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Granulosa cell tumors of the ovary (GCT) comprise a distinct subset of ovarian cancers that account for approx-
imately 5% of all ovarian malignancies. They are thought to arise from normal proliferating granulosa cells of
the late preovulatory follicle and exhibit many morphological and biochemical features of these cells. GCT are
distinct from other ovarian carcinomas in their hormonal activity; their ability to secrete estrogen, inhibin, and
Müllerian inhibiting substance accounts for some of the clinical manifestations of the disease and also provides
useful tumor markers for disease surveillance. Although considered to be of low malignant potential, GCT are
commonly associated with slow, indolent disease progression, and frequent yet long delays to tumor recurrence
are characteristic of this disease. Unlike the more intensely investigated epithelial ovarian tumors, relatively
little is known about the molecular and genetic changes that give rise to GCT. To date, many investigations have
centered around pathways known to be involved in normal granulosa cell proliferation, including those acti-
vated by FSH receptor stimulation. Most recently, the finding that approximately 97% of adult GCT harbor a
somatic missense mutation in the FOXL2 gene (c.402C3G; p.C134W) represents an exciting advancement in the
field of GCT research. The high frequency with which the mutation occurs in adult GCT, along with its absence
from juvenile GCT and other human malignancies is suggestive of an oncogenic or gain-of-function mutation
and, indeed, that the mutation is pathognomonic for adult GCT. In this review, we explore the implications of
this finding and the most recent work characterizing molecular pathways of potential pathogenetic significance
in GCT. (Endocrine Reviews 33: 109–144, 2012)
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I. Introduction

Granulosa cell tumors of the ovary (GCT) represent a
specific subset of malignant ovarian tumors and can

be further categorized into two distinct subtypes, the ju-
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Abbreviations: ActR, Activin receptor; AP-1, activator protein-1; ArKO, aromatase knock-
out; BMP, bone morphogenetic protein; CREB, cAMP response element-binding protein;
CSF1R, colony stimulating factor 1 receptor; CTP, carboxyl-terminal peptide; EGF, epider-
mal growth factor; EGFR, EGF receptor; �ERKO, ER� knockout; �ERKO, ER� knockout;
FDA, Food and Drug Administration; FLT3, fms-like tyrosine kinase 3; FOXL2, forkhead box
L2; GCT, granulosa cell tumor of the ovary; GR, glucocorticoid receptor; I�B�, inhibitor of
�B�; IGFBP, IGF-binding protein; MEN, multiple endocrine neoplasia; MIS, Müllerian in-
hibiting substance; NF�B, nuclear factor �B; NR, nuclear receptor; PAPP-A, pregnancy-
associated plasma protein-A; PI3K, phosphatidylinositol 3-kinase; PJS, Peutz-Jeghers syn-
drome; PKA, protein kinase A; PPAR�, peroxisome proliferator-activated receptor �;
rhTRAIL, recombinant human TRAIL; RTK, receptor tyrosine kinase; SERM, selective estro-
gen receptor modulator; SF-1, steroidogenic factor-1; SMAD, Sma and Mad-related pro-
tein; StAR, steroidogenic acute regulatory protein; SV40 TAg, simian virus 40 T-antigen;
TKI, tyrosine kinase inhibitor; TLR4, toll-like receptor 4; TNFR1, TNF receptor 1; TRAIL,
TNF-related apoptosis-inducing ligand; TRAIL-R1, TRAIL receptor 1; VEGF, vascular endo-
thelial growth factor; VEGFR, VEGF receptor.
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venile and the adult form. GCT exhibit a molecular profile
that is consistent with FSH-responsive granulosa cells of
the late preovulatoy follicle (1, 2). Their unique hormonal
activity commonly results in early-stage detection due to
the clinical endocrine manifestations of the disease, and as
a result, GCT are generally considered to have a better
prognosis than epithelial ovarian tumors. However, due
to their characteristic slow, indolent pattern of progres-
sion and high rate of tumor recurrence, approximately
80% of patients with advanced stage or recurrent tumors
succumb to their disease (3).

In accordance with their cellular origin, many studies
into the molecular pathogenesis of GCT have focused on
examination of the signaling pathways associated with
FSH-stimulated cellular proliferation and those associ-
ated with normal granulosa cell development and differ-
entiation. Despite these extensive efforts, until recently,
relatively little was known about the molecular changes
that give rise to GCT. In 2009, a study using whole-tran-
scriptome sequencing technology uncovered a novel so-
matic missense mutation in the FOXL2 gene (c.402C3G;
p.C134W) in approximately 97% of adult-type GCT (4).
Subsequent studies have confirmed the presence of the
mutation in adult GCT and absence from juvenile GCT
and other human malignancies (5–11). Despite their many
clinical and molecular similarities, the lack of the mu-
tation in juvenile GCT strongly suggests a distinct mo-
lecular etiology for this subtype. The high-frequency
single-nucleotide mutation is suggestive of an onco-
genic or gain-of-function mutation, and emerging pub-
lications are beginning to shed some light on the pos-
sible mechanism by which mutant FOXL2 may be
promoting tumorigenesis in granulosa cells (12–14). The
finding of the FOXL2 C134W mutation as an almost uni-
versal feature of adult GCT is an exciting advance in clin-
ical molecular oncology. In this review, we will summarize
the current state of knowledge regarding the clinical man-
ifestation and management of GCT. We will then system-
atically review studies on the molecular pathogenesis of
GCT as well as detail recent advances in the field.

II. Clinical Information
Globally, invasive ovarian tumors are the most com-

mon fatal gynecological malignancy with an estimated
21,880 new cases and 13,850 deaths reported in the
United States in 2010 (15).

A. Ovarian tumor classification
Ovarian tumors are a heterogeneous group of neo-

plasms, which are classified based primarily on their his-
topathological patterns, reflecting the various cell types
comprising the ovary (16). According to the World Health

Organization guidelines, they can be divided into three
major categories: epithelial ovarian tumors (common ep-
ithelial tumors), sex cord-stromal tumors (e.g. granulosa
cell tumors), and germ cell tumors (17). A fourth group are
secondary tumors in the ovary that arise from a primary
lesion elsewhere, commonly the gastrointestinal tract or
breast, and metastasize to the ovary (Table 1).

1. Epithelial ovarian tumors
The majority of ovarian tumors are thought to be de-

rived from the relatively pluripotent cells of the surface
epithelium and typically represent 80–90% of all ovarian
malignancies (18). The ovarian surface epithelium is not a
true epithelium, but instead is a derivative of a common
embryological precursor, the coelomic mesothelium,
which has taken on an epithelial appearance and has both
epithelial and mesenchymal characteristics (19). There-
fore, epithelial ovarian tumors have the potential to dif-
ferentiate into a variety of subtypes, each of which takes on
a histopathological appearance that closely resembles the
normal cells lining other organs of the female genital tract
(20) (Table 1). For example, cells of serous tumors resem-
ble those of the Fallopian tube, mucinous tumors the en-
docervix, and endometrioid tumors take on an endome-

TABLE 1. Summary of the World Health Organization
histological classification of tumors of the ovary

1. Common epithelial tumors
A. Serous tumor
B. Mucinous tumor, endocervical-like and intestinal types
C. Endometrioid tumor
D. Clear cell (mesonephroid) tumor
E. Transitional cell tumor
F. Squamous cell tumor
G. Mixed epithelial tumor (specific types)
H. Undifferentiated carcinoma

2. Sex cord-stromal tumors
A. Granulosa cell tumor

i. Adult granulosa cell tumor
ii. Juvenile granulosa cell tumor

B. Theca-fibroma group
i. Thecoma
ii. Fibroma

C. Sertoli-stromal cell tumor
i. Sertoli-Leydig cell tumor
ii. Sertoli cell tumor
iii. Stromal-Leydig cell tumor

D. Sex cord-stromal tumor of mixed or unclassified cell type
i. Sex cord tumor with annular tubules
ii. Gynandroblastoma
iii. Sex cord-stromal tumor, unclassified

E. Steroid cell tumor
3. Germ cell tumors

A. Dysgerminoma
B. Endodermal sinus tumor
C. Embryonal carcinoma
D. Polyembryoma
E. Choriocarcinoma
F. Teratoma
G. Mixed forms

4. Secondary (metastatic) tumors
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trial appearance (21). Epithelial ovarian tumors can be
further subclassified according to their degree of differen-
tiation (tumor grade) (20).

2. Sex cord-stromal tumors
Sex cord-stromal tumors represent approximately 8%

of all ovarian tumors and are believed to arise from and/or
to contain combinations of the sex cord and stromal com-
ponents of the developing gonad (21). In females, the em-
bryonic sex cords develop into granulosa cells, whereas
the stroma develops into the theca and stromal lutein cells
of the ovary; hence, ovarian tumors within this group may
comprise a varying combination of one or more of these
cell types (21). The most frequently diagnosed tumor type
within the sex cord-stromal category is the GCT, ac-
counting for 90% of tumors within this group and ap-
proximately 5% of malignant ovarian tumors overall
(22). Other less common sex cord-stromal tumors in-
clude thecoma-fibromas, Sertoli-Leydig cell tumors,
gynandroblastomas, and sex cord tumors with annular
tubules (Table 1).

Granulosa cell tumors of the ovary. GCT are thought to
arise from the granulosa cells of the ovary (23). Granulosa
cells constitute the somatic component of the ovarian fol-
licle and function to produce sex steroids and other
growth factors required for folliculogenesis and ovula-
tion. Two subtypes of GCT have been described based
primarily on clinical behavior and histopathological char-
acteristics, the juvenile and the adult form, of which the
latter is much more common and accounts for 95% of
GCT (22, 24, 25) (Table 2). The annual incidence of GCT
in developed countries varies from 0.4–1.7 cases per
100,000 women (23). Unless otherwise specifically stated,
this review will focus on the adult subtype of GCT.

3. Germ cell tumors
The germ cell tumor group, which accounts for approx-

imately 1–2% of all ovarian malignancies, occurs much

more frequently among children and young adults and
comprises all of the neoplasms thought to be derived from
the primordial germ cells of the embryonic gonad (26).
Varying widely in their histopathological appearance, the
germ cell tumor group comprises dysgerminomatous and
nondysgerminomatous tumors, including endodermal si-
nus tumors (yolk sac tumors), embryonal carcinomas,
polyembryomas, choriocarcinomas, immature and ma-
ture teratomas, and mixed germ cell tumors (17) (Table 1).

B. Clinical presentation and diagnosis
Adult GCT most commonly occur in the perimeno-

pausal or early postmenopausal female with a median age
at presentation reported to be 50–54 yr of age (23). Ju-
venile GCT are diagnosed in patients 10 yr of age or
younger in 44% of cases, between 11 and 20 yr in 34% of
cases, between 21 and 30 yr in 18% of cases, and over the
age of 30 yr in 3% of cases (27). In two series of patients
under the age of 18 yr, the median age at diagnosis was 7–8
yr (28, 29). Although extremely uncommon, adult GCT
can occasionally be found in children (22). Similarly, ju-
venile GCT can occur in young postpubertal women, and
cases of juvenile GCT in postmenopausal women have
also been reported (22, 27, 30). It should be noted that in
all of these cases, the distinction, juvenile vs. adult GCT,
was based on morphological criteria; a more robust clas-
sification is likely to result from establishing the FOXL2
mutation status of GCT (see Section I.F.1).

Most patients present with nonspecific symptoms of
abdominal pain, distension, or bloating due to a large
ovarian mass (22). In addition, a majority of patients ex-
hibit endocrine manifestations as a result of tumor-derived
estrogen secretion. In prepubertal females these effects
may manifest as isosexual precocious pseudopuberty, in-
cluding precocious breast development, increased pubic
hair, vaginal bleeding, and advanced growth and bone age
(28, 29, 31). In the reproductive age group patients may
have menstrual irregularities such as menorrhagia, inter-

TABLE 2. Differences in adult vs. juvenile GCT

Adult Juvenile Ref.

Median age at presentation (yr) 50–54 7–8 23, 28, 29
Patients presenting with stage I

disease
50–90% 97% 27, 35, 38–40, 42–44

5-yr survival rate for stage I
disease

75–95% 93% 27, 45

Histology Well and poorly differentiated patterns
of histology with characteristic
coffee-bean grooved nuclei

Larger luteinized cells containing
hyperchromatic nuclei that lack
nuclear grooves

22, 23, 47–49

G protein mutations No gsp mutations in 30% of cases 178, 179, 182–185
FOXL2 C124W mutation Yes No 5, 6
FOXL2 expression Yes Reduced expression in aggressive/

advanced stage tumors
6, 91
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menstrual bleeding, or secondary amenorrhea, and in
postmenopausal women vaginal bleeding is the most fre-
quent presenting symptom (24). Due to the high vascu-
larization of GCT, approximately 10% of patients present
with abdominal pain and acute hemoperitoneum caused
by tumor rupture (32). In addition, prolonged exposure of
the endometrium to tumor-derived estradiol has been as-
sociated with both endometrial hyperplasia and concom-
itant endometrial adenocarcinoma (23, 33–35).

C. Prognostic factors
In contrast to ovarian tumors of epithelial origin, GCT

are considered to be of low malignant potential and are
characterized by their slow, indolent growth with ten-
dency toward late recurrence. Despite several retrospec-
tive analyses that involved relatively large series of patients
(considering the rarity with which GCT present), tumor
stage at time of diagnosis remains the only prognostic fac-
tor that is explicitly related to survival in GCT patients
(36–40).

The International Federation of Gynecology and Ob-
stetrics staging system is used for GCT (41). Patients most
commonly present with stage I disease (50–90%), which

is considered to be a low-grade malignancy
and is associated with a relatively favorable
prognosis (35, 38, 39, 40, 42–44). The over-
all 5-yr survival rate for patients diagnosed
with stage I disease has been variously re-
ported to range from 75–95%, but the ma-
jority of studies demonstrated a survival
rate of greater than 90% (45). These rates
decline significantly in patients with more
advanced-stage disease, with the 5-yr sur-
vival rate for stage II and stages III or IV
reported to be from 55–75% and 22–50%,
respectively (23). However, because the
clinical course of GCT is characterized by
indolent growth with late recurrence, often
the recurrent and/or metastatic lesion ap-
pears many years after removal of the pri-
mary tumor, with periods in excess of 10 or
even 20 yr not uncommon (46). The longest
reported lapse from primary tumor resec-
tion to tumor recurrence is 40 yr (47). Fur-
thermore, when the tumor recurs, 80% of
patients will succumb to their disease (3,
42), highlighting the need for a reliable
prognostic tool.

Other parameters inconsistently reported
and providing overall less convincing evi-
dence as being important for prognosis in-
cludepatientage,primary tumorsizeandrup-
ture of tumor, mitotic activity, and nuclear

atypia (35).

D. Pathology
At presentation GCT may vary in size from nonpal-

pable lesions to large abdominal masses, although the av-
erage diameter is approximately 12 cm. The single most
common presentation is a solid and cystic tumor mass in
which the cyst may contain hemorrhagic fluid (22).

Histological examination of adult GCT reveals a distinc-
tive appearance (Fig. 1). Granulosa cells assume a variety of
patterns including both well and poorly differentiated his-
tologies,appearingaloneormorecommonlywithathecacell
or fibroma-like component or both. Well-differentiated forms
are further subdivided into microfollicular, macrofollicular,
trabecular, insular, solid-tubular, and hollow-tubular pat-
terns (22). Call-Exner bodies are a characteristic feature of
the microfollicular form, the most common histological
subtype, and consist of small rings of well-differentiated
granulosa cells, often with shrunken nuclei surrounding a
cavity of eosinophilic material (Fig. 1B). The less well-
differentiated subtypes are characterized by undulating
parallel (watered-silk) or zigzag (gyriform) rows of gran-

Figure 1.

Histology of two representative adult GCT. The sections are stained with hematoxylin
and eosin. The first tumor (A and B) shows partly solid, partly cystic with macrofollicles
and pseudopapillae formation with a Call-Exner body seen in the center at higher
magnification (B). The second tumor (C and D) is composed of variably sized, relatively
circumscribed solid nests. At higher magnification, cells are seen with coffee-bean-
shaped hyperchromatic nuclei and few distinct nuclear grooves (D). The sections are at
�20 (A and C) and �40 (B and D) magnification.
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ulosa cells, usually in single file, and a diffuse (sarcoma-
toid) pattern, characterized by a monotonous cellular
growth (22). Although in some cases one pattern is exclu-
sive or predominates, in many adult GCT a mixture of
patterns is found. Both the well-differentiated and the less
well-differentiated adult GCT contain round to oval, pale
cells with characteristic coffee-bean grooved nuclei (Fig.
1D). Few mitotic figures, mild nuclear atypia, and little
cytoplasm are usually found; however, luteinization is
sometimes evident (23, 48, 49).

Although juvenile GCT share a similar gross appear-
ance with the adult subtype, comprising a mixture of solid
and cystic components with hemorrhagic areas, at the his-
tological level the two types differ greatly. Juvenile GCT
are distinguished by a follicular or diffuse pattern of larger
luteinized cells that contain hyperchromatic or markedly
bizarre nuclei, lacking the characteristic nuclear grooves
of adult GCT (48, 50).

E. Etiology and risk factors

1. Cytogenetic abnormalities
Compared with other ovarian tumor types, GCT ex-

hibit a relatively stable karyotype. Although limited in
number, cytogenetic studies have revealed a distinctive
pattern of chromosomal aberrations with trisomy 12, tri-
somy 14, and monosomy 22 observed in 14–33, 25–33,
and 35–40% of cases, respectively (51, 52). Between 5 and
20% of GCT are aneuploid; however, neither karyotype
nor ploidy are of prognostic significance (51, 53–55).

Although the etiology of GCT had until very recently
been obscure, there are several rare tumor predisposition
syndromes associated with the development of GCT.

2. Genetic syndromes
Peutz-Jeghers syndrome (PJS). PJS, a rare autosomal dom-
inantly inherited disorder, is associated with germline mu-
tations in the STK11/LKB1 tumor-suppressor gene (chro-
mosome 19p13.3) (56, 57). PJS is characterized by
gastrointestinal hamartomatous polyposis, increased risk of
benign and malignant tumors of various organs, and muco-
cutaneous pigmentation of the lips, buccal mucosa, and dig-
its (58). Peutz-Jeghers females also display increased sus-
ceptibility to a specific type of ovarian sex cord-stromal
tumor, which shows a unique morphology intermediate
between those of GCT and Sertoli cell tumors (59–70).
Approximately 30% of patients with these lesions have
PJS, and it has been suggested that this association, along
with the distinctive features of the tumor should warrant
a separate classification (49). Indeed, neither loss of
heterozygosity at 19p13.3 nor mutations in the LKB1
gene are associated with sporadic GCT (70, 71).

Ollierdisease/Maffucci syndrome.The literaturecontains
a handful of case studies reporting juvenile GCT in asso-
ciation with Ollier disease and Maffucci syndrome (27,
72–81). These rare disorders are characterized by the pres-
ence of enchondroma, a type of benign cartilage tumor
found in the bone marrow, which may present as an in-
dividual tumor or less commonly as multiple tumors. Ol-
lier disease is defined by the distribution of multiple en-
chondromas throughout multiple sites in the body,
whereas Maffucci syndrome is characterized by the pres-
ence of multiple enchondromas in association with mul-
tiple hemangiomas of soft tissue (82).

3. Hyperstimulation
Continuous exposure of the ovary to ovulation-induc-

ing drugs such as the selective estrogen receptor modulator
(SERM), clomiphene citrate, or to high concentrations of
pituitary gonadotropins in the context of treatment for
infertility has been reported to increase the risk of devel-
oping GCT (83, 84). However, it has also been argued that
several confounding variables and biases weakened these
reports. For example, patients undergoing treatment for
infertility are subjected to far more surveillance with ul-
trasound than would be the general population (85), con-
sistent with the fact that in one study, five of 11 neoplasms
identified were of borderline malignancy (84), a propor-
tion that is significantly higher than that usually found in
the general population (approximately one in 10) (85). It
is suggested that because tumors of borderline malignancy
are often asymptomatic, the detection of those in patients
undergoing fertility treatment is likely to be due to the rig-
orous screening procedures that are required during this
treatment and therefore indicate evidence of an ascertain-
ment bias in these studies (85, 86). Furthermore, in another
study of 10,358 women of which approximately half had
undergoneovarianstimulationtoinducesuperovulationand
in which duration of follow-up ranged from 1–15 yr, no
significant increased risk of ovarian cancer was identified
(87). It has also been suggested that infertility itself may con-
stitute a risk factor for developing ovarian cancer, indepen-
dent of exposure to fertility drugs (88–91).

F. FOXL2

1. C134W mutation in adult GCT
Using whole-transcriptome paired-end RNA sequenc-

ing technology, Shah et al. (4) identified a single somatic
missense mutation in FOXL2 (402C3G) in four GCT
with the predicted consequence to be the substitution of a
tryptophan residue for a highly conserved cystine residue
at amino acid position 134 (C134W). Subsequent direct
sequencing of DNA from additional GCT samples re-
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vealed the mutation to be present in 86 of 89 (97%) mor-
phologically identified adult GCT, in one of 10 (10%)
juvenile GCT, and in three of 14 (21%) thecomas (4).
Subsequently, six independent studies reported the muta-
tion in 53 of 56 (7), 18 of 20 (8), 52 of 56 (6), three of three
(11), 39 of 42 (9), and 17 of 19 (10) adult GCT, respec-
tively (Table 3). The authors suggest that the majority of
the 17 tumors histologically classified as adult GCT but
found to be FOXL2 mutation negative were diagnosti-
cally challenging in that they exhibited immunohisto-
chemical profiles that were distinct from those of most
adult GCT (4) or were of mixed cellular origin with the
predominant contribution being from other ovarian stro-
mal components, i.e. thecoma or cellular fibroma (6, 7,
10). The high frequency with which the mutation occurs
in adult GCT and its absence from juvenile GCT (4, 6–11)
and other tumor types (5, 7, 9–11) suggests this mutation
is pathognomonic for adult-type GCT. In a clinical setting,
screening for the mutation is likely to be a useful diagnostic
tool to differentiate between adult and juvenile GCT and
other sex cord-stromal tumors.

2. Loss of protein expression in juvenile GCT
Paradoxically, a previous study reported extinction of

forkhead box L2 (FOXL2) protein expression in aggres-
sive juvenile GCT (92). Kalfa et al. (92) found the expres-
sion of FOXL2 to be absent or decreased in juvenile GCT

with an aggressive pattern of progression. Patients with no
or reduced expression of FOXL2 more frequently had a
higher mitotic activity in the tumor hemorrhagic ascites
and significantly more advanced disease at diagnosis (92).
Thus, loss of FOXL2 protein expression may be an ad-
verse prognostic factor for juvenile GCT (92).

G. Human GCT-derived cell lines

Two human GCT-derived cell lines, COV434 and
KGN, have proven to be useful in vitro model systems to
investigate granulosa cell tumorigenesis (Table 4). The
COV434 cell line, established in 1984 from a metastatic
GCT obtained from a 27-yr-old patient (93), has been
shown to produce estradiol in response to FSH, indicating
the presence of a functional FSH receptor (94, 95). Simi-
larly, the KGN cell line, established in 1994 from a recur-
rent, metastatic GCT removed from a 73-yr-old patient
also expresses a functional FSH receptor (96).

In light of the identification of the FOXL2 C134W
mutation in adult GCT, the presence of the mutation in
the KGN cell line (5, 12) and absence from the COV434
cell line (6) suggests that these cell lines are derived from
adult and juvenile GCT, respectively. Moreover, as well
as being FOXL2 mutation negative, the COV434 cell
line does not express the FOXL2 gene, providing fur-
ther evidence that it represents a juvenile GCT of an
advanced tumor stage (6).

H. Tumor markers
The identification of specific tumor markers is used to

facilitate early detection of recurrent disease. The charac-
teristic hormonal activity of GCT suggests a role for the
secreted hormones as tumor markers for postoperative
patient management.

1. Estradiol
Estradiol (E2 or 17�-estradiol) is the principal sex hor-

mone in females. It is irreversibly converted from the pre-
cursor steroid hormone androstenedione by the enzyme

TABLE 3. Summary of the published data on the
occurrence of the FOXL2 (c.402C3G; p.C134W)
mutation in human sex cord-stromal tumors

Ref. Adult GCT
Juvenile

GCT Thecoma SLCT
SCST

(unclassified)

4 90/93 1/10 3/14 0/15
7 53/56 0/5 2/16 0/4
8 18/20 0/3
6 52/56 0/3

11 3/3
9 39/42 0/9 2/5 3/40 1/4

10 17/19 1/1
272/289 (94%) 2/31 (6%) 7/35 (20%) 3/59 (5%) 1/4 (25%)

SCST, Sex cord-stromal tumor; SLCT, Sertoli-Leydig cell tumor.

TABLE 4. Characteristics of the human GCT-derived cell lines KGN and COV434

KGN COV434 Ref.

Patient age (yr) 73 27 94, 96
Tumor classification Stage III primary tumor (1984) metastatic

recurrence in pelvic region (1994)
Solid primary metastatic tumor (1984) 94, 96

Karyotype 45,XX,7q�,�22 47,XX,�5,22q� 93, 96
Functional FSH receptor Yes Yes 94, 96
Aromatase activity Yes Yes 94, 96
Constitutive NF�B and AP-1 activity Yes Yes 203
ER� mRNA expression No No 203
ER� mRNA expression Yes Yes 203
FOXL2 C124W mutation Heterozygous Wild type 5, 6
FOXL2 mRNA expression Yes No 5, 6
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cytochrome P450 aromatase. During the reproductive
years, the major site of estradiol production is the granu-
losa cells. GCT generally secrete increased levels of estra-
diol as a result of abundant, unregulated aromatase ex-
pression (97, 98). Elevated serum estradiol is responsible
for some of the clinical manifestations of the disease,
which suggests that it may serve as a useful tumor marker
for GCT (99). Although this has been true for some cases,
in others, no correlation between estradiol levels and dis-
ease progression or recurrence was observed (100, 101).
One possible explanation for this disparity may be due to
a lack of theca cells in the tumor stroma of certain GCT,
given that it is the theca cells thatproduceandrostenedione
(23). Therefore, although estradiol measurement may be
useful in the postoperative management of some patients,
its accuracy is not consistent enough to be relied upon as
a tumor marker in GCT (23).

2. Inhibin
The inhibins, members of the TGF� superfamily of

pleiotropic growth factors, are glycoprotein hormones
synthesized predominantly by the granulosa cells in fe-
males. The inhibins consist of a dimer of two partially
homologous subunits, an �-subunit (made up of three re-
gions: Pro, �N, and �C) covalently linked to either a �A or
�B subunit to form inhibin A and inhibin B, respectively.
The genes encoding the �A (INHBA) and �B (INHBB)
subunits display spatiotemporally distinct expression pat-
terns in the normal ovary (reviewed in Refs. 102 and 103).
The �-subunits are localized primarily to the granulosa
cells (104, 105), although �A-subunit expression has been
observed in the theca cells of human dominant follicles
(106). �A-subunit mRNA has been reported in all follicle
stages, including the dominant follicle and the corpus lu-
teum, whereas �B-subunit expression appears to be re-
stricted to small primary follicles (106). In addition to
being an important autocrine and paracrine granulosa cell
growth factor within the ovary (107, 108), inhibins also
act in an endocrine manner to regulate the synthesis and/or
secretion of FSH by pituitary gonadotropes via a negative
feedback loop within the hypothalamic-pituitary-gonadal
axis (109). With the depletion of ovarian follicles at meno-
pause, serum inhibin A and B decrease to undetectable
levels (110, 111), providing a baseline with which to com-
pare serum levels in postmenopausal women with GCT.

Lappöhn et al. (100) were the first to report the produc-
tion of inhibin by GCT and identify a correlation between
elevated serum inhibin levels and tumor size, thereby dem-
onstrating its potential usefulness as a marker for both pri-
mary and recurrent disease. Further prospective studies con-
firmed this finding and also showed that serum inhibin
correlated negatively with serum FSH concentrations, sug-

gesting that the inhibin secreted by GCT is biologically
active (112, 113). These early and subsequent (114) stud-
ies identifying elevated serum inhibin in GCT patients
were performed using the Monash assay, a RIA that de-
tects all serum �-subunits including those in biologically
active inhibin dimers as well as bioinactive free �-subunits
that have undergone differing degrees of glycosylation and
processing (115, 116). The subsequent development of
ELISA capable of distinguishing between the individual
forms of inhibin A and B (111, 117–119) revealed that
they were increased to varying extents in women with
GCT (110, 120, 121). Using these inhibin subunit-specific
ELISA, it was revealed that inhibin B is the major form
of inhibin secreted by GCT and that measurement of se-
rum inhibin B concentration is a more accurate test than
that of inhibin A in detecting GCT, and also reflects tumor
burden (120–122). However, the increased specificity
(and arguably sophistication) of these assays does not nec-
essarily translate into a clinical advantage when compared
with the original Monash assay (123–125). In reviewing
their experiences with the inhibin assays, Robertson et al.
(126) showed that the more specific assays for detecting
serum inhibin A and B were less accurate for discriminat-
ing between normal and cancer samples when compared
with the Pro-�C (free �-subunit) assays, although the total
inhibin assay that detects all forms that contain the car-
boxyl-terminal (�C) region of the �-subunit both gave the
best differentiation and was the preferred method (127, 128).

To further confound this ambiguity, examination of
inhibin �-subunit expression by immunohistochemistry
in 30 GCT revealed 26 (87%) stained positively for the
�-subunit, all of which were stage I and II tumors (129).
Of the four remaining tumors, all of which were clas-
sified as either stage III or IV, three were �-subunit
immunonegative, whereas one exhibited slight staining
for the �-subunit (129). This study reveals that 1) not all
GCT may express inhibin and 2) loss of inhibin �-subunit
expression may be associated with a poor prognosis. This
finding could be seen to contradict the dogma that in-
creased postmenopausal serum inhibin levels are a marker
for GCT and indeed can often precede a clinical recurrence
in those cases.

3. Müllerian inhibiting substance
Several studies investigating the dynamics of serum

Müllerian inhibiting substance (MIS), also referred to as
anti-Müllerian hormone, in patients with GCT show it to
be a reliable marker for tumor activity with a sensitivity
ranging between 76 and 100% (101, 130–134). MIS, a
TGF� superfamily member, is expressed by granulosa
cells during the reproductive period and controls the for-
mation of primary follicles by inhibiting excessive follic-
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ular recruitment by FSH. Anttonen et al. (135) found that
MIS gene expression correlated inversely with GCT size,
with reduced expression in 87% of tumors greater than 10
cm in size. This finding may suggest MIS is a less useful
marker than the inhibin assay in more advanced disease;
however; there has been no direct comparison.

Although it is commonly accepted that MIS and inhibin
display a higher degree of sensitivity and are more reliable
than estradiol in detecting primary and/or recurrent GCT
(136), additional studies are required to confirm whether
total inhibin, inhibin B, or MIS constitutes the more reli-
able marker in the detection and management of patients
with GCT. A recent review evaluating the usefulness of
serum levels of inhibin B and MIS in the diagnosis and
follow-up of GCT suggests MIS is the more sensitive and
reliable marker of the two (137); however, this is based on
a retrospective compilation of previously published data
and not a direct comparison between MIS and inhibin B
levels in a single cohort of patients.

I. Treatment and disease management

The rarity with which GCT occur as well as their pro-
longed natural history and high rate of recurrence make it
difficult to form clear conclusions regarding clinical be-
havior and to carry out prospective randomized studies for
the purpose of developing standard treatment guidelines.
Conventional treatment for GCT has predominantly been
surgery followed by chemotherapy where recurrent
and/or advanced disease has occurred.

1. Surgery

It is suggested that in approximately 78–91% of cases,
GCT are stage I and unilaterally confined to the ovary at
diagnosis (23). In these patients, more conservative fertil-
ity-sparing surgery with unilateral salpingo-oophorec-
tomy appears to be the most appropriate course of action.
This recommendation is borne out by several retrospective
analyses in which the results with conservative surgery did
not differ from those using standard surgery with hyster-
ectomy (38, 39). An endometrial biopsy is also recom-
mended to ensure concomitant endometrial pathology has
been excluded. For women with a stage I tumor that is
confined to the ovary, adjuvant therapy is not recom-
mended (138). In postmenopausal women and patients
with more advanced-stage disease or bilateral ovarian
involvement, total abdominal hysterectomy and bilat-
eral salpingo-oophorectomy with removal of all visible
disease is thought to be the most appropriate initial
treatment (23, 24, 45).

2. Adjuvant therapies (radiation and
conventional chemotherapy)

For patients with metastatic disease or for those whose
disease has recurred after primary surgical resection, ad-
juvant therapy is an option; however, the efficacy of ra-
diotherapy or systemic chemotherapy for patients with
GCT remains inconclusive. The existing literature is com-
prised of case reports and retrospective reviews of archival
patient data. Additionally, due to the often long interval to
recurrence, evaluations of the efficacy of adjuvant treat-
ment on overall or disease-free survival rates in GCT are
often difficult to interpret (32).

Current chemotherapy is based on platinum-contain-
ingprotocolsderived largely fromexperiencewithovarian
epithelial tumors (45). Studies and case reports using cis-
platin in combination with either doxorubicin and cyclo-
phosphamide, vinblastine and bleomycin, or etoposide
and bleomycin have been reported with response rates
varying from 60–83% and duration of response 5.2–58.6
months (99, 139–153).

3. Hormonal treatment (GnRH antagonists, tamoxifen, and
aromatase inhibitors)

As previously described, GCT are often distinguished
by their ability to secrete estrogen, and thus, there is in-
terest in examining the benefits of hormonal manipulation
as a potential therapeutic strategy in these neoplasms. Al-
though a limited number of studies have reported recur-
rent GCT responding to hormonal treatments such as the
progestin medroxyprogesterone 17-acetate (154–156),
the aromatase inhibitor anastrozole (157–159), the ER
antagonist tamoxifen (160), and several GnRH agonists
(161–163), in most cases, these treatments were used as a
last resort, and results suggest only transient responses of
a few months duration. Conversely, there are also reports
of patients showing no response to the same hormonal
therapies (162, 164–166). Due to the typically late recur-
rence of GCT and the relatively short disease-free periods
described in many of these studies (i.e. less than 12 months),
the truesuccessofhormonal interventions in the treatmentof
GCT remains questionable at best. These reports do, how-
ever, highlight the inadequacy of current nonsurgical thera-
peutic options for patients with GCT.

Due to the typically high rate of late recurrence of this
disease, long-term follow up throughout the patients’
life is needed, even in the case of early-stage diagnosis.
Any abdominal or pelvic mass in these patients should
be considered recurrent GCT until proven otherwise
regardless of the time from initial diagnosis. Lifetime
surveillance is critically important in the management
of these patients (147).
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III. The Molecular Genetics of GCT

It is commonly accepted that tumor formation occurs
due to a succession of genetic changes, each contributing
a growth advantage, which ultimately results in the trans-
formation of normal cells into malignant cells (167). The
molecular changes that give rise to GCT are likely to involve
disruption of signaling pathways that function during nor-
mal folliculogenesis to regulate granulosa cell proliferation.
Indeed, GCT exhibit many features of proliferating granu-
losa cells of the preovulatory follicle, including expression of
the FSH receptor (168), FSH binding (169, 170), estrogen
synthesis (3), GATA-4 expression (135, 171), and expres-
sion of the inhibin subunit genes with synthesis of biolog-
ically active inhibin (100, 172, 173). This molecular phe-
notype is consistent with activation of the FSH receptor
signaling pathway (2, 174). Concordantly, the gene expres-
sion profile of GCT is also consistent with FSH-stimulated
granulosa cells, which includes high expression of the gene
encoding the FSH receptor as well as high expression of FSH
early-response genes such as the regulatory subunit of pro-
tein kinase A (RII-�; PRKAR2B), cyclin D2 (CCND2), and
the late-response marker cyclooxygenase-2 (COX-2; PTGS2)
(1); this was observed in association with low expression of
both the early-response gene serum/glucocorticoid-regu-
lated kinase 1 (SGK1) and the late-response marker LH
receptor (LHR; LHCGR) (1).

A. FSH-mediated signaling pathways
In the normal ovary, granulosa cell

proliferation enters its most rapid
phase between the preantral and pre-
ovulatory stages of follicle develop-
ment (175). Although the FSH receptor
is expressed on the surface of preantral
granulosa cells, preantral folliculogen-
esis is dependent on the autocrine and
paracrine actions of intraovarian fac-
tors and is able to proceed indepen-
dently of gonadotropin stimulation.
After puberty, additional growth to the
stage at which follicles have the poten-
tial to undergo ovulation is absolutely
dependent on the pituitary gonadotro-
pins. This phase coincides with the
cells’ receptivity to FSH in that the pres-
ence of the FSH receptor enhances fol-
licle growth (Fig. 2).

1. cAMP/PKA
FSHbindingto its receptor triggersac-

tivation of the classical, linear adenylyl
cyclase/cAMP/protein kinase A (PKA) signaling pathway,
which in turn promotes the phosphorylation and activation
of the transcription factor cAMP response element-binding
protein (CREB).PhosphorylatedCREBregulates theexpres-
sion of a variety of target genes required for cellular prolif-
eration and differentiation (Fig. 3).

Given the obligatory role of FSH receptor expression
and FSH binding during the rapidly proliferative phase of
granulosa cell development, it has been hypothesized that
activating mutations of the FSH receptor gene may lead to
an altered protein product capable of initiating uninhib-
ited proliferation in granulosa cells. Although Kotlar et al.
(176) initially reported the presence of a single-nucleotide
missense mutation (F591S) in the FSHR gene in seven of
nine juvenile GCT and two of three adult GCT, subse-
quent studies did not identify the F591S or any other
FSHR mutations in a combined total of 46 GCT (168,
177–179). The analysis of additional GCT samples and
reanalysis of the original GCT samples by Kotlar et al.
(180) failed to reproduce their initial finding, which they
suggested must have been due to DNA contamination.

Heterotrimeric G proteins, consisting of �-, �-, and
�-subunits, couple seven-transmembrane domain recep-
tors (also known as G protein-coupled receptors) to in-
tracellular second messenger systems, including the FSH
receptor in granulosa cells (Fig. 3). The first evidence of the
oncogenic potential of G proteins was reported in a subset
of GH-secreting pituitary adenomas in which a somatic

Figure 2.

Schematic representation of ovarian folliculogenesis. Folliculogenesis is a cyclical process by
which quiescent primordial follicles are recruited to enter the growth phase, proceeding
through multiple stages of development that culminate in the release of the ovum from the
dominant follicle and the terminal differentiation of the remnant follicle into corpora lutea.
The nondominant follicles undergo atresia. GCT exhibit a molecular profile that suggests they
arise from proliferating granulosa cells of the preovulatory follicle.
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mutation in the gene encoding the G�s protein was found
in 18 of the 42 (42%) adenomas examined, causing inhi-
bition of the proteins intrinsic GTPase activity (181). The
mutations in this oncogene, termed gsp, result in amino
acid substitution at either of two residues (201 and 227),
both of which are completely conserved in all known G�

proteins (181). The possibility that similar mutations may
activate other G proteins prompted Lyons et al. (182) to
investigate other human endocrine tumors for mutations
that replace either of these two amino acids in genes en-
coding other G� proteins. The gene encoding the G�i-2

protein was reported to harbor mutations that result in the
substitution of arginine-179 for either a cysteine or histi-
dine in three of 11 (27%) tumors of the adrenal cortex and
three of 10 (30%) sex cord-stromal tumors of the ovary,
of which seven were GCT (182). This G�i-2 oncogene was
termed gip2 (182). In the same study, no gsp mutations
were observed in six sex-cord stromal tumors (182). Sub-
sequent studies examining GCT for the presence of gsp
and gip2 mutations have been reported in the literature.
Shen et al. (183) failed to identify the previously reported
gip2 R179C/H mutation in 13 GCT. Similarly, Ligtenberg
et al. (178) observed no known gsp or gip2 mutations in
22 GCT, nor did Fragoso et al. (184) in two GCT. Hannon
et al. (179) did not find the gsp mutation in 17 adult GCT.

Interestingly the gsp mutations, R201C or R201H,
were observed in nine of 30 (30%) juvenile GCT samples

with laser microdissection, confirming
that they were localized exclusively to
the tumor-derived granulosa cells and
were absent in the ovarian stroma
(185). When compared with patients
with normal G�s the clinical symptoms
and age of occurrence were not signif-
icantly different, and patients carrying
the mutation did not exhibit more se-
vere hyperestrogenic symptoms (185).
They did, however, exhibit a signifi-
cantly more aggressive pattern of be-
havior with seven of the nine (77%)
oncogenic gsp-positive patients pre-
senting with stage Ic disease or devel-
oping recurrence, whereas most of the
mutation-negative patients had a tu-
mor strictly limited to the ovary with-
out recurrence (76%), suggesting the
gsp mutation status of juvenile GCT pa-
tients may be a prognostic factor for
these tumors (185). Hannon et al. (179)
did not, however, observe the gsp mu-
tations in 10 juvenile GCT; however,
information regarding tumor stage

and/or recurrence was not provided.

2. Phosphatidylinositol 3-kinase
(PI3K)/AKT

After activationof theFSHreceptor ingranulosa cells, the
classicaladenylatecyclase/cAMP/PKApathway iscapableof
diverging at PKA to activate distinct downstream signaling
cascades, including the PI3K/AKT pathway (186–188) (Fig.
4). Aberrant activation of this pathway has been implicated
in many solid tumors including breast, prostate, colon, and
epithelial ovarian tumors (189, 190). In epithelial ovarian
tumors, the pathway is commonly activated through muta-
tion or increased copy number of the genes encoding the
PI3K subunits, PIK3R1 (p85) (191) and PIK3CA (p110)
(192), or inactivation of the tumor suppressor gene PTEN
(193). Despite these findings, however, neither mutation nor
overexpression of PIK3CA and PIK3R1 nor loss of expres-
sion of PTEN have been observed in adult GCT (194).

3. Epidermal growth factor (EGF)
The EGF/ErbB (erythroblastic leukemia viral oncogene

homolog) family of receptor tyrosine kinases (RTK) includes
four members: EGF receptor (EGFR)/ErbB1/heregulin-1
(Her1), ErbB2/Her2, ErbB3/Her3, and ErbB4/Her4. Typi-
cally forRTKthese transmembranereceptorscontainacom-
mon extracellular ligand-binding domain, a single mem-
brane-spanning region and an intracellular domain with

Figure 3.

FSH receptor activation of cAMP-dependent PKA. FSH binding to the FSHR on granulosa cells
triggers the exchange of GDP for GTP on the �-subunit of the G protein complex. G�-GTP
dissociates from the �- and �-subunits to activate adenylyl cyclase (AC), which in turn
catalyzes the conversion of ATP to cAMP. The increase in cAMP causes it to bind to the
regulatory (R) subunit of PKA, thereby promoting the dissociation and activation of the
catalytic (C) subunit. The activated C subunit is free to translocate to the nucleus where it
phosphorylates transcription factors such as the prototypic CREB protein, thus controlling
gene expression. FSHR, FSH receptor.
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intrinsic protein tyrosine kinase activity. A family of li-
gands known as the EGF-related peptide growth factors
bind the extracellular domain, triggering receptor homo-
or heterodimerization. Receptor dimerization causes the
autophosphorylation of specific tyrosine residues within
the cytoplasmic domain which in turn activate an array of
intracellular signaling pathways (195). Of the four family
members no specific ligand has been identified for ErbB2.
It can however be transactivated via heterodimerization
with other ErbB family members, thereby acting as a co-
receptor to enhance ligand binding and ligand-induced
biological responses (195). Like other RTK, overexpres-
sion and/or mutation of EGF/ErbB receptor family mem-
bers, in particular EGFR and ErbB2, has been shown to
contribute to the etiology and progression of several forms
of human cancer including those of the brain, breast,

and ovarian epithelium (195, 196). To date,
three small- molecule tyrosine kinase inhibi-
tors (TKI) designed to target the EGFR have
been approved by the U.S. Food and Drug Ad-
ministration (FDA) for use as cancer therapeu-
tic agents: gefitinib (ZD1839, Iressa), erlotinib
(OSI 774, Tarceva), and lapatinib
(GW572016, Tykerb).

In granulosa cells, it is known that the EGF/
ErbB receptor family members activate several
intracellular signaling pathways, including the
MAPK pathway to promote cell proliferation
and the PI3K/AKT pathway to promote cell sur-
vival (196, 197) (Fig. 4). Wayne et al. (198) dem-
onstrated that FSH-stimulated activation of the
MAPK pathway requires EGFR tyrosine kinase
activity and that dominant-negative rat sarcoma
aswellasEGFRtyrosinekinase inhibitionblocks
FSH-induced phosphorylation of ERK1/2 (198).
Furthermore, there is evidence that EGF signal-
ing through EGFR is required for normal gonad-
otropin-induced steroidogenesis in granulosa
cells (199).

Immunohistochemical analysis has shown all
four EGF/ErbB receptor family members to be
expressed in GCT (200, 201) as well as EGFR in
the KGN cell line (202) and erbB2 and erbB4 in
the COV434 cell line (200). Moreover, Furger et
al. (200) showed that heregulin-�2, a ligand for
erbB3 and erbB4, increased cell proliferation in
COV434 cells by activation of the ERK1/2 tran-
scription factors via the MAPK pathway. In ad-
dition, treatment with heregulin/pseudomonas
exotoxin 40, a ligand toxin shown to display
selective cytotoxicity against erbB4-positive
breast cancer cell line, exerted a strong and

irreversible cytotoxic activity toward COV434 cells
(200).

Theactivatorprotein-1 (AP-1) transcription factor is con-
stitutivelyactivated inKGNandCOV434cellswith targeted
chemical inhibition of ERK fully abrogating the constitutive
activityofAP-1 inbothcell lines (203).Similarly,constitutive
activation of ERK1/2 signaling has also been observed in the
KGN cell line, with small interfering RNA silencing of
ERK1/2 protein expression resulting in the complete sup-
pression of cell proliferation (204).

Taken together, these findings provide strong, albeit cir-
cumstantial evidence that the constitutive activation of AP-1
transcription is mediated by constitutive ERK phosphoryla-
tion via a RTK/MAPK/ERK signaling cascade (Fig. 4).
Moreover, given that similarities were observed in the ex-
pression profiles of genes involved in AP-1 activation be-

Figure 4.

Receptor tyrosine kinases (RTK) and the FSH receptor (FSHR) both activate the MAPK
and PI3K intracellular signaling pathways in granulosa cells. This activation may be
achieved via direct downstream signaling and/or via multiple cross talk mechanisms
between the receptors themselves and/or intracellular components of the pathways.
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tween the two cell lines and a panel of human GCT sam-
ples (Chu, S., Prince Henry’s Institute of Medical
Research, unpublished data), constitutive ERK activation
resulting in activation of AP-1 target genes may play a role
in the pathogenesis of these tumors.

4. Vascular endothelial growth factor (VEGF)
VEGF and its receptors, VEGFR-1 (FLT1), VEGFR-2

(KDR), and VEGFR-3 (FLT4), are key regulators of tumor
angiogenesis and are the primary targets of the TKI sunitinib
(BAY 43-9006, Sutent) and pazopanib (GW786034, Votri-
ent), which are in clinical use for the treatment of renal cell
carcinoma. Several studies have observed VEGF protein
and/or mRNA expression in human GCT (205–207). Ex-
amining a panel of 106 GCT, Färkkilä et al. (207) found
VEGF and VEGFR-2 to be highly expressed in primary and
recurrent tumors, in comparison with normal granulosa-
lutein cells. Moreover, the expression of VEGF correlated
positively with tumor microvessel density and with
VEGFR-2 expression at the protein and mRNA levels (207).
VEGF protein was not prognostic for tumor recurrence;
however, patients with primary GCT had high serum VEGF
levels (207). A number of case reports have examined the
clinical efficacy of bevacizumab, a monoclonal antibody to
VEGF, which has been approved by the FDA for use as an
adjuvant therapy in colorectal cancer. Of the 10 patients
reportedly treated with bevacizumab, nine with adult and
one with juvenile GCT, only one patient had a complete
clinical response (206, 208, 209). Although a much larger
cohort of patients would be required to draw any clear con-
clusions, these initial case reports indicate adjuvant treat-
ment with bevacizumab may provide limited efficacy at best
in patients with GCT.

5. Other tyrosine kinases
In a case report of an 87-yr-old patient with recurrent,

metastatic GCT, immunohistological examination of the
tumor revealed overexpression of mast/stem cell growth
factor receptor (SCFR; KIT; CD117), prompting treat-
ment with the TKI imatinib (STI571, Gleevec) (210). That
the patient showed a significant response (210) prompted
Chu et al. (211) to further investigate a more general role
for imatinib in GCT. The expression profiles of the genes
encoding the imatinib-sensitive tyrosine kinases (KIT,
ABL, and PDGFR-� and -�) were characterized in a panel
of human GCT samples, and the effect of imatinib, and
subsequently nilotinib (a second-generation related TKI;
AMN107, Tasigna), on the KGN and COV434 cell lines
was examined (211). All four kinases were expressed but
at levels lower than those observed in premenopausal
ovarian samples. Known activating mutations in KIT (ex-
ons 9–11) and PDGFRA (exon 18) were not found by

direct sequencing (211). Both cell lines responded to ima-
tinib and nilotinib, showing dose-dependent decreases in
cell proliferation and viability. These responses paralleled
those observed in an imatinib-sensitive chronic myeloid
leukemia cell line (K562) but at approximately 240- and
approximately 1000-fold higher concentrations of ima-
tinib and nilotinib, respectively, suggesting that GCT in
general are unlikely to respond to imatinib and/or nilo-
tinib therapy (211). The response of the cell lines implies
an off-target effect (i.e. imatinib inhibition of a tyrosine
kinase other than the four characterized) (211). Because
the concentration of imatinib is increased, a range of other
tyrosine kinases are known to be inhibited, including
FLT3 (FMS-related tyrosine kinase 3; STK1), CSF1R (col-
ony-stimulating factor 1 receptor), Src, and the EGFR
(212). Given that overexpression of colony-stimulating
factor (CSF) with its receptor, CSF1R, in normal granu-
losa cells resulted in proliferation and tumorigenesis
(213), Chu et al. (211) also examined the two GCT-de-
rived cell lines for expression of CSF1R and FLT3. They
found neither gene to be expressed in both cell lines, and
where expressed, the levels were very low, indicating that
CSF1R and FLT3 were unlikely to be mediating the re-
sponse to imatinib (211). Although these findings suggest
that the tyrosine kinases targeted by therapeutic concen-
trations of imatinib do not have a significant pathogenic
role in GCT, they do suggest that a TKI of appropriate
specificity may represent a therapeutic option (211).

B. TGF� superfamily members
The important role members of the TGF� superfamily

play in ovarian follicle development is well established
(reviewed in Refs. 214–216).

1. Inhibin subunits
As previously described, the inhibins are peptide hor-

mones comprising heterodimers of an �-subunit linked via
a single disulfide bond to either a �A subunit or a �B
subunit, forming inhibin A and inhibin B, respectively.
The �-subunits are also able to homo- or heterodimerize
(�A�A, �A�B, �B�B) to form a closely related subgroup,
the activins. Subunit expression and secretion of �-subunit
monomers or ��-subunit dimers are independently regu-
lated in the normal ovary (126). Inhibin B is predomi-
nantly produced by small primary follicles, whereas in-
hibin A is produced in all follicle stages including the
dominant follicle and corpus luteum. At the onset of
menopause, the accompanying depletion of ovarian folli-
cles results in total serum inhibin dropping to undetectable
levels (110, 111). In contrast, serum inhibin levels are
markedly raised in women with GCT, and inhibin may be
used as a reliable tumor marker for GCT recurrence (100,
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114, 172, 217). In addition, the high serum inhibin levels
are associated with suppressed plasma FSH levels (217),
indicating that the tumor-derived inhibin is biologically
active and that tumor growth proceeds independently of
FSH (1).

In contrast to the human disease, mice null for the in-
hibin �-subunit gene (Inha�/�), and therefore completely
inhibin deficient, develop invasive sex cord-stromal tu-
mors with 100% penetrance (218) (discussed in Section
IV.A). Matzuk and colleagues propose that inhibins are
secreted tumor suppressors with gonadal specificity, and
they suggest that the apparent contradiction with respect
to human GCT may be explained by resistance to inhibin
in human GCT (218, 219). No evidence for loss of
heterozygosity at the inhibin �-subunit gene (INHA) was
found in a study of 17 human GCT (220). As discussed in
Section II.H.2, in a study of inhibin �-subunit expression
using immunohistochemistry in 30 GCT, three were �-sub-
unit immunonegative, whereas one exhibited slight staining
for the �-subunit (129). These studies raise the question of
whether loss of inhibin �-subunit expression plays a role in
the pathogenesis of human GCT or whether it is simply a
bystander effect in advanced-stage disease.

2. Inhibin/activin receptors
Despite extensive investigation, the receptor complex

and molecular mechanisms by which inhibins act on their
target cells remain poorly understood, in comparison with
the situation for the structurally related family of activins.
Activins and other members of the TGF� superfamily sig-

nal via pairs of specific type I and type II serine/
threonine kinase receptor complexes (re-
viewed in Ref. 221). Activin binds to its type II
receptor (ActRII or ActRIIB), which recruits
and phosphorylates a type I receptor (Alk4 or
ActRIB), which in turn phosphorylates specific
intracellular receptor-regulated Sma and Mad-
related protein (SMAD) transcription factors
(Fig. 5). Inhibins also bind to ActRII via their
�-subunit, albeit with an approximate 10-fold
lower affinity than that of activins (222). This
binding does not, however, induce recruitment
or phosphorylation of the type I receptor, en-
abling inhibin to competitively bind ActRII
and antagonize the action of activin and other
TGF� superfamily members that signal via Ac-
tRII (223, 224). The type III TGF� receptor
betaglycan (TGFBR3), also functions as an in-
hibin receptor (225, 226). Betaglycan enhances
the binding of inhibin to the ActRII receptor,
thereby blocking activin from binding to Act-
RII and antagonizing activin signaling (227)
(Fig. 5).

Expression of the genes encoding the ActR subunits and
betaglycan is widespread in ovarian tumors, including GCT
(173). Bilandzic et al. (228) have shown that nine of 17
(53%) GCT exhibit reduced betaglycan expression com-
pared with normal premenopausal ovary, suggesting that
absence and/or reduced expression of betaglycan on the cell
surface may provide a mechanism via which human GCT
become inhibin resistant. Furthermore, exogenous betagly-
can expression in the KGN and COV434 cell lines promoted
cellular behaviors consistent with that of aggressive or met-
astatic disease, such as adhesion, migration, and invasion
(228). Inaddition,exogenousexpressionofamutant formof
betaglycan defective in inhibin binding, or endogenous
INHA gene silencing, abrogated these behaviors (228).

3. SMAD proteins
The SMAD family of transcription factors, comprising

SMAD1–8, are essential intracellular mediators of TGF�

signaling. More specifically, TGF�, activin, and nodal sig-
nal through the receptor-regulated SMAD2 or -3 whereas
bone morphogenetic protein (BMP) and MIS signal
through SMAD1, -5, or -8. Once phosphorylated, the re-
ceptor-regulated SMAD associate with the co-SMAD,
SMAD4, and enter the nucleus to regulate gene transcrip-
tion (229). The role of SMAD in normal ovarian function
is well documented (214, 230, 231), and although the
generation of various SMAD knockout mouse models
have facilitated investigations into the action of SMAD in
murine granulosa cells and the development of GCT (dis-

Figure 5.

Schematic representation of activin and inhibin mechanisms of action. Activin
binding to ActRII promotes the recruitment and phosphorylation of its type I receptor
(Alk4), which in turn activates specific downstream receptor-regulated SMAD
transcription factor proteins. Inhibin is also capable of binding to ActRII where it
recruits the ancillary binding protein betaglycan (BG; TGF� receptor type III, TGFBR3).
This high-affinity interaction blocks the recruitment of Alk4 to ActRII, thereby
antagonizing the action of activin.
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cussed in Section IV.D), little is known about their role in
human granulosa cell tumorigenesis. Given that loss of
heterozygosity or inactivation mutations in SMAD4 have
been associated with 70–80% of pancreatic cancers, and
to a lesser extent other malignancies, including biliary
tract, cervical, non-small cell lung carcinoma, breast, and
bladder (232), an involvement of SMAD in the pathogen-
esis of GCT is not improbable.

C. Nuclear receptors (NR)
NR are critical for endocrine signaling and have long

been implicated in several hormone-dependent malignan-
cies including those of the breast, prostate and endome-
trium. Although several NR known to be involved in nor-
mal granulosa cell biology have previously been examined
in GCT, including ER� (233), ER�, the progesterone re-
ceptor, (234) and steroidogenic factor-1 (SF-1) (135), the
role of other NR and their pattern of expression in GCT
had not been investigated. The expression levels of all 48
NR were systematically evaluated in a panel of 14 human
adult GCT and the KGN and COV434 cell lines using
low-density gene profiling arrays (235). Results revealed
that chicken ovalbumin upstream promoter-transcription
factor 2 (COUP-TF2) was the most abundantly expressed
NR, with peroxisome proliferator-activated receptor �

(PPAR�), SF-1, and thyroid hormone receptor-� also ex-
hibiting prominent expression (235). Perhaps not surpris-
ingly, ER� was the most abundantly expressed steroid
receptor, with expression of the androgen receptor, ER�,
and the progesterone receptor also of note. The concor-
dance of expression between individual tumor samples
was extremely high for the vast majority of NR. In addi-
tion, expression levels, but for a few NR, were parallel in
the COV434 and KGN cell lines (235).

Estrogen and the ER
Estrogens signal via two NR subtypes, ER� and ER�

(236–239), with ER� being the predominant form ex-
pressed in the ovary (240, 241). Ligand-bound receptors
mediate both autocrine and endocrine actions of estrogen
by binding to estrogen response elements present on es-
trogen-inducible genes (242) and may also act as coregu-
lators of other transcription factors (243, 244).

Several knockout mouse models have highlighted the
importance of intraovarian estrogen action. Mice that
carry a null mutation in the genes encoding ER� [ER�

knockout (�ERKO)] or ER� (�ERKO) lack functional
receptor activity and therefore cannot respond to estrogen
(245–249). The aromatase knockout (ArKO) mouse, gen-
erated by targeted disruption of the cyp19 gene, is able to
respond to but does not synthesize estrogen (250). Female
�ERKO mice are completely infertile (251), whereas

�ERKO females are subfertile and have fewer and smaller
litters than wild-type mice due to a reduced ovarian effi-
ciency (247). In ArKO females, folliculogenesis is dis-
rupted, corpora lutea are completely absent, and mice are
rendered infertile due to an inability to ovulate, demon-
strating the crucial role estrogen plays in the development
of follicles beyond the antral stage (250, 252, 253). The
ovarian phenotype of the various ERKO and ArKO mod-
els has been extensively reviewed (248, 254–264).

Despite their absolute requirement for the maintenance
of the ovarian phenotype, follicle development and opti-
mum female fertility, the role of estrogen and the ER in
granulosa cell biology remains incompletely understood.
In the nonpregnant premenopausal female, the developing
preovulatory follicle is the primary site of estrogen syn-
thesis, evident by the FSH-induced expression of aroma-
tase in granulosa cells. Because granulosa cells also express
both ER� and ER�, it has been suggested that they may
mediate an autocrine estrogen action within the follicle
(265). ER� is predominantly and abundantly expressed in
GCT, in contrast to ER�, which shows moderate expres-
sion in GCT (233). The important role ER� plays in nor-
mal ovarian function has recently been reviewed (264).

Although a limited number of studies have demon-
strated a response to hormonal treatment in GCT (Section
II.I.3), the mechanism of its action remains to be ad-
dressed. Indeed, it can be argued that a direct role for
estrogen in granulosa cell tumorigenesis is unlikely. Tran-
srepression of ER� signaling by the constitutive and in-
ducible activation of the NF�B signaling pathway in the
COV434 and KGN cell lines suggests the role of ER� in
GCT is likely to be antiproliferative (203). Furthermore,
ER� acts as an antiproliferative factor in other cancer
types, including breast, prostate, and colon (266). Thus, if
estrogen action is relevant to tumorigenesis, it is likely to
involve ER�, which, in contrast to ER�, is expressed at
low levels in GCT (233). Therefore, we have speculated
that estrogen is more likely to be acting on the tumor
environment, such as stroma or on angiogenesis, rather
than the tumor itself, if indeed it does play a role in gran-
ulosa cell tumorigenesis (267).

D. Nuclear factor �B
To gain insight into the function of ER� in granulosa

cells and GCT, Chu et al. (203) used COV434 and KGN
cell lines as an in vitro model. Like human GCT (233),
the cell lines were shown to predominantly express both
ER� mRNA and protein, with no ER� protein observed
(203). Interestingly, however, despite ER� expression and
the ability to functionally bind estradiol, when cells were
transfected with estrogen-responsive reporter constructs
and treated with estradiol, no response was observed
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(203). To investigate whether this transcriptional repres-
sion was restricted to ER�, a range of other reporter con-
structs were employed, containing the glucocorticoid recep-
tor (GR) response element, as well as reporter constructs
containing enhancer elements for second messenger path-
ways, including CREB, heat shock, and the MAPK reporters
AP-1 and NF�B. The results revealed two interesting find-
ings; first, GR-mediated transactivation was also re-
pressed, demonstrating that transrepression was not lim-
ited to the ER, and second, although the CREB, heat
shock, and MAPK reporters could all be induced by the
appropriate stimulus, both the AP-1 and NF�B reporters
exhibited constitutive activation under serum-free condi-

tions (203). Furthermore, although inhibition
of AP-1 using MAPK inhibitors had no effect
on ER transcriptional repression, inhibition of
the NF�B pathway using the inhibitor of �B�

(I�B�)-specific inhibitor, BAY11-7082, re-
stored both ER- and GR-mediated transacti-
vation (203). These data demonstrate that the
functional consequence of both constitutive
and ligand-dependent NF�B activity is the
transrepression of ER�-mediated transcrip-
tion in the COV434 and KGN cell lines (203).

Furthermore, we have also shown that al-
though inhibition of NF�B signaling by block-
ing phosphorylation of I�B� down-regulated
the constitutive activity (Fig. 6), it also dose-
dependently decreased cell proliferation and
cell viability while dose-dependently increas-
ing cellular apoptosis in both cell lines (Ja-
mieson, S., and P.J. Fuller, unpublished data).
These findings indicate that unopposed NF�B
signaling mediates the properties of oncogenic
transformation in granulosa cells, that is, en-
hanced growth activity and protection from
apoptotic cell death, and that inhibition of this
pathway attenuates these cellular functions.

To date, little is known about the function of
NF�B in normal granulosa cells. Wang et al.
(268) reported that the NF�B pathway mediates
the FSH-induced up-regulation of X-linked in-
hibitor of apoptosis expression in rodent granu-
losa cells via the PI3K/AKT pathway, thereby
contributing to follicular growth. The activation
of NF�B may therefore provide GCT with a sur-
vival advantage not only through its antiapop-
totic effects but also through transrepression of
ER� signaling (203). The expression of cell sur-
face signaling complexes involved in the inflam-
matory response, including toll-like receptor 4
(TLR4), has previously been reported in murine

(269), bovine (270), and human (271) granulosa cells.
Woods et al. (272) recently reported thatTLR4activationby
bacterial lipopolysaccharide activates the NF�B pathway in
the KGN and COV434 cell lines; however, the significance
of TLR4 expression in GCT remains to be explored.

In view of the constitutive activation of NF�B the effect
of the proteasome inhibitor bortezomib (MG-341, PS-
341, Velcade) was examined in KGN and COV434 cells
(273). Bortezomib, rationally designed to target NF�B ac-
tivity, was approved by the FDA in 2003 for the treatment
of relapsed and refractory multiple myeloma and, when
combined with chemotherapy, may achieve a complete
response (274). Chu et al. (273) showed that bortezomib

Figure 6.

The canonical pathway of NF�B activation. The canonical NF�B pathway is mediated
by the I�B kinase (IKK) complex [consisting of the IKK� and IKK� catalytic subunits
bound to the IKK�/NF�B essential modulator (NEMO) scaffold protein]. Activation of
the IKK complex can be initiated by a wide range of stimuli leading to the
phosphorylation of I�B�. The phosphorylated I�B� is targeted for polyubiquitination
and 26S proteasomal degradation. Free NF�B dimers can then enter the nucleus to
activate transcription of target genes.
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dose-dependently inhibits cell proliferation and viability
in COV434 and KGN cells while promoting apoptosis.
NF�B constitutive activity was not decreased, however,
suggesting that although advanced-stage GCT may re-
spond to bortezomib treatment in a clinical setting, its
effect appears to be independent of NF�B signaling (273).
In addition, this study suggests that alteration of protea-
some function is not contributing to the constitutive NF�B
activity observed in KGN and COV434 cells (273).

E. Oncogenes and tumor suppressors
Known oncogenes have been investigated as possible

candidates in the pathogenesis of GCT, including c-myc,
p21-ras, and c-erbB2 (53); K-, N-, and H-ras and B-raf
(275); and WT1 (276), but no evidence of mutation or
overexpression was revealed. Likewise, mutation or loss
of heterozygosity in the tumor suppressor p53 is not a
feature of GCT (53, 277, 278).

F. Other signaling factors

1. Wnt/�-catenin
The Wnt ligands comprise a large family of highly

conserved, extracellular signaling glycoproteins that
act locally to regulate a diverse range of developmental
and homeostatic processes (279). To date, 19 WNT
members have been identified in humans, and two sub-
classes of Wnt proteins have been loosely classified based on
functional assays: the canonical Wnt, which use a common
�-catenin-dependent signaling cascade, and the nonca-
nonical Wnt, which are less well understood but appear to
signal in a �-catenin-independent manner (279). Ca-
nonical Wnt transduce their signals by binding to the
N-terminal extracellular cysteine-rich domain of the Friz-
zled family of seven-transmembrane G protein-coupled
receptors (280), 10 of which are encoded in the human
genome (281). In the absence of Wnt signals, �-catenin
(CTNNB1) accumulates in the cytoplasm where it is con-
stitutively engaged to a large destruction complex in which
axin and adenomatous polyposis coli function as the scaf-
fold proteins to which glycogen synthase kinase 3�

(GSK3�) and casein kinase I (CKI) bind and rapidly phos-
phorylate �-catenin. Phosphorylated �-catenin becomes
ubiquitinated and is targeted for proteasomal degrada-
tion, resulting in little or no free �-catenin in the cytoplas-
mic pool in the resting state. Upon Wnt binding to their
respective cognate Frizzled receptors, the signal is trans-
duced via a cytosolic phosphoprotein, Dishevelled
(DSH), which recruits the destruction complex to the
plasma membrane, thereby blocking �-catenin phos-
phorylation. Unphosphorylated �-catenin then accu-
mulates in the cytoplasm and is translocated to the nu-

cleus where it forms a complex with the T cell-specific
transcription factor/lymphoid enhancer-binding factor
1 (TCF/LEF) family of transcription factors to regulate
the transcription of WNT target genes (279).

The essential role WNT signaling plays in mammalian
sex determination and ovarian development is well estab-
lished (reviewed in Refs. 282 and 283). In granulosa cells
of the adult ovary, the expression of WNT2 (284) and
WNT4 (285, 286) has been observed. WNT2 binds the
frizzled-9 receptor (FZD9; cluster of differentiation 349,
CD349) to signal via the canonical pathway in cultured
human cumulus cells (287). Furthermore, knockdown
and overexpression studies of Wnt2 in cultured mouse
granulosa cells have revealed that WNT2/�-catenin sig-
naling regulates granulosa cell proliferation, suggesting
that it may also play an important role in human follicu-
logenesis (288).

Aside from being essential for the formation of the fe-
male reproductive system during embryogenesis (289),
WNT4 expression persists in the adult ovary and has been
detected in granulosa cells at all stages of folliculogenesis
from the small growing follicle through to the corpora
lutea (283, 286). Conditional knockout studies ablating
Wnt4 gene expression in granulosa cells resulted in mice
that, although born with a normal ovarian reserve, un-
derwent premature follicle depletion and had only ap-
proximately 25% of healthy antral follicles when com-
pared with controls or, in some cases, complete loss of
antral follicles or corpora lutea (290). This finding sug-
gests that WNT4 mediates normal follicular development
and is required for granulosa cell survival during the later
phases of folliculogenesis (290).

Dysregulation of WNT signaling is associated with
many forms of human cancer (291, 292). In particular,
mutations in the genes encoding axin, adenomatous pol-
yposis coli, and �-catenin have been found to cause aber-
rant activation of WNT/�-catenin signaling. Boerboom et
al. (293) examined archival human and equine GCT sam-
ples for �-catenin expression by immunohistochemistry
and found that a large proportion of equine GCT (14 of
18) displayed �-catenin expression localized to the nu-
cleus, indicative of hyperactivation of the WNT/�-catenin
pathway. In contrast, only one of six human GCT samples
exhibited �-catenin nuclear localization (293), a finding
that was supported by Ohishi et al. (294) who observed
�-catenin nuclear localization to be absent in all of the 32
human GCT samples examined. Interestingly, mice ex-
pressing a dominant-stable mutant form of �-catenin in
their granulosa cells developed late-onset GCT with high
penetrance (293) (discussed further in Section IV.E).

Although the Wnt4 conditional knockout (290) and
�-catenin-overexpressing (293) animal models further im-
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plicate a role for the WNT/�-catenin pathway in granu-
losa cell proliferation and follicular development, its pos-
sible involvement in the etiology of human GCT remains
to be established.

2. IGF system
The autocrine/paracrine action of the IGF system is

hormonally regulated in the ovary where it contributes to
granulosa cell growth and function (295). The response of
granulosa cells to gonadotropins is regulated by locally
produced IGF, which play a key role in sensitizing gran-
ulosa cells to the actions of FSH during the terminal stages
of folliculogenesis (296).

The IGF system is composed of two ligands, IGF-I and
IGF-II; two receptors, the type I receptor, which mediates
most of the somatomedin-like actions of both IGF-I and
IGF-II, and the type II receptor, which binds IGF-II alone
and appears to be involved in degradation of IGF-II; and
six IGF-binding proteins (IGFBP), which bind IGF-I and
IGF-II with high affinity and increase IGF’s half-life,
thereby maintaining a stable pool of IGF in all biological
fluids of the organism. Furthermore, IGFBP can be sub-
divided into two groups that either inhibit or enhance IGF
action on target cells (reviewed in Refs. 296–298).

The somatic cells of the ovarian follicle express genes
encoding IGF-I, IGF-II, and the IGFBP in a spatiotempo-
rally regulated manner (265). In addition, they also exhibit
distinct species-specific patterns of expression. For exam-
ple, in rodents and pigs, the expression of mRNA encoding
IGF-I is confined to granulosa cells (299). In contrast, in
humans, mRNA encoding IGF-II but not IGF-I is localized
to granulosa cells (299), whereas in situ hybridization ex-
periments have shown that IGF-I is expressed at low levels
in the theca cells of antral follicles (297). Based on this
pattern of expression, it is suggested that IGF-I and IGF-II
drive follicle antrum formation (300). Indeed, although
IGF-I has no effect on primordial follicle development,
both IGF-I and IGF-II promote granulosa cell prolifera-
tion in secondary follicles (298). Furthermore, Kamada et
al. (301) suggest that IGF-II may be a general stimulator in
the proliferation and differentiation of granulosa cells and
that cAMP may be a second messenger for the effects of
IGF-II in granulosa cells. IGFBP produced in the ovary
may also contribute to the local modulation of gonado-
tropin action via interaction with components of the
cAMP system (265) (reviewed in Refs. 296–299 and 302).

The IGF system and the signal transduction networks it
regulates play important roles in cancer development (re-
viewed in Ref. 303), including epithelial ovarian cancer
(304). In the human follicle, the predominant IGF is IGF-
II, and its actions are modulated by IGFBP-4 and the
IGFBP-4 protease, pregnancy-associated plasma pro-

tein-A (PAPP-A) (305, 306). Alexiadis et al. (307) char-
acterized the expression of IGF-I, IGF-II, IGFBP-4, and
PAPP-A in a panel of GCT samples and compared levels
with those observed in normal ovary and in epithelial
ovarian tumor samples. Although both IGF-I and IGF-II
were expressed in GCT, the levels were lower than in the
normal ovary and in epithelial ovarian tumors. IGFBP-4
expressionwasalso low in theGCT,whereasPAPP-Agene
expression was highest in the GCT (307). Given the prom-
inent role that the IGF signaling system plays in normal
granulosa cells, these observations suggest that the IGF
system does not play a role in the pathogenesis of GCT,
with PAPP-A likely to be subserving a function other than
IGFBP-4 proteolysis (307).

3. GATA-4
GATA-4 is one of six members of the GATA family of

zinc finger transcription factors that regulate the expres-
sion of genes in which the promoter or enhancer contains
the GATA sequence motif (A/T)GATA(A/G) (308). The
sexually dimorphic pattern of GATA-4 expression during
mouse embryogenesis suggests it may be a regulator of
genes involved in gonadal development and sex differen-
tiation in mammals (309). Indeed, GATA-4 has been
shown to regulate the sex-determining genes SRY (sex-
determining region Y chromosome), SOX9 (SRY-box
containing gene 9), and MIS as well as key steroidogenic
factors in the ovary, including steroidogenic acute regu-
latory protein (StAR), P450 aromatase (CYP19A1), the
inhibin �-subunit (INHA), and 17�-hydroxysteroid de-
hydrogenase type 1 (HSD17B1) (310).

GATA-4 is also implicated in postnatal gonadal develop-
ment in both males and females, with granulosa cells being
the major site of GATA-4 mRNA expression in the adult
human and murine ovary (311). GATA-4 is spatiotempo-
rally expressed in granulosa cells, with GATA-4 mRNA ex-
pression negligible in primordial follicles, high from the pri-
marythroughtoantral stagesof folliculogenesis, followedby
rapidly diminishing levels during ovulation and corpora
lutea formation (171, 311–314). Furthermore, within the
proliferating follicle, GATA-4 mRNA levels are higher in
cumulus granulosa cells than mural granulosa cells (311).

This pattern of expression is consistent with mediation of
granulosa cell proliferation, and given the evidence for FSH-
mediated up-regulation of GATA-4 expression in the mouse
ovary and testis (311), these data suggest GATA-4 activity is
likely induced by the classical FSH/cAMP/PKA pathway in
granulosa cells and plays a role in normal granulosa cell pro-
liferation (310, 315, 316). Furthermore, GATA-4 has also
been shown to participate in TGF�-mediated activation of
the inhibin �-subunit via interaction with SMAD3 in cul-
tured mouse ovarian tumor cells (316).
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Consistent with its localization to preovulatory gran-
ulosa cells, GATA-4 and a GATA family transcriptional
cofactor, Friend of GATA 2 (FOG-2), are also expressed
in GCT (135, 171). Using immunohistochemical analyses
of primary GCT, Anttonen et al. (135) reported that 35 of
80 (44%) exhibited high GATA-4 expression; that is, ex-
pression was equivalent to that seen in normal granulosa
cells. Expression correlated positively with clinical stage
(stage Ic or higher) and risk of recurrence, suggesting
GATA-4 immunostaining may serve as a prognostic tool
in predicting tumor aggressiveness (135).

Following on from these studies, the same group also
reported that GATA-4 expression correlated with Bcl-2
(BCL2; B-cell lymphoma 2) and cyclin D2 (CCND2) ex-
pression in both human and murine GCT and in particular
that GATA-4 participates in the regulation of Bcl-2 ex-
pression in human GCT (314). Given that the antiapop-
totic gene Bcl-2 is under GATA-4 control in other cell
types (317, 318), one may postulate that increased
GATA-4 expression promotes a prosurvival mechanism in
granulosa cells by up-regulating the activation of Bcl-2,
thereby protecting cells from apoptosis and contributing
to granulosa cell tumorigenesis (314).

G. Apoptosis
To date, much of the research into the pathogenesis of

GCT has focused on the aberrant activation of pathways
and oncogenes known to exert a pro-proliferative or pro-
survival effect on granulosa cells. Follicular growth and
differentiation from the primordial stage through to a fully
competent corpus luteum is, of course, a highly complex
process that is realized by less than 0.1% of follicles (319).
The maintenance of optimum fertility in females relies on
a delicate balance between signals for cell survival in follicles
that are recruited for maturation during each ovulatory cycle
and signals for cell death in those that, at some point, must
be eliminated by atresia. Therefore, it is reasonable to pos-
tulate that impaired apoptosis is likely to be a contributing
mechanism in granulosa cell tumorigenesis (174).

Several studies have examined the potential involve-
ment of the naturally occurring cytokine, TNF-related ap-
optosis-inducing ligand (TRAIL; cluster of differentiation
253, CD253) and its death domain-containing transmem-
brane receptors, TRAIL receptor 1 (TRAIL-R1)/death re-
ceptor 4 and TRAIL-R2/DR5, in GCT. A member of the
TNF superfamily, TRAIL has been under intense focus
due to its ability to preferentially induce programmed cell
death in a number of human malignancies while exhibiting
little or no toxicity in normal cells (320). This discovery
prompted a rapid surge in studies evaluating the efficacy
of cancer therapeutic agents that can activate the TRAIL
apoptotic pathway, and several phase II clinical trials are

underway. These therapeutic agents include recombinant
human TRAIL (rhTRAIL) and DR4-/DR5-specific ago-
nistic monoclonal antibodies (321). Resistance to TRAIL
therapy is frequently encountered, requiring the resensi-
tization of malignant cells to TRAIL by combinatorial
treatment with chemotherapy or radiation (321).

TRAIL mRNA expression has been reported in avian
and porcine granulosa cells (322, 323) as well as human
nonneoplastic granulosa cells (derived from in vitro fer-
tilization) and the KGN and COV434 cell lines (324). In
situ hybridization and immunohistochemical analysis has
also shown TRAIL and its receptors to be expressed in
adult human granulosa cells at multiple stages of follicu-
logenesis (325). Immunohistochemical analysis of a tissue
microarray containing 80 primary and 12 recurrent GCT
samples showed DR4 expression to be strong or interme-
diate in 18 and 73% of samples, respectively, with only
9% exhibiting low DR4 expression levels (326). Similar
results were seen for DR5 with expression regarded as
strong, intermediate, or low in 17, 75, and 8% of samples,
respectively (326).

In vitro studies using the two GCT-derived cell lines
showed that although rhTRAIL induced a slight decrease
in viability for both cell lines, treatment in combination
with a proteasome inhibitor (Z-LLF-CHO) synergistically
enhanced the TRAIL-induced loss of viability (327). This
occurred independently of p53 activity and was, at least in
part, due to the up-regulation of DR5 and the proapop-
totic protein Bax (327). Moreover, in comparison with
treatment with TRAIL alone, the reduction in cell viability
observed in combination with the proteasome inhibitor
occurred in a caspase-8-independent manner (327). An-
other study by the same group also showed that the
TRAIL-induced loss of viability in the COV434 and KGN
cell lines could be enhanced through combinatorial treat-
ment with the conventional chemotherapeutic cisplatin
(324). Unlike proteasomal inhibition, however, the cis-
platin-induced cell death and enhanced TRAIL sensitivity
occurred in a partially p53-dependent manner, suggesting
multiple mechanisms and sites of action are involved in
synergistic activity (324).

As discussed in Section II.F.3, increased GATA-4 ex-
pression correlates with increased expression of the anti-
apoptotic protein Bcl-2 in human GCT (314). Targeted
overexpression of Bcl-2 in ovarian somatic cells has been
shown to result in decreased apoptosis and enhanced fol-
liculogenesis in mice (328). Kyrönlahti et al. (326) showed
that rhTRAIL dose-dependently activated caspase-3 and
induced apoptosis in isolated primary human GCT cells
and the KGN cell line (326). The ability of GATA-4 to
modify TRAIL-induced apoptosis in human GCT was ex-
amined, and although the treatment of KGN cells with
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TRAIL had no effect on endogenous GATA-4 levels, in-
hibition of GATA-4 expression by either dominant-nega-
tive adenovirus or short hairpin RNA-producing constructs
sensitized KGN cells to TRAIL-induced apoptosis (326).
However, this effect was observed even in the absence of
exogenousTRAIL, suggesting thatGATA-4alonemayfunc-
tion as an antiapoptotic factor in GCT and that the effect of
GATA-4 knockdown is not TRAIL specific (326).

H. FOXL2
As described in Section II.F.1, adult GCT have recently

been characterized by a single somatic missense mutation
in the FOXL2 gene (c.402C3G; p.C134W) (4, 6–11).
The FOXL2 gene comprises a single exon that encodes a
member of the forkhead domain/winged-helix family of
transcription factors. Like the other members of the fork-
head family, FOXL2 contains a characteristic winged he-
lix DNA-binding domain of approximately 100 amino
acids that binds DNA at a 7-bp core recognition motif
(5�-G/A-T/C-C/A-A-A-C/T-A-3�) (329). During mamma-
lian embryogenesis, FOXL2 is the earliest identified sex-
ually dimorphic marker of ovarian differentiation (330–
333). FOXL2 is specifically expressed in eyelids and in
fetal and adult ovarian follicular cells (331); its expression
persists in the ovary through reproductive life in the gran-
ulosa cells of developing follicles and the cumulus oopho-
rus of the preovulatory follicle (334). Animal knockout
studies have highlighted the important role FOXL2 plays
in multiple stages of follicle development. Germline dele-
tion of Foxl2 in the mouse results in a high level of peri-
natal mortality and premature ovarian failure in those fe-
males that survive (332, 335). FOXL2 is required for
optimal formation of primary follicles. In Foxl2-null ova-
ries, granulosa cells fail to complete the squamous to
cuboidal transition, resulting in the arrest of folliculogen-
esis at the primordial follicle stage, which ultimately leads
to premature follicular depletion (332, 335). Conditional
deletion of Foxl2 in adult female mice induces the trans-
differentiation of granulosa cells into functional Sertoli
cells, which then produce androgens rather than estrogens
(336). This finding reveals an essential role for FOXL2 in
the maintenance of the ovarian phenotype and normal gran-
ulosa cell function in adults. Furthermore, heterozygous
FOXL2 loss-of-function mutations result in the autosomal
dominant disease blepharophimosis-ptosis-epicanthus in-
versus, which is associated with eyelid malformation and
premature ovarian failure (330).

The expression levels of FOXL2 in the adult GCT differ
little fromthose innormalovarywithonlyoccasional (two
of 56), somewhat anomalous tumors exhibiting increased
expression (6). Given the crucial role FOXL2 plays in nor-

mal granulosa cell biology, the molecular consequences of
the C134W mutation in adult GCT remain to be eluci-
dated. The mutation lies in the wing 2 domain of the fork-
head-DNA binding domain of the FOXL2 protein (4), a
highly conserved residue across species. Homology mod-
eling indicates the mutation appears unlikely to compro-
mise DNA binding but may influence the interaction with
other transcription factors (4).

A number of targets of FOXL2 have been identified in
both pituitary (337) and gonadal cells (334). In the ovary,
these include a number of genes fundamental to granulosa
cell function and follicle development, including growth
differentiation factor 9 (GDF9), inhibin �A (INHBA),
MIS (338), aromatase (339), and follistatin (340). FOXL2
has also been shown to repress promoter activity of the
StAR gene (341). The regulation of gene expression by
FOXL2 may also involve coregulatory interactions with
other transcription factors including AP-1 (342, 343), the
nuclear receptor SF-1 (344, 345), BMP2 (340), and the
SMAD family of transcription factors (342, 346–348), all
of which play fundamental roles in ovarian biology.

Fleming et al. (13) investigated whether the C134W
mutation had any effect on the ability of FOXL2 to reg-
ulate the expression of its steroidogenic targets in GCT.
Using the KGN and COV434 cell lines, it was shown that
the mutation altered the regulation of the aromatase pro-
moter but not the StAR promoter (13). Moreover, there
was no evidence to suggest that the mutant protein directly
alters DNA binding; instead, an alteration in an associated
protein-protein interaction is likely (13). Fleming et al.
(13) suggest that the unknown candidate protein may be
FOXL2 itself; with the mutation inhibiting FOXL2’s abil-
ity to form a homodimer, for instance. This interaction
may provide the mechanism via which hyperestrogenism
is manifested, as seen in 70% of patients with GCT.

Given their previous finding that FOXL2 overexpres-
sion induces apoptosis in rat granulosa cells (349), Kim et
al. (7) examined the effect of the C134W mutation on
granulosa cell apoptosis. Overexpression of wild-type
FOXL2 in the KGN cell line significantly increased cellu-
lar apoptosis in comparison with cells in which C134W
FOXL2 was overexpressed (14). Moreover, it was
shown that FOXL2-induced apoptosis was dependent on
caspase-8-mediated B-cell lymphoma-2 homology 3 inter-
acting domain death agonist and Bcl-2 homologous an-
tagonist signaling and that wild-type FOXL2 significantly
up-regulated the death receptors, TNFR1 and Fas, in com-
parison with mutant FOXL2 (14). These data suggest that
FOXL2 acts as a tumor suppressor in normal granulosa
cells and that the C134W mutation impairs FOXL2’s abil-
ity to mediate death ligand-induced apoptosis (14). Fur-
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ther investigation is required to determine the underlying
mechanism via which this occurs.

The C134W mutant might be postulated to be either an
activating mutation or a gain-of-function mutation; how-
ever, Benayoun et al. (12) found limited evidence to sup-
port activation in an in vitro assay. Given the high homol-
ogy with other members of the FOX family, several of
which also play fundamental roles in ovarian function,
such as FOXO3a (350), a gain-of-function mutation is a
distinct possibility. Based on their findings, Benayoun et
al. (351–353) have argued that FOXL2 is a tumor sup-
pressor gene. Although decreased FOXL2 expression is a
feature of advanced disease in juvenile GCT (92), this may
be a bystander rather than a driver effect (354). Of 233
adult GCT reported to be C134W mutation positive, with
the exception of six cases, no evidence of loss of the wild-
type FOXL2 allele was reported (4, 6 – 8, 10, 11), as
would be expected for a tumor suppressor gene. Al-
though it remains formally possible that the mutation
represents very targeted inactivation of a specific tumor
suppressor activity that is dosage dependent, the pres-
ence of a single, specific, heterozygous mutation would
seem rather more analogous to the situation seen for
other oncogenic or pro-proliferative mutations, as is ob-
served with the RET (M918T) protooncogene in multiple
endocrine neoplasia (MEN) type 2 (355), the RAS and
BRAF (V600E) mutations in ovarian, thyroid, and other
tumors (356, 357), and the JAK2 (V617F) mutation in
myeloproliferative disease (358). Conversely, inactivation
of a tumor suppressor gene such as the MEN1 gene in
MEN type 1 (359) or the BRCA1/2 genes in breast cancer
(360, 361) is associated with a myriad of mutations.

IV. Transgenic Mouse Models

A number of transgenic mouse models that develop
GCT have been identified; however, whether any truly
recapitulate the human situation is not clear.

A. Inhibin �-subunit knockout
To investigate the role of inhibin in mammalian repro-

duction and development, Matzuk et al. (218) employed
homologous recombination in mouse embryonic stem
cells to delete the �-inhibin gene, creating a transgenic
model that is completely inhibin deficient. Mice homozy-
gous for the deletion were susceptible to the development
of bilateral, mixed, or incompletely differentiated sex
cord-stromal tumors that developed with 100% pen-
etrance in both sexes and, in some cases, appeared as early
as 4 wk of age (218). In females homozygous for the de-
letion, tumors were typically multifocal, hemorrhagic,

and of mixed granulosa/Sertoli cell appearance, whereas
the male littermates developed intratubular testicular le-
sions of Sertoli cell origin that often resembled juvenile
GCT (218, 219). In all homozygous null animals, tumor
development was rapidly accompanied by a severe cancer
cachexia-like wasting syndrome that was caused by a
�10-fold increase in circulating activin and ultimately re-
sulted in death (362, 363). Inhibin-deficient mice gonad-
ectomized at an early age were rescued from the cachexia
syndrome but went on to develop adrenal sex cord steroid-
ogenic tumors with nearly 100% penetrance and ultimately
succumbed to a wasting syndrome similar to that seen in the
intact �-inhibin-null animals (362).Therefore, it is suggested
that inhibin is a tumor suppressor with specificity to the go-
nads and adrenal cortex (218, 219, 362).

Using the �-inhibin-null animal as a model system for
gonadal sex cord-stromal tumorigenesis, Matzuk and col-
leagues have performed comprehensive cross-breeding pro-
gramswithotherconditionalknockoutmodels to investigate
the role of potential modifiers in disease progression, includ-
ing the gonadotropins, sex steroid hormones and receptors,
cell cycle regulators, and activin signaling (reviewed in Ref.
364). In general, deletion of the gonadotropins and activin
signaling modulators resulted in complete loss or delayed
onsetof tumorsaccompaniedbyabsenceof thecachexia-like
syndrome when compared with Inha�/� mice (364). The
cachexia-like syndrome was shown to be directly caused by
increased activin signaling through the ActRII receptor, with
symptoms minimized in double-homozygous mutant mice
null forboth inhibinandActRII (363). In contrast, lossof the
sex steroid hormones and receptors resulted in accelerated
tumor development and an earlier onset of the wasting syn-
drome (364).

Additional studiesemployingatransgenicmodel inwhich
inhibin-deficient animals carry the mouse metallothionein
I-follistatin transgene (inham1/inham1, MT-FS�) revealed
that although histologically similar, gonadal tumors still de-
veloped, mice exhibited a less severe wasting syndrome,
lower serum activin levels, and a statistically significant pro-
longed survival in a number of cases compared with inhibin-
null mice alone (365). These data suggest that follistatin can
act as a physiological modifier to block the activin-mediated
cachexia-like syndrome and/or slow the progression of go-
nadal tumors in these mice (365).

B. Targeted overexpression of luteinizing hormone
To investigate the direct role of hypersecretion of LH on

reproductive abnormalities, Risma et al. (366) generated
a transgenic mouse model in which elevated serum LH
levels were chronically maintained. This was achieved by
introducing a transgene containing a bovine �-subunit
promoter to drive the expression of a chimeric LH� sub-
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unit containing the carboxyl-terminalpeptide (CTP)of the
human chorionic gonadotropin �-subunit (hCG�) linked
to the carboxy terminus of the bovine LH� subunit (366).
This bLH�-CTP insert, expressed exclusively in the go-
nadotropes of the anterior pituitary, resulted in elevated
levels of serum LH by 1) increasing the secretion of hor-
mones from the pituitary and 2) extending the half-life of
LH heterodimers containing the chimeric �-subunit by
slowing their elimination rate from serum (366). The re-
sultant transgenic animals had serum LH levels that were
elevated 5- to 10-fold above that of nontransgenic controls
(366). By 4–9 months of age, a subset of the bLH�-CTP
females developed GCT and theca-interstitial cell tumors,
suggesting that altered gonadotropin levels are tumori-
genic (366). It was subsequently shown that LH induction
of GCT in bLH�-CTP transgenics is strain specific (367).
When the transgene was present in a CF-1 background, all
females developed GCT and pituitary hyperplasia by 5
months of age (n � 8), whereas in hybrid mice, generated
by crossing CF-1 males with C57BL/6 (n � 6), SJL (n � 4),
or CD-1 (n � 13) females, their ovaries developed a lu-
teoma rather than GCT, and the pituitary developed pi-
tuitary hyperplasia and subsequent adenoma (367, 368).
Moreover, 5-month-old transgenic females had serum LH
levels that were elevated only 2-fold over that of their
nontransgenic littermates (366, 367, 369). Compared
with the 5- to 10-fold increase observed in younger mice
of the same strain, a situation analogous to the elevated
serum inhibin levels observed in the human disease state,
this observation suggests GCT-derived inhibin negatively
impacts transgene expression (367, 368). Together these
results suggest that although chronically elevated serum
LH levels can result in the development of GCT, the effect
is also linked to an underlying genetic predisposition. In-
deed, the strain dependency of tumor development pro-
vides a platform via which the mechanism of LH-induced
tumorigenesis may be elucidated (368).

As discussed previously, no definitive association be-
tween gonadotropin hyperstimulation, in the context of
infertility treatment for example, and the development of
ovarian tumors has been observed in humans. The results
of these animal studies may therefore add weight to the
argument that abnormal gonadotropin stimulation is tu-
morigenic (366). This finding is also supported by studies
in which the suppression of FSH and LH levels in inhibin-
deficient animals (Inha�/� Gnrh1hpg/hpg) resulted in loss
of both tumor development and suppression of the ca-
chexia-like syndrome observed in the inhibin-�-knockout
mouse (370).

C. Simian virus 40 T-antigen driven by inhibin �-subunit
promoter

With the aim of establishing in vivo gonadal tumor
models and immortalized gonadal somatic cell lines,
Kananen et al. (371) generated transgenic mice in which
the simian virus 40 T-antigen (SV40 TAg) was driven by
either 6- or 2.1-kb fragments of the mouse inhibin �-sub-
unit promoter (inh�/TAg). Female animals carrying the
6-kb fragment were infertile and developed GCT with
100% penetrance by 5–7 months of age (n � 36) (371–
373). Further investigation of this model revealed a phys-
iological state congruous with that of human GCT pa-
tients, including continued folliculogenesis, depressed
serum gonadotropins, elevated serum inhibin levels, and
similar histopathological features (374). Suppression of
circulating gonadotropins by administration of a GnRH
antagonist or crossbreeding onto a gonadotropin-defi-
cient hypogonadal mutant (hpg) background prevented
tumor development in gonad-intact mice (374, 375). Pre-
pubertal gonadectomy resulted in adrenocortical tumors
that were also lost after induced hypogonadotropic hypo-
gonadism, suggesting tumor development was related to
elevated gonadotropin secretion (372, 375).

When the inh�/TAg animals were crossed with those
producing constitutively elevated levels of LH (bLH�-
CTP), the resultant double transgenics (bLH�-CTP/inh�/
TAg) displayed earlier tumor formation and more rapid
disease progression than inh�/TAg animals (376). This
occurred in conjunction with suppressed FSH secretion,
suggesting that either high-level exposure to LH or altered
gonadotropin ratios have a tumor promoter effect (376).

D. SMAD knockouts
Given the role of elevated serum activin levels in go-

nadal tumorigenesis and subsequent fatal, cachexia-like
syndrome in inhibin-�-deficient mice, various Smad
knockout models have been developed to further investi-
gate the contribution of downstream components of
TGF� receptor complex signal transduction.

Activins signal via the activin/TGF�-specific receptor-regu-
lated SMAD, SMAD2 and SMAD3. Inha�/� Smad3�/� dou-
ble-knockout mice exhibited delayed tumor development and
increased survival due to the uncoupling of activin signaling
from the cell cycle machinery, thus attenuating ovarian
tumor progression and delaying the onset of the cachexia-
like syndrome (377, 378). Ovarian tumors developed by
26 wk of age in the majority of double-knockout females,
compared with 4 wk in Inha�/� animals, suggesting that
multiple genes contribute to inhibin-deficient gonadal tu-
morigenesis in females (377). In addition, delayed tumor
development was significantly more pronounced in the
male littermates with tumors either absent or unilaterally
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slow growing, indicating that although SMAD3 may be
the principal transducer of gonadal tumorigenesis in
males, it potentially overlaps with SMAD2 function in
granulosa cells (377).

To examine the effect of loss of the BMP-specific re-
ceptor-regulated SMAD, SMAD1, SMAD5, and SMAD8,
which modulate BMP and MIS signaling, conditional go-
nadal somatic cell Smad1/5 and Smad5/8 double knock-
outs and Smad1/5/8 triple knockouts were generated
(379). Smad5/8 double knockouts were viable and fertile
(379). In contrast, both Smad1/5 double knockouts (n �
15) and Smad1/5/8 triple knockouts (n � 15) developed
poorly differentiated, unilateral or bilateral GCT with
100% penetrance by 3 months of age (379). Approxi-
mately 80% of aged mice developed peritoneal and lym-
phatic tumor metastases (379). Further characterization
of the Smad1/5 double-knockout model revealed close
physiological and histological similarities to that of hu-
man juvenile GCT (380). Together these models imply
roles for Smad1 and Smad5 as tumor suppressors with
redundant functions (379).

E. Constitutively activated Wnt/�-catenin
Boerboom et al. (293) showed that targeted constitutive

activation of �-catenin (CTNNB1) in granulosa cells, via
generation of mice that express a dominant stable �-catenin
mutant (Catnbflox(ex3)/�;Amhr2Cre/�), resulted in the devel-
opment of multiple ovarian lesions resembling disorganized
follicles and cystic structures, which often evolved into GCT
in older mice (293). These tumors, which exhibited many
histopathological similarities to the human disease, were not
detected before 19 wk of age (n � 0 of 28), appeared in 44%
of animals by 6 months of age (n � 4 of 9), and reached a
maximum penetrance of 57% by 7.5 months of age (n � 8
of 14) (293). Although these data suggest a causal link be-
tween misregulated Wnt/�-catenin signaling and GCT de-
velopment, the late onset of the tumors may indicate that this

pathway alone is insufficient to cause GCT. Build-
ing upon this study, the same Amhr2Cre/� line was
crossed with Ptenflox/flox animals to condition-
ally target the PI3K antagonist gene Pten in
granulosa cells (Ptenflox/flox;Amhr2Cre/�)
(172). In the resultant model, in which the
PI3K/AKT pathway was constitutively acti-
vated, five of 70 mice (�7%) developed ag-
gressive and metastatic GCT (172). Interest-
ingly, when crossed with the Catnbflox(ex3)/

�;Amhr2Cre/� model (Ptenflox/flox;Ctnnb1flox(ex3)/

�;Amhr2cre/�), mice developed perinatal-
onset, bilateral GCT with 100% penetrance,
suggesting a synergistic effect between the Wnt/
�-catenin and PI3K/AKT pathways (172).

F. Two-yr-old �ERKO
As mentioned previously, ER� and ER� are differentially

expressed and regulated in specific tissues. It has recently
beenreportedthatoneofthe linesoffemalemicenull forER�

(�ERKO) (247) develop sex cord tumors (less differentiated)
and GCT (differentiated and estrogen secreting) with 100%
penetrance by 2 yr of age (n � 23) (217). Spontaneous tumor
development was not observed in �ERKO or ��ERKO fe-
male animals suggesting ER� is required for tumor develop-
ment (217). Furthermore, it was shown that phospho-
SMAD2/3 was highly expressed in the nuclei of tumor cells,
as was LH receptor expression (217). Given the similarities
with Inha�/� females, Fan et al. (217) suggest that in the
absence of ER�, proliferative actions via the FSH/SMAD3
pathway are able to signal unopposed. In addition, the in-
creased expression of ER� further contributes to tumor pro-
gression by increasing estrogen-stimulated granulosa cell
proliferation (217).

V. Future Directions

The evidence is now compelling that the somatic
C134W mutation in the FOXL2 gene is etiological in the
development of adult GCT. Because the mutation is absent
from juvenile GCT it confirms the suggestion, previously
based on tumor morphology, that juvenile GCT are a dis-
tinct disease (Table 2). Although the mutation is clearly
necessary in the adult subtype, it remains to be determined
whether it is sufficient for tumorigenesis. It obviously does
not explain differences in tumor stage, disease recurrence,
aggressiveness, etc. Therefore, it follows that other, pre-
sumably mutational, events must be contributing to the
pathogenesis of adult GCT (Fig. 7). The elucidation of
these changes remains an important goal, particularly be-
cause they are likely to have prognostic and therapeutic

Figure 7.

Adult GCT are defined by a single somatic missense mutation in the FOXL2 gene (c.
402C3G; p.C134W). Although the high frequency with which the mutation occurs
suggests it is etiological for adult GCT, it does not explain differences in tumor stage,
disease recurrence, or aggressiveness. The molecular changes that drive disease
progression are likely to involve the subversion of signaling pathways essential for
normal granulosa cell biology. Evidence suggests these may include NF�B, MAPK/
ERK, and ER�.
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implications. The existing mouse models, although offer-
ing biological insights, have not contributed greatly to
addressing the clinical problem; a mouse model in which
expression of the FOXL2 C124W mutation is induced in
granulosa cells may be informative.

It is surprising that substantive transcription and/or
gene expression studies have not been reported for adult
GCT (45). The study of Shah et al. (4) includes a full
transcription analysis, but this is restricted to four GCT
only, without regard to tumor stage, etc. They do, how-
ever, note the relative genomic stability of these tumors;
this suggests that a transcriptome analysis of a larger co-
hort, perhaps filtered by stage or behavior, might be both
rewarding and revealing.

Although it is to be hoped that a more detailed under-
standing of the molecular pathogenesis of these tumors will
identify key therapeutic targets, the existing evidence for up-
regulation of specific signaling pathways together with an
emerging array of new therapeutic agents provides exciting
applications for novel therapeutic approaches. Although the
in vitro studies discussed suggest several possible ap-
proaches, these can only be validated through formal clinical
trials. In view of the relative rarity of GCT, particularly be-
yond stage I tumors where surgical cure is achieved, inter-
national collaboration will be required to mount successful
trials. Such trials might, for instance, focus on the use of TKI
of the MAPK/ERK pathway and/or of NF�B signaling.
Given the relatively vascular nature of large GCT, it may be
that they are susceptible to inhibition of angiogenesis using
VEGF inhibitors, a strategy that may not target the tumor
cells specifically. In reality it is unlikely that any one agent
alone will be fully effective, but strategic coupling of agents
targeting several pathways may allow lower doses, less tox-
icity, and greater efficacy (324).

VI. Summary

The past few years have seen significant progress in the
field of GCT research. In particular, the finding that the
somatic FOXL2 C134W mutation is characteristic of
adult-type GCT is an exciting advance in clinical molec-
ular oncology, yet many questions remain to be resolved.
At a molecular level, the consequence of the mutation and
its contribution to the mechanisms of GCT pathogenesis
remains to be determined. In addition, because the ma-
jority of patients are diagnosed with stage I disease, the
major clinical challenge in the management of adult GCT
remains the identification of prognostic factors and/or tu-
mor markers that are able to predict disease recurrence.
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