpus luteum of pregnancy, which
normally involutes in the second trimester. However, ma-
ternal progesterone production during these pregnancies
has not been investigated directly. Mild or nonclassic
P450scc deficiency has been reported recently in patients
carrying P450scc mutations that retain about 10–20% of
wild-type activity (156, 157). By hormonal and clinical
criteria, nonclassic P450scc deficiency is indistinguishable
from nonclassic lipoid CAH. However, all patients re-
ported to date with P450scc deficiency have had normal-
sized or small adrenals, in contrast to the massive adrenal
enlargement that characterized lipoid CAH from severe
StAR mutations.

C. Chronic maintenance of the steroidogenic machinery
Whereas the acute regulation of steroidogenesis is de-

termined by the action of StAR, P450scc is the enzymatic
rate-limiting step in steroidogenesis. Thus, the chronic reg-
ulation of steroidogenesis is quantitatively (how much)
determined by P450scc gene expression (158) and quali-
tatively (which steroids) determined by the expression of
downstream enzymes, especially P450c17. The episodic
bursts of cAMP resulting from the binding of ACTH and
LH to their respective receptors are necessary but not suf-
ficient for the continued expression of the steroidogenic
enzymes and the production of steroids. Patients with in-
activating mutations in the ACTH receptor (MC2R) (159)
or the LH/hCG receptor (160) make negligible steroids
from the affected glands.

Conversely, activating mutations of the G�s protein,
which couples receptor binding to cAMP generation, and
activating mutations of the LH receptor cause hyperse-
cretion of steroids (161). Indeed, cAMP-responsive ele-
ments have been identified in the genes for most of the
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human steroidogenic P450 enzymes, but this mechanism
alone does not explain the diversity of steroid production
observed in the various zones of the adrenal cortex, the
gonads of both sexes, the placenta, and the brain. Other
transcription factors (e.g., AP2, SP1, SP3, NF1C, NR4A1,
NR4A2, GATA4, and GATA6) participate in regulating
the basal- and cAMP-stimulated transcription of each
gene. SF1 coordinates the expression of steroidogenic en-
zymes in adrenal and gonadal cells (147). By contrast,
steroidogenesis in the brain (162) and placenta (142–145)
is independent of SF1. Targeted disruption of the SF1 gene
in the mouse disrupts steroid biosynthesis and blocks the
development of the adrenal glands, gonads, and the ven-
tromedial hypothalamus (163). The action of SF1 is mod-
ified by other transcription factors (e.g., WT1 and DAX1)
(164) or by its phosphorylation (165) or sumoylation
(166). Thus, the development of steroidogenic organs is
intimately related to the capacity to produce steroids, and
multiple factors acting on the genes for steroidogenic en-
zymes yield both common features and diversity among
the steroidogenic tissues.

D. Transport of electrons to P450scc: ferredoxin
reductase and ferredoxin

P450scc functions as the terminal oxidase in a mito-
chondrial electron transport system (49). Electrons from
NADPH are accepted by a flavoprotein, termed ferre-
doxin reductase (also known as adrenodoxin reductase),
which is associated with the IMM. Ferredoxin reductase
transfers the electrons to an iron/sulfur protein termed
ferredoxin (adrenodoxin), which is found in the mito-
chondrial matrix or loosely adherent to the IMM. Ferre-
doxin then transfers the electrons to P450scc (Fig. 6).
Ferredoxin reductase and ferredoxin serve as generic elec-

tron transfer proteins for all mitochondrial P450s, includ-
ing the vitamin D 1�- and 24-hydroxylases. Ferredoxin
forms a 1:1 complex with ferredoxin reductase, dissoci-
ates, then subsequently reforms an analogous 1:1 complex
with a mitochondrial P450 such as P450scc, thus func-
tioning as an indiscriminate diffusible electron shuttle
mechanism. The human genes for ferredoxin reductase
(167, 168) and ferredoxin (169) are expressed in all tissues
(170, 171), suggesting that they may have additional roles
beyond electron transfer to P450 enzymes.

E. Ferredoxin reductase
Ferredoxin reductase is widely expressed in human tis-

sues, but its expression is two orders of magnitude higher
in steroidogenic tissues (171). The primary RNA tran-
script from the 11-kb FDXR gene (168) on chromosome
17q24-q25 (172) is alternatively spliced, generating two
mRNA species that differ by only 18 bp (167), but only the
protein encoded by the shorter mRNA is active in steroi-
dogenesis (173). Unlike most steroidogenic genes, the pro-
moter for ferredoxin reductase contains six copies of
GGGCGGG sequences (168), which is the canonical bind-
ing site for the transcription factor SP1 typically found in
housekeeping genes. Accordingly, cAMP does not regu-
late transcription of the ferredoxin reductase gene, as is the
case for ferredoxin and P450scc (171). Mutations in the
human genes for ferredoxin and ferredoxin reductase have
not been described, but mutation of the Drosophila ferre-
doxin reductase homolog dare causes developmental ar-
rest and degeneration of the adult nervous system due to
the loss of ecdysteroid production (174).

Crystallography shows that bovine ferredoxin reduc-
tase consists of two domains, each comprising a �-sheet
core surrounded by �-helices (175). The NADP(H)-bind-
ing domain (residues 106 to 331 in bovine numbering) is
a compact region, whereas the more open flavin adenine
dinucleotide (FAD) domain, formed by the remaining
amino- and carboxy-terminal residues, binds the dinucleotide
portion of FAD across a Rossman fold with the redox-
active flavin isoalloxazine ring abutting the NADP(H) do-
main. By analogy to related structures, including gluta-
thione and thioredoxin reductases, the nicotinamide ring
of NADPH appears to lie adjacent to the flavin ring in
position to transfer its two electrons to the FAD. Thus,
intramolecular electron transfer occurs in the cleft formed
by the angled apposition of these two domains. Within this
cleft, basic residues abound, including arginines 240 and
244, which are important for interactions with ferredoxin
(176, 177). Hypothetical docking of the two structures
suggests that the negative surface of ferredoxin fits ele-
gantly into the positive surface of ferredoxin reductase,
even with NADP(H) bound (175). Basic residues are also
critical for the interaction of P450scc with the negative

FIG. 6. Electron transport to mitochondrial forms of cytochrome P450.
The flavin group (FAD) of ferredoxin reductase (FeRed), which is bound to
the IMM, accepts two electrons from NADPH, converting it to NADP�.
These electrons pass to the iron-sulfur (Fe2S2, diamond with dots) cluster
of ferredoxin (Fedx), which is found either in the mitochondrial matrix, as
shown, or loosely associated with the IMM. Fedx then donates the
electrons to the heme of the P450 (square with Fe). Negatively charged
residues in Fedx (�) guide docking and electron transfer with positively
charged residues (�) in both FeRed and the P450. For P450scc, three pairs
of electrons must be transported to the P450 to convert cholesterol to
pregnenolone. [© W. L. Miller.]
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surface charges on ferredoxin (178), so that ferredoxin
reductase-ferredoxin docking is expected to share some
key features with the mitochondrial P450-ferredoxin
interaction.

F. Ferredoxin
Ferredoxin is a small (14 kDa), soluble, iron/sulfur

(Fe2S2) electron shuttle protein that either resides free in
the mitochondrial matrix or is loosely bound to the IMM
(179). Encoded by the FDX1 gene on chromosome 11q22
that spans 35 kb, ferredoxin is expressed in many tissues,
and its expression in steroidogenic tissues is induced by
cAMP in parallel with P450scc (180).

Bovine ferredoxin consists of two domains (181), a core
region and an interaction domain. The core region con-
tains residues 1-55 and 91-end (bovine numbering), in-
cluding the four cysteines whose sulfur atoms tether the
Fe2S2 cluster to the protein. Residues 56 to 90 form the
interaction domain, which contains a helix at its periphery
that includes acidic residues, aspartates 72, 76, and 79,
plus glutamate 73, which are critical for the interaction of
ferredoxin with P450scc (182). The Fe2S2 cluster lies in a
protuberance in the molecule at the junction of its two
domains. The charged residues of ferredoxin cluster in the
interaction domain, giving the molecule a highly nega-
tively charged surface above the Fe2S2 cluster. This de-
scription of ferredoxin is consistent with earlier studies
that showed that overlapping sets of negative charges on
ferredoxin drive interactions with positive charges on
both P450scc and ferredoxin reductase (176). Thus, the
preponderance of the evidence indicates that the same sur-
face of ferredoxin interacts with both ferredoxin reductase
and the P450 to transport electrons (176, 178). Despite
this constraint, it has been possible to construct cata-
lytically active, three-component fusion proteins of the
general structure H2N-P450scc-ferredoxin reductase-
ferredoxin-COOH, but all have required that the ferre-
doxin moiety be located at the carboxyl terminus at-
tached to a hydrophilic linker that permits rotational
freedom, so that the same surface of the ferredoxin moi-
ety can access both the P450 and the ferredoxin reduc-
tase moiety (133, 183, 184).

VI. 3�-Hydroxysteroid Dehydrogenase/
�53�4 Isomerase (3�HSD)

Once pregnenolone is produced from cholesterol, it may
undergo 17�-hydroxylation by P450c17 to yield 17�-hy-
droxypregnenolone, or it may be converted to progester-
one, the first biologically important steroid in the path-
way. A 42-kDa microsomal enzyme, 3�HSD, catalyzes
both conversion of the hydroxyl group to a keto group on

carbon 3 and the isomerization of the double bond from the
Bring(�5steroids) totheAring(�4steroids) (185–187).This
3�HSD converts pregnenolone to progesterone, 17�-hy-
droxypregnenolone to 17�-hydroxyprogesterone (17OHP),
DHEA to androstenedione, and androstenediol to testoster-
one, all with similar efficiency (Km and Vmax) (188). The Km

of the 3�HSD reactions is about 5 �M, which is substantially
higher than the 0.8 �M Km for 17-hydroxylation by P450c17
(189), thus favoring the �5 pathway. This conversion of �5

steroids into their �4 congeners consists of two chemical
transformations, both performed by 3�HSD. The first
reaction is the oxidation of the 3�-hydroxyl group to
the ketone; during this process, NAD� is converted to
NADH. The intermediate �5, 3-ketosteroid remains
tightly bound to the enzyme with nascent NADH, and the
presence of NADH in the cofactor-binding site activa-
tes the enzyme’s second activity, the �53�4-isomerase
activity (190).

Although rodents contain multiple 3�HSD isoforms,
the human genome has only two active genes and several
pseudogenes. These two enzymes are encoded by closely
linked genes on chromosome 1p13.1 with identical intron/
exon organizations. The type 1 enzyme catalyzes 3�HSD
activity in placenta, breast, liver, brain, and some other
tissues (186, 191, 192). This isoform is required for pla-
cental progesterone production during pregnancy, which
may explain why a deficiency of 3�HSD1 has never been
described. In contrast, the type 2 enzyme (3�HSD2) is the
principal isoform in the adrenals and gonads (191, 193).
Deficiency of 3�HSD2 causes the rare form of CAH
known as 3�HSD deficiency (194, 195). The presence of
the type 1 isozyme in these patients helps to explain the
paradox of why 46,XX individuals born with severe
3�HSD2 deficiency can virilize slightly in utero: the
3�HSD block in the adrenal diverts �5-steroids away from
cortisol and toward DHEA; extraadrenal 3�HSD1 then
permits testosterone synthesis despite 3�HSD2 deficiency
in the adrenal.

The type 1 and type 2 enzymes share 93.5% amino acid
identity and are biochemically and enzymatically very sim-
ilar. The enzymes are strongly inhibited by �4 products
(196) and by synthetic �4 steroids such as medroxypro-
gesterone acetate (188). Both enzymes have very similar
affinities of about 5 �M for the �5, 17-ketosteroids preg-
nenolone, 17�-hydroxypregnenolone, and DHEA (185,
188) and also convert the 17�-hydroxysteroid andro-
stenediol (androsta-5-ene-3�,17�-diol) to testosterone.
These enzymes are primarily membrane-bound and are
found in both the microsomal and mitochondrial fractions
during subcellular fractionation (185). Soluble forms of
the enzyme have been engineered, and studies using these
truncated forms demonstrate that H156 of 3�HSD1 is
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responsible for its higher affinity than 3�HSD2 for the
inhibitors epostane and trilostane (197). Ultrastructural
studies using immunogold labeling show that, at least in
bovine adrenal zona glomerulosa cells, 3�HSD immuno-
reactivity is found in mitochondria and endoplasmic re-
ticulum as well as in the cytoplasm (198). It is not clear
whether this is also true for human 3�HSD or whether this
subcellular distribution differs in various types of steroi-
dogenic cells, but this property could be a novel mecha-
nism for regulating the direction of steroidogenesis (199).

3�HSD activity is important in regulating adrenal pro-
duction of DHEA sulfate (DHEAS). The human fetal ad-
renal, which produces vast amounts of DHEAS, contains
little 3�HSD immunoreactivity (200). Furthermore, the
expression of 3�HSD in the innermost regions of the ad-
renal cortex declines as the zona reticularis develops in
childhood to initiate adrenarche (201, 202), and 3�HSD
immunoreactivity is low in the adult rhesus (203, 204) and
human (201, 205) zona reticularis. Thus, the development
of an adrenal cell type (reticularis) that is relatively defi-
cient in 3�HSD activity appears to be a necessary com-
ponent of adrenarche, in which adrenal production of the
�5 steroids DHEA and DHEAS rises exponentially (206).

A. 3�-Hydroxysteroid dehydrogenase deficiency
3�HSD deficiency is a rare cause of glucocorticoid and

mineralocorticoid deficiency that may be fatal if not di-
agnosed early in infancy (194). In its classic form, genetic
females may have clitoromegaly and mild virilization be-
cause the fetal adrenal overproduces large amounts of
DHEA, a small portion of which is converted to testos-
terone via extraadrenal 3�HSD1. Genetic males also syn-
thesize some androgens by peripheral conversion of ad-
renal and testicular DHEA, but the concentrations are
insufficient for complete male genital development so that
these males have a small phallus and severe hypospadias.
Genetic studies have identified numerous mutations caus-
ing 3�HSD deficiency, all found in the type 2 gene (195,
207–210). Mutations have not been found in 3�HSD1,
presumably because this would prevent placental biosyn-
thesis of progesterone, resulting in a spontaneous first-
trimester abortion.

The presence of peripheral 3�HSD1 activity compli-
cates the hormonal diagnosis of this disorder. One would
expect that affected infants should have low concentra-
tions of 17OHP, yet some newborns with 3�HSD defi-
ciency have very high concentrations of serum 17OHP,
approaching those seen in patients with classical 21-hy-
droxylase deficiency (211). The adrenal of a patient with
3�HSD2 deficiency will secrete very large amounts of the
�5 steroids, pregnenolone, 17�-hydroxypregnenolone,
and DHEA. Some of the secreted 17�-hydroxypreg-
nenolone is then converted to 17OHP by 3�HSD1, mainly

in the liver. This 17OHP is not effectively taken up by the
adrenal for subsequent conversion to cortisol because the
circulating concentrations are below the Km of P450c21
(0.8–1.0 �M 17OHP, or about 40,000 ng/dl) (189). The
ratio of the �5 to the �4 compounds remains high, con-
sistent with the adrenal and gonadal deficiency of 3�HSD
(211). Thus, the principal diagnostic test in 3�HSD defi-
ciency is iv administration of cosyntropin with measure-
ment of the three �5 compounds and the corresponding �4

compounds. Similar to 21-hydroxylase deficiency, where
heterozygotes cannot be diagnosed by the response of
17OHP to cosyntropin stimulation, steroidal responses to
cosyntropin cannot be used to identify carriers of 3�HSD
deficiency (212).

Mild or partial defects of adrenal 3�HSD activity have
been reported on the basis of ratios of �5 steroids to �4

steroids after a cosyntropin test that exceed 2 or 3 SD above
the mean. These patients are typically young girls with
premature adrenarche or young women with a history of
premature adrenarche and complaints of hirsutism, viril-
ism, and oligomenorrhea (213–215). However, the
3�HSD2 genes are normal in these patients, and even pa-
tients with less severe 3�HSD2 mutations have ratios of �5

to �4 steroids that exceed 8 SD above the mean (210, 216–
219). Thus, ratios of �5 to �4 steroids are not reliable, and
the diagnosis must rest on the cosyntropin-induced rise in
�5 steroids such as 17�-hydroxypregnenolone to more
than 3000 ng/dl (90 nmol/liter) to cosyntropin stimula-
tion, (210, 216–219). The basis of the mildly elevated
ratios of �5 to �4 steroids in these hirsute individuals with
normal HSD3B2 genes is unknown.

VII. P450c17: 17�-Hydroxylase/17,20-Lyase

P450c17 is the microsomal P450 enzyme that catalyzes
both 17�-hydroxylase and 17,20-lyase activities, princi-
pally in the adrenal and gonads. These two activities were
once thought to be catalyzed by separate enzymes that
differed in the adrenals and gonads. Clinical observations
showed that adrenal 17�-hydroxylase activity (reflected
by serum cortisol concentrations) was fairly constant
throughout life, whereas adrenal 17,20-lyase activity (re-
flected by serum DHEA and DHEAS concentrations) was
low in early childhood but rose abruptly during adren-
arche at ages 8 to 10 yr (220, 221). This dissociation be-
tween adrenal secretion of 17�-hydroxylase products
(cortisol) and 17,20-lyase products (DHEA) suggested
that distinct enzymes performed the two transformations.
This hypothesis was reinforced by the description of a few
patients apparently lacking 17,20-lyase activity but re-
taining normal 17�-hydroxylase activity (222). Conse-
quently, reports (223) that the 17�-hydroxylase and
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17,20-lyase activities of neonatal pig testes copurified and
that both 17�-hydroxylase and 17,20-lyase activities re-
side in a single protein (224, 225) were initially received
with great skepticism. This controversy of “one enzyme or
two” persisted until the cDNA for bovine P450c17 was
cloned and shown to confer both 17�-hydroxylase and
17,20-lyase activities when expressed in nonsteroidogenic
COS-1 cells (226). The single 2.1-kb mRNA species yields
the 57-kDa P450c17 protein. Cells transfected with vec-
tors expressing P450c17 cDNA acquire both 17�-hydrox-
ylase and 17,20-lyase activities (226, 227), clearly estab-
lishing that this one enzyme catalyzes both activities.
Thus, the distinction between 17�-hydroxylase and
17,20-lyase is functional and not genetic or structural.
P450c17 is encoded by a single gene on chromosome
10q24.3 (228, 229), which is expressed in the adrenals and
gonads (230), and not two tissue-specific isozymes as had
been thought. This gene, formally called CYP17A1, is
structurally related to the gene for P450c21 (21-hydrox-
ylase) (231).

Human P450c17 17�-hydroxylates both pregnenolone
and progesterone with approximately equal efficiency
(189, 232), but there are prominent differences between
�4 and �5 substrates for all other reactions. The 17,20-
lyase activity is about 50 times more efficient for the con-
version of 17�-hydroxypregnenolone to DHEA than for
the conversion of 17OHP to androstenedione, consistent
with the large amounts of DHEA secreted by the adult and
fetal human adrenal (189, 232). Thus, under normal cir-
cumstances, 17OHP is not an important precursor for hu-
man sex steroid synthesis. The rate of the lyase reaction
can be increased more than 10-fold by cytochrome b5

(189, 232, 233), but the �5 preference persists, and the rate
of the lyase reaction never quite reaches the rate of the
hydroxylase reactions. Human P450c17 can also 16�-hy-
droxylate progesterone but not pregnenolone (186), due
to the presence of alanine rather than leucine at residue
105 (234). In the presence of b5, P450c17 diverts about
10% of pregnenolone metabolism to a �16 andiene
product (235), which is of agricultural interest because
this reaction forms a pheromone in pigs that results in
“boar taint” (236). Experiments to study the chemistry
of human P450c17 (and other P450 enzymes) often re-
quire manipulations that could be considered nonphysi-
ological; however, the remarkable consistency for sub-
strate preferences and kinetic constants observed for the
modified, solubilized P450c17 expressed in Escherichia
coli (232, 233), for native P450c17 expressed in yeast
microsomes (189) or intact COS-1 cells (237), and for
P450c17 obtained from human tissues and cells (189,
238) provide a high degree of confidence in results from
work done in vitro.

Mechanistically, P450c17-mediated hydroxylations
appear to proceed via the common iron oxene species and
“oxygen rebound” mechanism proposed for prototypical
P450 hydroxylations (239). The mechanism of the 17,20-
lyase reaction involving a carbon-carbon bond cleavage,
however, is not known despite considerable study. The
failure of hydrogen peroxide alone to support catalysis (as
has been shown for some other P450-mediated deacyla-
tion reactions) and computer modeling studies consis-
tently suggest that the same heme-oxygen complex might
participate in both hydroxylations and the 17,20-lyase
reaction (240), but no conclusive evidence exists to ex-
clude any proposed mechanisms. Given the diverse rep-
ertoire of reactions catalyzed by P450c17, it is not sur-
prising that synthetic steroids such as dexamethasone
(188) and the enantiomer of progesterone (241), as well as
planar drugs such as troglitazone (242), also bind to and
inhibit P450c17. Guinea pig P450c17 catalyzes the oxi-
dation of spironolactone to 7�-thiospironolactone, which
is a covalent inhibitor (“suicide substrate”) of P450c17
(243). The human P450c17 inhibitor abiraterone acetate,
a 17-pyridyl pregnenolone analog, is in clinical trials for
the treatment of prostate cancer (244, 245).

Because P450c17 has both 17�-hydroxylase activity
and 17,20-lyase activity, it is the key branch point in ste-
roid hormone synthesis. Neither activity of P450c17 is
present in the adrenal zona glomerulosa; hence, preg-
nenolone is converted to mineralocorticoids. In the zona
fasciculata, the 17�-hydroxylase activity is present, but
17,20-lyase activity is not; hence, pregnenolone is con-
verted to the glucocorticoid cortisol. In the zona reticu-
laris, both activities are present, so that pregnenolone is
converted to sex steroids (Fig. 3). The principal factor
regulating the 17,20-lyase reaction is electron transport
from NADPH via POR.

A. Transcriptional regulation of the human CYP17A1
gene encoding P450c17

Transcription of the human CYP17A1 gene encoding
P450c17 in adult tissues is largely limited to the adrenal
and gonad, although it may also be expressed in skin
(246). Rodent cyp17a1 is expressed in the fetal gastroin-
testinal tract (247, 248) and brain (249); the transcrip-
tional regulation of rodent cyp17a1 and human CYP17A1
are substantially different (250). Adrenal expression of
human CYP17A1 requires the transcription factors SF1,
SP1, SP3, CTF2, CTF5, GATA4 and GATA6 (250–255).
Recent work indicates that SF1 may activate human
CYP17A1 expression in response to sphingosine (256,
257). Members of the SREBP family of factors that coor-
dinate the synthesis of cholesterol and other sterols, espe-
cially SREBP1c, may also participate in regulating
CYP17A1 transcription, linking the regulation of steroi-
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dogenesis with the regulation of cholesterol biosynthesis
(258, 259). Regulation of the human gene for cytochrome
b5, a protein that interacts with P450c17 to promote
17,20-lyase activity (see Section VIII.C), is regulated sim-
ilarly to the CYP17A1 gene for P450c17 (260), thus co-
ordinating the two key factors in androgen biosynthesis.

B. 17�-Hydroxylase/17,20-lyase deficiency
The initial description of 17�-hydroxylase deficiency

was a case in which both 17�-hydroxylase and 17,20-
lyase products were absent (261). Cloning of the gene
for human P450c17 (231) permitted identification of
CYP17A1 mutations in patients with 17�-hydroxylase
deficiency (262). Deficient 17�-hydroxylase activity re-
sults in decreased cortisol synthesis, overproduction of
ACTH, and stimulation of the steps proximal to
P450c17. These patients may have mild symptoms of
glucocorticoid deficiency, but this is not life-threaten-
ing because the lack of P450c17 results in the overpro-
duction of corticosterone, which also has glucocorti-
coid activity. This is similar to the situation in rodents,
whose adrenals lack P450c17 (158) and consequently
produce corticosterone as their glucocorticoid. Affected
patients also typically overproduce 11-deoxycortico-
sterone (DOC) in the zona fasciculata, which causes
sodium retention, hypertension, and hypokalemia with
suppressed plasma renin activity and suppressed aldo-
sterone secretion from the zona glomerulosa, although
the suppression of aldosterone is rather variable. When
P450c17 deficiency is treated with glucocorticoids,
DOC secretion is suppressed and plasma renin activity
and aldosterone concentrations rise to normal (263).

The absence of 17�-hydroxylase and 17,20-lyase ac-
tivities in complete P450c17 deficiency prevents the syn-
thesis of adrenal and gonadal sex steroids. As a result,
affected females are phenotypically normal but fail to un-
dergo adrenarche and puberty (261), and genetic males
have absent or incomplete development of the external
genitalia (male pseudohermaphroditism, now often
termed “46,XY disorder of sex development”) (264).
The classical presentation is that of a teenage female
with sexual infantilism and hypertension (261, 264).
The diagnosis is made by finding low or absent 17-
hydroxylated C21 and C19 plasma steroids, which re-
spond poorly to stimulation with cosyntropin. Serum
levels of DOC, corticosterone, 18-hydroxycorticoste-
rone, and 18-hydroxy DOC are elevated, hyperrespon-
sive to cosyntropin, and suppressible with glucocorti-
coids. Heterozygotes can sometimes be identified by
cosyntropin stimulation testing (234, 265, 266).

More than 50 distinct mutations causing 17�-hydrox-
ylase deficiency have been identified (267, 268). Four mu-
tations appear recurrently: 1) a duplication of four nucle-

otides causing a frameshift is found among descendents of
Dutch Frieslanders (269); 2) in-frame deletion of residues
487-489 is found throughout Southeast Asia (270, 271);
3) a deletion of phenylalanine at position 53 or 54 (272);
and 4) the common W406R and R362C mutations, found
among Brazilians of Spanish and Portuguese ancestry, re-
spectively (273). The genetic lesions identified include 12
mutations that cause frameshifts or premature transla-
tional termination; as expected, none of these mutants has
any detectable 17�-hydroxylase or 17,20-lyase activity.
Eleven missense and in-frame mutations have been found,
most of which also eliminate all activity, whereas some
others, such as P342T, reduce both activities by 80%. Two
genome-wide association studies have identified the
CYP17A1 locus as a gene associated with hypertension
(274, 275). This finding suggests that milder deficien-
cies in P450c17 might masquerade as primary hyper-
tension in the general population and, if causative, is
predicted to be a low-renin and mineralocorticoid an-
tagonist-responsive form.

C. Isolated 17,20-lyase deficiency
Selective deficiency of the 17,20-lyase activity of

P450c17 has been reported in about a dozen cases (262),
which initially led to the incorrect conclusion that 17�-
hydroxylase and 17,20-lyase are separate enzymes. How-
ever, the identification of CYP17A1 mutations causing
apparent isolated 17,20-lyase deficiency is fraught with
difficulty (276), and, to date, none of the initial clinical
reports from the 1970s has been confirmed genetically or
biochemically. One of the original patients was studied at
the genetic level, showing two wholly inactivating muta-
tions (277), which led to a corrected diagnosis of the pa-
tient as having complete 17�-hydroxylase deficiency
(278). Because both the 17�-hydroxylase and 17,20-lyase
activities of P450c17 are catalyzed on the same active site,
it was not clear that a syndrome of isolated 17,20-lyase
deficiency could exist until two patients with genital am-
biguity, normal excretion of 17-hydroxycorticosteroids,
and markedly reduced production of C19 steroids were
studied at the molecular genetic level (279). One patient
was homozygous for the P450c17 mutation R347H, and
the other was homozygous for R358Q; both mutations
changed the distribution of surface charges in the redox-
partner binding site of P450c17 (279). When assayed in
vitro, both mutants retained nearly normal 17�-hydrox-
ylase activity but had no detectable 17,20-lyase activity
(279, 280), and enzymatic competition experiments
showed that the substrate binding site remained normal
(280). When an excess of POR and cytochrome b5 was
provided, some 17,20-lyase activity was restored, demon-
strating that the loss in lyase activity was caused by im-
paired electron transfer (280). Several additional patients
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have been described with similar mutations, including
girls with failure to manifest adrenarche (281).

By contrast, the P450c17 mutation E305G causes
17,20-lyase deficiency by selectively disrupting binding of
17�-hydroxypregnenolone and preventing DHEA synthe-
sis despite enhanced conversion of 17OHP to andro-
stenedione (282). This unusual variant of isolated 17,20-
lyase deficiency provides further genetic evidence that the
flux of androgens derived from conversion of 17OHP to
androstenedione in the minor �4 pathway is not suffi-
cient to form normal male external genitalia. One of the
first patients reported to have isolated 17,20-lyase de-
ficiency was recently found to have a homozygous mu-
tation (G539R) in POR, further emphasizing the crucial
role of efficient electron transfer in the 17,20-lyase re-
action (283).

Computational modeling of P450c17 predicts the ef-
fects of all known mutations, including those with partial
retention of both activities and those causing selective
17,20-lyase deficiency (240). The model identifies Arg 347
and Arg 358 and several other arginine and lysine residues
in the redox partner binding site; mutations of these res-
idues all cause varying degrees of selective loss of 17,20-
lyase activity (240, 279, 280, 284). Another example of
the critical nature of redox-partner interactions comes
from the rare syndrome of cytochrome b5 deficiency. The
first patient was a male pseudohermaphrodite with severe
methemoglobinemia, but he was not evaluated hormon-
ally (285). A recent, well-studied patient homozygous for
the cytochrome b5 mutation W27X had hormonal find-
ings indicative of isolated 17,20-lyase deficiency and clin-
ically inapparent but elevated concentrations of methe-
moglobin, as expected from the known role of cytochrome
b5 in the reduction of methemoglobin (286).

Thus, the central role of electron transfer in 17,20-lyase
activity is now well-established. Electron transfer for the
lyase reaction is promoted by the action of cytochrome b5

as an allosteric factor rather than as an alternate electron
donor (189). The 17,20-lyase activity is also favored by
the phosphorylation of serine residues on P450c17 by a
cAMP-dependent protein kinase (287–290). The avail-
ability of electrons determines whether P450c17 performs
only 17�-hydroxylation or also performs 17,20 bond scis-
sion; increasing the ratio of POR or cytochrome b5 to
P450c17 in vitro or in vivo increases the ratio of 17,20-
lyase activity to 17�-hydroxylase activity. Competition
between P450c17 and P450c21 for available 17OHP does
not appear to be important in determining whether
17OHP undergoes 21-hydroxylation or 17,20 bond scis-
sion (291). Thus, the regulation of 17,20-lyase activity,
and consequently of DHEA production, depends on fac-
tors that facilitate the flow of electrons to P450c17: high

concentrations of POR, the presence of cytochrome b5,
and serine phosphorylation of P450c17 (292).

VIII. Electron Transport: P450 Oxidoreductase
and Cytochrome b5

A. P450 oxidoreductase
All microsomal (type 2) cytochrome P450 enzymes, in-

cluding steroidogenic P450c17, P450c21, and P450aro, re-
ceive electrons from POR, a membrane-bound flavoprotein
that is a different protein from the mitochondrial flavopro-
tein, ferredoxin reductase (49). POR also serves as a reduc-
tase for several non-P450 enzymes, including squalene mon-
oxygenase (293), fatty acid elongase (294), heme oxygenase
(295), and cytochrome b5 (296). POR is expressed widely in
human tissues and serves as the sole electron transfer protein
for all microsomal P450s, including xenobiotic-metaboliz-
ing hepatic P450s, steroidogenic P450s, and P450s found in
other tissues such as the kidney and brain. POR receives two
electrons from NADPH and transfers them one at a time to
the P450 (297, 298) (Fig. 7).

Much is known about the structure and biochemistry of
POR. Crystallographic studies of rat POR reveal two
lobes, one binding FAD and the other binding flavin
mononucleotide (FMN), and a flexible amino terminus
that tethers POR to the endoplasmic reticulum (299). An
�-helical connecting domain joins the FAD and the FMN
domains, and a disordered “hinge” of about 25 residues

FIG. 7. Electron transport to microsomal forms of cytochrome P450.
NADPH interacts with POR, bound to the endoplasmic reticulum, and
gives up a pair of electrons (e�), which are received by the FAD moiety.
Electron receipt elicits a conformational change, permitting the
isoalloxazine rings of the FAD and FMN moieties to come close
together, so that the electrons pass from the FAD to the FMN. After
another conformational change that returns the protein to its original
orientation, the FMN domain of POR interacts with the redox-partner
binding site of the P450. Electrons from the FMN domain of POR reach
the heme group to mediate catalysis. The interaction of POR and the
P450 is coordinated by negatively charged acidic residues on the
surface of the FMN domain of POR and positively charged basic
residues in the concave redox-partner binding site of the P450, similar
to the interaction of Fedx with mitochondrial P450s. The active site
containing the steroid lies on the side of heme ring (Fe) opposite from
the redox-partner binding site. In the case of human P450c17, this
interaction is facilitated by the allosteric action of cytochrome b5, and
by the serine phosphorylation of P450c17. [© W. L. Miller.]
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lies between the FMN domain and the connecting domain,
suggesting that the FMN and FAD domains can move
substantially relative to each other. In the crystal structure
of rat liver POR (299), the FMN and FAD lie at the base
of a cleft formed by the butterfly-shaped apposition of the
FAD and FMN domains, reminiscent of the electron trans-
fer surface of ferredoxin reductase (175). Nuclear mag-
netic resonance and x-ray scattering data have recently
confirmed this view that POR undergoes these dramatic
conformational changes while receiving and then trans-
ferring electrons (299). It is not clear how the surface con-
taining the FMN docks into the redox partner-binding
surface of the P450, but the flexible hinge region on which
the FMN domain resides suggests that the FMN domain
can reorient itself significantly to accommodate docking
to the P450 (49, 189). The surface of the electron-donating
FMN domain is dominated by acidic residues, whereas the
redox-partner binding site of P450 enzymes contains nu-
merous basic residues. In the rat POR, NADPH binds
above the FAD in the �-sheet-rich FAD domain, implying
direct donation of electrons from the NADPH to the
FMN; however, it appears that yeast POR can bind FMN
in two different places (300). If this is also true for human
POR, it might explain the partial retention of activity by
mutants predicted to disrupt FMN binding.

The crystal structure of the complex between the P450
and flavoprotein domains of the bacterial protein
P450BM3 serves as a model of this flavoprotein-P450 in-
teraction (301). Negative charges of the FMN domain
guide interactions with positive charges on the P450. The
FMN approaches no closer than 18 Å from the heme,
similar to the 16 Å distance of FAD from the Fe2S2 cluster
in the modeled ferredoxin-ferredoxin reductase complex,
and presumably similar to the distance of the heme from
the Fe2S2 cluster in the P450-ferredoxin complex (175).
These distances are too far for electrons to “jump” directly
to the heme; rather, electron transfer apparently uses the
polypeptide chain as a conduit (301). Basic residues in the
redox-partner-binding surface of the recipient P450 are
crucial for electron transfer from POR (49, 302), as shown
by the mutations in human P450c17 that cause 17,20-
lyase deficiency (240, 280). Thus, these structures dem-
onstrate several key principles of the electron transfer pro-
teins involved in human steroidogenesis: NADPH and
prosthetic groups lie at the interfaces of protein domains
in which electron transfer occurs; the electron transfer sur-
faces are negatively charged to pair with positive charges
on the P450s; the terminal electron transfer moiety (FMN
domain or ferredoxin) must be mobile or soluble to pass
electrons on to the P450; and electrons flow from the FMN
or Fe2S2 cluster along the adjacent polypeptide chain to
the heme.

The 69-kb human POR gene, located on chromosome
7q11.2, consists of 16 exons (303). The sequence of this
gene in 842 normal persons from four ethnic groups re-
vealed a high degree of polymorphism; most notably, the
coding sequence variant A503V was found on approxi-
mately 28% of all alleles (304). This sequence variant re-
duces the 17�-hydroxylase and 17,20-lyase activities of
P450c17 to approximately 60% of normal (304, 305) but
has no measurable effect on the activities of P450c21 (306)
or hepatic CYP1A2 or CYP2C19 (307), but it reduces the
activities of CYP2D6 and CYP3A4 to metabolize impor-
tant drugs in vitro (308, 309).

B. P450 oxidoreductase deficiency
Because POR participates in so many reactions, its mu-

tation might be expected to yield a very severe phenotype.
Consistent with this, genetically engineered POR-knock-
out mice die during fetal development (310, 311). A
knockout encompassing the translational start site and
N-terminal membrane-insertion domain yielded a soluble,
cytoplasmic 66-kDa protein (310). Homozygous knock-
out mice had either of two phenotypes. Type I embryos
appeared normal until embryonic day 10.5 (E10.5) and
had grossly normal somite formation, but they had car-
diac, neural tube, eye, and limb defects and died by E13.5.
Type II embryos had generally retarded development by
E8.5 and died shortly thereafter (310). A more complete
knockout, encompassing the entire protein-coding region,
yielded a similar phenotype, with all mice dying by E9.5
(311). By contrast, liver-specific POR knockout mice cre-
ated by cre/lox technology were grossly normal—devel-
oping, growing, and living as long as normal mice, and
having normal reproductive capacity, indicating normal
gonadal P450 function (312, 313). However, these mice
had hepatomegaly, accumulated hepatic lipids, and had a
99% decrease in bile acids, 65% decrease in serum cho-
lesterol, and 50% decrease in serum triglycerides. Fur-
thermore these animals had dramatically decreased ca-
pacities to metabolize acetaminophen, phenobarbital, and
testosterone despite having a 5-fold increase in total he-
patic P450 content. There is no established role for cyto-
chrome P450 enzymes in the cardiac, neural tube, limb,
and eye systems that are disrupted in POR knockout mice
or in the disrupted skeletal development characteristic of
human POR mutations causing Antley-Bixler syndrome
(ABS). It has been proposed that the pleiotropic effects of
POR mutation disrupt the metabolism of all-trans retinoic
acid because increased maternal ingestion of retinoic acid
partially ameliorated the phenotype of the complete POR
knockout mouse (311).

Despite its embryonic lethality in mice, POR deficiency
is a newly recognized form of CAH (305, 314–319). Be-
ginning in 1985, several patients were described with ap-
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parent combined deficiencies of P450c17 and P450c21
(320–324); it was suggested that a mutation in POR was
responsible (325), but this was not proven until 2004
(314). The initial report described three patients with ABS,
genital ambiguity, and hormonal findings, suggesting par-
tial deficiencies of 17�-hydroxylase and 21-hydroxylase,
as well as a fourth patient who was phenotypically normal
but had a similar hormonal profile. All had recessive, loss-
of-function amino acid replacement mutations in POR
(314). One of these patients was born to a woman who had
become virilized during the pregnancy, suggesting partial
fetoplacental aromatase deficiency. Over 50 POR muta-
tions have now been described, affecting various P450
enzymes to differing degrees, apparently explaining the
great variability in the clinical and hormonal findings in
POR deficiency (305, 319). In vitro biochemical assays of
the recombinant mutant proteins showed that the muta-
tions in the ABS subjects had severely impaired, but not
totally absent, activity whereas the mutations found in the
phenotypically normal subject with amenorrhea were less
severe (314). The serum and urinary steroids indicate de-
fects in both P450c17 and P450c21, and clinical findings
vary fromseverelyaffected infantswithambiguousgenitalia,
cortisol deficiency, and ABS to mildly affected women who
appear to have a form of polycystic ovary syndrome, or
mildly affected men with gonadal insufficiency. ABS is
characterized by craniosynostosis, brachycephaly, radio-
ulnar or radio-humeral synostosis, bowed femora, arach-
nodactyly, midface hypoplasia, proptosis, and choanal
stenosis. When ABS is seen in association with abnormal
steroids and ambiguous genitalia in either sex, the cause is
an autosomal recessive mutation in POR (305, 314–317);
by contrast, when ABS is seen without a lesion in steroi-
dogenesis or genital development, the cause is an autoso-
mal dominant, gain-of-function mutation in fibroblast
growth factor receptor 2 (305) because mutations in the
POR and FGFR2 genes segregate completely (305).

Patients with POR deficiency typically have normal
electrolytes and mineralocorticoid function, nearly nor-
mal levels of cortisol that respond poorly to stimulation
with cosyntropin, high concentrations of 17OHP that re-
spond variably to cosyntropin, and low levels of C19 pre-
cursors of sex steroids. An important feature of POR de-
ficiency is that there is genital ambiguity in both sexes;
females may be virilized and males may be underdevel-
oped, although there is considerable variation among in-
dividuals. Because the 17,20-lyase activity of P450c17 is
especially sensitive to perturbations in electron transport
(49, 279, 280), defects in fetal testicular steroidogenesis
leading to incompletely developed external genitalia in
46,XY males is the predicted outcome. By contrast, the
partial virilization seen in 46,XX genetic females appears

to be due to two causes. First, because placental aromatase
(P450aro) requires POR, some, but not all mothers of
infants with POR deficiency experience virilization during
pregnancy (305, 314, 318), similar to that experienced by
women carrying a fetus with P450aro deficiency (326,
327). This phenotype is common with the R457H muta-
tion prevalent in Japan, but not with the A287P mutation
prevalent in Europe. Not surprisingly, the R457H mutant
cannot support P450aro activity in vitro, whereas the
A287P mutant retains full activity with P450aro (328).
The fetus normally disposes of large amounts of adrenal
C19 steroids by excreting them through the placenta,
which aromatizes them to the maternal estrogens of preg-
nancy (329). A defect in this placental aromatase activity,
either from mutation of POR or P450aro itself, will permit
large amounts of fetal C19 steroids to enter and virilize the
mother. This is evidenced by the low estriol values seen in
women carrying a fetus with POR deficiency (330, 331).
Second, an alternative “backdoor” pathway of androgen
biosynthesis has been described in fetal marsupials in
which 17OHP is eventually converted to dihydrotestos-
terone (DHT) without utilizing androstenedione and tes-
tosterone as intermediates (see Section XVIII) (332, 333).
Analysis of urinary steroids from patients with POR de-
ficiency suggests that this pathway also applies to the hu-
man fetus (316, 330, 331, 334). The relative importance
of these two distinct mechanisms for virilizing the fetus
with POR deficiency probably varies with the specific
POR mutation involved.

The incidence of POR deficiency is unknown; the rapid
description of large numbers of patients (305, 319) and the
potentially very subtle clinical manifestations in individ-
uals carrying mutations with partial activity (283, 305,
314, 335) suggest that POR deficiency may be fairly com-
mon. Two mutations are especially common: A287P, the
predominant mutation in patients of European ancestry,
and R457H, the predominant mutation in patients of Jap-
anese ancestry. Because fewpatientshavebeenstudied inthe
newborn period, it has not been established whether new-
born screening of 17OHP designed to detect 21-hydroxylase
deficiency will also detect POR deficiency.

The cellular mechanisms by which POR deficiency
causes skeletal malformations remain unclear. Four lines
of evidence suggest a role for POR-supported cholesterol
biosynthesis in bone formation (318). First, cholesterol
biosynthesis requires squalene epoxidase, a non-P450 en-
zyme, and 14�-demethylase (CYP51), which both require
POR (293, 336); 14�-demethylase activity was reduced in
fibroblasts from a patient with ABS and ambiguous genitalia
who was subsequently shown to have POR deficiency (314,
337). Second, ABS has been reported in infants whose moth-
ers ingested the antifungal agent fluconazole (338, 339); flu-
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conazole acts by inhibiting fungal CYP51 activity. Liver-spe-
cific knockout of POR in mice decreases the activities of
hepatic drug-metabolizing enzymes (312, 313), thereby po-
tentially rendering some drugs teratogenic. Third, skeletal
malformations are found in other disorders of cholesterol
biosynthesis such as Smith-Lemli-Opitz syndrome (OMIM
270400). Finally, cholesterol derivatization of hedgehog
proteins is required for its signaling in bone formation (340,
341). Two recent studies support this hypothesis. First, tis-
sue-specific POR knockout in the limb bud mesenchyme of
mice induces the expression of genes throughout the choles-
terol biosynthetic pathway, suggesting that cholesterol de-
ficiency could explain the skeletal phenotypes (342). Sec-
ond, POR knockdown by RNA interference in rat
chondrocytes decreased cell proliferation and differenti-
ation, induced apoptosis, and reduced expression of In-
dian hedgehog, but these effects were reversed by provid-
ing cholesterol (343). Thus, cholesterol synthesis is
probably involved in the skeletal phenotype of POR defi-
ciency,butothermechanismsmayalsobeoperative.Because
most clinically used drugs are metabolized by POR-depen-
denthepaticP450enzymes, a thoroughunderstandingof the
impactofPORmutationsandpolymorphismswillbeneeded
for a full understanding of the genetic basis of variations in
drug metabolism.

C. Cytochrome b5

Cytochrome b5 is a small (12–17 kDa) hemoprotein
found as a membrane-bound protein in liver and as a sol-
uble protein lacking the C-terminal membrane anchor in
erythrocytes. Cytochrome b5 is expressed in both the adre-
nals and gonads, where it can interact with P450c17; the
adrenal expression is specific to the zona reticularis and
may contribute to the genesis of adrenarche (201, 204).
Much evidence has shown that cytochrome b5 can aug-
ment some activities of certain P450 enzymes, and the
mechanism of this effect has been presumed to involve
electron transfer from cytochrome b5 to the P450 for the
second electron during the P450 cycle (344). Although
cytochrome b5 can receive electrons from POR, the redox
potentials of cytochrome b5 and one electron-reduced
P450 are unfavorable for cytochrome b5-to-P450 electron
transfer. Indeed, some of the actions of cytochrome b5 in
experimental systems can be observed with apo-cyto-
chrome b5 (345) or Mn�2-b5 (284) (which do not transfer
electrons), including the stimulation of 17,20-lyase activ-
ity of human P450c17 (189, 232). These experiments sug-
gest that cytochrome b5 does not act alone as an electron
donor but rather functions in concert with POR to aid
catalysis, possibly by an allosteric mechanism promoting
the interaction of P450c17 and POR (Fig. 8).

Bovine cytochrome b5 was one of the first proteins stud-
ied by x-ray crystallography, and a wealth of structural

data for b5 have been acquired using molecular dynamics
and nuclear magnetic resonance spectroscopy for both the
holo- and apo-b5 (346, 347). Analogous to ferredoxin,
cytochrome b5 consists of two domains: a heme-liganding
core 1 domain (residues 40 to 65, bovine numbering); and
a structural core 2 domain, from which the C-terminal
membrane-anchoring helix extends. The heme extends
more to the periphery of cytochrome b5 than does the
Fe2S2 cluster of ferredoxin, and the entire surface is dom-
inated by negatively charged residues rather than just one
cluster of negative charges near the heme. In addition, the
core 1 domain acquires considerable conformational
flexibility in apo-b5, whereas the core 2 domain remains
folded as in holo-b5 (347). Finally, the C-terminal mem-
brane-spanning helix (exiting the core 2 domain) is re-
quired to stimulate the 17,20-lyase activity of human
P450c17, but the signal peptide is not (348). Genetic and
biochemical studies have implicated basic residues in
P450c17, including R347, R358, and perhaps R449 and
K89, as important for its interaction with cytochrome b5

(240, 280, 348), whereas E48 and E49 of cytochrome b5

are required for high 17,20-lyase activity (349). However,
the molecular details of how addition of cytochrome b5 to
the P450c17.POR complex augments 17,20-lyase activity
are not yet known.

FIG. 8. Computational image using the Ribbons program showing the
interaction of cytochrome P450c17 (red) with its electron-donating
redox partner, (POR) (yellow), facilitated by the allosteric action of
cytochrome b5 (green). The heme groups in P450c17 and cytochrome
b5, and the NADPH molecule bound to POR, are shown as space-filling
models in cyan, whereas the FAD and FMN moieties of POR are shown
as ball-and-stick models in white. Note that the heme group in
cytochrome b5 faces out of the plane of the page and does not
contact either the POR or P450c17. [Reprinted with permission from
A. V. Pandey and W. L. Miller: J Biol Chem 280:13265–13271, 2005
(Cover picture of Ref. 289). © American Society for Biochemistry and
Molecular Biology.]
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IX. P450c21: Steroid 21-Hydroxylase

Microsomal P450c21 catalyzes the 21-hydroxylation of
the �4 steroids progesterone to DOC and 17OHP to 11-
deoxycortisol in the biosynthesis of mineralocorticoids
and glucocorticoids, respectively (Fig. 3). The nature of
this reaction has been of great clinical interest because
21-hydroxylase deficiency has an incidence of 1 in 15,000
to 1 in 20,000 births, causing more than 90% of all cases
of CAH. The resulting clinical symptoms are complex and
potentially devastating. Decreased cortisol and aldoste-
rone synthesis often lead to sodium loss, potassium reten-
tion, and hypotension, which can culminate in cardiovas-
cular collapse and death, usually within a month after
birth if not treated appropriately. Decreased synthesis of
cortisol in utero leads to overproduction of ACTH and
consequent overstimulation of adrenal steroid synthesis;
because the 21-hydroxylase step is impaired, 17OHP ac-
cumulates as P450c17 converts very little 17OHP to an-
drostenedione. However, 17-hydroxypregnenolone also
accumulates and is readily converted to DHEA, and sub-
sequently to androstenedione and testosterone, resulting
in severe prenatal virilization of female fetuses (350–354).
Variations in the manifestations of the disease, and es-
pecially the identification of patients without apparent
defects in mineralocorticoid activity, initially suggested
that there were two separate 21 hydroxylating enzymes
that were differentially expressed in the zones of the
adrenal specifically synthesizing aldosterone or corti-
sol. However, characterization of the P450c21 protein
(355) and gene cloning show there is only one 21-hy-
droxylase encoded by a single functional gene on chro-
mosome 6p21 (356 –359). Because this gene lies in the
middle of the major histocompatibility complex locus, dis-
orders of adrenal 21-hydroxylation are closely linked to spe-
cific human lymphocyte antigen (HLA) types (360).

The human P450c21 protein, found only in the adrenals,
is a microsomal P450 that employs the same POR used by
P450c17 to transport electrons from NADPH. Much less is
known about the enzymology of P450c21 than of
P450c17, but the available evidence suggests that, un-
like P450c17, P450c21 is not very sensitive to the abun-
dance of POR or cytochrome b5. It is clear that genotype
consistently predicts phenotype in very severe and very
mild cases of 21-hydroxylase deficiency (361, 362). In
contrast, patients with P450c21 variants [e.g., the com-
mon P30L (363) and V281L mutations and less com-
mon mutations R339H and P453S], which have 20 to
50% of wild-type activity (352, 364), can have various
phenotypes, implying additional factors that can mod-
ify the clinical manifestations of 21-hydroxylase defi-
ciency. Such estimations of activity can vary among dif-

ferent reports, especially when different technologies
are used to assess the mutant enzymes.

Extraadrenal 21-hydroxylase activity has also been de-
scribed in a broad range of adult and fetal tissues (365).
However, extraadrenal 21-hydroxylation is not medi-
ated by the P450c21 enzyme found in the adrenal (366),
but it appears to be catalyzed by CYP2C9, CYP3A4,
CYP2C19, and possibly other enzymes as well (367,
368). Human hepatic CYP2C19 and CYP3A4 can 21-
hydroxylate progesterone but not 17OHP and thus may
account, in part, for the diminished mineralocorticoid
requirements in adult patients (368). As a result, pa-
tients having absent adrenal 21-hydroxylase activity
may still have appreciable concentrations of 21-hy-
droxylated steroids in their plasma.

A. CYP21 genes and the genetics of
21-hydroxylase deficiency

1. 21-Hydroxylase genes
The locus containing the CYP21 genes is among the

most complex in the human genome and explains why
21-hydroxylase deficiency is one of the most common
autosomal-recessive diseases. There are two 21-hydroxy-
lase loci, a functional gene formally termed CYP21A2 and
a nonfunctional pseudogene formally termed CYP21A1P,
which lie on chromosomal locus 6p21.1 in the midst of the
HLA locus. These genes, commonly termed CYP21B
(functional gene) and CYP21A (pseudogene), are dupli-
cated in tandem with the C4A and C4B genes encoding the
fourth component of serum complement (369, 370) (Fig.
9). Although the CYP21A1P locus is transcribed (371,
372), the resultant RNAs do not encode protein (371);
only the CYP21A2 gene encodes 21-hydroxylase. The
CYP21 genes consist of 10 exons (373), are about 3.4 kb
long, and differ in only 87 or 88 of these bases (357–359).
This high degree of sequence similarity indicates that these
two genes are evolving in tandem through intergenic ex-
change of DNA. The Cyp21 genes of mice (374) and cattle
(375) are also duplicated and linked to leukocyte antigen
loci. However, whereas only the CYP21A2 gene functions
in human beings, only the cyp21a1 gene functions in mice
(376, 377), and both genes function in cattle (378). Se-
quencing of the gene duplication boundaries shows that
the human locus duplicated after mammalian speciation
(379), consistent with data that indicate that other mam-
mals have single CYP21 gene copies (380). Because the
HLA locus is highly recombinogenic, exchange between
the CYP21A1P and CYP21A2 loci is common. Thus, ap-
proximately 75–80% of cases of 21-hydroxylase defi-
ciency derive from micro- or macrogene conversion events
where some or all of the CYP21A1P pseudogene replaces
the corresponding area of the CYP21A2 gene, thus reduc-
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ing the expression of the encoded P450c21 protein and/or
impairing its activity (352, 381).

The 21-hydroxylase genes lie within the class III region
of the major histocompatibility complex locus, permitting
HLA typing to be used to track CYP21A2 gene mutations.
Salt-losing CAH is associated with HLA-B60 and HLA-40
in some populations (382), and the rare HLA type Bw47
is very strongly associated with salt-losing CAH (383,
384). HLA-Bw51 is associated with simple virilizing CAH
in some populations (385), and HLA-B14 is found in ap-
proximately 40% of haplotypes for nonclassical CAH car-
riers (386), often associated with a duplication of the C4B
gene (387, 388). HLA-identical individuals in a single fam-
ily may have different clinical forms of CAH despite HLA
identity (389–392), possibly representing extraadrenal
21-hydroxylation, de novo mutations, or multiple genetic
crossover events.

2. Other genes in the 21-hydroxylase locus
At least eight additional genes lie in this locus (393)

(Fig. 9). The tandemly duplicated C4A and C4B genes
encode isoforms of complement component C4; the C4B
protein has substantially more hemolytic activity, despite

having greater than 99% sequence identity with C4A
(394). The C4A gene is 22 kb long, but there are long (22
kb) and short (16 kb) forms of C4B due to a variation in
one intron (395). The 3� ends of the C4 genes are only 2466
bp upstream from the transcriptional start sites of the
CYP21 genes (396). Promoter sequences needed for the
transcription of the human CYP21A2 gene lie within in-
tron 35 of the C4B gene (397).

A pair of genes, formally termed TNXA (XA) and
TNXB (XB), is duplicated with the C4 and CYP21 genes.
These genes lie on the strand of DNA opposite from the C4
and CYP21 genes and overlap the 3� end of CYP21A2. The
last exon of XA and XB lies within the 3� untranslated
region of exon 10 in CYP21A1P and CYP21A2, respec-
tively (398). The XA gene was truncated during the du-
plication of the ancestral C4-CYP21-X genetic unit but is
transcribed in the adrenal (379). The XB gene encodes a
large extracellular matrix protein called Tenascin X that is
expressed in most tissues, especially connective tissue
(399, 400). The XB gene spans about 65 kb of DNA and
includes 43 exons encoding a 12 kb mRNA (399, 401).
The XB gene also encodes a short truncated form of

FIG. 9. Genetic locus containing the CYP21 genes. The top line shows the p21.1 region of chromosome 6, with the telomere to the left and the
centromere to the right. Most HLA genes are found in the class I and class II regions; the class III region containing the CYP21 genes lies between
these two. The second line shows the scale (in kilobases) for the diagram immediately below, showing (from left to right) the genes for
complement factor C2, properdin factor Bf, and the RD and G11/RP genes; arrows indicate transcriptional orientation. The bottom line shows the
21-hydroxylase locus on an expanded scale, including the C4A and C4B genes for the fourth component of complement, the inactive CYP21A
pseudogene (CYP21A1P, 21A) and the active CYP21B gene (CYP21A2, 21B) that encodes P450c21. XA, YA, and YB are adrenal-specific
transcripts that lack open reading frames. The XB gene encodes the extracellular matrix protein Tenascin-X; XB-S encodes a truncated adrenal-
specific form of the Tenascin-X protein whose function is unknown. ZA and ZB are adrenal-specific transcripts that arise within intron 35 of the C4
genes and have open reading frames, but it is not known whether they are translated into protein; however, the promoter elements of these
transcripts are essential components of the CYP21A and CYP21B promoters. The arrows indicate transcriptional orientation. The vertical dotted
lines designate the boundaries of the genetic duplication event that led to the presence of A and B regions. [© W. L. Miller.]
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Tenascin-X having unknown function and arising from an
intragenic promoter (396). Identification of a CAH pa-
tient with a “contiguous gene syndrome” comprising a
deletion of both the CYP21A2 and XB genes demon-
strated that Tenascin X deficiency results in Ehlers-Danlos
syndrome (EDS) (402). Although most forms of EDS are
caused by autosomal dominant mutations in collagen
genes, recessive forms are caused by mutations in genes
for collagen-modifying enzymes, including Tenascin-X,
which is associated with and stabilizes collagen fibrils
(403, 404). Tenascin-X deficiency causes a clinically dis-
tinct, more severe form of EDS, either with or without
associated 21-hydroxylase deficiency (405). In addition,
RNA transcripts termed YA and YB arise from the
CYP21A2 promoter but do not encode protein (371).
Transcripts having an open reading frame, termed ZA
and ZB, arise from a promoter element within intron 35
of the C4 genes, but it is not clear whether they encode
protein (406).

B. 21-Hydroxylase deficiency
21-Hydroxylase deficiency, caused by mutations in

P450c21, is the most common form of CAH and one of the
most common inborn errors of metabolism. Detailed re-
views of the physiology, molecular genetics, and clinical
management of 21-hydroxylase deficiency are available
(350–354, 407–410); we shall confine this review to ma-
terial that illustrates issues concerning the genetics and
biochemistry of P450c21, rather than try to summarize the
extensive clinical literature concerning this disease.

1. Pathophysiology
In the complete absence of P450c21 activity, inability

to convert progesterone to DOC results in aldosterone
deficiency causing severe hyponatremia, hyperkalemia,
and acidosis with concomitant hypotension, shock, car-
diovascular collapse, and death in untreated newborns.
Because adrenal blood flow is centripetal, high concen-
trations of cortisol in the adrenocortical capillary effluent
bathes the medulla. These high concentrations of cortisol
are needed for transcription of medullary phenyleth-
anolamine N-methyltransferase, which catalyzes the
conversion of norepinephrine to epinephrine (411);
consequently, patients with CAH have low epinephrine
concentrations, exacerbating the risk for hypoglycemia
associated with cortisol deficiency (412). The inability to
convert 17OHP to 11-deoxycortisol results in cortisol de-
ficiency. The fetal adrenal transiently produces cortisol
during the first trimester, apparently minimizing adrenal
synthesis of androgen precursors (334). In CAH, low fetal
cortisol stimulates ACTH secretion, which stimulates ad-
renal hyperplasia and transcription of the genes for all the

steroidogenic enzymes, with consequent accumulation of
21-deoxysteroids, some of which are converted to testos-
terone, resulting in virilization of affected female fetuses.
The degree of virilization generally correlates with the se-
verity of the P450c21 mutation (361). Because normal
male fetuses produce abundant testicular testosterone, the
additional testosterone produced by adrenals with 21-
hydroxylase deficiency does not produce a detectable
phenotype.

2. Clinical forms and incidence of 21-hydroxylase deficiency
There is a broad spectrum of clinical manifestations of

21-hydroxylase deficiency, generally termed salt-wasting
CAH, simple virilizing CAH, and nonclassical CAH.
These different forms of 21-hydroxylase deficiency are not
different diseases because there is a continuous spectrum
of enzymatic impairments and clinical manifestations.
Factors other than the specific P450c21 mutations can
influence the clinical phenotype, including the presence of
extraadrenal 21-hydroxylation, P450c21 promoter mu-
tations, and variations in androgen metabolism and
sensitivity. These discordances between genotype and
phenotype are to be expected.

Salt-wasting CAH is caused by gene deletions, large
gene conversions, premature stop codons, frame shifts or
other mutations ablating more than 98% of enzyme ac-
tivity, effectively eliminating both glucocorticoid and min-
eralocorticoid synthesis. Affected females are frequently
diagnosed at birth because of masculinization of the ex-
ternal genitalia, but the clinical signs of salt loss are rarely
seen before 5 d of age. After appropriate fluid resuscita-
tion, the mineralocorticoids and glucocorticoids can be
replaced orally, and the ambiguous genitalia can be cor-
rected with a series of plastic surgical procedures, but the
management is complicated and difficult (408, 410). Af-
fected males are not generally recognized until they have
a salt-losing crisis at 5 to 15 d or are detected through
newborn screening assays of 17OHP, which are now per-
formed in all states in the United States.

Simple virilizing CAH describes virilized females and
clinically unrecognized males who have elevated concen-
trations of 17OHP but do not suffer a salt-losing crisis.
These patients have missense mutations, typically I172N,
that retain sufficient activity to produce the small quan-
tities of aldosterone required to maintain salt balance. Be-
cause the adrenal normally produces 100 to 1000 times as
much cortisol as aldosterone, mild defects in P450c21 are
less likely to affect mineralocorticoid secretion than cor-
tisol secretion. This mildly impaired aldosterone synthesis
is reflected physiologically by the increased plasma renin
activity seen in these patients after modest salt restriction.
In the absence of newborn screening, comparably affected
males typically escape diagnosis until age 3 to 7 yr, when
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they develop pubic, axillary, and facial hair and phallic
growth. These boys grow rapidly and are tall for their age
when diagnosed, but their epiphyseal maturation (bone
age) advances at a disproportionately rapid rate so that
their ultimate adult height is compromised.

Nonclassic CAH, sometimes called cryptic or late-on-
set CAH, denotes very mild forms of 21-hydroxylase de-
ficiency, most commonly caused by the P450c21 missense
mutation V281L (413). The modest overproduction of
androgens is asymptomatic in males and evidenced by
mild to moderate hirsutism, virilism, menstrual irregular-
ities, and decreased fertility in women (414–417). Some
affected persons are identified only by an increased re-
sponse of plasma 17OHP to ACTH stimulation (415).
Nevertheless, these individuals have hormonal evidence of
mild mineralocorticoid deficiency, as predicted from the
existence of a single adrenal 21-hydroxylase (418), and
may have elevated plasma renin activity in response to
sodium restriction.

Perinatal screening for elevated concentrations of se-
rum 17OHP has found that the incidence of salt-wasting
plus simple virilizing CAH is about 1 in 14,000, yielding
a heterozygous carrier rate of 1 in 60 (419). The screening
of 1.9 million Texas newborns yielded an overall incidence
of 1 in 16,000 (1 in 15,600 Caucasians, 1 in 14,500 His-
panics, and 1 in 42,300 African-Americans) (420). Non-
classical CAH is much more common, but the prevalence
varies among populations. One group has reported very
high incidences: 1 in 27 for Ashkenazi Jews, 1 in 53 for
Hispanics, 1 in 63 for Yugoslavs, 1 in 333 for Italians, and
1 in 1000 for other whites (421–423). Other studies found
carrier rates of 1.2% (416) to 6% (424, 425) for Cauca-
sian populations that were not subdivided further. The
considerable differences in the reported incidences reflect
differences in the small populations examined and the dif-
ficulty in distinguishing nonclassical CAH from heterozy-
gous carriers of classical CAH.

C. Molecular genetics of 21-hydroxylase deficiency
21-Hydroxylase deficiency is caused by gene deletions,

gene conversions, and apparent point mutations. Most
apparent point mutations in CYP21A2 are actually small
gene conversion events (350, 351, 426), so that gene con-
versions account for about 85% of the lesions in 21-hy-
droxylase deficiency. Most patients with 21-hydroxylase
deficiency are compound heterozygotes, having different
lesions on their two alleles. Gene deletions and large con-
versions eliminate all CYP21A2 gene transcription; hence,
homozygotes will have salt-losing CAH. Microconver-
sions creating frame shifts or premature translational ter-
mination also cause salt-losing CAH. Simple virilizing and
nonclassical CAH are associated with amino acid replace-
ments in the P450c21 protein caused by microconversion

events. Affected patients are usually compound heterozy-
gotes bearing a severely defective allele and a mildly im-
paired allele so that the clinical manifestations are based
on the nature of the more active allele.

Two unusual and related features of the 21-hydroxy-
lase locus complicate its analysis. First, the gene deletions
in this locus are quite unusual in that they extend 30 kb
from one of several points in the middle of CYP21A1P to
the precisely homologous point in CYP21A2. Second,
gene conversions are extremely common in this locus
(388, 427). If a segment of gene A replaces the correspond-
ing segment of the related gene B, the structure of recipient
gene B is said to be “converted” to that of donor gene A.
The hallmark of gene conversion is that the number of
closely related genes remains constant, whereas their di-
versity decreases (428). Two types of gene conversions
commonly cause 21-hydroxylase deficiency: large gene
conversions that can be mistaken for gene deletions, and
small microconversions that resemble point mutations.
Depending on the populations examined, different reports
find small or large numbers of gene deletions (427, 429,
430). Combining multiple studies shows that about 19%
of mutant alleles have gene deletions, 8% have large gene
conversions, 67% have microconversions, and 6% have
uncharacterized lesions (351) (Fig. 10). A careful study of
155 German patients confirmed these results, finding gene
deletions in 20.3%, large gene conversions in 7.1%, mi-
croconversions in 71.3% (intron 2 mutation in 30.3%;
I172N in 19.7%), and uncharacterized mutations in 1.3%
(381). A huge study of 3200 patients in France found the
intron 2 mutation in 30%, deletions and large gene con-
versions in 25%, I172N in 17%, and Q318X in 7% of
alleles causing classic CAH, and, in nonclassic CAH,
V281L was found in 55%, intron 2 in 9%, large rear-
rangements in 8%, I172N in 4%, and Q318X in 3%

FIG. 10. Genetic rearrangements causing 21-hydroxylase deficiency.
Deletions or duplications of the C4A and C4B genes can occur with or
without associated lesions in the CYP21B gene. Note that all point
mutations in CYP21B are actually microconversions. Some authors
combine the gene deletion and macroconversion groups because
these are difficult to distinguish by Southern blotting as both result
in a loss of the CYP21B gene, but the genotypes are distinct, as
shown. [© W. L. Miller.]
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(431). However, there is ascertainment bias in favor of
more severely affected patients (388) and most studies ad-
dress populations primarily of European origin. Thus, the
available statistics are weighted in favor of gene deletions
and large conversions, which cause the salt-wasting phe-
notype. About 75% of mutated CYP21 genes are struc-
turally intact by Southern blotting and thus appear to
carry point mutations (388, 427). Many mutant CYP21
genes have been sequenced, showing that a relatively small
numberofmutations that arealso found in the CYP21A1P
pseudogene cause most cases of CAH, so that most ap-
parent point mutations are actually microconversions
(350, 351, 426, 427) (Table 3).

Three changes in the pseudogene (8 bp deletion, exon
3; T insertion, exon 7; Gly 318 stop, exon 8) render its
product nonfunctional. Each change results in an altered
reading frame and/or premature stop codon, eliminating
all activity; all of these have been found in CYP21A2 al-
leles that cause salt-losing CAH. Three closely clustered
base changes alter the normal amino acid sequence Ile-
Val-Glu-Met at codons 236 to 239 in exon 6 to Asn-Glu-
Glu-Lys in both the pseudogene and in a small number of
alleles causing severe salt-losing CAH. The most common
lesion in classical CAH is an A3G change in intron 2, 13
bases upstream from the 3� splice acceptor site of this in-
tron (432). This microconversion, which is found in over
25% of severely affected CAH alleles, causes abnormal
mRNA splicing, so that a normal protein cannot be pro-
duced. However, a small portion of this mRNA may be
spliced normally in some patients so that the phenotype is
variable; most such patients are salt losers, but some have
simple virilizing CAH. This intron 2 microconversion is
often associated with the Ser/Thr polymorphism at codon
268; this is a true polymorphism because S268T does not

alter enzymatic activity (433). The microconversion
R356W, which is found in about 10% of severely affected
alleles (434), eliminates virtually all detectable activity
(435), apparently because it changes a residue in the bind-
ing site for POR. Other rare alleles, which are true muta-
tions rather than gene conversions, have been described in
single individuals (436–440).

The microconversion I172N is the most common cause
of simple virilizing CAH (436, 441, 442). Ile 172 is an
evolutionarily conserved residue that may contribute to
the correct conformation of the enzyme. When Ile 172 was
changed to Asn, Leu, Gln, or His, the mutants yielded only
3 to 7% of wild-type 21-hydroxylase activity (435, 443).
The microconversion P30L is generally associated with
nonclassical CAH but is found in some patients with sim-
ple virilizing CAH. The P30L/null compound heterozy-
gotes have a very severe and variable form of nonclassical
CAH, with minimal virilization at birth but marked an-
drogen excess in postnatal life.

The most common mutation causing nonclassical CAH
is V281L (413). This mutation does not alter the affinity
of the enzyme for substrate but drastically reduces its Vmax

(444). The microconversion P30L is found in about 15 to
20% of nonclassic alleles. In addition, the mutations
R339H and P453S have been associated with nonclassical
CAH (364, 445). Examination of a large number of
CYP21A1P pseudogenes showed that the P453S mutation
is polymorphic in about 20% of pseudogenes, and hence
also represents a microconversion event.

Each missense mutation appears to occur in a func-
tional domain of P450c21 (440). By analogy with the com-
putationally inferred structure of P450c17 (240), Arg 356
appears to be part of the redox-partner-binding site, Val
281 appears to participate in coordinating the heme moi-
ety, and Cys 428 is the crucial cystine residue in the heme-
binding site found in all cytochrome P450 enzymes. The
N-terminal region of P450c21, including Pro30, appears
to be required for membrane insertion and enzyme stabil-
ity (446). Finding most mutations in the amino-terminal
portion of P450c21 is consistent with finding most gene
conversion and gene deletion events occurring in exons
1– 8 of the CYP21A2 gene. Changes in exons 9 and 10
are very rare, possibly as a result of evolutionary pres-
sure to retain the overlapping 3� end of the Tenascin X
gene (398, 399).

X. Isozymes of P450c11: P450c11�
and P450c11AS

A. Isozymes of P450c11
The final steps in the synthesis of glucocorticoids and

mineralocorticoids are catalyzed by two closely related

TABLE 3. Microconversions of the CYP21A2 gene that
cause 21-hydroxylase deficiency

Mutation Location
Associated
phenotypes

Activity
(%)

Pro 303Leu Exon 1 NC/SV 30–60
A3G Intron 2 SV/SW Minimal
8-bp deletion Exon 3 SW 0
Ile 1723Asn Exon 4 SV 3–7

Ile 2363Asp
Val 2373Glu Exon 6 SW 0
Met 2393Lys

Val 2813Leu Exon 7 NC 18 � 9
Gly 2923Ser Exon 7 SW
T insertion @ 306 Exon 7 SW 0
Gly 3183Stop Exon 8 SW 0
Arg 3393His Exon 8 NC 20–50
Arg 3563Trp Exon 8 SV/SW 2
Pro 4533Ser Exon 10 NC 20–50
GG3C @ 484 Exon 10 SW 0

NC, Nonclassic; SV, simple virilizing; SW, salt wasting. © W. L. Miller.
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mitochondrial enzymes, P450c11� and P450c11AS (447,
448). These two human isozymes are encoded by tan-
demly duplicated genes on chromosome 8q21–22 that
have 93% amino acid sequence identity (449). There are
substantial differences in this enzyme system among var-
ious mammals. Cattle have a single enzyme (450) encoded
by a single gene (451) that catalyzes the 11�-hydroxyla-
tion of 11-deoxycortisol to cortisol, and all three steps
required for the synthesis of aldosterone from DOC: 11�-
hydroxylase, 18-hydroxylase, and 18 methyl oxidase ac-
tivities. By contrast, the human genome has two genes
named CYP11B1 and CYP11B2 (449) that encode
P450c11� (11�-hydroxylase) and P450c11AS (aldoste-
rone synthase), respectively, and rats (but not mice) have
three functional CYP11B genes (452). The CYP11B1 and
CYP11B2 genes are located about 40 kb apart on chro-
mosome 8q24.3 and share the same intron/exon structure
common to all mitochondrial P450 genes. Both forms of
P450c11 are found on the IMM and use ferredoxin and
ferredoxin reductase to receive electrons from NADPH to
mediate catalysis (453). By far the more abundant of the
two isozymes is P450c11�, which is the classical 11�-
hydroxylase that converts 11-deoxycortisol to cortisol
and DOC to corticosterone, and is expressed predomi-
nantly in the zona fasciculata, and to a lesser extent in the
zona reticularis, but not in the zona glomerulosa (454).
P450c11� expression is induced by ACTH via cAMP and
is suppressed by glucocorticoids. The less abundant
isozyme, P450c11AS, is found only in the zona glomeru-
losa, where it has 11�-hydroxylase, 18-hydroxylase, and
18-methyl oxidase (aldosterone synthase) activities; thus,
P450c11AS is able to catalyze all the reactions needed to
convert DOC to aldosterone (455–457). Both enzymes
can convert DOC to corticosterone and corticosterone to
18OH-corticosterone, but only P450c11AS can synthe-
size aldosterone from 18OH-corticosterone. The weak
18-hydroxylase activity of P450c11� (458) explains why
an adrenal with suppressed P450c11AS expression con-
tinues to synthesize 18OH-corticosterone (459). Tran-
scription of the CYP11B2 gene encoding P450c11AS is
induced by potassium and angiotensin II activation of the
protein kinase C pathway (460), and requires the tran-
scription factors SF1, NURR1 and NGFIB (461) and
possibly other factors (462). Because P450c11AS is nor-
mally restricted to the zona glomerulosa, where 17�-
hydroxylase activity is absent, the repertoire of steroids
that can undergo 18-oxygenation is limited.

B. Overview of lesions in isozymes of P450c11
Patients with disorders in P450c11� have classical 11�-

hydroxylase deficiency but can still produce aldosterone
(463), whereas patients with disorders in P450c11AS have
rare forms of aldosterone deficiency (so-called corticoste-

rone methyl oxidase deficiency) while retaining the ability
to produce cortisol (464–466). The clinical descriptions
of distinct deficiency syndromes for 11�-hydroxylase, 18-
hydroxylase (also called corticosterone methyl oxidase I
or CMOI), and 18-oxidase (CMOII) were initially inter-
preted to mean that three separate enzymes catalyzed these
three reactions (467, 468). Mutations in CYP11B1 cause
11�-hydroxylase deficiency isolated to the zonae fascicu-
lata and reticularis (463), whereas defects in CYP11B2
cause both CMOI or CMOII deficiencies (447). Thus, se-
vere defects can impair all P450c11AS activities, leading to
the clinical phenotype of CMOI deficiency (456), whereas
P450c11� provides 11�-hydroxylase activity in the zona
fasciculata.

C. 11�-Hydroxylase deficiency
P450c11� catalyzes the 11�-hydroxylation of 11-

deoxycortisol to cortisol and that of DOC to corticoste-
rone in the fasciculata, catalyzes some 18-hydroxylation,
but has no 18-methyl oxidase activity. Deficient
P450c11� activity accounts for about 5–8% of CAH in
persons of European ancestry (469) but accounts for
about 15% of cases in both Muslim and Jewish Middle
Eastern populations (470). Severe deficiency of P450c11�

decreases the secretion of cortisol, causing CAH and vir-
ilization of affected females. The defect in the pathway to
cortisol results in accumulation of 11-deoxycortisol, and
the defect in the 17-deoxy pathway in the synthesis of
corticosterone in the fasciculata leads to overproduction
of DOC, potentially leading to mineralocorticoid-based
hypertension. Although DOC is less potent than aldoste-
rone, patients with 11�-hydroxylase deficiency may se-
crete it at high levels, so that salt is retained and the serum
sodium remains normal. Although overproduction of
DOC can cause hypertension, affected newborns may
have mild, transient salt loss (470, 471), presumably be-
cause normal newborns are relatively resistant to miner-
alocorticoids (Fig. 11). DOC concentrations, serum po-
tassium, and blood pressure generally correlate poorly
with the degree of virilization in affected females or the
cardiovascular manifestations (472). Newborns may also
have elevated concentrations of 17OHP, which accumu-
lates two steps behind the enzymatic block, presumably
because high concentrations of 11-deoxycortisol inhibit
P450c21, so that P450c11� deficiency may be detected
in newborn screening for P450c21 deficiency (420, 473,
474). The diagnosis is established by elevated basal con-
centrations of DOC and 11-deoxycortisol, which hy-
perrespond to cosyntropin (475).

The CYP11B1 mutations causing 11�-hydroxylase de-
ficiency have been reviewed recently (476). The mutation
R448H was found on 11 of 12 affected alleles among
Sephardic Jews of Moroccan ancestry (463), Q356X and
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G379V were the only mutations found among 15 unre-
lated Tunisian patients (477), and other mutations have
also been described in other populations (447). A mild,
nonclassic form of 11�-hydroxylase deficiency was found
in otherwise asymptomatic women with hirsutism, viril-
ism, and menstrual irregularities (470, 478), but this phe-
notype is rare: only two of five hyperandrogenemic
women with elevated 11-deoxycortisol had CYP11B1
mutations that retained partial activity (479).

D. Aldosterone synthase deficiencies
Disorders of P450c11AS cause aldosterone synthase

deficiency, formerly termed corticosterone methyl oxidase
(CMO) deficiencies, in which aldosterone biosynthesis is
impaired whereas the zona fasciculata and reticularis con-
tinue to produce corticosterone and DOC. The absence of
aldosterone biosynthesis will generally result in a salt-
wasting crisis in infancy, at which time the normal secre-
tory rate of DOC is insufficient to meet the newborn’s
mineralocorticoid requirements. These patients may re-
cover spontaneously and grow to adulthood without ther-
apy, probably reflecting the increasing sensitivity to min-
eralocorticoid action and sodium intake with advancing
age (480, 481) (Fig. 11). Consistent with this, plasma renin
activity is markedly elevated in affected children but may
be normal in affected adults (482).

CMOI deficiency results from a complete loss of
P450c11AS activity, eliminating 18-hydroxylase or 18
methyl oxidase activities and consequent biosynthesis of
18OH-corticosterone and aldosterone, while preserv-

ing the biosynthesis of corticosterone and cortisol by
P450c11�. The diagnosis for CMOI deficiency is based on
an increased ratio of corticosterone to 18OH-corticoste-
rone with suppressed aldosterone despite elevated plasma
renin activity (465). Few cases of CMOI deficiency have
been fully characterized genetically, including a frameshift
mutation (483), a premature stop codon (484), and the
missense mutation R384P (485).

CMOII deficiency, characterized by increased concen-
trations of 18OH-corticosterone and very low concentra-
tions of aldosterone, results from amino acid replacements
in P450c11AS that selectively delete the 18 methyl oxidase
activity while preserving 18-hydroxylase activity. CMOII
deficiency is common in Sephardic Jews of Iranian origin,
where affected individuals are homozygous for two dif-
ferent mutations, R181W and V386A; individuals ho-
mozygous for only one of these mutations were clini-
cally unaffected; both mutations are required to cause
disease (464).

There is clinical and genetic overlap between CMOI
and CMOII. One patient with findings of CMOII had two
mutations on each parental allele: the mother’s allele car-
ried R181W and a deletion/frame-shift mutation that de-
leted all activity; the father’s allele carried T318M and
V386A (466). T318 is a highly conserved Thr residue that
participates in cleavage of the dioxygen bond of O2 in all
P450 enzymes to create the iron-oxy intermediate required
for P450 catalysis (486). When the T318M/V386A double
mutant was recreated in vitro, there was no detectable
activity, yet the patient had CMOII rather than CMOI as
predicted by the in vitro findings (466). Similarly, a patient
with apparent CMOI was homozygous for the mutations
E198A and V386A, yet when assayed in vitro the double
mutant enzyme behaved similarly to the mutant enzyme
found in the Iranian Jewish CMOII patients (487). This
patient also carried R173K, a normally occurring poly-
morphism that does not change the enzyme’s Km or Vmax

(488). Thus, the distinction between CMOI and CMOII
is not precise, and these disorders should be regarded as
different degrees of severity on a continuous clinical
spectrum.

Although the two CYP11B genes are reminiscent of the
genetic anatomy of the CYP21A1P and CYP21A2 genes,
gene conversions are rare. Only one gene conversion caus-
ing CMO II deficiency has been described (489), probably
due to the higher recombinational frequency in the HLA
region carrying the CYP21 genes.

E. Glucocorticoid-remediable aldosteronism
Although gene conversion events in the CYP11B locus

are rare, an unusual gene duplication, caused by unequal
crossing over between the CYP11B1 and CYP11B2 genes,
results in glucocorticoid-remediable aldosteronism

FIG. 11. Concentrations of aldosterone as a function of age. [© W. L.
Miller.]
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(GRA) (490–492). The crossover results in one allele hav-
ing a third, hybrid CYP11B gene in which the ACTH-
regulated promoter and the first few exons of CYP11B1
are fused in frame to most of the exons of CYP11B2,
resulting in the zona fasciculata expression of a chimeric
protein with aldosterone synthase activity (490, 491) (Fig.
12). Crossover has been described in intron 2, intron 3,
and exon 4 (491), and the corresponding deleted allele,
causing 11-hydroxylase deficiency, has been described
(493). As a result, ACTH stimulates the production of an
enzyme with 18-hydroxylase and 18-oxidase activities,
leading to increased production of aldosterone and 18-
oxygenated metabolites of cortisol. The overproduction
of aldosterone causes mineralocorticoid hypertension and
suppresses plasma renin activity. Because the expression
of this hybrid gene is ACTH-responsive, it can be sup-
pressed by glucocorticoids such as dexamethasone, which
is used for diagnosis and treatment (494). GRA may ac-
count for up to 2% of patients with hypertension (495).

Studies of the crossover sites in different patients with
GRA, as well as construction of hybrid and site-directed
mutants in vitro, have permitted the precise identification
of the P450c11AS residues that are specifically required
for the 18-oxygenase activity. Residues 288, 296, 301,
302, 325, and, perhaps most importantly, 320 are critical
(496, 497). Thus, genetic crossovers 3� to codon 320 will
create a hybrid protein that lacks aldosterone synthase
activity, and hence will not cause GRA. These key residues
lie in or near the I-helix, which contains the catalytically
important T318 residue implicated in oxygen activation
for almost all P450s (486); thus, these mutations would be
expected to alter active site geometry.

Localized microconversions, similar to those that cause
most cases of 21-hydroxylase deficiency, might insert
sequences crucial for aldosterone synthase activity into
the gene encoding P450c11�. Studies in vitro suggest
that changing Ser288 and Val320 would suffice (497),
and artificial activating mutations that increase the al-
dosterone synthase activity of P450c11AS have been
created in vitro (498). However, most patients with
low-renin hypertension, other than those with glu-
cocorticoid suppressible hypertension, lack mutations
in this locus (458, 488, 499).

XI. Isozymes of
17�-Hydroxysteroid Dehydrogenase

Multiple reactions are catalyzed by a group of enzymes col-
lectively known as the 17�-hydroxysteroid dehydrogenases
(17�HSDs), sometimes also termed 17-oxidoreductases or
17-ketosteroid reductases (500, 501). These reactions in-
cluded the interconversions of androstenedione and testos-
terone, DHEA and androsta-5-ene-3�,17�-diol, estrone
and estradiol, androsterone and 5�-androstane-3�,17�-
diol, 5�-androstanedione and 5�-DHT, and others. The ter-
minologies for these enzymes vary, depending on the direc-
tion of the reaction being considered. These enzymes are
often confusing because: 1) there are several different
17�HSDs; 2) some are preferential oxidases, whereas others
are preferential reductases; 3) they differ in their substrate
preference and sites of expression; 4) there is inconsistent
nomenclature, especially with the rodent enzymes; and 5)
some proteins termed 17�HSDs actually have very little
17�HSD activity and are principally involved in other reac-
tions (50). There are at least 14 human 17�HSD isoforms;
these isoforms vary widely in size, structure, substrate spec-
ificity, cofactor utilization, and physiological functions
(502). Only those most important in normal steroidogenesis
are discussed here (Table 4).

A. 17�HSD type 1
The interconversion of estrone and estradiol by

17�HSD1 has been studied more extensively than any
other human steroidogenic enzyme. 17�HSD1, also
known as estrogenic 17�HSD, is a cytosolic reductive
SDR enzyme that uses NADPH as its cofactor to catalyze
reductase activity and is a dimer of 34-kDa subunits. In the
late 1980s, three independent groups reported the cloning
of its cDNA, the first of any human HSD (503–505). The
HSD17B1 gene is located on chromosome 17q11-q21
(506) adjacent to a pseudogene and encodes a 34-kDa
protein that is expressed primarily in the placenta and in
ovarian granulosa cells of developing follicles (506).
17�HSD1, which is active only as a dimer, primarily ac-

FIG. 12. Molecular genetics of GRA. Unequal crossing over of the
CYP11B2 and CYP11B1 genes yields a chimeric gene with the
regulatory sequences of the CYP11B1 promoter (ACTH responsiveness
in the zona glomerulosa; filled bar) driving the expression of an
enzyme with CYP11B2 sequences, encoding aldosterone synthase
activities (unfilled bar). [Figure provided courtesy of Prof. Perrin C.
White. (University of Texas Southwestern Medical Center, Dallas, TX)].
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cepts steroid substrates with an aromatic A ring, so that it
primarily activates estrone to estradiol, although it also
has low activity for the conversion of androstenedione to
testosterone and DHEA to androsta-5-ene-3�,17�-diol
(507). Although 17�HSD1 can oxidize 17�-hydroxys-
teroids in the presence of NAD� in vitro at high pH, the
enzyme functions in vivo to reduce estrone to estradiol and
16�-hydroxyestrone to estriol (507).

Attempts to identify active site residues using affinity
labels and mechanism-based inactivators were reported in
1988 (508), and sequence alignments with other SDR en-
zymes identified the Tyr-X-X-X-Lys active-site motif at
residues 155 to 159 (509), which was then confirmed by
crystallography (510, 511). The structure shows that the
NADPH cofactor lies across the �-sheet core of the protein
in the Rossman fold characteristic of all SDR enzymes. The
steroid appears to dangle from the top of the enzyme al-
most perpendicular to the cofactor, with a hydrophobic
pocket holding the body of the steroid in place while the
steroid 3-OH group forms hydrogen bonds with His 221
and Glu 282. Where the steroid and cofactor meet, Ser
142, Tyr 155, and Lys 159 help to form a proton-relay
system that drives catalysis.

Because estrogen biosynthesis preferentially occurs
by the aromatization of androstenedione to estrone,
17�HSD1 appears to be required for the conversion of
estrone to biologically active estradiol in the ovary and
placenta (506). However, no cases of human 17�HSD1
deficiencyhavebeen reported;hence, this rolehasnotbeen
proven unequivocally. One would predict that 17�HSD1
deficiency would be compatible with life because fetuses
that cannot produce estrogens because of aromatase de-
ficiency or that have estrogen insensitivity (ER� muta-

tions) are viable (327). Nevertheless, 17�HSD1 is prob-
ably critical for ovulation and may be important in the
pathogenesis and progression of estrogen-dependent
breast cancers (512).

B. 17�HSD type 2
17�HSD2 is a microsomal oxidase that uses NAD� to

inactivate both androgens and estrogens. In contrast to the
“activating” role of 17�HSD1 in the placenta and ovary,
human endometrium inactivates estradiol by its conver-
sion to estrone. This activity, which is induced by proges-
tins, is not attributable to 17�HSD1, because 17�HSD1
mRNA is not detected in the human uterus (506). Instead,
a cDNA encoding microsomal HSD17B2 was cloned
(513) and found to be expressed in endometrium, pla-
centa, and other tissues (514). In contrast to 17�HSD1,
which is found in placental syncytiotrophoblast cells,
17�HSD2 is expressed in endothelial cells of placental
intravillous vessels, consistent with its apparent role in
defending the fetal circulation from transplacental pas-
sage of maternal estradiol or testosterone (515).
17�HSD2 inactivates sex steroids by oxidizing them to
their inactive 17-ketosteroid homolog: estradiol to es-
trone, testosterone to androstenedione, and DHT to 5�-
androstanedione. The widespread tissue distribution and
broad substrate specificity of 17�HSD2 suggests that its
role in human physiology is to protect tissues from exces-
sive exposure to active steroid hormones by oxidation to
inactive 17-ketosteroids (502). This role is somewhat
speculative because no human deficiency of 17�HSD2 has
been described. 17�HSD2 also oxidizes 20�-dihydropro-
gesterone to progesterone, but this activity is low relative
to its 17�HSD activity (513).

TABLE 4. Principal oxidative and reductive steroidogenic reactions catalyzed by 17�HSD types 1–6

17�HSD type Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Other names AKR1C3 RODH
Preferred direction Reduction Oxidation Reduction Oxidation Reduction Oxidation
Favored cofactor in intact cells NADPH NAD� NADPH NAD� NADPH NAD�

Estrone3 estradiol Major Minor
Estradiol3 estrone Major Trace
16OH-estrone3 estriol Major
Estriol3 16OH-estrone Major Trace
DHEA3 androstenediol Modest Modest
Androstenedione3 testosterone Trace Major Minor
Testosterone3 androstenedione Major Trace
DHT3 5�-androstane-3,20dione Major Trace Modest
5�-Androstane-3,20dione3 DHT Major
DHT3 5�-androstane-3�,17�diol Modest
5�-Androstane-3�,17�diol3 DHT Modest
5�-Androstane-3�,17�diol3 androsterone Modest
Androsterone3 5�-androstane 3,20dione Modest

These enzymes catalyze other reactions as well: 17�HSD6 (RODH) also acts as an isomerase with modest activity to convert 5�-androstane 3�,17�diol to 5�-androstane
3�,17�diol and androsterone to 3�-androsterone. © W. L. Miller and R. J. Auchus.

110 Miller and Auchus Human Steroidogenesis Endocrine Reviews, February 2011, 32(1):81–151

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/32/1/81/2354857 by guest on 20 M

arch 2024



C. 17�HSD type 3
17�HSD3, the androgenic form of 17�HSD, is a 310-

amino acid microsomal enzyme that is expressed almost
exclusively in the testis (516). Relatively little is known
about the enzymology of 17�HSD3, partly because it is a
very hydrophobic protein, hampering its expression and
purification from bacteria. In transiently transfected
HEK-293 cells, human 17�HSD3 reduces DHEA, 5�-an-
drostanedione, and androsterone, the C19 17-ketosteroids
that serve as precursors of testosterone and DHT (517).
The conversion of DHEA to androsta-5-ene-3�,17�-diol
by 17�HSD3 may contribute significantly to testicular tes-
tosterone synthesis (238). Estrogens are poor substrates
for human 17�HSD3 (507).

When the cDNA derived from the 67-kb gene for
17�HSD3 was cloned, patients with 17-ketosteroid re-
ductase deficiency were found to harbor mutations in this
HSD17B3 gene (516–518), proving the central role of this
enzyme in male sexual differentiation. 17�HSD3 is the
only 17�HSD enzyme whose role in human physiology is
genetically established by a deficiency syndrome. Children
with 17�HSD3 deficiency, which manifests as a disorder
of sexual development only in 46,XY infants, make small
amounts of testosterone, indicating that other human
17�HSD enzymes can convert androstenedione to testos-
terone—but not enough to compensate for 17�HSD3 de-
ficiency during fetal development. Infants with 17�HSD3
deficiency have varying degrees of hypospadias and mi-
cropenis with intraabdominal or inguinal testes. The pre-
sentation is thus indistinguishable from that of partial an-
drogen insensitivity syndrome or 5�-reductase type 2
deficiency, with most newborns assigned a female sex of
rearing (518). Diagnosing the cause of disordered sexual
development in an undervirilized 46,XY male is among
the most challenging tasks in pediatric endocrinology, and
distinguishing among these three diagnoses, despite de-
tailed serum steroid analyses after hCG stimulation, re-
mains problemmatic. Molecular genetic testing helps to
establish the diagnosis, which has implications for man-
agement of the adolescent (518). As in 5�-reductase type
2 deficiency, children with 17�HSD3 deficiency and func-
tional testes begin to virilize at puberty, and these patients
sometimes adopt the male gender as adults. Affected
46,XX girls are normal, and women with 17�HSD3 de-
ficiency produce normal amounts of androgens and es-
trogens, indicating that the human ovary still produces
testosterone in the absence of 17�HSD3 expression (519).

D. 17�HSD type 4
Many additional HSD isoforms have been described, but

their activities for steroids are generally poor. An enzyme
termed 17�HSD4 was initially identified as an NAD�-de-
pendent oxidase with activities similar to 17�HSD2 (520),

but this trifunctional protein is located in peroxisomes (520)
andisprimarilyanenoyl-CoAhydrataseand3-hydroxyacyl-
CoA dehydrogenase (521, 522); its (oxidative) HSD activity
toward estradiol is 106 times slower than its 3-hydroxyacyl-
CoA dehydrogenase activity (523). Deficiency of 17�HSD4
causes a form of Zellweger syndrome, in which bile acid
synthesis is disturbed but steroidogenesis is not affected
(522). Thus, this enzyme has some 17�HSD activity, but
steroidogenesis is not its principal physiological function.

E. 17�HSD type 5
17�HSD5, originally cloned as a 3�-HSD (524, 525),

is an AKR enzyme (AKR1C3), unlike 17�HSD types 1 to
4, which are SDR enzymes. 17�HSD5 catalyzes the re-
duction of androstenedione to testosterone (524, 526),
and is expressed in both steroidogenic and nonsteroido-
genic tissues (525, 526). The nature of 17�HSD5 has been
confusing because of its multiple activities and inconsis-
tent results from different laboratories. Originally de-
scribed as hepatic 3�-HSD type 2 for its ability to reduce
DHT to 3�-androstanediol (525), this protein was later
found to also have 17�HSD activity, including reducing
androstenedione to testosterone (527). 17�HSD5 may ac-
count for much of the extratesticular, peripheral conver-
sion of androstenedione to testosterone, although its cat-
alyticefficiencyasa17�HSDispoor (528)comparedwith its
20�HSD activity with progesterone and DOC (520) or its
prostaglandin dehydrogenase activity, reducing prostaglan-
din H2 to prostaglandin F2� (529). Nevertheless, 17�HSD5/
AKR1C3ismorehighlyexpressed inthehumanfetaladrenal
during the time of sexual differentiation than 17�HSD3
(334) and may participate in adrenal testosterone produc-
tion, particularly in virilizing CAHs. The postnatal adrenal
also expresses 17�HSD5 in the zona reticularis and accounts
for the small amountof testosteronedirectlyproducedby the
adrenal glands (530).

F. 17�HSD type 6
17�HSD type 6 is also known as RODH for its homol-

ogy to retinol dehydrogenase enzymes and as 3-hydroxys-
teroidepimerase for its ability to convert 3�-hydroxys-
teroids to their 3�-hydroxysteroid epimers via 3-ketosteroid
intermediates (531, 532). Encoded by the HSD17B6 gene
on chromosome 12q13.3, this enzyme catalyzes oxidative
3�HSD activities and converts androstanediol to DHT in
the prostate (533). The role of RODH as the potential oxi-
dative 3�HSD in the testicular alternative pathway to DHT
is probable but not proven.

XII. P450aro: Aromatase

Estrogens are produced by the aromatization of andro-
gens, including those derived from adrenal steroidogene-
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sis, by a complex series of reactions catalyzed by a single
microsomal aromatase, P450aro (327, 535, 536). This
typical cytochrome P450 is encoded by a single gene on
chromosome 15q21.1. This gene uses several different
promoter sequences, transcriptional start sites, and alter-
natively chosen first exons to encode aromatase mRNA
in different tissues under different hormonal regulation.
P450aro is expressed in steroidogenic tissues (ovarian
granulosa cells, placenta), in brain, and in nonsteroi-
dogenic tissues, especially fat and bone (535). The
CYP19A1 gene for P450aro spans over 75 kb (537) and
contains five different transcriptional start sites (538)
with individual promoters that permit the tissue-spe-
cific regulation of its expression in diverse tissues.
P450aro is a glycoprotein, but glycosylation per se does
not appear to affect activity (539).

The oxidative demethylation of C19 steroids, mainly
androstenedione and testosterone, consumes three equiv-
alents of molecular oxygen and NADPH, yielding formic
acid and C18-steroids with an aromatic A-ring, hence the
common name for this enzyme, aromatase. As is the case
for P450scc, each successive oxygenation proceeds with
greater efficiency, aiding in the completion of this trans-
formation that is essential for estrogen biosynthesis in all
animals (535). The mechanism of this aromatization ap-
pears to involve a hydroxylation at C2 of 19-oxo-andro-
stenedione, followed by an enzyme-assisted rearrange-
ment and tautomerization of the intermediate dienone to
the phenolic A-ring (540), accounting for the incorpora-
tion of the final oxygen atom from molecular oxygen into
the formic acid by-product. The crystallographic structure
of human aromatase, the first of any human steroidogenic
P450, reveals a tight active site well-suited to accommo-
date the androgens in the proper geometry (541). The hy-
drophobic amino terminus is in close apposition to the
catalytic cleft, which suggests lipophilic substrates to
gain access to the active site from the membrane using
this membrane anchor.

Although it has traditionally been thought that aro-
matase activity is needed for embryonic and fetal devel-
opment, infants and adults with aromatase deficiency
have been described, showing that fetoplacental estrogen
is not needed for normal fetal development (326, 542).
Studies of patients with aromatase deficiency show that
biologically significant estrogen synthesis derives entirely
from P450aro (326, 327), although dietary phytoestro-
gens can provide some estrogen action in mice with tar-
geted deletion of Cyp19a1 (543). Although very few cases
of aromatase deficiency have been described, these highly
informative “knockouts of nature” illustrate principles of
fetoplacental steroidogenesis. In fetuses homozygous for
aromatase deficiency, the principal manifestation results

from its deficiency in the placenta (326) because ovarian
steroidogenesis is quiescent during fetal life (106). The
fetal adrenal makes large amounts of C19 steroids, prin-
cipally DHEAS, much of which is 16�-hydroxylated by
CYP3A7 in the fetal liver before undergoing metabolism
via steroid sulfatases, 3�HSD1, aromatase, and 17�HSD1
in the placenta to produce estriol, the characteristic estro-
gen of pregnancy. Although huge amounts of estriol and
estradiol are produced by the fetoplacental unit, estro-
gens are not needed for fetal development, the mainte-
nance of pregnancy, or the onset of parturition; all of
these processes proceed normally in fetuses lacking
StAR, P450c17, or aromatase, or even in fetuses wholly
lacking adrenal glands because of mutations in SF1 or
DAX1 (329). However, in the absence of placental aro-
matase activity, androgenic C19 steroids derived from
the fetal adrenal are passed into the maternal circula-
tion, causing marked virilization of the mother (326).
Furthermore, in pregnancies in which the mother has
poorly treated 21-hydroxylase deficiency, maternal tes-
tosterone values can exceed 300 ng/dl (a midpubertal
value for males), yet the fetus is not virilized (544) be-
cause the maternal testosterone is efficiently metabo-
lized to estradiol by placental aromatase. Thus, placen-
tal aromatase is a key enzyme in protecting the fetus and
mother from unwanted androgen exposure.

Extraglandular aromatase expression, especially in fat,
can convert androgens to estrogens. Aromatase in the
epiphyses of growing bone converts testosterone to estra-
diol; the tall stature, delayed epiphyseal maturation, and
osteopenia of males with aromatase deficiency, and their
rapid reversal with estrogen replacement provide power-
ful evidence that estrogen, not androgen, is responsible for
epiphyseal maturation in males (327). After birth, indi-
vidualswitharomatasedeficiencygrownormallyandcon-
tinue linear growth after completion of puberty, with
males producing normal amounts of testosterone. How-
ever, when treated with estrogens, aromatase-deficient
subjects fuse their epiphyses and cease linear growth
(545). These observations have led to the experimental use
of aromatase inhibitors in various disorders of accelerated
bone maturation.

XIII. Isozymes of 5�-Reductase

Studies in the 1960s showed that testosterone is converted
to the more potent androgen, DHT, by an enzyme found
in testosterone’s target tissues (546). Studies using fibro-
blasts suggested that at least two human enzymes with
different pH optima and genetics performed these trans-
formations (547). Cloning studies identified two distinct
forms of 5�-reductase: the type 1 enzyme, found in the
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scalp and other peripheral tissues, is encoded by the
SRD5A1 gene on chromosome 5p15 (548); whereas
the type 2 enzyme, the predominant form found in male
reproductive tissues, in encoded by the structurally related
SRD5A2 gene on chromosome 2p23 (549, 550). The two
isoforms are very hydrophobic 30-kDa microsomal pro-
teins that share 50% identity. The syndrome of 5�-reduc-
tase deficiency, a disorder of male sexual differentiation,
is due to a wide variety of mutations in the SRD5A2 gene
encoding the type 2 enzyme (551, 552). These genes have
an unusual pattern of developmental regulation of expres-
sion. SRD5A1 is not expressed in the fetus, which explains
why fetal deficiency of the type 2 enzyme is not compen-
sated for by the type 1 enzyme (550). SRD5A1 is expressed
briefly in the skin of the newborn, then remains unex-
pressed until its activity and protein are again found in the
nongenital skin and liver after puberty. The type 1 enzyme
accounts for most hepatic 5�-reduction. SRD5A2 is ex-
pressed in fetal genital skin, in the normal prostate, and in
prostatic hyperplasia and adenocarcinoma. Thus, the type 1
enzyme may be responsible for the pubertal virilization seen
in patients with classic 5�-reductase deficiency, and the type
2 enzyme may be involved in male pattern baldness (550).

The 5�-reductases are important beyond the context of
male genital differentiation and androgen action because
both isozymes reduce a variety of steroids in degradative
pathways. Progesterone, 17OHP, and related C21 steroids
are excellent substrates for both 5�-reductases, particu-
larly the type 1; cortisol, cortisone, corticosterone, and
related compounds are also good substrates (553). Such
5�- (and 5�-) reduced steroids may be metabolized further
and conjugated for excretion in the urine. Inhibitors of the
type 2 enzyme have been developed for the treatment of
prostatic hyperplasia and the prevention of its recurrence
after surgery (554): finasteride selectively inhibits human
5�-reductase type 2, whereas dutasteride inhibits both
isoenzymes. These drugs are approved for treatment of
prostatic hyperplasia in the United States.

Although the essential function of 5�-reductase type 2
in male sexual differentiation is firmly established, the role
of the type 1 isoform is less clear. The abundant expression
of the type 1 isoform in liver and its high activity with C21

steroids imply a role of degrading circulating C21 steroids
in preparation for excretion in the urine. However, dis-
ruption of the corresponding mouse srd5a1 gene results in
delayed parturition, which can be rescued with 5�-andro-
stane-3�,17�-diol (555). In immature mice, 5�-reductase
type 1 is expressed both in the ovary and in the Leydig cells,
where it participates in the synthesis of testicular 5�-an-
drostanediol via two pathways (556). Accumulating evi-
dence suggests that 5�-reductases are at least sometimes
expressed in human adrenal (334) and possibly gonads,

but their function(s) in normal physiology or in patholog-
ical states is not known.

XIV. Isozymes of
3�-Hydroxysteroid Dehydrogenase

The four major human 3�HSDs are AKR enzymes that
belong to the AKR1C family and are (usually) catalytically
reductive (reviewed in Ref. 50). The 3�HSD types 1, 2, 3,
and 4 are trivial names for AKR1C4, 1C3, 1C2, and 1C1,
respectively, which are encoded by tandemly duplicated
genes on chromosome 10p14-p15. The unfortunate dis-
cordance between the numbering of the names for the
proteins and genes can cause substantial confusion. Each
enzyme has a characteristic tissue distribution (557, 558)
and repertoire of catalytic activities (538). AKR1C3, also
known as 17�HSD5 (discussed in Section XI.E), catalyzes
the 17�HSD reaction with androstenedione, and all of
these AKR1C isoforms catalyze additional reactions, such
as the 20�-reduction of pregnanes. In the brain, 3�HSDs
reduce 5�-dihydroprogesterone to tetrahydroprogester-
one (allopregnanolone), which is an allosteric activator of
the �-amino butyric acid (GABAA) receptor-chloride
channel complex with a nanomolar affinity (559).
AKR1C4 is abundant in liver but has been found in ad-
renal and gonads; AKR1C2 is found in the prostate (560);
and AKR1C1 is abundant in the uterus. The amino acid
compositions of isozymes of the type 2 and 3 enzymes
differ by a few residues due to allelic variation; these minor
differences account for the differing but partially overlap-
ping array of compounds that may be used as substrates
(Table 5).

The 3�HSDs appear to be important in the CNS. Se-
lective serotonin reuptake inhibitors, such as the common
antidepressants fluoxetine and paroxetine, directly lower
the Km of rat brain 3�HSD type 2 for 5�-dihydroproges-
terone by almost 10-fold (561), explaining why these
drugs augment brain allopregnanolone concentrations
and perhaps contributing to their antidepressant activity.
X-ray crystallography shows that the �-subunit of the
mammalian voltage-gated potassium channel is a tet-
rameric structure (562) in which each subunit closely re-
sembles a rat liver 3�HSD (AKR1C9) (563), and even
contains bound NADP�. These studies suggest a role for
HSDs in coupling intracellular redox state to membrane
excitation.

The 3�HSDs differ from the 11�HSDs, 3�HSDs, and
17�HSD types 1 to 4 in several respects because all re-
ductive 3�HSDs are AKR enzymes rather than SDR en-
zymes. As AKR enzymes, they function as monomers with
a TIM-barrel structure, binding cofactor with the nicotin-
amide ring draped across the mouth of the “barrel” rather

Endocrine Reviews, February 2011, 32(1):81–151 edrv.endojournals.org 113

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/32/1/81/2354857 by guest on 20 M

arch 2024



than lying on a Rossman fold, and their kinetic mecha-
nisms are highly ordered, with dissociation of the cofactor
as the final and rate-limiting step (564). NADP(H) is
bound tightly because of the interaction of Arg276 with
the 2�-phosphate of NADP(H); mutation of Arg276 elim-
inates a conformational change associated with tight
binding (565) and attenuates or reverses the preference
for ketosteroid reduction in intact cells (52). The struc-
ture of AKR1C9 (564) shows that the active sites of the
AKR enzymes also contain tyrosine and lysine residues
that facilitate proton transfer during catalysis, but these
residues are distantly located in linear sequence rather
than confined to the Tyr-X-X-X-Lys motif as in SDR
enzymes.

In contrast to the reductive 3�HSDs, the oxidative
3�HSDs belong to the SDR family and are similar to the
retinol dehydrogenase or cis-retinol/androgen dehydroge-
nase (RODH/CRAD) subfamily (566). Although several
of these RODH/CRAD enzymes have some 3�HSD ac-
tivity, the most active enzyme is RODH, the microsomal
3�HSD, 3(�3�)-hydroxysteroid epimerase (formally
named 17�HSD6) whose cDNA was first cloned from
prostate (533). This enzyme converts the inactive C19 ste-
roid 5�-androstane-3�,17�-diol to DHT, and thus may
catalyze the final step in the backdoor pathway from
17OHP to DHT (see Section XVIII.C). Prolonged incu-
bation of 3�-hydroxysteroids with cells expressing

17�HSD6 or with microsomes containing the recombi-
nant enzyme yields both 3�- and 3�-hydroxysteroids and
17�-hydroxysteroids (567); thus, this enzyme has many
catalytic activities and may serve a variety of biological
functions.

XV. Isozymes of
11�-Hydroxysteroid Dehydrogenase

Although certain steroids are typically categorized as glu-
cocorticoids or mineralocorticoids, cloning and expres-
sion of the “mineralocorticoid” (glucocorticoid type 2)
receptor showed it had equal affinity for both aldosterone
and cortisol (568). However, cortisol does not normally
act as a mineralocorticoid in vivo, although cortisol con-
centrations typically exceed aldosterone concentrations
by 100- to 1000-fold. In mineralocorticoid-responsive tis-
sues such as the kidney, cortisol is enzymatically converted
to cortisone, a metabolically inactive steroid (569).

The interconversion of cortisol and cortisone is medi-
ated by the two isozymes of 11�HSD, both of which have
oxidase and reductase activity, depending on whether
NADP� or NADPH is available as the cofactor (570).
Both enzymes are hydrophobic, membrane-bound pro-
teins that bind cortisol/cortisone and corticosterone/11-
dehydrocorticosterone, but otherwise their properties

TABLE 5. Principal human 3�-hydroxysteroid dehydrogenases

Enzyme 3�HSD1 3�HSD2 3�HSD3 3�HSD4 RODH

Directional preference Reductive Reductive Reductive Reductive Oxidative
Gene AKR1C4 AKR1C3 AKR1C2 AKR1C1 HSD17B6
Cofactors NADP(H) NADP(H) NADP(H) NADP(H) NAD(H)
Major reactions
Reduction
3�HSDa High Moderate Moderate-high Moderate Moderate
3�HSDb Nil Nil Nil Nil Moderate
17�HSDc Nil Moderate-high Nil Low Low
20�HSDd Low Low Low Moderate-high Nil
Other substrates DOC, PGF2�

Oxidation
3�HSDa Low Nil Low Low High
3�HSDb Nil Nil Nil Nil High
17�HSDc Nil Low Nil Nil Moderate
20�HSDd Nil Nil Nil Low Nil

Tissue distribution Liver (major site),
adrenal/gonad
(trace)

Prostate, breast,
liver, adrenal,
testis, lung

Liver, prostate,
lung, uterus,
brain

Liver, testis,
lung, breast,
uterus, brain

Prostate

a Reductive reactions include: DHT3 5�-androstane-3�,17�-diol, 5�-androstane-3,20-dione3 androsterone, and 5�-pregnane-3,20-dione3 allopregnanolone;
oxidative reactions include the reverse reactions.
b Reductive reactions include: DHT3 5�-androstane-3�,17�-diol, 5�-androstane-3,20-dione3 3�-androsterone, and 5�-pregnane-3,20-dione3 5�-pregnan-3�-ol-
20-one (3�-allopregnanolone); oxidative reactions include the reverse reactions.
c Reductive reactions include: androsterone3 5�-androstane-3�,17�-diol, androstenedione3 testosterone, estrone3 estradiol; oxidative reactions include the
reverse reactions.
d Reductive reactions include: progesterone3 4-pregnen-20�-ol-3-one (20�-dihydroprogesterone) and DOC3 4-pregnene-20�,21-diol-3-one (20�-dihydroDOC).

© R. J. Auchus and W. L. Miller.
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and physiological roles differ substantially (570) (Table
6). Interest in these enzymes extends far beyond their
deficiency states because they play central roles in me-
tabolism (571, 572).

The type 1 enzyme (11�HSD1) (573) is a dimer of 34-
kDa subunits expressed mainly in glucocorticoid-respon-
sive tissues such as the liver, testis, lung, fat, and proximal
convoluted tubule (571). The type 1 enzyme catalyzes
both the oxidation of cortisol to cortisone using NADP�

as cofactor (Km 1–2 �M) and the reduction of cortisone to
cortisol using NADPH cofactor (Km 0.1–0.3 �M), with
cortisone reduction being the dominant reaction in trans-
fected cells (574, 575); the reaction catalyzed depends on
which cofactor is available, but the enzyme can only func-
tion with high (micromolar) concentrations of steroid
(575, 576). Many synthetic glucocorticoids (e.g., pred-
nisone and cortisone) are 11-ketosteroids that must be
reduced to their 11�-hydroxy derivatives to attain biolog-
ical activity; these transformations are performed mainly
in the liver by 11�HSD1. However, when recombinant
11�HSD1 is expressed in vitro, oxidation of cortisol with
NADP� is more efficient, and cortisone reduction is only
achieved if NADP� is removed by an enzymatic NADPH
regeneration system (576, 577). Thus, the net flux of steroid
driven by 11�HSD1 depends on the relative concentrations
of available NADPH and NADP�, which usually favors re-
ductionincells,especiallygiventhehighKmoftheenzymefor
cortisol (577). The discrepancy between the prominent ox-
idative preference in vitro and the reductive dominance in
vivo derives from the localization of 11�HSD1 in the lumen
of the endoplasmic reticulum (578). In the endoplasmic re-
ticulum, the ratio of NADPH to NADP� is maintained by
hexose-6-phosphate dehydrogenase (H6PDH), rather than
by cytoplasmic NADP�-coupled dehydrogenases (e.g., glu-
cose-6-phosphate dehydrogenase) (579).

The 41-kDa type 2 enzyme (580) (11�HSD2) has
only 21% sequence identity with 11�HSD1, whereas
11�HSD2 and 17�HSD2 share 37% identity and favor
steroid oxidation in vivo. Thus, 11�HSD1 and -2 are only
distantly related members of the SDR family, yet they per-
form physiologically related but opposite functions.

11�HSD2 catalyzes only the oxidation of cortisol to cor-
tisone using NAD� and functions with low (nanomolar)
concentrations of steroid (Km 10–100 nM) (581, 582);
whether or not 11�HSD2 catalyzes reductive reactions
remains undemonstrated. 11�HSD2 is expressed in
mineralocorticoid-responsive tissues and thus serves to
“defend” the mineralocorticoid receptor by inactivating
cortisol to cortisone, so that only “true” mineralocorti-
coids, such as aldosterone or DOC can exert a mineralo-
corticoid effect. 11�HSD2 is inactive against aldosterone,
DOC, and 9�-fludrocortisol. Thus, 11�HSD2 prevents
cortisol from overwhelming renal mineralocorticoid re-
ceptors (569), and in the placenta and other fetal tissues
11�HSD2 (583, 584) also inactivates cortisol. The pla-
centa also has abundant NADP� favoring the oxidative
action of 11�HSD1, so that in placenta both enzymes pro-
tect the fetus from high maternal concentrations of corti-
sol (570). 11�HSD1 is located on the luminal side of the
endoplasmic reticulum, and hence is not in contact with
the cytoplasm. In this unusual cellular location, 11�HSD1
receives NADPH provided by the action of H6PDH (585),
linking 11�HSD1 to the pentose monophosphate shunt,
thus providing a direct paracrine link between local glu-
cocorticoid production and energy storage as fat (586).

Cortisone and prednisone are inactive prohormones
that must be reduced to cortisol or prednisolone by hepatic
11�HSD1 to bind to and activate the glucocorticoid re-
ceptor (GR) (45, 587). Cortisol is a potent agonist at the
mineralocorticoid receptor in the distal nephron, but its
oxidized 11-keto derivative, cortisone, is not a mineralo-
corticoid. Cortisol does not act as a mineralocorticoid in
vivo, although cortisol concentrations can exceed aldo-
sterone concentrations by three orders of magnitude be-
cause it is enzymatically converted to cortisone in the cells
lining the cortical and medullary collecting ducts. Thus,
the type 2 enzyme inactivates the mineralocorticoid activ-
ity of cortisol in the kidney tubule (569), and inactivating
mutations in the type 2 enzyme cause a syndrome of ap-
parent mineralocorticoid excess (AME) (588). The pres-
ence of the type 2 enzyme in the placenta (583) also inac-
tivates endogenous and synthetic corticosteroids such as

TABLE 6. Principal characteristics of the two isozymes of 11�HSD

11�HSD type 1 11�HSD type 2

Tissues Liver, testis, lung, fat, proximal nephron Distal nephron, placenta, colon
Location Endoplasmic reticulum, facing lumen Endoplasmic reticulum, facing cytoplasm
Reaction Reduction Oxidation Reduction Oxidation
Substrates Cortisone, dehydrocorticosterone,

prednisone
Cortisol, corticosterone,

prednisolone
(No significant

substrates)
Cortisol, corticosterone,

prednisolone
Cofactor NADPH NADP� NAD�

Coenzyme H6PDH
Steroid Km 0.1–0.3 �M 1–2 �M 0.01–0.1 �M

© W. L. Miller and R. J. Auchus.

Endocrine Reviews, February 2011, 32(1):81–151 edrv.endojournals.org 115

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/32/1/81/2354857 by guest on 20 M

arch 2024



prednisolone, allowing the use of these agents during preg-
nancy without affecting the fetus. By contrast, 9-fluori-
nated steroids such as dexamethasone are minimally in-
activated by the type 2 enzyme, primarily because of a shift
in the oxidation/reduction preference rather than a reduc-
tion in affinity for the enzyme (589). It is this resistance to
inactivation by placental 11�HSD2 that is essential for
synthetic glucocorticoids to “cross the placenta” and to
exert a pharmacological effect on the fetus. Furthermore,
the relatively high placental concentrations of NADP�

may also favor the oxidative action of 11�HSD1, so that
both placental enzymes protect the fetus from the high
maternal concentrations of cortisol that occur during
pregnancy (570).

A. Lesions in 11�HSD1—apparent cortisone
reductase deficiency

Apparent cortisone reductase deficiency is character-
ized by high ratios of cortisone to cortisol and of their
respective metabolites in blood and urine (589). Such de-
fects in 11�HSD activity impair cortisol feedback at the
hypothalamic/pituitary axis, increasing the secretion of
ACTH and consequently increasing adrenal C19 steroid
secretion, resulting in hyperandrogenism, sexual precoc-
ity, and polycystic ovaries (587). Only about 10 such pa-
tientshavebeendescribed (587).Thisdisorder is causedby
inactivating mutations in H6PDH (590), which impair
NADPH regeneration within the endoplasmic reticulum,
rather than by mutations in the coding regions of
HSD11B1. It was initially reported that mutations in both
11�HSD1 and H6PDH interacted to cause this disease
(590), but variations in 11�HSD1 appear to make a rel-
atively minor contribution to this phenotype or to the
polycystic ovary syndrome (591–593). Mutations of
H6PDH in patients (594) or knockout of the H6PDH gene
in mice (595) appear to be both necessary and sufficient to
cause this disorder. Both HSD11B1 and H6PDH deficien-
cies should be diagnosed from urinary steroids, which
show a marked reduction in ratio of metabolites of cortisol
to those of cortisone. The genetics and pathophysiology of
cortisone reductase deficiency provide an excellent exam-
ple of the critical role of nicotinamide cofactors in HSD
function and biology.

B. Lesions in 11�HSD2—apparent
mineralocorticoid excess

Patients with AME have hypervolemic hypertension,
salt retention, and hypokalemic alkalosis—the classic
picture of hyperaldosteronism— but with suppressed
plasma renin activity and without measurable serum
mineralocorticoids due to recessive mutations of
11�HSD2 (570). About 30 different mutations in
11�HSD2 have been described in about 60 patients with

AME (596, 597). Heterozygous carriers may have an
increased risk of hypertension (598). Typical features of
children with AME include failure to thrive, delayed
puberty, polydipsia, polyuria, muscle weakness, and
hypertension. The hypertension is severe, often causing
end-organ damage at an early age. Diagnosis is made
from the high ratio of urinary metabolites of cortisol to
cortisone. Treatment with spironolactone, correction
of the hypokalemia, low-salt diets, and diuretics is only
partially successful, and 10% of patients die from ce-
rebrovascular accidents (599).

XVI. Steroid Sulfatase and Sulfotransferases

Steroid sulfates may be synthesized directly from cholesterol
sulfate or may be formed by sulfation of steroids by cytoso-
lic sulfotransferase (SULT) enzymes (600, 601). At least 44
distinct isoforms of these enzymes have been identified be-
longing to five families of SULT genes; many of these genes
yield alternately spliced products accounting for the large
number of enzymes. The SULT enzymes that sulfonate ste-
roids include SULT1E1 (estrogens), SULT2A1 (nonaro-
matic steroids), and SULT2B1 (sterols). SULT2A1 is the
principal SULT expressed in the adrenal, where it sulfates
the 3�-hydroxyl group of �5 steroids (pregnenolone, 17-
hydroxypregnenolone, DHEA, and androsta-5-ene-
3�,17�-diol), but not of cholesterol. SULT2B1a will also
sulfonate pregnenolone but not cholesterol, whereas choles-
terol is the principal substrate for SULT2B1b in the skin,
liver, and elsewhere. It is not clear whether most steroid
sulfates are simply inactivated forms of steroid or whether
they serve specific hormonal roles. Knockout of the mouse
SULT1E1 gene is associated with elevated estrogen levels,
increased expression of tissue factor in the placenta, and
increased platelet activation, leading to placental thrombi
and fetal loss that could be ameliorated by anticoagulant
therapy (602). Mutations ablating the function of human
SULT enzymes have not been described, but single nucleo-
tide polymorphisms that alter the amino acid sequences and
catalytic activity affecting drug activity are well-described.
African-Americans have a high rate of polymorphisms in
SULT2A1 apparently influencing plasma ratios of DHEA:
DHEAS, which may correlate with the risk of prostatic and
other cancers (603).

Steroid sulfates may also be hydrolyzed to the native
steroid by steroid sulfatase. Deletions in the steroid sul-
fatase gene on chromosome Xp22.3 cause X-linked ich-
thyosis (604, 605). In the fetal adrenal and placenta, di-
minished or absent sulfatase deficiency reduces the pool of
free DHEA available for placental conversion to estrogen,
resulting in low concentrations of estriol in the maternal
blood and urine. The accumulation of steroid sulfates in
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the stratum corneum of the skin causes the ichthyosis.
Steroid sulfatase is also expressed in the fetal rodent brain,
possibly converting peripheral DHEAS to active DHEA
(606, 607).

The obligatory sulfate donor for all the SULT enzymes
is 3�-phosphoadenosine-5�-phosphosulfate (PAPS). PAPS
is synthesized from ATP by two enzymatic activities: ATP
sulfurylase, which catalyzes the conversion of ATP and
sulfate (SO4) to adenosine phosphosulfate (APS); and APS
kinase, which uses a phosphate from another ATP mole-
cule to convert APS to PAPS (608). In human beings, the
two activities are embodied in one enzyme with two iso-
forms, PAPS synthase types 1 and 2 (PAPSS1, PAPSS2).
PAPSS1 is ubiquitously expressed, whereas PAPSS2 is
highly expressed in the major sites of DHEA sulfation: the
adrenal and liver (608). Deficiency of PAPSS2 prevents
DHEA sulfation and causes the adrenal glands to produce
much more free DHEA than normal. Because DHEA, un-
like DHEAS, is a substrate for the 3�HSD enzymes, the
excess DHEA that accumulates when it cannot be con-
verted to DHEAS yields excess androgens. The first pa-
tient shown to have compound heterozygous PAPSS2
deficiency was a 6-yr-old girl who presented with prema-
ture pubarche and advanced bone age, followed by wors-
ening androgen excess with acne, hirsutism, and second-
ary amenorrhea at age 13 (609). Her circulating DHEA
was markedly elevated, but DHEAS was very low, and
androgens including androstenedione, testosterone, and
DHT were significantly increased. PAPSS2 is probably
also important for cartilage and bone formation because
this patient had short stature and abnormal bone devel-
opment. Furthermore, complete deficiency of PAPSS2
causes spondyloepimetaphyseal dysplasia of the Pakistani
type, but steroid metabolism was not assessed in this kin-
dred, and women could not be studied at all (610).

XVII. Other Genetic Adrenal Disorders
Associated with Steroidogenesis

A. Adrenal hypoplasia congenita
Adrenal hypoplasia congenita (AHC), also known as

congenital adrenal hypoplasia, is a disorder of adrenal
development resulting in primary adrenal insufficiency.
This condition can occur with several different inheritance
patterns and with a variety of associated or syndromic
features.

X-linked AHC, caused by mutations of the DAX1
(NR0B1) gene on chromosome Xp21, is the most preva-
lent form of primary adrenal hypoplasia (611, 612). In
AHC, the definitive zone of the fetal adrenal does not
develop, and the fetal zone is vacuolated and cytomegalic.
About half of boys with AHC present with salt loss and

glucocorticoid insufficiency in early infancy; the rest
present more insidiously with chronic adrenal insuffi-
ciency throughout childhood (613). DAX1 is a nuclear
transcription factor involved in adrenal and testicular de-
velopment, as well as being expressed in the pituitary go-
nadotropes. About two thirds of boys with AHC have
DAX1 point mutations; the other one third have DAX1
gene deletions either in isolation or as part of a contiguous
gene deletion syndrome involving a telomeric X-linked
mental retardation locus (IL1RAPL1) and/or centromeric
loci for glycerol kinase deficiency and sometimes ornithine
transcarbamylase and Duchenne muscular dystrophy
(612, 613). An adult-onset form of AHC due to point
mutations in DAX1 has also been described in several
patients (614). Female carriers of DAX1 mutations are
unaffected, but half of their sons will be affected. A
family history of adrenal failure, unexplained death, or
pubertal abnormalities in the male relatives of a boy
with adrenal insufficiency should suggest AHC.

Autosomal forms of adrenal hypoplasia exist, but their
underlying basis is poorly understood. Heterozygous or
homozygous mutations in SF1 (NR5A1) have been re-
ported in 46,XY phenotypic females with either sponta-
neous or recessively inherited primary adrenal failure, and
a heterozygous SF1 mutation has been described in a
46,XX girl with adrenal dysfunction (615–617). How-
ever, SF1 mutations have not been found in phenotypic
males with adrenal hypoplasia or adrenal steroidogenic
defects (613). Primary adrenal failure has been associated
with Pena-Shokeir syndrome type I, pseudotrisomy 13,
Meckel syndrome, and Pallister-Hall syndrome (GLI3),
and with defects in WNT3 (618). Primary adrenal hypopla-
sia also appears to be part of the IMAGe syndrome (Intra-
uterine growth retardation, Metaphyseal dysplasia, Adrenal
hypoplasia, Genitourinary anomalies), but the underlying
etiology of this condition remains unknown (619, 620).

B. ACTH resistance syndromes
Hereditary unresponsiveness to ACTH [familial glu-

cocorticoid deficiency (FGD)] can present as an acute ad-
renal crisis or with the signs and symptoms of chronic
adrenal insufficiency in childhood. Several autosomal re-
cessive causes of FGD have been identified (119). Patients
with ACTH unresponsiveness typically continue to pro-
duce mineralocorticoids. The typical presenting picture
consists of failure to thrive, lethargy, pallor, hyperpigmen-
tation, and hypoglycemia, often associated with seizures.
Rare cases may also entail electrolyte abnormalities or
increased plasma renin activity, leading to misdiagnosis as
a different form of adrenal insufficiency (621).

FGD1 is caused by autosomal recessive mutations in
the gene for the G protein-coupled ACTH receptor
(MC2R) (119, 622, 623). More than 20 MC2R mutations
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have been reported, but the mutation S74I is especially
prevalent. ACTH levels can be markedly elevated with
consequent hyperpigmentation. Tall stature and increased
head circumference have been reported in several cases
(623, 624). Treatment with replacement doses of glu-
cocorticoids typically prevents adrenal crises but may not
suppress elevated ACTH levels completely (119).

FGD2, which is clinically indistinguishable from
FGD1, is caused by mutations in the gene for melanocortin
2 receptor accessory protein (MRAP) (119, 625, 626).
MRAP is expressed in multiple tissues where it seems to
play a role in trafficking the ACTH receptor from the
endoplasmic reticulum to the cell membrane. Additional
genetic loci for other forms of FGD are under investiga-
tion. Some patients with nonclassical lipoid CAH having
mild disorders in StAR have been clinically mistaken for
having FGD (117).

Triple A (Allgrove) syndrome consists of: 1) ACTH-
resistant adrenal (glucocorticoid) deficiency (80% of in-
dividuals); 2) achalasia of the cardia (85%); and 3) alac-
rima (90%) (627). Mineralocorticoid insufficiency is
reported in about 15% of cases, and many patients have
progressive neurological symptoms such as intellectual
impairment, sensorineural deafness, peripheral and cra-
nial neuropathies, optic atrophy, Parkinsonism, and au-
tonomic dysfunction (622, 628, 629). Triple A syndrome
is caused by autosomal recessive mutations in AAAS,
which encodes a WD-repeat protein termed ALADIN
(630, 631). This protein localizes to the cytoplasmic side
of the nuclear pore, where it plays a role in nuclear import
(632). Defective nuclear import of the heavy chain of fer-
ritin causes oxidative damage, apparently accounting for
the pleiotropic effects of ALADIN deficiency (633). Clin-
ical findings can be quite variable, even within the same
family, but adrenal insufficiency is rarely the presenting
feature.

C. Familial glucocorticoid resistance
Familial glucocorticoid resistance is caused by muta-

tions in the �-isoform of the GR. Decreased glucocorticoid
action results in grossly increased ACTH secretion,
stimulating the production of cortisol and other adrenal
steroids. These very rare patients may have fatigue, hy-
pertension, and hypokalemic alkalosis, suggesting a min-
eralocorticoid excess syndrome, but they may also have
hyperandrogenism (634). Patients may be homozygous
for missense mutations (635) or heterozygous for a gene
deletion (636), so that in each case some GR activity re-
mains. No patients have been described with homozygous
deletion of this receptor. However, a recent report de-
scribed a newborn infant with profound glucocorticoid
resistance who was homozygous for a frameshift mutation
at codon 772 in the glucocorticoid-binding domain; the

infant had severe hypoglycemia and hypertension but had
normal pulmonary development, suggesting that glu-
cocorticoid action is not required for normal human fetal
development (637). Heterozygous point mutations with
incomplete dominant negative activity or multiple effects
on GR� action have also been described (638). These
point mutations may interfere with GR�-dependent tran-
scriptional regulation through altered DNA binding, im-
paired ligand binding, delayed nuclear localization, ab-
normal nuclear aggregation, and disrupted interaction
with coactivators, depending on the position of the mu-
tation (634). GR-knockout mice have disordered hepatic
gluconeogenesis and absent adrenomedullary chromaffin
cells and die from neonatal respiratory distress syndrome
(639). Thus, familial glucocorticoid resistance is typically
a syndrome of only partial resistance to the action of
glucocorticoids.

D. Pseudohypoaldosteronism
Pseudohypoaldosteronism (PHA) is a rare salt-wasting

disorder of infancy characterized by hyponatremia, hy-
perkalemia, and increased plasma renin activity in the face
of elevated aldosterone concentrations. The more com-
mon autosomal recessive form of PHA (pseudohypoaldo-
steronism type II) is caused by inactivating mutations in
any of the three subunits (�, �, and �) of the amiloride-
sensitive epithelial sodium channel (ENaC) (640). PHAII
is often associated with lower respiratory tract disease be-
cause ENaC mutations increase the volume of pulmonary
fluid (641). This disease persists into adulthood, requiring
vigorous salt-replacement therapy throughout life. Gain-
of-function mutations due to carboxy-terminal truncation
of �-ENaC cause Liddle’s syndrome, an autosomal dom-
inant form of salt-retaining hypertension (640).

Autosomal dominant type 1 pseudohypoaldosteron-
ism (PHAI) is caused by inactivating mutations in the min-
eralocorticoid receptor (642, 643). PHAI is milder than
PHAII caused by ENaC mutations and remits with age,
but it requires sodium replacement therapy in infancy and
childhood. Rare point mutations altering the structure of
the ligand-binding domain of the mineralocorticoid re-
ceptor may result in mild constitutive activation as well as
permitting binding and activation of the receptor by pro-
gesterone, resulting in severe hypertension that begins in
adolescence and worsens with pregnancy (644).

Genetic forms of PHA must be distinguished from the
acquired, transient form of PHA often seen in infants with
obstructive uropathy, especially shortly after surgical re-
lief of the obstruction (645). That lesion is renal tubular
(646), so that mineralocorticoid treatment is generally in-
effective; salt replacement generally suffices while the re-
nal lesion resolves.
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XVIII. Tissue-Specific Pathways
of Steroidogenesis

A. Adrenal pathways
Diagrams of steroidogenic pathways, such as that

shown in Fig. 3, typically combine the pathways from
multiple cell types to provide an overview of all steroido-
genic processes; however, such diagrams are misleading
because the pathways differ in each steroidogenic cell type.
The three major pathways of steroidogenesis in the human
adrenal are shown in Fig. 13. The adrenal zona glomeru-
losa is characterized by three distinct features: it expresses
angiotensin II receptors, it expresses P450c11AS, and it
fails to express P450c17. As a result, the zona glomerulosa
produces aldosterone under regulation by the renin/an-
giotensin system. By contrast, the adrenal zona fasciculata
does not express angiotensin II receptors or P450c11AS,
but instead expresses MC2R (the ACTH receptor) and
P450c11�, which cannot convert 18-hydroxycorticoste-

rone to aldosterone and has minimal capacity to convert
corticosterone to 18-hydroxycorticosterone (458). Both
the zona glomerulosa and zona fasciculata express
P450c21, but the zona fasciculata also expresses P450c17,
which allows cortisol synthesis. The zona fasciculata,
however, expresses little (if any) cytochrome b5 (201);
consequently, P450c17 in the zona fasciculata catalyzes
17�-hydroxylation but very little 17,20-lyase activity.
Thus, the zona fasciculata produces two glucocorticoids
(cortisol and corticosterone) under the influence of
ACTH, but very little DHEA. Patients with severe muta-
tions in P450c17 cannot synthesize cortisol but instead
increase corticosterone production (647) (as do rodent
adrenals, which normally lack P450c17), explaining why
they are not glucocorticoid-deficient, despite the lack of
cortisol (Fig. 13). The adrenal zona reticularis also ex-
presses MC2R, but very little P450c21 or P450c11�, and
as a result, the zona reticularis produces minimal amounts

FIG. 13. Major steroidogenic pathways in the three zones of the human adrenal cortex. The conversion of cholesterol to pregnenolone by
P450scc is common to all three zones. A, In the zona glomerulosa, 3�HSD2 converts pregnenolone to progesterone. P450c17 is absent, but
P450c21 produces DOC, which is a substrate for P450c11AS. P450c11AS catalyzes 11-hydroxylation and two 18-oxygenations, which
completes aldosterone synthesis. B, The zona fasciculata expresses P450c17, so pregnenolone is hydroxylated to 17�-hydroxypregnenolone
(or progesterone to 17-OHP), but the zona fasciculata contains little cytochrome b5, minimizing the 17,20-lyase activity of P450c17, and
little DHEA is produced. Instead, 3�HSD2 and P450c17 generate 17-OHP, the preferred substrate for P450c21, yielding 11-deoxycortisol.
P450c11�, which is unique to the zona fasciculata, completes the synthesis of cortisol. Corticosterone is normally a minor product (dashed
arrows) derived from a parallel pathway without the action of P450c17. C, The zona reticularis has large amounts of P450c17 and
cytochrome b5 but little 3�HSD2, so that pregnenolone is sequentially oxidized to 17-hydroxypregnenolone and then DHEA. SULT2A1, using
PAPS synthesized by PAPSS2 (see Section XVI), sulfates DHEA, and DHEAS is exported to the circulation. Testosterone synthesis is a very
minor pathway (dashed arrows). [© R. J. Auchus.]
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of cortisol. By contrast, the zona reticularis expresses large
amounts of P450c17 and cytochrome b5 (201), maximiz-
ing 17,20-lyase activity (189), so that DHEA is produced,
much of which is sulfated to DHEAS by SULT2A1 (648).
The zona reticularis expresses relatively little 3�HSD2,
and the Km of 3�HSD2 is approximately 5 �M for preg-
nenolone and 17-hydroxypregnenolone (188), whereas
the Km for both activities of P450c17 is approximately 1
�M (189), so that abundant DHEA is produced. As DHEA
accumulates, small amounts are converted to andro-
stenedione, and very small amounts of this androstenedi-
one are converted to testosterone, probably by AKR1C3/
17�HSD5. Thus, the pattern of steroid products
secreted by each adrenal zone is determined by the en-
zymes produced in that zone and may be logically de-
duced from an understanding of their specific enzymatic
properties (648).

B. Gonadal pathways
Testicular synthesis of testosterone follows a pathway

that is similar to C19-steroid production in the adrenal
zona reticularis, with the notable exceptions that the stim-
ulus for steroidogenesis is transduced by the LH receptor
rather than MC2R and that Leydig cells express abundant
3�HSD2 and 17�HSD3, but no SULT2A1. Thus, DHEA
produced in the testis is not sulfated but is readily con-
verted to androstenedione and then testosterone (Fig. 14).
As in the adrenal, the principal pathway to C19-steroids
is via �5 steroids to DHEA; the �4 pathway from

17OHP to androstenedione makes a minimal contribu-
tion (238, 282).

Ovarian steroidogenesis is more complex because the
enzymatic steps are partitioned between the granulosa and
theca cells, which surround the oocyte and form a follicle.
Furthermore, the patterns of steroidogenesis vary during
the cycle: estradiol is the principal product in the follicular
phase, and progesterone is produced in the luteal phase
(Fig. 14). The key point in ovarian steroidogenesis is that
granulosa cells do not express P450c17 (158). Thus, in
general, steroidogenesis is initiated in granulosa cells un-
der the influence of LH, which, via cAMP, stimulates the
expression of P450scc (158). Pregnenolone and proges-
terone from granulosa cells diffuse into adjacent theca
cells, where they can be acted upon by P450c17 and
3�HSD2 to produce androstenedione. Small amounts of
this androstenedione are secreted or converted to testos-
terone (probably by AKR1C3/17�HSD5), but most an-
drostenedione returns to the granulosa cells where it is
converted to estrone and then to estradiol by P450aro and
17�HSD1, respectively, under the influence of FSH. Thus,
as with the three zones of the adrenal, the patterns of
gonadal steroidogenesis are dictated by the cell-specific
expression of specific steroidogenic enzymes.

C. The “backdoor pathway” to dihydrotestosterone
Studies of fetal androgen biosynthesis and mechanisms of

virilization in the tammar wallaby have revealed the pres-
ence of a novel, alternative, so-called “backdoor pathway”

FIG. 14. Major pathways of gonadal steroidogenesis. A, In testicular Leydig cells, cholesterol is converted to DHEA by the same enzymes using the
same cofactors as in the adrenal zona reticularis. Leydig cells contain abundant 17�HSD3, so that Leydig cells efficiently produce testosterone, via
androstenedione and/or androstenediol. B, Ovarian granulosa cells contain P450scc and convert cholesterol to pregnenolone. The ovarian theca
cells express low levels of P450scc but high amounts of P450c17 and hence acquire C21-steroids from the granulosa cells and produce C19

precursors of sex steroids (the two-cell model of ovarian steroidogenesis). Theca cells do not express aromatase (P450aro); hence, androstenedione
must return to the granulosa cells, which contain abundant aromatase and 17�HSD1, completing the synthesis of estradiol. In the luteal phase,
3�HSD2 in the corpus luteum metabolizes nascent pregnenolone to progesterone, the final product. Minor pathways are shown with dashed
arrows. [© R. J. Auchus.]
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that leads from 17OHP to DHT without
going through androstenedione or tes-
tosterone as intermediate steroids (332,
333). This pathway is initiated when ei-
ther progesterone or 17OHP is 5�-
reduced. The resulting 5�-reduced C21

steroids, dihydroprogesterone (5�-
pregnane-3,20-dione) and 5�-pregnan-
17�-ol-3,20-dione, are readily acted on
by reductive 3�HSDs to yield allopreg-
nanolone [5�-pregnan-3�-ol-20-one
(Allo)] and 17�-hydroxylated allo-
pregnanolone (5�-pregnane-3�,17�-
diol-20-one; 17OH-Allo). Dihydro-
progesterone and Allo are excellent
substrates for the 17�-hydroxylase ac-
tivity of P450c17 (649), and 17OH-
Allo is the most efficient substrate
known for the 17,20-lyase activity of
human P450c17. Furthermore, unlike
the conversion of 17�-hydroxypreg-
nenolone to DHEA (189, 232, 233),
the cleavage of 17OH-Allo to andros-
terone is minimally dependent on cyto-
chrome b5 (649). The resulting andro-
sterone may be 3�-oxidized to DHT by
the activity of 17�HSD6 [RODH, the
microsomal 3�HSD, 3(�3�)-hydrox-
ysteroid epimerase] (533). Thus, this
pathway is an alternative, backdoor
pathway to DHT, by which DHT is
produced without utilizing DHEA, an-
drostenedione, and testosterone as in-
termediates (333) (Fig. 15). Conse-
quently, the presence of 5�-reductases
in steroidogenic cells does not preclude
the production of C19 steroids, but
rather paradoxically enhances the pro-
duction of DHT by directing flux to
5�-reduced precursors of DHT. The
backdoor pathway enables production
of C19 steroids from 17OHP, despite
the poor 17,20-lyase activity of human
P450c17 for 17OHP, by using 17OH-
Allo as the substrate for the 17,20-lyase
reaction. The presence of 5�-reductase
activity is a key requirement for the
backdoor pathway.

Originally described in marsupials,
the backdoor pathway is relevant to hu-
man steroidogenesis. The best-studied
example of 5�-reduction in a human

FIG. 15. Reactions catalyzed by human P450c17 and pathways to C19 steroids. A, The four
principal A/B-ring configurations of active endogenous steroids and their precursors: �5, �4,
5�, and 5�,3� (structures shown at bottom). Progesterone and 17�-hydroxyprogesterone
can be 5�-reduced, and once the A-ring is saturated, these 5�-reduced steroids are
substrates for reductive 3�HSDs of the AKR1C family. Human P450c17 17�-hydroxylates
all four classes of C21 steroids, but the 17,20-lyase activity is robust only with 17�-
hydroxypregnenolone and 17-hydroxyallopregnanolone (5�-pregnane-3�,17�-diol-
20-one), the �5 and 5�,3� pathways, respectively. Dihydroprogesterone, 17-
hydroxydihydroprogesterone, and allopregnanolone are trivial names for 5�-pregnane-3,20-
dione, 5�-pregnan-17�-ol-3,20-dione, and 5�-pregnan-3�-ol-20-one, respectively. B, Two
pathways to DHT using the different 17,20-lyase activities of human P450c17. In the
conventional or �5-pathway (left), the 17,20-lyase activity of P450c17 requires cytochrome b5

to efficiently convert 17�-hydroxypregnenolone to DHEA, and testosterone is reduced in
target tissues by 5�-reductase 2 (5�R2) to DHT. In the “backdoor” or 5�,3�-pathway (right),
5�-reduction by 5�R1 and 3�-reduction of C21 steroids occurs in the steroidogenic tissue
before the 17,20-lyase reaction. In the best characterized pathway based on the tammar
wallaby pouch young, 17-hydroxyallopregnanolone is cleaved to androsterone without
requiring cytochrome b5 and reduced to androstanediol. Androstanediol is exported from the
testis and metabolized to DHT by the oxidative 3�HSD activity of 17�HSD6. DHT may also be
formed from androsterone via a parallel pathway catalyzed by 17�HSD6 and 17�HSD3, with
androstanedione as the intermediate. Note that testosterone is not an intermediate in the
backdoor pathway to DHT, that different isoforms of 5�-reductase appear to be involved in
the two pathways, and that both reductive and oxidative 3�HSD activities are required for the
backdoor pathway. Structures of testosterone, DHT, and androstanediol are shown at
bottom. [© R. J. Auchus.]
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steroidogenic tissue is the production of 5�-dihydropro-
gesterone in human corpus luteum by the type 1 enzyme
(650). Human enzymes catalyze all of the other reactions
required to complete this alternate route to DHT, and
good evidence documents production of 5�-reduced an-
drogens by the fetal adrenal, at least in some pathological
states. Consequently, it appears that the backdoor path-
way is a major route to DHT in pathological states in
which 17OHP accumulates, including 21-hydroxylase de-
ficiency and POR deficiency. Mass spectrometric analyses
of urinary steroids in patients with POR deficiency con-
firm that all the steroidal intermediates in the backdoor
pathway are produced in infants, children and adults with
severe POR deficiency and pregnant women carrying a
POR-deficient fetus (316, 331, 651), and adults with mild
POR deficiency (283). Androgen production by the back-
door pathway may explain why newborn girls with 21-
and 11-hydroxlase deficiencies can be severely virilized,
whereas those with 3�HSD2 deficiency, whose adrenals
cannot make 17OHP, are minimally virilized (195). The
fractional contributions of the conventional and backdoor
pathways to DHT production during human sexual dif-
ferentiation at 8 to 12 wk gestation, and the expression of
5�-reductase in the fetal adrenal and gonad tissues (652),
however, are only beginning to be determined.

D. Neurosteroids: steroid synthesis in the brain
Although it has long been known that steroids act on

the brain and some early studies found some steroidogenic
activities in rat brain homogenates (653), it was not until
the early 1980s that clear evidence was presented suggest-
ing that the brain is a site of steroid biosynthesis. DHEA,
DHEAS, pregnenolone, and pregnenolone sulfate were
found in the brains of rats at higher concentrations than
found in peripheral blood, and these concentrations per-
sisted for weeks after adrenalectomy and gonadectomy,
suggesting endogenous synthesis (654, 655). Residual
skepticism that the brain was the actual site of steroido-
genesis was dispelled by finding the mRNAs for P450scc,
P450c11�, and ferredoxin in adult rat brain (Ref. 656; for
review see Ref. 657). Steroids that are endogenously pro-
duced in the brain or elsewhere in the nervous system are
termed “neurosteroids.” To date, most studies of neuro-
steroids have been done with rodents; at present, there is
scant evidence for the biosynthesis of steroids in the hu-
man brain, although such synthesis seems likely. A wide
variety of steroids and steroidogenic enzymes have been
found in various regions of the rodent brain; there is no
single center that is steroidogenic, so that steroids appear
to be widely produced for local action (606, 658). Those
actions appear to supplement and reinforce actions regu-
lated by other factors, rather than serving indispensable

functions (for review, see Refs. 659 and 660). Thus, ab-
lation of the mouse P450scc gene, similarly to the few cases
of human P450scc deficiency, is compatible with anatom-
ically normal development and term gestation, although
the animals die shortly after birth from glucocorticoid and
mineralocorticoid deficiency (135).

Two steroid pathways seem to predominate in the ro-
dent brain. The first is the conventional pathway from
cholesterol to DHEA and DHEAS, involving P450scc,
P450c17, and a steroid SULT, whereas the second involves
the synthesis of Allo, which is a 3�,5�-reduced derivative
of progesterone. Both pathways are initiated by P450scc;
whether or not StAR also participates in this first step, or
whether brain steroidogenesis, like that in the placenta, is
independent of StAR, remains controversial. The mRNAs
for StAR and P450scc are colocalized in several regions of
the rat brain (661), and StAR mRNA is found in various
regions of the human brain (662). StAR mRNA appears in
the mouse brain at postnatal d 1 (663), but neither StAR
knockout mice nor human patients with lipoid CAH have
a phenotype attributable to altered CNS function. Simi-
larly, the mRNA for P450scc is detectable in the fetal
mouse brain (656) in specific regions (606), but neither
P450scc knockout mice nor the rare patients with P450scc
deficiency exhibit obvious neurological phenotypes.
P450c17, the key enzyme in the production of DHEA, is
found in embryonic mouse neurons as early as E9.5, and
is found throughout the developing mouse brain (658),
but in the adult it is found only in the hippocampus (664)
and spinal cord (665). DHEA and DHEAS appear to exert
actions on the genesis, protection, and survival of neurons.
DHEA and DHEAS protect the hippocampus against the
toxicities of glutamate, AMPA (�-amino-3-hydroxy-5-
methyl-4-isoxazole-propionate), and kainite (666). In
vitro, concentrations of DHEA and DHEAS equivalent to
those found in the fetal mouse brain stimulate neuronal
development. When added to primary cultures of embry-
onic mouse neurons, low nanomolar concentrations of
DHEA stimulate the outgrowth of neurites that become
axons, whereas DHEAS stimulates the outgrowth of neu-
rites that become dendrites (607). Treatment of rats with
sc DHEA pellets increased neurogenesis in the dentate gy-
rus (667). DHEA and DHEAS exert their actions via non-
genomic receptors, such as by antagonizing GABAA re-
ceptors (668)orasagonists for � receptors (669).Evidence
for relevance to human biology comes from effects of
DHEA increasing neurogenesis and neuronal survival in
cultured human neural stem cells (670). However, testing
of the roles of DHEA and DHEAS in mice by knocking out
the gene for P450c17 has been unsuccessful because this
knockout, in contradistinction to human P450c17 defi-
ciency, causes embryonic lethality (671).
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The second pathway leads to progesterone and its
3�,5�-reduced derivative, Allo; several bioactive steroids
are produced along this pathway. After cholesterol is con-
verted to pregnenolone by P450scc, pregnenolone may be
sulfated. Although pregnenolone sulfate was one of the
steroids first described in the rat brain (655), advanced
mass spectrometric procedures have failed to confirm its
presence (672, 673); nevertheless, both SULT2A1 and
SULT2B1a mRNA and protein have been found in rat
brain (674, 675). SULT2B1 appears to be expressed in the
human fetal brain (676), and the presence of pregnenolone
sulfate in human brain has been confirmed (677). Preg-
nenolone sulfate is a negative regulator of GABAA, kai-
nite, and AMPA receptors, and a positive regulator of
N-methyl-D-aspartate receptors, thus acting as an exci-
tatory neurosteroid (reviewed in Ref. 660). Pregnenolone
sulfate enhances memory in mice (678, 679) and rats
(680), but the potential relevance of these observations to
human biology remains unknown.

Pregnenolone may be converted to progesterone by
3�HSD, which is found in rat glia and neurons (681, 682).
Type 1 3�HSD is found throughout the rat brain and
peripheral nervous system (661, 683). Progesterone exerts
behavioral effects, probably via its action as an anesthetic,
which was one of the first observations of steroids acting
on the CNS (684). Progesterone also affects myelinization
in the peripheral nervous system by directly stimulating
myelin synthesis in Schwann cells and by stimulating neu-
ronal gene expression via its classic nuclear receptor (685,
686).Emergingdata indicate thatprogesterone exertspro-
tective and recuperative effects in spinal cord injury, ap-
parently via both cell surface and classic nuclear receptors
(687), although it is possible that some of these effects are
mediated by progesterone metabolites. Finally, progester-
one appears to stimulate cerebellar development. Rodent
Purkinje neurons contain the enzymes needed to produce
progesterone and Allo and produce these steroids in the
neonatal period during growth of the cerebellar cortex
(683), and progesterone promotes dendritic growth and
synaptic density in Purkinje cells in newborn rat cerebellar
slices in vitro and in vivo (688).

Progesterone may then be sequentially 5�-reduced and
3�-reduced to Allo, a brain pathway that is similar to the
backdoor pathway of testicular steroidogenesis. As in the
backdoor pathway, the principal 5�-reductase is type 1
(550, 689–691), especially in the fetal rodent brain (692),
although type 2 is transiently expressed toward the end of
mouse gestation (693, 694). The identity of the 3�-reduc-
tase is somewhat unclear. Both a type 2 and type 3 3�HSD
were cloned from both fetal and adult human brain,
whereas type 3 predominated in the putamen, cerebellum,
medulla, and spinal cord (695). The cloned type 2 3�HSD

differed from that cloned from prostate by amino acid
differences at positions 38 and 89 (524) and differed from
that cloned from human liver by differences at amino acids
38, 75, 89, and 175 (557). Whether these three putatively
distinct forms of 3�HSD represent allelic variants or se-
quencing errors of human AKR1C3 cDNA remains un-
determined. Allo acts at nanomolar concentrations as an
anesthetic, anxiolytic anticonvulsant by binding to
GABAA receptors at sites distinct from those bound by
GABA, benzodiazepines, and barbiturates, functioning as
an allosteric modulator to open the channel and increase
chloride flux (696–699). Animal progesterone with-
drawal experiments that are designed to model the human
menstrual cycle suggest that neurosteroids modulate
GABAA receptor subunit composition and function,
which may be associated with changes in mood and be-
havior in some women during the late luteal phase when
Allo levels drop (700). The synthesis of multiple neuros-
teroids is disordered in a mouse model of Niemann-Pick
type C disease, a fatal lysosomal storage disease; admin-
istration of Allo to affected newborn mice delays onset of
symptoms until after untreated littermates are dead, and
doubles life expectancy (701).

The brain also 21-hydroxylates steroids (702), leading
to the synthesis of DOC and its 3�,5�-reduced product,
tetrahydro-DOC, which acts similarly to Allo at GABAA

receptors (703); however, the brain does not express sig-
nificant amounts of P450c21 (366). The enzymes respon-
sible for brain 21-hydroxylase activity include CYP2D4 in
the rat and CYP2D6 in the human brain (704); other CYP
enzymes may also be involved. In addition, the brain con-
tains P450c11� (656), so that all enzymes needed for the
synthesis of corticosterone and cortisol are present, but it
is not clear whether the brain is a site of glucocorticoid
biosynthesis.

XIX. Fetoplacental Steroidogenesis

A. The fetal adrenal
Adrenocortical steroidogenesis begins around the sev-

enth week of gestation. Steroidogenic enzymes are immu-
nocytochemically detectable in the fetal zone at 50–52 d
after conception, and by 8 wk the adrenal contains cortisol
and responds to ACTH in primary culture systems (334).
Fetal cortisol synthesis is regulated by pituitary ACTH and
involves transient expression of adrenal 3�HSD2. Fol-
lowing the ninth week after conception, expression of
3�HSD2 and synthesis of cortisol wane; 3�HSD2 is barely
detectable at 10–11 wk and is absent at 14 wk (334). At
the same time, the fetal adrenal also produces 17�HSD5
(334), which can convert androstenedione to testosterone.
Thus, the fetal adrenal makes cortisol at the same time
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during gestation that fetal testicular testosterone is viril-
izing the genitalia of the normal male fetus. This fetal ad-
renal cortisol apparently suppresses ACTH, which other-
wise would drive adrenal testosterone synthesis via
17�HSD5, thus preventing the virilization of female
fetuses.

Fetuses with genetic lesions in adrenal steroidogenesis
can produce enough adrenal androgen to virilize a female
fetus to a nearly male appearance, and this masculiniza-
tion of the genitalia is complete by the 12th week of ges-
tation. The fetal adrenal is relatively deficient in 3�HSD2
activity after 12 wk (334, 705) but has robust 17,20-lyase
activity of P450c17. Low 3�HSD and high 17,20-lyase
activity account for the abundant production of DHEA
and DHEAS by the fetal adrenal, which are converted to
estrogens by the placenta. The fetal adrenal also has con-
siderable SULT activity but little steroid sulfatase activity,
also favoring conversion of DHEA to DHEAS. The result-
ing DHEAS cannot be a substrate for adrenal 3�HSD2;
instead, it is secreted, 16�-hydroxylated in the fetal liver
by CYP3A7 (706–708), and then acted on by placental
3�HSD1, 17�HSD1, and P450aro to produce estriol.
Small amounts of DHEA/DHEAS bypass the liver and are
not 16�-hydroxylated, and hence yield estrone and estra-
diol. Estrogens inhibit adrenal 3�HSD activity, providing
a feedback system to promote production of DHEAS
(709). Fetal adrenal steroids account for 50% of the es-
trone and estradiol and 90% of the estriol in the maternal
circulation (710).

Although the fetoplacental unit produces huge
amounts of DHEA, DHEAS, and estriol, as well as other
steroids, they do not appear to serve an essential role.
Successful pregnancy is wholly dependent on placental
synthesis of progesterone, which suppresses uterine con-
tractility and prevents spontaneous abortion (711); how-
ever, fetuses with genetic disorders of adrenal and gonadal
steroidogenesis develop normally, reach term gestation,
and undergo normal parturition and delivery. Mineralo-
corticoid production is only required postnatally, estro-
gens are not required, and androgens are only needed for
male sexual differentiation (329). Human fetal glu-
cocorticoids may be needed to suppress the virilization
of female fetuses at about 8 –12 wk (334), but it appears
that glucocorticoids are not needed thereafter (329,
637, 712, 713).

The regulation of steroidogenesis and growth of the
fetal adrenal are not fully understood, but both are related
to ACTH. ACTH effectively stimulates steroidogenesis by
fetal adrenal cells in vitro (54, 714), and excess ACTH is
clearly involved in the adrenal growth and overproduction
of androgens in fetuses affected with CAH. Prenatal treat-
ment of such fetuses by administering pharmacological

doses of dexamethasone to the mother at 6 to 10 wk ges-
tation can significantly reduce fetal adrenal androgen pro-
duction and thus reduce the virilization of female fetuses;
thus, the hypothalamic-pituitary-adrenal axis functions
very early in fetal life (407). By contrast, however, anen-
cephalic fetuses lacking pituitary ACTH have adrenals
that contain a fairly normal complement of steroido-
genic enzymes and retain their capacity for steroido-
genesis. Thus, fetal adrenal steroidogenesis may be reg-
ulated by both ACTH-dependent and ACTH-independent
mechanisms.

B. Placental steroidogenesis
The placenta has two steroidogenic pathways. First, it

can initiate steroidogenesis de novo from cholesterol and
convert the resulting pregnenolone and progesterone; sec-
ond, it can take C19 steroids produced by the fetal adrenal
and convert them to estrogens. In having these two path-
ways and lacking P450c17, placental steroidogenesis re-
sembles that in ovarian granulosa cells, but many of the
enzymes and their regulation differ.

Human placental synthesis of progesterone begins in
midgestation, at the same time that the maternal corpus
luteum of pregnancy involutes (the luteoplacental shift),
so that progesterone is provided throughout pregnancy.
Progesterone suppresses uterine contractility, and hence is
essential for the maintenance of pregnancy; drugs that op-
pose the action of progesterone, such as mifepristone (RU-
486), act as abortifacients. Syncytiotrophoblast cells of the
placenta use the same P450scc enzyme to convert choles-
terol to pregnenolone that is used in the adrenal and gonad
(131), but the transcription of its gene is under unique
control. Whereas transcription of the genes for P450scc
and all other enzymes in the adrenal and gonad requires
the action of SF1, little if any SF1 is expressed in the pla-
centa (68, 142). Furthermore, analysis of the expression of
P450scc in placental JEG-3 cells shows that promoter el-
ements that bind factors other than SF1 are required for its
transcription (68). Several such factors have now been
identified, including the CP2 (grainyhead) factors LBP1b
(also called TFCP2A or UBP1) and LBP9 (TFCP2L1)
(142–145), and the zinc-finger protein TreP-132 (149,
150). In addition, the placenta, unlike the adrenal or go-
nad, fails to express the gene for StAR (69), and StAR
mutations causing lipoid CAH do not disrupt placental
steroidogenesis. Thus, the same ill-defined mechanisms of
StAR-independent steroidogenesis that are exemplified by
the two-hit physiology of lipoid CAH (Fig. 5) appear to be
operative in the placenta. A strong candidate for a factor
mediating StAR-independent movement of cholesterol
into placental mitochondria is MLN64, a 445-amino acid
protein first identified in studies of metastatic breast can-
cer (70). Although full-length MLN64 has minimal StAR-
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like activity, the carboxy-terminal 234 amino acids of
MLN64 are very similar to StAR and have about 50% of
StAR’s activity in transfected cells (71). N-218 MLN64
and StAR share very similar biophysical properties, and a
truncated form of MLN64 that cross-reacts with StAR
antisera and is of about the same size as N-234 or N-218
MLN64 is found in human placenta (72). To conclude the
distinctly placental pathway from cholesterol to proges-
terone, the placenta utilizes 3�HSD1 rather than the
3�HSD2 expressed in the adrenal and gonad. The two
isozymes of 3�HSD have similar Km and Vmax values, so
that the enzymological efficiency of this reaction is no
different in the placenta.

A key feature of human placental steroidogenesis is that
(unlike the rat) (715) it fails to express P450c17 (158). As
a result, the placenta, like an ovarian granulosa cell, can-
not convert pregnenolone to sex steroids. Instead, the pla-
centa receives 16�-hydroxylated DHEA and DHEAS
from the fetal circulation and, through the actions of ste-
roid sulfatase, 3�HSD1, 17�HSD1, and aromatase, pro-
duces large amounts of estriol. Such placental estrogens
provide a useful index of placental welfare, but serve no
essential role in pregnancy because disorders of fetal ad-
renal steroidogenesis that eliminate the supplies of C19

steroid precursors do not interfere with term gestation or
with parturition (for review see Ref. 329).

XX. Adrenarche

DHEA, DHEAS, and androstenedione, which are secreted
by the adrenal zona reticularis, are generally referred to as
adrenal androgens because they can be converted to tes-
tosterone, but these steroids have little if any capacity to
bind to and activate androgen receptors; hence, they are
androgen precursors, but not true androgens. The fetal
adrenal secretes large amounts of DHEA and DHEAS, and
these steroids are abundant in the newborn, but their con-
centrations fall rapidly as the fetal zone of the adrenal
involutes after birth. After the first year of life, the adrenals
of young children secrete very small amounts of DHEA,
DHEAS, and androstenedione until the onset of adren-
arche, usually around age 7–8, preceding the onset of pu-
berty by about 2 yr. Adrenarche is independent of puberty,
the gonads, or gonadotropins, and the mechanism by
which the onset of adrenarche is triggered remains un-
known (716). Secretion of DHEA and DHEAS increases
during and after puberty and reaches maximal values in
young adulthood, after which there is a slow, gradual de-
crease in these steroids in the elderly (“adrenopause”) (Fig.
16) (221). The higher concentration of DHEAS in men is
probably attributable to the location of the gene for ste-
roid sulfatase on the X chromosome: men have only one

gene, and hence have less steroid sulfatase and conse-
quently have higher DHEAS concentrations (717).
Throughout much of adult life, adrenal secretion of
DHEAS exceeds that of cortisol; in adult women, adrenal
secretion of androstenedione and testosterone is equal to
their secretion from the ovary (718). Despite the huge in-
creases in the adrenal secretion of DHEA and DHEAS
during adrenarche, circulating concentrations of ACTH
and cortisol do not change with age. Thus, ACTH plays a
permissive role in adrenarche but does not trigger it.
Searches for hypothetical polypeptide hormones that
might specifically stimulate the zona reticularis have been
unsuccessful (719–721). Adrenarche is a unique phenom-
enon confined to few higher primates such as chimpanzees
or orangutans, but the significance of adrenarche remains
unknown (722, 723).

Recent studies of adrenarche have focused on the roles
of 3�HSD and P450c17. The abundance of 3�HSD pro-
tein in the zona reticularis appears to decrease with the
onset of adrenarche (202, 724, 725), and the adrenal ex-
pression of cytochrome b5, which fosters the 17,20-lyase
activity of P450c17, is almost exclusively confined to the
zona reticularis (203, 205, 726); both of these factors
strongly favor the production of DHEA (727). The phos-
phorylation of P450c17 also increases 17,20-lyase activity
(287–289), but the kinase has not been identified (728);
hence, its role in adrenarche remains uncertain. Premature
and exaggerated adrenarche may be associated with in-
sulin resistance, and girls with premature exaggerated
adrenarche appear to be at much higher risk of developing
the polycystic ovary syndrome as adults (characterized by
hyperandrogenism, fewer ovulatory cycles, insulin resis-
tance, and hypertriglyceridemia) (729–731), and infants
born small for gestational age may be at increased risk
(732). It has been suggested that replacing the DHEA lost
during adrenopause may improve memory and a sense of
well-being in the elderly, but meta-analysis of numerous

FIG. 16. Concentrations of DHEAS as a function of age. Note that the
x-axis is on a log scale. [Derived from data in N. Orentreich, et al.:
J Clin Endocrinol Metab 59:551–555, 1984 (221). © W. L. Miller.]
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studies has shown little or no effect (534). Thus, studies of
physiology, biochemistry, and clinical correlates of adre-
narche are pointing to premature adrenarche as an early
sign of a metabolic disorder.

Acknowledgments

We thank Prof. Synthia H. Mellon (University of California, San Fran-
cisco) for help with the section on neurosteroids.

Address all correspondence and requests for reprints to: Walter L.
Miller, M.D., Distinguished Professor of Pediatrics, Chief of Endocri-
nology, HSE 1427, University of California San Francisco, San Fran-
cisco, California 94143-0978. E-mail: wlmlab@ucsf.edu.

Disclosure Summary: W.L.M. has nothing to disclose. R.J.A. is a
consultant for Ortho Biotech and Johnson & Johnson.

References

1. Steiger M, Reichstein T 1937 Desoxy-cortico-steron (21-
oxy-progesteron) aus � 5–3-oxy-atio-cholensaure. Helv
Chim Acta 20:1164–1179

2. Kendall EC, Mason HL, McKenzie BF, Myers CS, Koelsche
GA 1934 Isolation in crystalline form of the hormone es-
sential to life from the supranetal cortex: its chemical na-
ture and physiologic properties. Trans Assoc Am Physi-
cians 49:147

3. Miller WL 1988 Molecular biology of steroid hormone
synthesis. Endocr Rev 9:295–318

4. Seyle H 1946 The general adaptation syndrome and the
diseases of adaptation. J Clin Endocrinol 6:117–230

5. O’Malley BW 2005 A life-long search for the molecular
pathways of steroid hormone action. Mol Endocrinol 19:
1402–1411

6. Gustafsson JA 2005 Steroids and the scientist. Mol Endo-
crinol 19:1412–1417

7. Chambon P 2005 The nuclear receptor superfamily: a per-
sonal retrospect on the first two decades. Mol Endocrinol
19:1418–1428

8. Evans RM 2005 The nuclear receptor superfamily: a Ro-
setta stone for physiology. Mol Endocrinol 19:1429–1438

9. Jensen EV 2005 The contribution of “alternative ap-
proaches” to understanding steroid hormone action. Mol
Endocrinol 19:1439–1442

10. Auchus RJ, Miller WL 2010 The principles, enzymes and
pathways of human steroidogenesis. In: DeGroot LJ, Jame-
son JL, eds. Endocrinology. 6th ed. Philadelphia: WB Saun-
ders; 1784–1804

11. Mason JI, Rainey WE 1987 Steroidogenesis in the human
fetal adrenal: a role for cholesterol synthesized de novo.
J Clin Endocrinol Metab 64:140–147

12. Gwynne JT, Strauss 3rd JF 1982 The role of lipoproteins
in steroidogenesis and cholesterol metabolism in steroido-
genic glands. Endocr Rev 3:299–329

13. Horton JD, Goldstein JL, Brown MS 2002 SREBPs: acti-
vators of the complete program of cholesterol and fatty
acid synthesis in the liver. J Clin Invest 109:1125–1131

14. Brown MS, Kovanen PT, Goldstein JL 1979 Receptor-
mediated uptake of lipoprotein-cholesterol and its utiliza-

tion for steroid synthesis in the adrenal cortex. Rec Prog
Horm Res 35:215–257

15. Kraemer FB 2007 Adrenal cholesterol utilization. Mol Cell
Endocrinol 265–266:42–45

16. Chang TY, Chang CC, Ohgami N, Yamauchi Y 2006 Cho-
lesterol sensing, trafficking and esterification. Annu Rev
Cell Dev Biol 22:129–157

17. MillerWL2007StARsearch—whatweknowabouthowthe
steroidogenic acute regulatory protein mediates mitochon-
drial cholesterol import. Mol Endocrinol 21:589–601

18. Ponting CP, Aravind L 1999 START: a lipid-binding do-
main in StAR, HD-ZIP and signalling proteins. Trends Bio-
chem Sci 24:130–132

19. Soccio RE, Breslow JL 2003 StAR-related lipid transfer
(START) proteins: mediators of intracellular lipid metab-
olism. J Biol Chem 278:22183–22186

20. Riegelhaupt JJ, Waase MP, Garbarino J, Cruz DE, Breslow
JL 2010 Targeted disruption of steroidogenic acute regu-
latory protein D4 leads to modest weight reduction and
minor alterations in lipid metabolism. J Lipid Res 51:
1134–1143

21. Haberland ME, Reynolds JA 1973 Self-association of cho-
lesterol in aqueous solution. Proc Natl Acad Sci USA 70:
2313–2316

22. Soccio RE, Breslow JL 2004 Intracellular cholesterol trans-
port. Arterioscler Thromb Vasc Biol 24:1150–1160

23. Gallegos AM, Atshaves BP, Storey SM, Starodub O,
Petrescu AD, Huang H, McIntosh AL, Martin GG, Chao
H, Kier AB, Schroeder F 2001 Gene structure, intracel-
lular localization, and functional roles of sterol carrier
protein-2. Prog Lipid Res 40:498 –563

24. Soccio RE, Adams RM, Romanowski MJ, Sehayek E, Bur-
ley SK, Breslow JL 2002 The cholesterol-regulated StarD4
gene encodes a StAR-related lipid transfer protein with two
closely related homologues, StarD5 and StarD6. Proc Natl
Acad Sci USA 99:6943–6948

25. Romanowski MJ, Soccio RE, Breslow JL, Burley SK 2002
Crystal structure of the Mus musculus cholesterol-regu-
lated START protein 4 (StarD4) containing a StAR-related
lipid transfer domain. Proc Natl Acad Sci USA 99:6949–
6954

26. Tsujishita Y, Hurley JH 2000 Structure and lipid transport
mechanism of a StAR-related domain. Nat Struct Biol
7:408–414

27. Soccio RE, Adams RM, Maxwell KN, Breslow JL 2005
Differential gene regulation of StarD4 and StarD5 choles-
terol transfer proteins. J Biol Chem 280:19410–19418

28. Bose HS, Whittal RM, Ran Y, Bose M, Baker BY, Miller
WL 2008 StAR-like activity and molten globule behavior
of StARD6, a male germ-line protein. Biochemistry 47:
2277–2288

29. Waterham HR 2006 Defects of cholesterol biosynthesis.
FEBS Lett 580:5442–5449

30. Moser HW, Raymond GV, Dubey P 2005 Adrenoleu-
kodystrophy: new approaches to a neurodegenerative dis-
ease. JAMA 294:3131–3134

31. Ligtenberg MJ, Kemp S, Sarde CO, van Geel BM, Kleijer
WJ, Barth PG, Mandel JL, van Oost BA, Bolhuis PA 1995
Spectrum of mutations in the gene encoding the adreno-
leukodystrophy protein. Am J Hum Genet 56:44–50

32. Watkins PA, Gould SJ, Smith MA, Braiterman LT, Wei
HM, Kok F, Moser AB, Moser HW, Smith KD 1995 Al-

126 Miller and Auchus Human Steroidogenesis Endocrine Reviews, February 2011, 32(1):81–151

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/32/1/81/2354857 by guest on 20 M

arch 2024



tered expression of ALDP in X-linked adrenoleukodystro-
phy. Am J Hum Genet 57:292–301

33. McGuinness MC, Lu JF, Zhang HP, Dong GX, Heinzer
AK, Watkins PA, Powers J, Smith KD 2003 Role of ALDP
(ABCD1) and mitochondria in X-linked adrenoleukodys-
trophy. Mol Cell Biol 23:744–753

34. Kemp S, Wanders RJA 2007 X-linked adrenoleukodystro-
phy: very long-chain fatty acid metabolism, ABC half-
transporters and the complicated route to treatment. Mol
Genet Metab 90:268–276

35. Watkins PA, Naidu S, Moser HW 1987 Adrenoleukodys-
trophy: biochemical procedures in diagnosis, prevention
and treatment. J Inherit Metab Dis 10:46–53

36. Moser HW, Moser AE, Singh I, O’Neill BP 1984 Adreno-
leukodystrophy: survey of 303 cases: biochemistry, diag-
nosis, and therapy. Ann Neurol 16:628–641

37. Moser HW 1995 Adrenoleukodystrophy. Curr Opin Neu-
rol 8:221–226

38. Sadeghi-Nejad A, Senior B 1990 Adrenomyeloneuropathy
presenting as Addison’s disease in childhood. N Engl J Med
322:13–16

39. Laureti S, Casucci G, Santeusanio F, Angeletti G, Aubourg
P, Brunetti P 1996 X-linked adrenoleukodystrophy is a
frequent cause of idiopathic Addison’s disease in young
adult male patients. J Clin Endocrinol Metab 81:470–474

40. Assmann G, Seedorf U 1995 Acid lipase deficiency: Wol-
man disease and cholesteryl ester storage disease. In:
Scriver C, Beaudet A, Sly W, Valle D, eds. The metabolic
basis of inherited disease. 6th ed. New York: McGraw-
Hill; 2563–2587

41. Anderson RA, Byrum RS, Coates PM, Sando GN 1994
Mutations at the lysosomal acid cholesteryl ester hydrolase
gene locus in Wolman disease. Proc Natl Acad Sci USA
91:2718–2722

42. Correa-Cerro LS, Porter FD 2005 3�-Hydroxysterol �-7
reductase and the Smith-Lemli-Opitz syndrome. Mol
Genet Metab 84:112–126

43. Andersson HC, Frentz J, Martínez JE, Tuck-Muller CM,
Bellizaire J 1999 Adrenal insufficiency in Smith-Lemli-Op-
tiz syndrome. Am J Med Genet 82:382–384

44. Hall PF 1986 Cytochromes P450 and the regulation of
steroid synthesis. Steroids 48:133–196

45. Agarwal AK, Auchus RJ 2005 Cellular redox state regu-
lates hydroxysteroid dehydrogenase activity and intracel-
lular hormone potency. Endocrinology 146:2531–2538

46. Gonzalez FJ 1988 The molecular biology of cytochrome
P450s. Pharmacol Rev 40:243–288

47. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sut-
ton GG, Smith HO, Yandell M, Evans CA, Holt RA, Go-
cayne JD, Amanatides P, Ballew RM, Huson DH, Wort-
man JR, Zhang Q, Kodira CD, Zheng XH, Chen L,
Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor
Miklos GL, et al. 2001 The sequence of the human genome.
Science 291:1304–1351

48. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC,
Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W,
Funke R, Gage D, Harris K, Heaford A, Howland J, Kann
L, Lehoczky J, LeVine R, McEwan P, McKernan K, Mel-
drim J, Mesirov JP, Miranda C, Morris W, et al. 2001
Initial sequencing and analysis of the human genome. Na-
ture 409:860–921

49. Miller WL 2005 Regulation of steroidogenesis by electron
transfer. Endocrinology 146:2544–2550

50. Penning TM 1997 Molecular endocrinology of hydroxys-
teroid dehydrogenases. Endocr Rev 18:281–305

51. Sherbet DP, Papari-Zareei M, Khan N, Sharma KK, Brand-
maier A, Rambally S, Chattopadhyay A, Andersson S,
Agarwal AK, Auchus RJ 2007 Cofactors, redox state, and
directional preferences of hydroxysteroid dehydrogenases.
Mol Cell Endocrinol 265–266:83–88

52. Papari-Zareei M, Brandmaier A, Auchus RJ 2006 Arginine
276 controls the directional preference of AKR1C9 (rat
liver 3�-hydroxysteroid dehydrogenase) in human embry-
onic kidney 293 cells. Endocrinology 147:1591–1597

53. Sherbet DP, Guryev OL, Papari-Zareei M, Mizrachi D,
Rambally S, Akbar S, Auchus RJ 2009 Biochemical factors
governing the steady-state estrone/estradiol ratios cata-
lyzed by human 17�-hydroxysteroid dehydrogenases types
1 and 2 in HEK-293 cells. Endocrinology 150:4154–4162

54. Voutilainen R, Miller WL 1987 Coordinate tropic hor-
mone regulation of mRNAs for insulin-like growth factor
II and the cholesterol side-chain cleavage enzyme, P450scc,
in human steroidogenic tissues. Proc Natl Acad Sci USA
84:1590–1594

55. Mesiano S, Mellon SH, Jaffe RB 1993 Mitogenic action,
regulation, and localization of insulin-like growth factors
in the human fetal adrenal gland. J Clin Endocrinol Metab
76:968–976

56. Mesiano S, Mellon SH, Gospodarowicz D, Di Blasio AM,
Jaffe RB 1991 Basic fibroblast growth factor expression is
regulated by corticotropin in the human fetal adrenal: a
model for adrenal growth regulation. Proc Natl Acad Sci
USA 88:5428–5432

57. Coulter CL, Read LC, Carr BR, Tarantal AF, Barry S,
Styne DM 1996 A role for epidermal growth factor in the
morphological and functional maturation of the adrenal
gland in the fetal rhesus monkey in vivo. J Clin Endocrinol
Metab 81:1254–1260

58. Stocco DM, Wang X, Jo Y, Manna PR 2005 Multiple sig-
naling pathways regulating steroidogenesis and steroido-
genic acute regulatory protein expression: more compli-
cated than we thought. Mol Endocrinol 19:2647–2659

59. Arakane F, King SR, Du Y, Kallen CB, Walsh LP, Watari
H, Stocco DM, Strauss 3rd JF 1997 Phosphorylation of
steroidogenic acute regulatory protein (StAR) modulates
its steroidogenic activity. J Biol Chem 272:32656–32662

60. Pon LA, Orme-Johnson NR 1986 Acute stimulation of
steroidogenesis in corpus luteum and adrenal cortex by
peptide hormones. J Biol Chem 261:6594–6599

61. Pon LA, Hartigan JA, Orme-Johnson NR 1986 Acute
ACTH regulation of adrenal corticosteroid biosynthesis:
rapid accumulation of a phosphoprotein. J Biol Chem 261:
13309–13316

62. Epstein LF, Orme-Johnson NR 1991 Regulation of steroid
hormone biosynthesis: identification of precursors of a
phosphoprotein targeted to the mitochondrion in stimu-
lated rat adrenal cortex cells. J Biol Chem 266:19739–
19745

63. Stocco DM, Sodeman TC 1991 The 30-kDa mitochondrial
proteins induced by hormone stimulation in MA-10 mouse
Leydig tumor cells are processed from larger precursors.
J Biol Chem 266:19731–19738

64. Clark BJ, Wells J, King SR, Stocco DM 1994 The puri-

Endocrine Reviews, February 2011, 32(1):81–151 edrv.endojournals.org 127

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/32/1/81/2354857 by guest on 20 M

arch 2024



fication, cloning and expression of a novel luteinizing
hormone-induced mitochondrial protein in MA-10
mouse Leydig tumor cells. Characterization of the steroi-
dogenic acute regulatory protein (StAR). J Biol Chem 269:
28314–28322

65. Stocco DM, Clark BJ 1996 Regulation of the acute pro-
duction of steroids in steroidogenic cells. Endocr Rev 17:
221–244

66. Lin D, Sugawara T, Strauss 3rd JF, Clark BJ, Stocco DM,
Saenger P, Rogol A, Miller WL 1995 Role of steroidogenic
acute regulatory protein in adrenal and gonadal steroido-
genesis. Science 267:1828–1831

67. Bose HS, Sugawara T, Strauss 3rd JF, Miller WL 1996 The
pathophysiology and genetics of congenital lipoid adrenal
hyperplasia. N Engl J Med 335:1870–1878

68. Moore CC, Hum DW, Miller WL 1992 Identification of pos-
itive and negative placental-specific basal elements, a tran-
scriptional repressor, and a cAMP response element in the
human gene for P450scc. Mol Endocrinol 6:2045–2058

69. Sugawara T, Holt JA, Driscoll D, Strauss 3rd JF, Lin D,
Miller WL, Patterson D, Clancy KP, Hart IM, Clark BJ
1995 Human steroidogenic acute regulatory protein
(StAR): functional activity in COS-1 cells, tissue-specific
expression, and mapping of the structural gene to 8p11.2
and an expressed pseudogene to chromosome 13. Proc
Natl Acad Sci USA 92:4778–4782

70. Moog-Lutz C, Tomasetto C, Régnier CH, Wendling C,
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385. Höller W, Scholz S, Knorr D, Bidlingmaier F, Keller E,
Albert ED 1985 Genetic differences in the salt-wasting,
simple virilizing, and nonclassical types of congenital ad-
renal hyperplasia. J Clin Endocrinol Metab 60:757–763

386. Pollack MS, Levine LS, O’Neill GJ, Pang S, Lorenzen F,
Kohn B, Rondanini GF, Chiumello G, New MI, Dupont B
1981 HLA linkage and B14, DR1, BfS haplotype associa-
tion with the genes for late onset and cryptic 21-hydrox-
ylase deficiency. Am J Hum Genet 33:540–550

387. Speiser PW, New MI, White PC 1988 Molecular genetic
analysis of nonclassical steroid 21-hydroxylase deficiency
associated with HLA-B14DR1. N Engl J Med 319:19–23
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Dominguez F, Grötzinger J, Sippell WG, Riepe FG, Arlt
W, Krone N 2009 Functional characterization of three
CYP21A2 sequence variants (p.A265V, p.W302S,
p.D322G) employing a yeast co-expression system.
Hum Mutat 30:E443–E450

440. Grischuk Y, Rubtsov P, Riepe FG, Grötzinger J, Beljelar-
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485. Geley S, Jöhrer K, Peter M, Denner K, Bernhardt R, Sippell
WG, Kofler R 1995 Amino acid substitution R384P in
aldosterone synthase causes corticosterone methyloxidase
type I deficiency. J Clin Endocrinol Metab 80:424–429

486. Raag R, Martinis SA, Sligar SG, Poulos TL 1991 Crystal
structure of the cytochrome P-450CAM active site mutant
Thr252Ala. Biochemistry 30:11420–11429

487. Portrat-Doyen S, Tourniaire J, Richard O, Mulatero P,
Aupetit-Faisant B, Curnow KM, Pascoe L, Morel Y 1998
Isolated aldosterone synthase deficiency caused by simul-
taneous E198D and V386A mutations in the CYP11B2
gene. J Clin Endocrinol Metab 83:4156–4161

488. Fardella CE, Rodriguez H, Montero J, Zhang G, Vignolo
P, Rojas A, Villarroel L, Miller WL 1996 Genetic variation
in P450c11AS in Chilean patients with low renin hyper-
tension. J Clin Endocrinol Metab 81:4347–4351

489. Fardella CE, Hum DW, Rodriguez H, Zhang G, Barry FL,
Ilicki A, Bloch CA, Miller WL 1996 Gene conversion in the
CYP11B2 gene encoding aldosterone synthase (P450c11AS)
is associated with, but does not cause, the syndrome of cor-
ticosterone methyl oxidase II deficiency. J Clin Endocrinol
Metab 81:321–326

490. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick
S, Lalouel JM 1992 A chimaeric 11�-hydroxylase/aldoste-
rone synthase gene causes glucocorticoid-remediable al-
dosteronism and human hypertension. Nature 355:262–
265

491. Pascoe L, Curnow KM, Slutsker L, Connell JM, Speiser
PW, New MI, White PC 1992 Glucocorticoid-suppressible
hyperaldosteronism results from hybrid genes created by
unequal crossover between CYP11B1 and CYP11B2. Proc
Natl Acad Sci USA 89:8327–8331

142 Miller and Auchus Human Steroidogenesis Endocrine Reviews, February 2011, 32(1):81–151

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/32/1/81/2354857 by guest on 20 M

arch 2024



492. Dluhy RG, Lifton RP 1999 Glucocorticoid-remediable al-
dosteronism. J Clin Endocrinol Metab 84:4341–4344

493. Portrat S, Mulatero P, Curnow KM, Chaussain JL, Morel
Y, Pascoe L 2001 Deletion hybrid genes, due to unequal
crossing over between CYP11B1 (11�-hydroxylase) and
CYP11B2 (aldosterone synthase) cause steroid 11�-hy-
droxylase deficiency and congenital adrenal hyperplasia.
J Clin Endocrinol Metab 86:3197–3201

494. Litchfield WR, New MI, Coolidge C, Lifton RP, Dluhy RG
1997 Evaluation of the dexamethasone suppression test
for the diagnosis of glucocorticoid-remediable aldosteron-
ism. J Clin Endocrinol Metab 82:3570–3573
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Saez JM 1991 Human proopiomelanocortin (79–96), a
proposed cortical androgen stimulating hormone, does not
affect steroidogenesis in cultured human adult adrenal
cells. J Clin Endocrinol Metab 72:23–26

721. Robinson P, Bateman A, Mulay S, Spencer SJ, Jaffe RB,
Solomon S, Bennett HPJ 1991 Isolation and characteriza-
tion of three forms of joining peptide from adult pituitaries:
lack of adrenal androgen stimulating activity. Endocrinol-
ogy 129:859–867

722. Cutler Jr GB, Glenn M, Bush M, Hodgen GD, Graham CE,
Loriaux DL 1978 Adrenarche: a survey of rodents, domes-
tic animals and primates. Endocrinology 103:2112–2118

723. Smail PJ, Faiman C, Hobson WC, Fuller GB, Winter JSD
1982 Further studies on adrenarche in nonhuman pri-
mates. Endocrinology 111:844–848

724. Gell JS, Carr BR, Sasano H, Atkins B, Margraf L, Mason
JI, Rainey WE 1998 Adrenarche results from development
of a 3�-hydroxysteroid dehydrogenase-deficient adrenal
reticularis. J Clin Endocrinol Metab 83:3695–3701

725. Dardis A, Saraco N, Rivarola MA, Belgorosky A 1999
Decrease in the expression of the 3�-hydroxysteroid de-
hydrogenase gene in human adrenal tissue during prepu-

150 Miller and Auchus Human Steroidogenesis Endocrine Reviews, February 2011, 32(1):81–151

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/32/1/81/2354857 by guest on 20 M

arch 2024



berty and early puberty: implications for the mechanism of
adrenarche. Pediatr Res 45:384–388

726. Yanase T, Sasano H, Yubisui T, Sakai Y, Takayanagi R,
Nawata H 1998 Immunohistochemical study of cytochrome
b5 in human adrenal gland and in adrenocortical adenomas
from patients with Cushing’s syndrome. Endocr J 45:89–95

727. Miller WL 1999 The molecular basis of premature adre-
narche: an hypothesis. Acta Paediatr Suppl 88(Suppl 433):
60–66

728. Tee MK, Dong Q, Miller WL 2008 Pathways leading to the
phosphorylation of P450c17 and to the posttranslational
regulation of androgen biosynthesis. Endocrinology 149:
2667–2677
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