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Estrogens play a fundamental role in the physiology of the reproductive, cardiovascular, skeletal, and central
nervous systems. In this report, we review the literature in both rodents and humans on the role of estrogens
and their receptors in the control of energy homeostasis and glucose metabolism in health and metabolic
diseases. Estrogen actions in hypothalamic nuclei differentially control food intake, energy expenditure, and
white adipose tissue distribution. Estrogen actions in skeletal muscle, liver, adipose tissue, and immune cells
are involved in insulin sensitivity as well as prevention of lipid accumulation and inflammation. Estrogen
actions in pancreatic islet �-cells also regulate insulin secretion, nutrient homeostasis, and survival. Estrogen
deficiency promotes metabolic dysfunction predisposing to obesity, the metabolic syndrome, and type 2
diabetes. We also discuss the effect of selective estrogen receptor modulators on metabolic disorders.
(Endocrine Reviews 34: 309–338, 2013)
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I. Contribution of Sex Hormones to
Metabolic Diseases

In 1941, estrogen products were approved by the US
Food and Drug Administration as a hormone supple-

ment to treat postmenopausal symptoms. In the following
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Abbreviations: AgRP, Agouti-related peptide; AI, aromatase inhibitor; AMPK, AMP-acti-
vated protein kinase; ARC, arcuate nucleus; CCK, cholecystokinin; CEE, conjugated equine
estrogen; CoA, coenzyme A; E1, estrone; E2, 17�-estradiol; ER, estrogen receptor; ERE,
estrogen response element; EST, estrogen sulfotransferase; FAS, fatty acid synthase;
GLP-1, glucagon-like peptide-1; GLP-1R, GLP-1 receptor; GLUT4, glucose transporter 4;
GPER, G protein-coupled ER; HFD, high fat diet; HGP, hepatic glucose production; HRT,
hormone replacement therapy; KO, knockout; LDL, low-density lipoprotein; leprb, leptin
receptor; LPL, lipoprotein lipase; LXR, liver X receptor; MC4, melanocortin 4; MEF2, myo-
cyte enhancer factor 2; MERKO, muscle-specific ER�KO (mice); NPY, neuropeptide Y; NTS,
nucleus tractus solitarius; OVX, ovariectomy; POMC, pro-opiomelanocortin; PPAR, perox-
isome proliferator-activated receptor; PPT, propylpyrazole triol; SERM, selective estrogen
receptor modulator; SF1, steroidogenic factor-1; SREBP-1c, sterol regulatory element-
binding protein 1c; STAT3, signal transducer and activator of transcription 3; STZ, strep-
tozotocin; TSEC, tissue-selective estrogen complex; VMH, ventromedial hypothalamus;
VMN, ventromedial nucleus; WAT, white adipose tissue.
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decades, exogenous estrogen acquired the reputation as an
antidote to a variety of health-related consequences of ag-
ing in a number of different tissues. In 1995, approxi-
mately 38% of postmenopausal women in the United
States used hormone replacement therapy (HRT), consist-
ing of estrogen with or without progestin, to treat symp-
toms of menopause and to prevent chronic conditions
such as cardiovascular disease, osteoporosis, and Alzhei-
mer’s disease (1). The widespread enthusiasm for estrogen
replacement therapy experienced its first hesitation in the
1970s when it was linked to uterine cancer. This led to the
addition of progesterone for treatment among women
with an intact uterus (2, 3). It was not until the Women’s
Health Initiative (WHI) was abruptly halted in 2002 as a
result of a link between HRT and increased risk of coro-
nary heart disease events, stroke, and breast cancer that
the health benefits of HRT were seriously questioned (4).
The WHI was a large clinical trial in postmenopausal
women that tested whether HRT could prevent
age-related health problems like cardiovascular disease
and osteoporosis. Notably, this ambitious study focused
on clinical events and did not consider outcomes associ-
ated with symptom relief among participants. Results of
the WHI led many women and their physicians to over-
estimate the individual-level riskassociatedwithHRTuse.
However, the overall conclusions from the WHI do not
apply to most menopausal women who initiate HRT in
their 50s. In fact, current scientific evidence suggests that
among symptomatic menopausal women younger than
age 60 or within 10 years of menopause, the benefits of
HRT outweigh the risks (5). As a result of dramatic in-
creases in life expectancy in developed countries, many
women will spend the second half of their lives in a state
of estrogen deficiency. Apart from degenerative diseases of
the cardiovascular, skeletal, and central nervous systems,
estrogen deficiency enhances metabolic dysfunction pre-
disposing to obesity, the metabolic syndrome, type 2 di-
abetes, and certain cancers (eg, breast and colon, and hep-
atocellular carcinoma) (6, 7). Thus, the contribution of
estrogen deficiency in the pathobiology of multiple
chronic diseases in women is emerging as a new therapeu-
tic challenge of the 21st century. To address this growing
problem, improved understanding of how estrogens con-
tribute to energy balance and glucose homeostasis prom-
ises to yield novel therapeutic applications for an increas-
ingly large segment of the female population. Here, we
review evidence in rodents and humans on the role of
estrogens and their receptors in regulating metabolic ho-
meostasis in health and disease.

II. Origin of Circulating and Tissue Estrogens
in Males and Females

In healthy premenopausal women, 17�-estradiol (E2), the
main circulating estrogen, is produced by the ovaries after
aromatizationofandrostenedione to estrone (E1)and sub-
sequent conversion of E1 to E2. Among women with nor-
mal menstrual cycles, E2 functions as a circulating hor-
mone that acts on distant target tissues (Figure 1A). In
postmenopausal women, however, when the ovaries fail
to produce E2 and in men—who have naturally low levels
of circulating E2—E2 does not function as a circulating
hormone; rather, it is synthesized in extragonadal sites
such as breast, brain, muscle, bone, and adipose tissue
where it acts locally as a paracrine or intracrine factor (8).
Therefore, among both postmenopausal women and men,
the determinant of E2 action is not circulating estrogens;
rather, E2 function depends on estrogen biosynthesis from
a circulating source of androgens (Figure 1B). Conse-
quently, in these individuals, a major driver of E2 action
is the aromatization of androgens to estrogens (8). Thus,
tissue metabolism or inactivation of E2 is also an es-
sential parameter controlling cellular estrogenic action
(9). Tissue estrogen sulfotransferase (EST) is a critical
mediator of estrogen action (Figure 1, A and B). EST is
a cytosolic enzyme that provides a molecular switch in
target cells that inhibits estrogen activity by conjugating
a sulfonate group to estrogens, thereby preventing bind-
ing to estrogen receptors and enhancing urinary excre-
tion of the hormone (10).

III. Mechanisms of Estrogen Receptor
(ER) Action

Early studies of the reproductive actions of estrogens led
to the establishment of a paradigm in which classical nu-
clear ERs acted as ligand-activated transcription factors
(11). ER modulation of gene transcription is a highly dy-
namic process. The ER exists in 2 main forms, ER� and
ER�, each of which has multiple isoforms and exhibit
distinct tissue expression patterns and functions (12). The
classical “genomic” mechanism of ER action typically oc-
curs within hours, leading to activation or repression of
target genes. In this classic signaling pathway, ligand-
activated ER dissociates from its chaperone heat-shock
protein and binds as a dimer either directly to an estrogen
response element (ERE) in target gene promoters or indi-
rectly to activator protein 1 or specificity protein 1 re-
sponse elements through protein tethering to DNA (13).
After binding, these ER dimers interact with cofactors (co-
activators or cosuppressors) to regulate gene expression.
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Importantly, ERs acting on different response elements
exert varying activity profiles. For example, when tethered
via activator protein 1 sites, ER� exhibits E2-dependent
transcription activation, whereas E2 bound to ER� has no
effect on transcription (14). In addition, depending on the
identity and concentration of the ligand, ER�-ER� ho-
modimers, ER�-ER� homodimers, or ER�-ER� het-
erodimers are formed, with ER� playing a dominant role
in heterodimer formation (15). There is overlap in binding
sites for E2-liganded ER� and ER� when these receptors
are present alone in cells. However, when both ERs are
present, few sites are shared between ER� and ER�. Each
ER restricts the binding site occupancy of the other, with

ER� again being dominant (16). Furthermore, ligand-ac-
tivated ER promotes transcription in a cyclic fashion. The
ER transcription complex appears to cycle on and off tar-
get promoters as long as E2 is present. The regular cycling
of the ER transcription complex may represent a mecha-
nism that permits ongoing assessment of, and adaptation
to, the external environment (17).

Although reproductive functions are mostly mediated
via classical nuclear ER acting as ligand-activated tran-
scription factors, a large component of ER actions related
to energy metabolism also involves extranuclear ERs, in-
directly modulating gene expression or acting indepen-
dently of nuclear events (18). E2 can activate rapid signals

Figure 1.

Figure 1. Origin of circulating and tissue estrogens. A, In healthy premenopausal women, estrogen (E2) is produced by the ovaries and functions as
a circulating hormone that acts on distant target tissues. Here WAT is represented. B, In postmenopausal women and in men, E2 does not
function as a circulating hormone; rather, it is synthesized in extragonadal sites from circulating androgenic precursors such as T, androstenedione
(4A), or dehydroepiandrosterone (DHEA). Cellular estrogenic action depends on: 1) the ER signaling and sensitivity; 2) the activity of enzymes like
aromatase involved in the biosynthesis of E2 from androgenic precursors; and 3) the inactivation of E2 in E2 sulfate (E2-S) by the estrogen
sulfotransferase (EST).
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that act within seconds or minutes via extranuclear and
membrane-associated forms of ERs (19). ER� and ER�

are localized to caveolae where they congregate with other
signaling molecules, thereby facilitating interaction and
rapid intracellular signaling. These signal proteins include
G proteins, growth factor receptors, tyrosine kinases (Src),
linker proteins (MNAR), and orphan G protein-coupled
receptors. This multiprotein complex provides the neces-
sary interactions for membrane ER to activate growth fac-
tor receptors and G proteins. In turn, these E2-induced
rapid signals modify protein function via phosphoryla-
tion. However, they can also modulate gene expression
and thus the production of proteins. In the cardiovascular
system, bone, the nervous system, and pancreatic �-cells,
membrane and extranuclear pools of ER activate protein
kinases that phosphorylate transcription factors. This
promotes the nuclear translocation of these ERs and sub-
sequent activation of target genes (19, 20). In breast cancer
cells, extranuclear ER pools collaborate with intranuclear
ER signaling to regulate cellular proliferation, migration,
and invasion. For example, E2 activation of an extranu-
clear ER� activates ERK2, which is then recruited by nu-
clear ER� to ER binding sites throughout the genome of
breast cancer cells (22). Although the G protein-coupled
ER (GPER; also called GPR30) responds to E2, its func-
tion as an ER remains controversial. Multiple groups have
described collaboration between membrane-localized
ER� and GPR30, presumably at the membrane of several
E2-sensitive cell lines. Recently, it has been proposed that
GPER induces the expression of ER�36, a transcription-
ally inactive and truncated version of the classical long
isoform of ER�, ER�66 (23). The function of ER�36 is
unknown.

IV. Evolutionary Importance of ER in
Energy Metabolism

The study of phylogeny yields important insight into the
potential role of ERs in energy metabolism. Although im-
portant to behavior, reproduction, bone, and immunity in
higher order mammals, the ancestral ER existed in inver-
tebrates lacking sexual reproductive capabilities, suggest-
ing that it may have played an important role in energy
metabolism and survival. All members of the steroid re-
ceptor family descend from a single ancestral receptor
(AncSR1), which separated from the rest of the nuclear
receptor super family early in animal evolution, perhaps
500 million years ago (24, 25). There is evidence to sup-
port the paradigm that AncSR1 had intrinsic functions
similar to those of modern-day vertebrate ER. AncSR1 is
present in annelids and mollusks, thus demonstrating that

estrogen signaling via the ER is as ancient as the ancestral
bilaterian animal. It is believed that AncSR1 was an es-
trogen-responsive, ERE-binding transcriptional activa-
tor. The ligand binding domain was hormone-activated
and specifically responsive to estrogens (26). It is un-
known, however, whether estrogens were synthesized be-
fore the appearance of AncSR1. If this was the case, it was
a receptor for estrogens. Conversely, if estrogen synthesis
is not as old as AncSR1, then AncSR1 sensitivity to estro-
gens developed later and may represent an example of
evolution by molecular exploitation (27, 28). In that latter
scenario, the ligand could have been a hormone structur-
ally similar to E2. AncSR1 would then have been a sensor
for environmental estrogens, or phytoestrogens (26, 29).
Interestingly, the receptors for T, progesterone, gluco- and
mineralocorticoids evolved later (26). The androgen re-
ceptor interaction with T, which is similar to the proges-
terone receptor interaction with progesterone, evolved
when duplicated receptors diverged and recruited steroids
that were originally biochemical intermediates and allo-
steric regulators. Thus, T was produced as a precursor in
E2 biosynthesis long before AR evolved affinity for this
steroid. The observation that ancestral ER was present
before sexual reproduction and before the evolution of
receptors for stress hormones including glucocorticoid
and mineralocorticoid receptors suggests an important
role for ER in cellular energy metabolism.

V. ER and Control of Energy Intake
and Expenditure

A. Estrogen action in the hypothalamus in relation to
energy balance

As women enter menopause, there is a decline in cir-
culating estrogens. This is accompanied by alterations in
energy homeostasis that result in increases in intraabdomi-
nal body fat (6). In animals, ovariectomy (OVX) leads to
increased adiposity (30–32) that is prevented by estrogen
replacement (33). Although OVX induces a transient in-
crease in food intake in rodents and E2 replacement de-
creases food intake (34, 99), hyperphagia does not fully
account for changes in metabolism and development of
obesity after OVX (32). Indeed, reduced E2 synthesis re-
sulting from aromatase inactivation promotes obesity in
the absence of hyperphagia or reduced energy expenditure
in mice of both sexes. However, the animals exhibit re-
duced spontaneous physical activity and lean body mass
(36). Similarly, ER� deficiency in both male and female
mice causes increased body weight and adiposity predom-
inately through reduced energy expenditure and slight in-
creases in food intake (37, 38). However, it should be
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noted that these 2 models—ER� and aromatase defici-
ency—also exhibit a marked increase in serum T levels that
acts as a confounding factor. Although endogenous E2
favors body weight homeostasis by increasing energy ex-
penditure (39), exogenous estrogens may promote energy
balance by influencing both energy intake and energy ex-
penditure. Thus, global loss of ER� action results in a
decrease in energy expenditure, whereas increased ER�

(and ER�) signaling resulting from elevating serum E2
concentrations suppresses energy intake and increases en-
ergy expenditure. These topics will be discussed below.

The hypothalamus is one area in the central nervous
system that controls food intake, energy expenditure, and
body weight homeostasis. Dramatic changes in all of these
characteristics can be induced by lesioning specific hypo-
thalamic nuclei, such as the ventromedial hypothalamus
(VMH) (40, 41) or the lateral hypothalamic area (42, 43).
ER� is abundantly expressed in the rodent brain in the
ventrolateral portion of the ventromedial nucleus (VMN),
the arcuate nucleus (ARC), the medial preoptic area, and
the paraventricular nuclei (44–50). ER� is found in the
same hypothalamic nuclei, but ER� expression is signifi-
cantly lower relative to ER�.

The effects of E2 on energy balance are primarily me-
diated by ER�. Female mice with mutations in the ER�

gene are obese (37, 51), and deletion of ER� in mice blocks
the antiobesity effects of estrogen replacement (33). ER�

is less effective in mediating the physiological antiobesity
effects of estrogen because deletion of ER�, unlike that of
ER�, does not promote obesity (51) or any metabolic con-
sequences associated with obesity. This distinction is con-
sistent with pharmacological studies showing that,
whereas the selective ER� agonist propylpyrazole triol
(PPT) suppresses food intake in ovariectomized mice, the
selective ER� agonist diarylpropionitrile failed to influ-
ence feeding behavior at any dose (52, 53). However, E2
also suppresses food intake through ER� because the an-
orectic effect of intracerebroventricular injection of E2 is
blocked by coadministration of ER� antisense oligode-
oxynucleotides in female rats (54). In addition, adminis-
tration of an ER�-selective agonist to high fat diet
(HFD)-fed female mice increased expression of the ther-
mogenic uncoupling protein-1 in brown adipose tissue,
thereby reducing obesity (55). Thus, under specific cir-
cumstances, activation of ER� can suppress food intake
and increase energy expenditure. By contrast, the role of
GPER in body weight regulation still requires valida-
tion. In 1 study of female mice lacking GPER, the obe-
sity phenotype emerged in only 1 of 4 GPER mutant
mouse lines (56).

Although the signaling mechanisms of ER actions in
hypothalamic neurons are not fully understood, available

evidence suggests that it primarily involves extranuclear
ER. Indeed, E2 triggers a rapid increase in excitatory in-
puts to pro-opiomelanocortin (POMC) neurons in the
ARC in vivo, an observation that is consistent with rapid,
extranuclear or membrane-initiated actions (34). Thus,
E2 can suppress neuropeptide Y (NPY) in clonal hypo-
thalamic neurons via a membrane form of ER� (57). In
addition, an E2-responsive, Gq-coupled membrane recep-
tor is involved in mediating the anorectic effects of E2 on
food intake and body temperature in hypoestrogenic fe-
male rodents (58, 59).

B. ER� in the ARC and control of food intake

ER� is expressed prominently on POMC neurons
within the ARC. These neurons modulate food intake,
energy expenditure, and reproduction (60). POMC neu-
rons also secrete �MSH, which acts in the paraventricular
nuclei and lateral hypothalamus on melanocortin 3 and
melanocortin 4 (MC3/MC4) receptors. This produces a
pronounced catabolic effect by reducing food intake and
increasing energy expenditure (61–64). ARC POMC ER�

mRNA levels fluctuate over the course of the estrous cycle,
with the most dramatic increase on the day of proestrus,
when E2 concentration is highest (65–68). Conversely,
reduced POMC levels are observed in ER� knockout (KO)
mice (69). Using electron microcopy, Horvath and co-
workers (34) reported that the number of excitatory syn-
aptic inputs to ARC POMC neurons increases as mice
enter proestrus. Furthermore, central E2 administration
rapidly increases the excitatory synapses on POMC neu-
rons, an effect that is also reflected by increased miniature
excitatory postsynaptic currents recorded from POMC-
green fluorescent protein neurons (34). These synaptologi-
cal rearrangements in POMC neurons are in tight parallel
with the effects of estrogens on food intake, energy ex-
penditure, and body weight (34). These effects of E2 are
mediated via MC4 receptor because E2 is unable to induce
anorexia when the MC4 receptor antagonists Shu 9119 or
agouti-related peptide (AgRP) are applied concomitantly
with E2 administration in rats (70). E2 administration to
hypothalamic slices also increases excitability of POMC
neurons by rapidly uncoupling GABAB receptors from
their G protein-gated inwardly rectifying K� channels
(71). Therefore, estrogens directly act on POMC neurons
andregulate their cellular activity.Recent findingsprovide
additional support for the importance of ER� in POMC
neurons and the suppression of food intake. Indeed, de-
letion of ER� in POMC neurons in mice leads to hy-
perphagia without directly influencing energy expendi-
ture or adipose tissue distribution (60).
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C. ER� in the ventromedial hypothalamus and control of
energy expenditure

The VMN of the hypothalamus (also known as the
VMH) has long been considered an important feature of
the neural circuits that are responsible for homeostatic
regulation of body weight and food intake. As noted
above, numerous studies have shown that lesions of the
VMN produce obesity due to both increased food intake
and decreased energy expenditure (72). However, these
findings have been called into question because of the ag-
gressive methodologies that have been used to lesion the
VMN. These approaches likely damaged the surrounding
regions (such as the ARC) as well as neuronal fibers pass-
ing through the VMN (73). Recent genetic studies in mice
have circumvented these issues by noninvasive selective
deletion of genes within VMH neurons. These studies
were based on the concept that the transcription factor
steroidogenic factor-1 (SF1) is expressed exclusively in the
VMN neurons in the brain (74). Deletion of SF1 in mice
disrupts the VMN structure (75) and leads to obesity (76).
Estrogens have been shown to directly alter the electro-
physiological properties of VMN neurons (77). Mice with
small hairpin RNA-mediated ER� gene silencing as well as
transgenic mice in which ER� has been selectively deleted

from SF1-containing neurons of the VMH, develop re-
duced sensitivity to E2-induced weight loss, increased vis-
ceral fat deposition, and reductions in energy expenditure.
All of these results occur without an impact on food intake
(60, 78), supporting the notion that ER� signaling in
VMN neurons plays an important role in regulating phys-
ical activity, thermogenesis, and fat distribution. The dif-
ferent actions of ER� signaling in hypothalamic neurons
on food intake and energy expenditure are summarized in
Figure 2.

D. ER� in the brainstem and control of food intake
ER� is also expressed in the brainstem, including the

nucleus tractus solitarius (NTS), and dorsal medial vagus
(47, 50, 79). Geary and co-workers (80, 81) showed that
E2 replacement in wild-type mice suppresses food intake,
potentiates cholecystokinin (CCK)-induced satiety, and is
accompanied by increased activity of NTS neurons. CCK
is synthesized and released from cells of the upper intestine
and acts on abdominal CCK-A receptors. CCK plays a
variety of roles in the digestive process, including slowing
gastric emptying and intestinal motility (82). CCK exerts
its satiety action primarily by activating subdiaphragmatic
vagal afferent neurons (83). E2 increases the potency of

Figure 2.

Figure 2. Summary of hypothalamic ER� actions regulating energy balance. In the hypothalamus, estrogen action through ER� in ARC POMC
neurons suppresses food intake. On the other end, estrogen actions through ER� in VMN SF1 neurons stimulate physical activity and energy
expenditure and regulate body fat distribution.
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CCK by increasing the sensitivity of vagal CCK-A recep-
tors, although it does not increase CCK secretion or the
number of CCK-A receptors (84–87). Interestingly, these
responses are all absent in mice lacking ER� (81). Fur-
thermore, it has been shown that administration of E2
directly to the NTS potentiates CCK-induced satiety sig-
nals (88). Collectively, these findings suggest that ER� in
the brainstem, and specifically the NTS, is an additional
site mediating the anorexigenic effects of estrogens.

E. Estrogen interaction with leptin
First described in 1994 (89), leptin has proven to be a

powerful catabolic signal to the brain that inhibits food
intake and increases energy expenditure. These effects are
mediated via the long form of the leptin receptor (leprb)
(63, 90, 91). Leprb are localized in several brain areas
including the VMN and the ARC, and leprb are colocal-
ized with several neuropeptides involved in regulating
food intake and reproduction (92–94). It has been re-
ported that leprbexpression in theARCis colocalizedwith
ER� (95). Furthermore, estrogens have been reported to
down-regulate expression of leprb mRNA in the ARC
(96), possibly via an ERE on the leptin receptor gene (97).
The extensive hypothalamic colocalization of these 2 re-
ceptors suggests a closely coupled interaction between
these peripheral signals in the regulation of energy ho-
meostasis. Estrogens may be modulators of leptin’s cata-
bolic action in the brain. In fact, higher levels of E2 have
been associated with increased central leptin sensitivity in
rodents (98–100). Although circulating leptin levels do
not change appreciably during the estrous cycle, ARC
leprb expression is highest during estrous and metestrous
and is inversely correlated with NPY mRNA expression
(96). OVX reduces sensitivity to central leptin relative to
females with intact uteri, a deficiency that can be restored
by E2 replacement (100). Analogously, exogenous E2 ad-
ministration to male rats increases sensitivity to central
leptin (100). Differences in central leptin sensitivity caused
by the presence or absence of estrogens may occur down-
stream of leprb transcription and translation. As a result,
there may be a threshold beyond which estrogens enhance
central sensitivity to leptin. This “leptino-mimetic” func-
tion of E2 is best observed in hypogonadal leptin-deficient
(ob/ob) and leptin-resistant (db/db) mice of both sexes. In
these models, E2 decreases food intake and increases en-
ergy expenditure, thereby resulting in reduced body
weight (34).

F. Estrogen interaction with neuropeptide-1 (NPY)
NPY is an anabolic peptide. Central administration of

NPY results in substantial increases in food intake and
decreases energy expenditure and fat oxidation (101–

104). ARC neurons coexpress NPY mRNA and leprb pro-
tein. Leptin administration decreases, whereas leptin de-
ficiency or leptin resistance increases NPY (and AgRP)
mRNA, indicating that leptin is a critical determinant of
ARC NPY function (105). NPY neurons in the hypothal-
amus not only affect feeding, but also influence reproduc-
tion. Therefore, E2 can modulate both of these neuroen-
docrine systems by regulating NPY gene expression. E2
stimulates NPY and NPY Y1 receptor expression (106)
and NPY release (107). In an ex vivo hypothalamic neu-
ronal cell line, N-38, E2 affected expression of NPY in a
biphasic manner corresponding to changes in the ER�:
ER� ratio. When the ER�:ER� ratio was high, NPY tran-
scription was repressed; conversely, when the ratio was
low, NPY transcription was stimulated (108). Addition-
ally, NPY/AgRP neurons are required to mediate the an-
orexigenic effects of E2. Xu and co-workers (109) showed
that hypothalamic expression of NPY and AgRP is tightly
regulated across the estrus cycle, with the lowest levels
during estrus, which coincides with the E2 peak and feed-
ing nadir in wild-type mice. Furthermore, E2 administra-
tion suppresses fasting-induced c-Fos activation in NPY/
AgRP neurons and blunts the refeeding response (109).
Importantly, the cyclic changes in food intake and E2-
induced anorexia are blunted in mice with degenerated
NPY/AgRP neurons (109). These data indicate that neu-
rons coexpressing NPY and AgRP are functionally re-
quired for the cyclic changes in feeding throughout the
estrous cycle and that NPY/AgRP neurons are essential
mediators of the anorexigenic function of E2. Surpris-
ingly, ER� was absent from NPY/AgRP neurons in the
mouse hypothalamus (109), suggesting that E2 may reg-
ulate these neurons indirectly via ER� action in presyn-
aptic neurons. However, the precise ER�-expressing pre-
synaptic neurons that act on NPY/AgRP remain to be
identified.

VI. ER and Regulation of Adipose
Tissue Distribution

Sexual dimorphisms in body fat distribution are well-
described. Men, on average, have less total body fat but
more central/intra-abdominal (described further in Sec-
tion VI.A.) adipose tissue, whereas women tend to have
more total fat that favors gluteal/femoral and sc depots
(110–114). After menopause, fat distribution shifts in
women to a phenotype more similar to that of men (115,
116); however, estrogen replacement therapy prevents the
male-patterned accumulation of intra-abdominal adipose
(117–119). Additionally, estrogen treatment of male-to-
female transsexuals increases the amount of sc adipose
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tissue accrual relative to intra-abdominal adipose tissue
(120). Therefore, estrogens have been proposed as regu-
lators of fat distribution.

A. Intra-abdominal adipose tissue and the
metabolic syndrome

Excess accumulation of adipose tissue in the central
region of the body (intra-abdominal, “android,” or male-
pattern obesity) (121) correlates with increased risk of,
and mortality from, disorders including type 2 diabetes,
hyperlipidemia, hypertension, and atherosclerosis. Intra-
abdominal adipose tissue is thought to be metabolically
and functionally different from sc adipose tissue. Indeed,
intra-abdominal adipose tissue has more capillaries and
efferent sympathetic axons per unit volume than sc fat,
and unlike sc fat, it drains into the hepatic portal vein
(121). In humans, surgical removal of intra-abdominal
adipose tissue by omentectomy during bariatric surgery
has been shown to either decrease insulin and glucose lev-
els (122) or to have no effect on components of the met-
abolic syndrome and insulin resistance (123, 124). How-
ever, in male rodents, surgical removal of visceral adipose
tissue prevents insulin resistance and glucose intolerance
(125). In contrast, in male rodents, surgical removal of sc
fat tissue of equal weight has no appreciable impact on the
same parameters (125). Teleologically, males may have
preferentially deposited adipose tissue in the intra-abdom-
inal depot because this depot is rapidly mobilized, pro-
viding an energy source for immediate protection against
predators and hunting.

B. Subcutaneous adipose tissue and lipid storage
Subcutaneous adipose tissue deposition is not associ-

ated with the metabolic disturbances due to its enhanced
ability to expand, allowing for storage of excess caloric
intake through angiogenesis and reduced hypoxia and fi-
brosis (121). Females have more sc adipose tissue on av-
erage, than males. Subcutaneous adipose tissue is dis-
persed in a broad area under the skin, is relatively poorly
innervated and vascularized, and has a larger average cell
diameter than intra-abdominal adipose tissue (121). Sub-
cutaneous adipose tissue permits efficient storage of max-
imal calories per unit volume of tissue. Lipid deposition
into sc adipose tissue may provide an evolutionary advan-
tage for females because it provides protection from fluc-
tuations in caloric supply, thereby maintaining reproduc-
tive capacity. Importantly, females mobilize adipose tissue
stored in the sc depot to augment the caloric demands
associated with breast feeding. Additionally, “gynoid” (or
female-pattern sc) fat distribution is poorly correlated
with risk for metabolic disorders (126–130). In fact, trans-
plantation of sc fat from donor mice into visceral regions

of recipient mice decreases fat mass and improves glucose
homeostasis, demonstrating that sc fat produces sub-
stances that can act systemically to improve glucose
metabolism (131).

C. ER� and adipose tissue distribution
Estrogens are produced in the adipocytes (via aroma-

tization from androgenic precursors) and increase in pro-
portion to total body adiposity (132, 133). ER� is ex-
pressed in adipose tissue (134, 135). Mice of both sexes
with a targeted deletion of the ER� gene (ER�KO) have
increased adiposity, with a near doubling of visceral adi-
pose depots relative to their age-matched wild-type coun-
terparts (37). However, inguinal adipose depots also in-
creased in ER�KO mice, suggesting that ER� elimination
may not target only intra-abdominal depots. Thus, body
fat distribution results should be interpreted with caution
in rodents. Still, these data are in contrast to those of the
ER�KO mouse, which is not obese (136), indicating that
ER� is more important than ER� in preventing adipose
tissue deposition. Reduced ER� expression and impaired
ER� function have been linked with increased prevalence
of certain aspects of the metabolic syndrome in both male
and female humans and rodents (137–141), and certain
polymorphisms of the human ER� gene are associated
with abnormal adiposity (138, 142). In a cross-sectional
study, over 2000 middle-aged, premenopausal Japanese
women with the ER� gene polymorphism had increased
fat mass and increased waist-hip ratios (an index of intra-
abdominal adiposity) relative to those with the normal
genotype (142–144). The polymorphism did not affect
adiposity in postmenopausal women. Thus, polymor-
phisms of the human ER� gene may predispose to in-
creased intra-abdominal adiposity and its related health
risks.

D. ER and adipose tissue lipid metabolism
E2 also suppresses white adipose tissue (WAT) accu-

mulation by decreasing fatty acid and triglyceride synthe-
sis and lipogenesis. Greenberg and co-workers (145)
showed that administration of E2 reduces adipocyte size in
ovariectomized female mice by reducing fatty acid uptake
(down-regulation of lipoprotein lipase) and lipogenesis
(down-regulation of acetyl-coenzyme A carboxylate and
fatty acid synthase [FAS]). These changes increase cate-
cholamine-stimulated lipolysis and increase lipid-oxida-
tive pathways in muscle (145). In postmenopausal
women, estrogen therapy decreased the expression of
genes involved in lipogenesis including acetyl-coenzyme A
(CoA) carboxylate-� and -�, sterol regulatory element-
binding protein 1c (SREBP-1c), stearoyl-CoA desaturase,
lipoprotein lipase (LPL), FAS, fatty acid desaturase, and
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peroxisome proliferator-activated receptor (PPAR)-� (146,
147). E2 suppresses lipogenic genes and triglyceride accu-
mulation in WAT and liver in HFD-fed (148) and leptin-
resistant female mice (149). Surprisingly, this effect was not
reproduced by the ER� agonist, PPT (150). However, this
effect was reproduced by a novel ER� agonist (55).

LPL is a key regulating enzyme for energy metabolism
that breaks down plasma triglycerides into free fatty acids
and glycerol. The activity of this enzyme is mainly regu-
lated at the transcriptional and translational levels (151).
E2 is a major suppressor of fasting LPL activity in adipose
tissue in women (152, 153), and evidence suggests that E2
also represses LPL gene expression at the transcriptional
level via an ERE on the LPL promoter (154). Additionally,
Lipin 1 (LPIN1) is a gene involved with lipid homeostasis
and metabolism (155). Enhanced LPIN1 expression pro-
motes obesity (156, 157) and is markedly down-regulated
by E2 (158). The E2 regulation of LPIN1 may provide a
mechanistic link between estrogens, lipid metabolism, and
lipid signaling. LPL activity and LPIN1 mRNA are 2 ex-
amples of how estrogen may directly regulate the equilib-
rium between lipogenesis and lipolysis in adipose tissue,
thereby reducing adipocyte hypertrophy and ectopic lipid
accumulation.

Extensive evidence demonstrates that E2 has direct ef-
fects on cultured adipocytes with the overall effect of in-
hibiting lipogenesis and adipogenesis (159). Thus, the E2
effects described above could result from ER action in
peripheral tissues. Nonetheless, the exact contribution of
in vivo E2 antilipogenic effects resulting from direct ER
action in WAT or from central ER actions that indirectly
affect adipose and liver are still unknown. Although the
overall effect of E2 is to decrease lipid deposition in WAT,
E2 favors sc WAT accumulation via central (100) and
peripheral mechanisms in both sexes (159).

ER� has direct antilipogenic and antiadipogenic effects
in adipocytes. ER� deficiency favors WAT accumulation
in female mice during high fat feeding by increasing
PPAR� signaling in WAT, thereby demonstrating that
ER� acts directly on adipocytes in vivo and is a negative
regulator of PPAR� (160). In addition, ER� selective li-
gands show PPAR� antagonistic actions in adipocytes that
are mediated through a mechanism involving competition
between ER� and PPAR� for PPAR� coactivator 1� (55).

VII. ER and Insulin Sensitivity

A. Estrogens and insulin sensitivity
Insulin resistance is a central disorder in the pathogen-

esis of type 2 diabetes. It is also a defining feature of the
metabolic syndrome. Compared with age-matched men,

premenopausal women with a normal menstrual history
have enhanced insulin sensitivity normalized to lean mass.
This is a likely contributor to the reduced incidence of type
2 diabetes observed in premenopausal women (161, 162).
Indeed, although a 40–50% reduction in insulin-mediated
glucose disposal is consistently observed in male mice after
high fat feeding (163, 164), E2-replete females, humans,
and rodents are typically protected against a HFD- and
acute fatty acid-induced insulin resistance (165–168). Af-
ter menopause or OVX, a precipitous decline in insulin
sensitivity parallels an increase in fat mass and elevations
in circulating inflammatory markers, low-density lipopro-
tein (LDL), triglycerides, and fatty acids (6, 169, 170).
Ovariectomized mice and rats are insulin resistant, have
impaired exercise-stimulated glucose disposal into muscle
(171), and are more susceptible to the deleterious effects of
HFD or lipid oversupply. Restoration of E2 at physiolog-
ical concentrations maintains insulin action and glucose
tolerance (172).

Although chronic administration of E2 improves insu-
lin sensitivity in rodents, the acute action of E2 on pro-
motion of insulin-stimulated glucose uptake into muscle
remains disputed despite consistent observations of E2-
induced activation of Akt and AMP-activated protein ki-
nase (AMPK) (173, 174). Furthermore, although iv con-
jugated estrogens and E2 administered to postmenopausal
women or ovariectomized rats elicit significant increases
in glucose disposal during hyperinsulinemic-euglycemic
clamp studies (175, 176), ex vivo treatment of skeletal
muscle with E2 failed to yield similar increases in insulin-
stimulated glucose disposal (173). This finding is also in
contrast to in vitro studies showing enhanced insulin ac-
tion after short-term E2 treatment of myotubes from post-
menopausal women and age-matched men (177). Thus, a
basic question remains concerning which tissues of E2
action confer protection against insulin resistance.

Similar to findings for ovarian failure in women and
female rodents, a reduction in circulating estrogens that
results in inactivation of mutation of Cyp19 (aromatase)
in men or experimental deletion in Cyp19 in male mice
confers an obesity-insulin resistant phenotype (36, 137,
178–184). Both physiological and genetic evidence argue
that E2 and ER favor insulin sensitivity in rodents and
humans of both sexes when E2 concentrations stay within
a tight physiological concentration. In contrast, replace-
ment or augmentation of E2 to supraphysiological levels
or overstimulation of ER are thought to induce insulin
resistance secondary to hyperinsulinemia (liver) or a re-
duction in total glucose transporter 4 (GLUT4) expression
(muscle) (185, 186). Furthermore, 2 studies have reported
prospectively that higher plasma levels of E2 in postmeno-
pausal women were related to increased risk of type 2
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diabetes (187, 188). Clearly, additional studies in rodents
and humans using a dose-response strategy are necessary
to better understand the interplay of steroid hormones
including E2, T, and progesterone on regulation of me-
tabolism and insulin action in glucoregulatory tissues.

Although several laboratories have characterized the
whole-body ER�KO mouse, many questions still remain,
including the tissues responsible for conferring the severe
insulin-resistant obesity phenotype. Does obesity arise
from loss of ER� within adipocytes in particular, or can it
be driven as a secondary phenotype resulting from a loss
of ER� in brain, skeletal muscle, liver, or even in selective
immune cells? Does loss of ER� from myocytes drive
skeletal muscle insulin resistance, or does this ER�KO
phenotype arise from increased adiposity and altered
adipokine/cytokine secretion? To address these specific
questions, several laboratories have embarked on pheno-
typic evaluation of mice harboring tissue selective deletion
of ER� using the Cre-lox approach. Findings from these
studies are just now emerging.

B. ER� in relation to skeletal muscle glucose
transporter GLUT4

Although 2 forms of the ER receptor are expressed in
many glucoregulatory tissues, ER� is found in much
higher abundance than ER�; ER� transcription levels are
nearly undetectable in human and rodent muscle, as well
as human myotubes in culture (177, 189, 190). Further-
more, homozygous ER� deletion failed to produce insulin
resistance (51), a finding that contrasts with marked skel-
etal muscle insulin resistance observed in ER�KO animals
(192, 193).

The mechanistic function of ER� in the maintenance of
skeletal muscle insulin action remains unknown. Al-
though early reports suggested a role for ER� in the reg-
ulation of GLUT4 expression in skeletal muscle, recent
conflicting evidence calls this explanation into question
concerning the insulin resistance phenotype observed in
ER�KO mice. Findings reported by Bryzgalova et al (194),
suggesting reduced total GLUT4 levels in muscle as an
underlying cause of the ER�KO insulin resistance pheno-
type, were not supported by data from Ribas et al (192).
Furthermore, despite maintenance of GLUT4 mRNA and
protein, Ribas et al (192) reported more dramatic skeletal
muscle insulin resistance in ER�KO mice than Bryzgalova
et al (194). Hevener and colleagues (195) suggest that the
skeletal muscle insulin resistance observed in ER�KO
mice is due predominantly to the direct effects of ER�

deletion and proinflammatory signaling on proximal in-
sulin action. Indeed, in muscle from muscle-specific
ER�KO mice, primary myotubes, and myotubes with ER�

knockdown, no alteration in GLUT4 mRNA or protein

was observed despite reduced insulin-stimulated glucose
disposal (195). Furthermore, additional studies by Barros
et al (186, 196) assessing GLUT4 expression in response
to OVX and E2 supplementation are in conflict with other
studies of similar design (177, 190, 197–199). Given the
lack of consensus ERE in the GLUT4 promoter (200) and
the absence of confirmatory findings in cellular reporter
and chromatin immunoprecipitation assays, the issue of
ER� regulation of GLUT4 expression requires further in-
vestigation. Indeed, GLUT4 is regulated by several redun-
dant transcriptional pathways (201, 202). Given that total
GLUT4 transcription and protein are not reduced in hu-
mans or rodents in the context of insulin resistance, obe-
sity or type 2 diabetes, or between men and women (203,
204), it is likely that in the absence of ER�, other tran-
scription factors compensate to maintain GLUT4 levels
(205–210).

This is not to suggest that ER� activation cannot pro-
mote total GLUT4 up-regulation. This could occur after
endurance exercise training where transcript and protein
levels of both are simultaneously elevated in trained hu-
man and mice compared to their sedentary counterparts
(189, 203, 211–214). Myocyte enhancer factor 2 (MEF2)
expression and a functional MEF2 element in the GLUT4
promoter are critical for GLUT4 gene expression (215).
Furthermore, reciprocal regulation between ER� and
MEF2 can be observed in cardiomyocytes via ER� inter-
action with class II histone deacetylase (216). Despite
complex transcriptional signal integration in the regula-
tion of GLUT4 expression (201, 202, 217–220), it is con-
ceivable that elevatedER� actioncouldpromote increased
GLUT4 transcription via heightened protein tethering
with MEF2 on the GLUT4 promoter or by indirect action
via AMPK (173, 221). It is important to note that tran-
scriptional activity of the GLUT4 promoter is quite low
under basal conditions, and other ovarian hormones such
as progesterone play an antagonistic role in regulation of
GLUT4 expression (171). These issues, as well as the dose
of E2 administration during interventional studies, the
age, and the hormone status of the human subjects and
rodents used are important considerations when interpret-
ing the literature. Given the different roles that muscle and
adipose tissue play in controlling whole-body metabolism,
it is likely that the interplay of transcriptional regulators of
GLUT4 varies markedly among tissues. Although the data
suggest a potential role for ER� as an enhancer of GLUT4
transcription in muscle under certain conditions, they do
not support direct regulation of GLUT4 expression under
basal conditions. Collectively, work by Hevener and col-
leagues (195) suggests that the skeletal muscle insulin re-
sistance observed in whole-body ER�KO mice and ani-
mals with a muscle-specific deletion of ER� results
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predominantly from impaired insulin signal transduction,
not a deficiency in total availability of GLUT4.

A role for ER� in the regulation of proximal insulin
signal transduction has been suggested because E2 admin-
istration to insulin-resistant rodents increases insulin re-
ceptor substrate-1 abundance, insulin-stimulated tyrosine
phosphorylation, and Akt phosphorylation (173, 193,
222). Akt serves many functions in myocytes, including
ER�-induced regulation of myogenic differentiation
(223), suppression of muscle-atrophy ubiquitin ligases via
FOXO1 inhibition (224), and induction of genes associ-
ated with myocellular proliferation (223, 225–228). E2
activation of phosphatidylinositol-3 kinase and suppres-
sion of the tumor suppressor and phosphatidylinositol-3
kinase inhibitory protein, PTEN, is also well-established
(229–233) in breast cancer cell lines, endothelial cells, and
cortical neurons, suggesting a potential effect of E2 in
modulating insulin-stimulated effects on these critical sig-
naling molecules. However, studies on these interactions
are limited in skeletal muscle. Additionally, E2 acting via
ER� is also shown to promote phosphorylation of p38
MAPK (234, 235), a signaling molecule associated with
insulin-stimulated GLUT4 intrinsic activity and glucose
uptake (236–238). ER� activation of Akt and MAPK
pathways is also thought to underlie E2-mediated protec-
tion of muscle against age-induced sarcopenia (239–245),
exercise-induced muscle damage (227, 241, 246, 247),
and myocyte apoptosis in response to a variety of cellular
perturbations (248–251). Thus, ER� stimulation of mus-
cle growth and ER� action on insulin signal transduction
may underlie the protective effects of E2 on muscle insulin
sensitivity.

It is possible that ER�, despite low expression in muscle
and other glucoregulatory tissues, promotes insulin resis-
tance, particularly in the context of diminished ER� ac-
tion. Indeed, OVX in hyperestrogenic female ER�-defi-
cient mice—which suppresses E2 action through the
remaining ER�—improves glucose tolerance and insulin
sensitivity (252). Furthermore, administration of an ER�-
selective agonist in male E2-deficient aromatase-deficient
mice decreased total skeletal muscle GLUT4 expression, a
finding that could promote insulin resistance (196). Con-
versely, administration of tamoxifen—in this context, an
ER� antagonist—to male ER�-deficient mice increased
GLUT4 expression and improved insulin sensitivity (253).
Finally, indirect evidence indicates that ER� deficiency
protects against diet-induced insulin resistance in male
mice by increasing PPAR� signaling and lipid deposition
in adipose tissue, thereby improving skeletal muscle insu-
lin action by reducing ectopic lipid accumulation in muscle
(160).

C. ER� in relation to skeletal muscle fatty acid
metabolism and inflammation

Cycling women are protected against acute lipid-
induced insulin resistance relative to estrogen-deficient
women and men (165, 254). Compared to age-matched
men, muscle from premenopausal women has enhanced
insulin sensitivity despite 47% higher triglyceride content
(204). This is consistent with a reduced respiratory quo-
tient and greater reliance on fatty acid oxidation as a fuel
source in women (255). These data highlight interesting
similarities between E2-replete women and exercise-
trained subjects: elevated muscle ER� expression (189,
213, 214), heightened insulin sensitivity (208), elevated
muscle lipid tolerance (256), and enhanced oxidative ca-
pacity (257, 258). Consistent with the reported effects of
E2 on metabolism, estrogen supplementation enhances
lipid oxidation in vivo in men during acute endurance
exercise (259), as well as palmitate oxidation in cultured
myotubes obtained from male subjects (177). The effect of
E2 on increased expression of fatty acid transport protein
FAT/CD36 and fatty acid binding protein, as well as tran-
scription factors and key enzymes that regulate oxidative
metabolism (197, 203, 260), likely underlie these obser-
vations in males. In addition, exercise and E2 rapidly stim-
ulate AMPK phosphorylation in both muscle and myo-
tubes in culture (173, 261). It should be noted that AMPK
is considered a central regulator of many cellular pro-
cesses, including cell growth, mitochondrial biogenesis,
and oxidative metabolism (262, 263). Comparable to the
effects of E2, the ER�-selective agonist PPT stimulates
AMPK phosphorylation in muscle from ovariectomized
rats (174). By contrast, diminished estrogen action result-
ing from OVX or whole-body ER� deletion is associated
with reduced skeletal muscle levels of phosphorylated
AMPK (192, 264). Muscle PPAR�, PPAR�, and UCP2
expression are also reduced in whole-body ER�KO mice
suggesting that E2 acting via ER� is essential for regula-
tion of coordinated oxidative metabolism. However,
emerging data suggest that these effects on expression of
muscle PPAR family members in the ER�KO mouse may
be mediated by indirect action resulting from ER� deletion
in other metabolic tissues. These may include the central
nervous system, adipose, or liver. While the impairment in
muscle fatty oxidation is sustained in the muscle-specific
ER�KO mice (MERKO), no alteration in basal p-AMPK,
PPAR�, PPAR�, or UCP2 was observed (195). Despite
these differences, skeletal muscle insulin resistance and
bioactive lipid accumulation were surprisingly similar be-
tween ER�KO and MERKO. Triacylglycerol, diacylglyc-
erol and ceramides were all substantially elevated in mus-
cle from female mice lacking ER� globally or specifically
in muscle. Consistent with these observations, oxygen
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consumption rates in C2C12 myotubes with ER� knock-
down were reduced significantly in this model. In addi-
tion, mitochondria from muscle cells depleted of ER� pro-
duced high levels of radical oxygen species that promote
oxidative stress. Collectively, these data support the no-
tion that ER� is critical in the regulation of oxidative me-
tabolism in skeletal muscle by mechanisms including reg-
ulation of: 1) fatty acid transport into the cell; 2) activation
of intermediary signaling critical for shifting substrate me-
tabolism and 3) transcriptional regulators of fatty acid
metabolism and mitochondrial function. Thus, skeletal
muscle ER� may be a critical regulator of adiposity via
indirect action as MERKO mice recapitulated the obesity
phenotype observed in the whole-body ER�KO mice.

The mechanistic link between accumulation of lipid
intermediates, activation of inflammatory signaling cas-
cades, and impaired insulin action is evident in both myo-
cytes and rodent muscle. Indeed, these factors are ob-
served concurrently in obese, type 2 diabetic subjects
(265–268), aswell as inmuscle fromwhole-bodyandmus-
cle-specific ER�KO mice (192). E2 treatment reduces
HFD-induced insulin resistance in skeletal muscle by 50%
during hyperinsulinemic euglycemic clamp in an ER�-
dependent manner (193). Bioactive lipid intermediates
including diacylglycerol and ceramides are believed to ac-
tivate stress kinases including inhibitor of nuclear factor
�� kinase, c-Jun-N-terminal kinase, and certain novel pro-
tein kinase Cs (266, 269–271). Indeed, muscle from nor-
mal chow fed whole-body ER�KO mice showed height-
ened inflammatory signaling reflected by markedly
increased c-Jun-N-terminal kinase phosphorylation and
TNF� transcript (192). In addition to the marked increase
in bioactive lipid intermediates observed in ER�KO mus-
cle, production of radical oxygen species as well as the
possible ER� derepression of selective inflammatory tar-
gets are likely mediators of elevated muscle inflammation.

Indeed, markers of inflammation and oxidative stress
are both elevated in rodent models of diabetes and in pa-
tients with type 2 diabetes (272, 273). Myotubes and skel-
etal muscle with ER� deletion exhibit a marked reduction
in Gpx3 expression, a primary antioxidant enzyme that
scavenges hydrogen peroxide (190, 192). In contrast, E2
replacement in OVX animals leads to a substantial in-
crease in Gpx3 expression in skeletal muscle (190). Muscle
Gpx3 expression levels are elevated in healthy females
compared to males (274), and they are reduced in T2DM
patients compared to healthy subjects (275). In addition,
they are associated with insulin resistance and the meta-
bolic syndrome (275) and have been now identified as a
causal candidate for obesity (276). Additional work
studying the direct role of estrogen action in the regulation
of antioxidant enzymes appears warranted. Although re-

ductions in mitochondrial number and function have been
implicated in the pathobiology of insulin resistance (277–
280), and indeed gender dimorphisms in mitochondrial
biology have been described (281), whether E2/ER� pre-
serves insulin action by maintenance of mitochondrial in-
tegrity is still unknown. The consequences of ER� deletion
in skeletal muscle on whole-body metabolic dysfunction
are summarized in Figure 3.

D. ERs and insulin sensitivity in the liver
The predominant role of hepatic insulin resistance as

distinct from skeletal muscle insulin resistance in hyper-
glycemia and type 2 diabetes has been demonstrated by
experiments of conditional knockout of insulin receptors
in these tissues (282). However, the direct role of the liver
in insulin resistance induced by E2 deficiency or E2 resis-
tance is still unclear. In one study, female mice globally
lacking ER� did not exhibit insulin resistance in skeletal
muscle, but they did display decreased insulin suppression
of hepatic glucose production (HGP) during a euglycemic,
hyperinsulinemic clamp (194). These data suggest that
ER� deficiency leads to hepatic insulin resistance. How-
ever, Ribas et al (38) reported that conscious, ER�-defi-
cient female mice exhibit minor alterations in liver insulin
sensitivity during euglycemic, hyperinsulinemic clamp
conditions. Thus, the possibility exists that anesthesia
contributed to the increased HGP phenotype observed in
anesthetized ER�-deficient mice (194). E2 suppresses li-
pogenic genes, triglyceride accumulation, and liver steato-
sis in HFD-fed (148) and leptin-resistant female mice
(149). Surprisingly, this effect is not reproduced by the
ER� agonist PPT (150). However, this effect is reproduced
by a novel ER� agonist (55). Nonetheless, E2 and PPT
treatments improve insulin resistance in female mice fed a
HFD (148, 193) and in obese female mice with genetic
leptin resistance (149) through a pathway that is at least
partially dependent on ER� (150, 193). However, the di-
rect role of ER� in liver is unclear. Together, these data
suggest that ER� (and possibly ER�) activation is protec-
tive against hepatic insulin resistance by preventing ecto-
pic lipid accumulation in the liver (lipotoxicity). Yet, the
involvement of ER� in hepatocytes is still unknown.

In summary, ER� deficiency impairs lipid homeostasis
in both skeletal muscle and liver of rodents, thereby de-
creasing the ability of insulin to suppress HGP and to
promote skeletal muscle glucose utilization. As a result,
activation of ER� during a HFD and genetic leptin resis-
tance improves insulin resistance induced by ectopic lipid
accumulation in skeletal muscle (148–150, 193). None-
theless, the effect of ER� in mediating insulin sensitivity
via central mechanisms remains to be determined.
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VIII. ER� and Functioning of Macrophages and
Immune Cells

Estrogens affect many immune and inflammatory condi-
tions including autoimmune diseases (283–288), and they
also influence immunomodulatory responses to parasitic
and bacterial infections (289–294). After OVX, immune
cell infiltration and increased tissue inflammation (TNFa,
iNOS, and CD11c) are associated with an approximately
4-fold increase in perigonadal and inguinal fat. The T-cell
marker CD3 and the Th1 cytokine interferon-� are ele-
vated in perigonadal fat from ovariectomized female mice
(39), suggesting that the absence of E2 promotes immune
cell inflammation. Indeed, circulating levels of proinflam-
matory cytokines are elevated in women after natural or
surgical menopause (169).

ER� is expressed in macrophages and other immune
cells that are known to exert dramatic effects on glucose
homeostasis. Macrophages are elemental players in innate
and adaptive immunity; over the past decade their roles in
modulating whole-body metabolism and insulin sensitiv-
ity have been topics of increasing interest (295, 296). Hev-
ener and colleagues (297) investigated the impact of ER�

expression on macrophage function to determine whether
hematopoietic or myeloid-specific ER� deletion manifests
obesity-induced insulin resistance in mice. Indeed, altered
plasma adipokine and cytokine levels, glucose intolerance,

insulin resistance, and increased adipose tissue mass were
observed in animals with a hematopoietic or myeloid-
specific deletion of Esr1. A similar obese phenotype with
increased atherosclerotic lesions was observed in LDL
receptor-KO mice transplanted with ER�KO bone mar-
row. In isolated macrophages, ER� is necessary for re-
pression of inflammation, maintenance of oxidative me-
tabolism, IL-4-mediated induction of alternative
activation, full phagocytic capacity in response to lipo-
polysaccharide, and oxidized LDL-induced expression of
apolipoprotein E and ATP-binding cassette transporter. In
line with these findings, prior work showed that E2 height-
ens the inflammatory response to ip injection of thiogly-
collate or lipopolysaccharide (291), and that ER� is crit-
ical not only in mediating these actions but also for
reducing bacterial burden through phagocytosis.

Bone marrow-derived macrophages lacking ER� secrete
factors that induce skeletal muscle and adipocyte insulin re-
sistance in culture (297). A major limitation in the field is the
failure to identify these proinflammatory, insulin resistance-
producing substances. Additional metabolomic, lipidomic,
and proteomic analyses will be necessary to move the field
forward because it is likely that these macrophage-
secreted factors include a combination of cytokines, a va-
riety of lipid species, and radical oxygen/nitrogen species
that act on adjacent cells.

Figure 3.

Figure 3. Consequences of ER� deletion in skeletal muscle on metabolic dysfunction. Skeletal muscle-specific ER� deletion impairs muscle
metabolism, leading to increased accumulation of bioactive lipids and muscle inflammation, which impairs muscle insulin action. Because skeletal
muscle is a primary tissue responsible for fatty acid oxidation, impaired substrate oxidation promotes increased accumulation of fat in adipose
tissue, which alters the secretory signature of the tissue inducing secondary phenotypes in muscle and liver. Thus, muscle ER� deletion precipitates
impaired glucose tolerance and mild hepatic insulin resistance. The arrows represent the effect of skeletal muscle, adipose, and liver described
above on each other.
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Taken together, these data suggest that ER� expression
in immune cells is critical for mediating a variety of cellular
responses that are necessary for normal innate as well as
adaptive immunity. When E2 levels are low or ER� action
is compromised, disease susceptibility increases because
the functionality of critical immune cell types becomes
compromised and the essential phenotypic repertoire is
diminished. Although a few direct ER� targets in myeloid
cells have been identified, the impact of sex steroids on
immunometabolism requires further examination that fo-
cuses on the intricate and diverse signaling by ER� as well
as the complex nature and crosstalk among cells.

IX. ER in Relation to Pancreatic �-Cell Function

The role of estrogens and ER in �-cell function and in
protection of �-cell mass has been reviewed recently (20).
In this review, we focus on the most recent developments
concerning these issues. In rodent models, treatment with
E2 protects pancreatic �-cells against various injuries as-
sociated with both T1DM and T2DM. These include ox-
idative stress, amyloid polypeptide toxicity, lipotoxicity,
and apoptosis (20). Three ERs—ER�, ER�, and GPER—
have been identified in rodent and human �-cells. Unlike
the classical nuclear ERs that act as ligand-activated tran-
scription factors in breast or uterine cells, �-cell ERs reside
mainly in extranuclear locations. They exert their effect
via cytosolic interactions with kinases such as Src, ERK,
and AMPK or via transcription factors of the STAT family
(20, 298–301). Activation of ER� enhances glucose-stim-
ulated insulin biosynthesis (298, 302) through a pathway
involving Src, ERK, and stimulation of the nuclear trans-
location and binding to the insulin promoter of NeuroD1,
an insulinotropic transcription factor (298). This action
may assist the islets in adapting to the increased metabolic
demand of pregnancy by enhancing insulin biosynthesis.
Activation of ER� reduces islet excess de novo synthesis of
fatty acids and lipogenesis and accumulation of toxic lipid
intermediates (299–301). This antilipogenic action in-
volves at least 2 pathways. First, an extranuclear ER�

activates and promotes the nuclear translocation of signal
transducer and activator of transcription 3 (STAT3),
which leads to inhibition of the master regulator of lipo-
genesis, the liver X receptor (LXR)�, and its transcrip-
tional targets, the SREBP-1c and the carbohydrate re-
sponse element binding protein. Suppression of LXR� and
SREBP-1c mRNA may be mediated by a pool of ER�—
that is associated with the plasma membrane—and acti-
vates Src leading to STAT3 activation (301). In �-cells,
chronic LXR activation leads to excess lipogenesis, which
in turn is associated with lipotoxicity and apoptosis (304).

Thus, ER suppression of LXR mRNAs in �-cells may ac-
count for the inhibition of lipogenesis and prevention of
islet lipotoxicity (301). In the second pathway, activation
of ER� induces AMPK to suppress SREBP-1c gene and
protein expression (301). Together, ER� extranuclear ac-
tions in �-cells via STAT3 and AMPK lead to decreased
expression and activity of the master effector of fatty acid
synthesis under conditions of glucose surplus—FAS—
converting malonyl-CoA into saturated long-chain fatty
acid that can then undergo �-oxidation or esterification to
monoacylglycerol, diacylglycerol, and triglyceride (299).
Activation of ER� also promotes �-cell survival from most
proapoptotic stimuli associated with diabetes (305–307).
This antiapoptotic mechanism involves a combination of
rapid actions that are independent of nuclear events and
that potentially lead to alteration in protein phosphory-
lation (306, 307) and a more classical genomic mechanism
inducing an anti-inflammatory cascade via expression of
the orphan receptor, liver receptor homolog-1 (308). Ac-
tivation of ER� seems to predominantly enhance glucose-
stimulated insulin secretion (309, 310) via a membrane
pathway that leads to activation of the atrial natriuretic
factor receptor and closure of ATP-sensitive potassium
channels (309). Activation of GPER, however, protects
�-cells from lipid accumulation (311) and promotes their
survival (306, 312, 313). Activation of GPER also en-
hances glucose-stimulated insulin secretion (312, 314) via
activation of the epidermal growth factor receptor and
ERK (314), although it has no effect on insulin biosyn-
thesis (303). However, it has been proposed that GPER
induces expression of ER�36, a short isoform of the clas-
sical long isoform of ER�, ER�66 (23). Both ER�66 and
ER�36 are expressed in �-cells (299). Thus, it is unclear
whether GPER-mediated effects in �-cells are due to in-
trinsic GPER actions, or whether GPER is interacting with
ER�36 at the membrane level. Importantly, the beneficial
effects of ER ligands on �-cell survival, function, and
�-cell nutrient homeostasis that are described above are all
observed in human �-cells (20, 299, 306, 313, 315).

Perhaps the most translational prospect of E2 therapy
for �-cell protection involves pancreatic islet transplanta-
tion. Fertile women with type 1 diabetes exhibit E2 defi-
ciency relative to healthy women (316). Therefore, type 1
diabetes women undergoing islet transplantation may
have lost part of their endogenous E2-related islet pro-
tections and could benefit from short-term E2 supple-
mentation. To explore this hypothesis, Mauvais-Jarvis
and co-workers (317) used a type 1 diabetes model with
xenotransplantation of a marginal dose of human islets in
nude mice rendered insulin-deficient by streptozotocin
(STZ). In this model, a transient 4-week E2 treatment pro-
tected functional �-cell mass and enhanced islet revascu-
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larization and engraftment. These results suggest that
transient E2 treatment in women could provide an imme-
diate therapeutic alternative to improve pancreatic islet
transplantation and also achieve insulin independence
with fewer islets. This therapeutic approach could be de-
veloped long before other surrogate islet �-cell sources or
�-cell regeneration therapy can be developed and there-
fore warrants further investigation.

From a therapeutic point of view, the risk of hormone-
dependent cancer precludes the use of general estrogen
therapy as a chronic treatment for �-cell failure in diabe-
tes. To preferentially target E2 to the �-cells without the
undesirable effect of general estrogen therapy, DiMarchi
and co-workers (318) created novel fusion peptides com-
bining glucagon-like peptide-1 (GLP-1) and E2 in a single
molecule. By combining the pharmacologies of GLP-1 and
E2, these investigators envisioned synergistic actions on
�-cell function and survival using the combined insulino-
tropic and antiapoptotic activities on pancreatic �-cells
that express ER and GLP-1 receptor (GLP-1R). Two con-
jugates were synthesized with E2 stably linked to GLP-1 to
avoid E2 release in the circulation and to maximize E2
delivery at target cells: a GLP-1 agonist stably linked to
E2 (aGLP1-E2), and an inactive GLP-1 stably linked to E2
(iGLP1-E2). This second conjugate binds GLP-1R nor-
mally, but it is pharmacologically incapable of activating
GLP-1R signaling and is used to direct E2 to �-cells. Tiano
et al (319) tested the efficiency of GLP1-E2 conjugates in
preventing insulin-deficient diabetes in a model of �-cell
destruction induced by multiple low-dose injections of
STZ. They observed that the iGLP1-E2 conjugate pre-
vented STZ-induced insulin-deficient diabetes, thereby
demonstrating that, in vivo, the inactive GLP-1 was able
to bind the GLP-1R and to direct E2 to �-cells for protec-
tion. Most importantly, the aGLP1-E2 conjugate was
more potent than both the GLP-1 agonist and the
iGLP1-E2 individually in preventing STZ-induced diabe-
tes. All conjugates were devoid of E2 gynecological effects
compared to general E2 therapy (319). These observations
provide proof of concept that combining GLP-1 and E2 in
a single molecule results in synergies for protection of
�-cell function without the side effects associated with
general estrogen therapy.

X. Estrogen Sulfotransferase and Metabolism

As discussed in Section II, EST terminates estrogen activity
and represents an important parameter of estrogen output
upstream of ER. With regard to metabolism, EST is highly
expressed in WAT of male mice, but it is not detectable in
WAT of normal cycling female mice (320). EST is induced

by T in both sexes (320). Transgenic female mice overex-
pressing EST in adipose tissue at the level of males—which
inactivates estrogen in this tissue—have altered adipocyte
differentiation and smaller WAT depots in sc and visceral
areas. This phenotype is associated with WAT insulin re-
sistance (321). EST is also expressed in human sc adipose
tissue. EST expression correlates with expression of pro-
inflammatory factors in patients with metabolic syndrome,
suggesting that excess estrogen inactivation in WAT may
predispose to metabolic dysfunction (322). In addition, EST
is highly expressed in the liver of insulin-resistant and dia-
betic db/db mice, again suggesting that estrogen inactivation
in the liver may play a role in insulin resistance (323). In fact,
eliminating EST in female mouse models of insulin resis-
tance and type 2 diabetes by gene targeting improves glu-
cose homeostasis (324). Loss of liver EST expression in
these mice restores hepatic estrogen action, thus amelio-
rating hepatic insulin resistance. However, the antidia-
betic effect of EST elimination is not observed in ob/ob
male mice. In fact, the loss of EST in these mice yields a
different phenotype of WAT inflammation, which aggra-
vates the diabetic phenotype by provoking pancreatic islet
inflammation and �-cell failure (324). EST elimination
does not result in �-cell failure via a direct islet effect be-
cause EST is not expressed in islets (324), and estrogen
action in islets is beneficial to islet function and survival.
Rather, �-cell failure is associated with WAT macrophage
infiltration and WAT inflammation followed by islet mac-
rophage infiltration and �-cell apoptosis. An obvious ex-
planation for these observations is that EST expression is
high in male WAT (320) to protect from excessive estrogen
actions. It follows that EST suppression produces WAT
estrogen excess leading to inflammation. Consistent with
this possibility is the observation that E2 treatment leading
to high blood concentrations produces WAT inflamma-
tion even in females (193).

The tissue-specific effects of estrogen with regard to
glucose metabolism and energy homeostasis in health and
disease are summarized in Figure 4.

XI. Estrogen Therapy and Metabolism

A. Relation of route of estrogen administration
and metabolism

The estrogen type and route of administration appears
to affect clinical outcomes. Major placebo-controlled tri-
als like the WHI used only conjugated equine estrogen
(CEE) and progestin. However, the physiological form of
estrogen is E2, and it is available is some oral preparations
as well as all patches, creams, and gels for transdermal or
percutaneous absorption. In contrast to orally adminis-

doi: 10.1210/er.2012-1055 edrv.endojournals.org 323

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/34/3/309/2354631 by guest on 10 April 2024



tered HRT, transdermal delivery avoids first pass liver
metabolism, thereby resulting in more stable serum levels
without supraphysiological liver exposure (325). Treat-
ment with transdermal E2 results in higher E2 levels than
corresponding doses of CEE, which results in higher levels
of E1 and E1 sulfate (326). Percutaneous E2 administra-
tion in menopausal women is a safe and effective approach
to delivering the hormone into the circulation, thereby
mimicking the physiological condition (327) without the
metabolic complications of oral CEE therapy (328). There
are reports suggesting that oral E2 may exacerbate insulin
resistance and adipocytokine parameters, worsening car-
diovascular risk (329). Transdermal E2, however, has
minimal effects on insulin resistance and results in higher
adiponectin. This suggests that transdermal E2 may be a
preferable treatment compared to oral CEE for obese

women with metabolic syndrome. In addition, oral estro-
gen is associated with increased proinflammatory factors
(matrix metallopeptidase 9), a side effect that is not ob-
served with transdermal administration (330). A meta-
analysis of over 100 randomized trials in postmenopausal
women has recently analyzed the effect of HRT on com-
ponents of the metabolic syndrome (331). The authors
concluded that in women without diabetes, both oral and
transdermal estrogen, with or without progestin, increase
lean body mass, reduce abdominal fat, improve insulin
resistance, decrease LDL/high-density lipoprotein-choles-
terol ratio, and decrease blood pressure (331). In women
with diabetes, both oral and transdermal estrogen, with or
without progestin, reduce fasting glucose, improve insulin
resistance, and decrease LDL/high-density lipoprotein-
cholesterol ratio (331). Estrogen beneficial effects on me-

Figure 4.

Figure 4. Summary of estrogen actions in glucose homeostasis and energy metabolism in physiology and menopause. Estrogen actions in the
brain, adipose, pancreatic islets, skeletal muscle, liver, and macrophages synergize to promote glucose and lipid homeostasis. Estrogen deficiency
or resistance in these tissues all contribute to metabolic dysfunction predisposing to the metabolic syndrome, type 2 diabetes, and obesity.
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tabolism were dose dependent and were reduced by the
addition of a progestin (331). These estrogen beneficial
effects on clinical features of the metabolic syndrome
probably account for the reduction in mortality and car-
diovascular events observed when HRT is initiated in
younger women (331–333). Oral estrogen therapy and,
particularly, CEE result in a stronger beneficial metabolic
effect. The stronger effect of oral therapy on blood glucose
could be the result of first pass liver metabolism leading to
a better suppression of hepatic insulin resistance as dis-
cussed previously in rodent models (194). However, oral
estrogen therapy is also associated with an increase in
triglyceride, as well as inflammatory markers such as C-
reactive protein and coagulation inhibitors like protein S
(331). This would be expected to increase cardiovascular
and thrombotic risks and could account for the increase in
cardiovascular events observed when HRT is initiated in
older women (4, 334–336). In contrast, transdermal es-
trogen has no adverse effect on triglyceride or inflamma-
tory and coagulation factors (331). Further studies are
warranted to determine whether transdermal estrogen
therapy can safely reduce cardiovascular morbidity in
postmenopausal women.

B. Effect of selective estrogen receptor modulators and
aromatase inhibitors on metabolism

Selective estrogen receptor modulators (SERMs) act as
ER agonists or antagonists in a tissue-specific fashion. Ta-
moxifen, for example, acts as an ER� antagonist in breast
and as an ER� agonist in bone. As a result, tamoxifen is
used for treatment of breast cancer while simultaneously
preventing osteoporosis. However, tamoxifen treatment
is associated with an increased risk of developing fatty
liver (steatosis) (337–339), with approximately 43% of
breast cancer patients treated with tamoxifen developing
hepatic steatosis (339). The exact mechanism by which
this occurs is still unclear. In rats, tamoxifen increases liver
fatty acid and triglyceride content, despite decreased de
novo lipogenesis associated with increased (340) or nor-
mal (341) fatty acid oxidation. Indeed, tamoxifen treat-
ment predominantly down-regulates FAS expression and
activity in liver (340), classical features of ER� agonistic
action (299). The first hypothesis to explain tamoxifen-
induced hepatic steatosis is that, in response to a continued
supply of exogenous free fatty acid, the suppression of
liver fatty acid oxidation may drive steatosis (340). A sec-
ond hypothesis is that tamoxifen may increase hepatic tri-
glyceride levels as a result of the combination of increased
biosynthesis and unchanged �-oxidation (341). However,
a recent study also showed that tamoxifen could induce
triglyceride accumulation in mouse liver via activation of
fatty acid synthesis (342). Accordingly, it is still unclear

whether fatty acids used for triglyceride synthesis come
from an exogenous source or de novo synthesis. In the
hypothalamus, tamoxifen appears to act as an ER agonist.
In rodents, tamoxifen inhibits hypothalamic FAS expres-
sion and malonyl-CoA accumulation in the VMN (343).
This is associated with a potent anorectic effect. In fact,
reanalysis of a primary breast cancer prevention study
showed that obese women treated with tamoxifen gained
less body weight over a 6-year period than obese controls
(343). However, in cultured �-cells, tamoxifen reverses E2
antiapoptotic protection (305). In addition, treatment
with tamoxifen reverses E2 protection from STZ-induced
�-cell destruction in female mice, which leads to insulin-
deficient diabetes (305). Thus, tamoxifen acts as an ER�

antagonist in �-cells with regard to antiapoptotic protec-
tion. In fact, tamoxifen therapy in a case-control study
breast cancer survivor was associated with a 24% in-
creased risk of developing diabetes (344).

Raloxifene is approved by the FDA for the treatment of
postmenopausal osteoporosis because of its ER-agonist
activity in bone (345). In OVX mice, raloxifene reversed
OVX-induced increases in food intake, body weight, fat
mass, and hyperleptinemia to an extent similar to that of
E2. This suggests that in rodents, raloxifene acts as an ER
agonist in hypothalamic neurons and fat (346). In post-
menopausal women, raloxifene prevents the shift from
android to gynoid fat distribution, increases in abdominal
adiposity (347), as well as total increases in adiposity
(348). The absence of significant effect on body weight in
women (349) could be due to the concomitant increase in
lean mass and water after raloxifene treatment (350). In
cultured INS-1 insulin-secreting cells, raloxifene acts as an
ER agonist and prevents lipid accumulation both alone
and in the presence of E2 (311). Nonetheless, in healthy
and diabetic postmenopausal women, short-term ralox-
ifene treatment did not impact fasting glucose, glucose
tolerance, or indices of �-cell function and sensitivity (351,
352). However, it decreased hepatic insulin extraction
and, as a result, increased insulin half-life (352). Addi-
tionally, in the Multiple Outcomes of Raloxifene Evalu-
ation trial, 3-year raloxifene treatment of postmenopausal
women with or without type 2 diabetes reduced total cho-
lesterol and LDL-cholesterol but had no effect on glycemic
control compared to placebo (349). Thus, there is no ar-
gument for an effect of raloxifene in improving glucose
homeostasis in postmenopausal women with type 2 dia-
betes. In fact, women with a previous history of hypertri-
glyceridemia who receive oral estrogen therapy are at risk
for clinically relevant progression in this existing risk fac-
tor during raloxifene therapy (353).

A novel approach to postmenopausal therapy is the
tissue-selective estrogen complex (TSEC) or the pairing of
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a SERM with estrogens. The goals of TSEC are: 1) to
provide the benefits of estrogens by treating hot flashes
and vulvar–vaginal atrophy; 2) preventing menopausal
osteoporosis events; and 3) protecting the endometrium
and breast from estrogen stimulation (354, 355). In pre-
clinical studies, the TSEC partnering bazedoxifene with
CEE seemed to provide these benefits. Thus far, the effect
of TSEC partnering bazedoxifene on glucose and energy
metabolism is unknown.

Sullivan et al (356) looked at the effect of a novel SERM
(GSK232802A) on body weight, food intake, physical ac-
tivity, and metabolic rate in an OVX nonhuman primate
model. They observed that GSK232802A produced a 5%
decrease in weight and reduced adiposity by suppressing
food intake and increasing activity. These results occurred
without changes in energy expenditure, suggesting that
GSK232802A treatment may counteract postmenopausal
obesity (356).

Aromatase inhibitors (AIs; anastrozole, exemestane,
and letrozole) are used as adjuvant therapy of postmeno-
pausal breast cancer survivors (357). Because AIs inhibit
aromatase, postmenopausal women taking AIs experience
a further decrease in circulating estrogens and a theoretical
increase in androgens (357). A prolonged period of pro-
found estrogen suppression and (relative) hyperandrogen-
emia could induce alterations in body composition and
favor adiposity and type 2 diabetes. A recent study re-
ported that postmenopausal women with breast cancer
using AIs over 24 months demonstrated increased lean
body mass with stable body fat mass (21). However, they
also exhibited increased free serum T concentration and
decreased SHBG concentrations. Considering that hy-
perandrogenemia (7) and decreased SHBG (35, 191) pre-
dispose to type 2 diabetes in women, further studies are
needed to evaluate the long-term metabolic impact of AIs
in postmenopausal women.

XII. Conclusions and Perspectives

Novel molecular targets have emerged that offer possibil-
ities for pharmacological intervention to combat diabetes
and obesity. The inherent beauty of targeting estrogen
action is the depth of knowledge of E2 and SERM bio-
logical and clinical efficacy and toxicity that has accumu-
lated from decades of in vivo studies in preclinical models
and in humans. E2 promotes energy homeostasis, im-
proves body fat distribution, ameliorates insulin resis-
tance (or enhances insulin sensitivity), improves �-cell
function, and reduces inflammation. The challenge with
estrogens, however, is their relatively narrow therapeutic
index when administered as a long-term medication.

Thus, translation of basic advances in diabetes and obesity
treatment described in this review, although successful in
rodents, is problematic when extended to clinical practice.
However, 10 years after the WHI inappropriately con-
cluded that the risks of hormone therapy outweighed its
benefits—and overstated the risks of breast cancer, coro-
nary heart disease, stroke, and pulmonary embolism with
estrogen-progestin treatment—a position statement is-
sued by the North American Menopause Society has
stated that HRT has a role in short-term treatment of
menopausal symptoms (303). Thus, at least during this
interval, the metabolic dysfunction caused by E2 defi-
ciency can be addressed.

Considering the dramatic rise in obesity and metabolic
syndrome over the past decade, important clinical ques-
tions have emerged. Chief among these is how can we
enhance the metabolic actions of E2 in chronic therapies
aimed at prevention and treatment of metabolic diseases?
Obviously, one solution is to target only the ER involved
in energy balance and glucose homeostasis and to develop
estrogen-like drugs that only initiate cellular events that
produce metabolic benefit without unwanted side effects.
This could be achieved via a tissue-targeted fusion protein
approach with GLP-1-mediated delivery of E2 to tissues
with high density of GLP-1Rs—to minimize gynecological
effects—through the use of fusion peptides (318, 319) or
through novel SERMs that will retain the beneficial met-
abolic effects of E2 in desired tissues while antagonizing
ERs in breast and uterus.

With regard to obesity, future research should focus on
identifying critical brain sites where ERs regulate body
weight homeostasis and delineate the intracellular signal-
ing pathways that are required for the actions of estrogens.
Additionally, understanding the functional role and mo-
lecular mechanisms of ER action in islet cells, skeletal mus-
cle, liver, and adipose tissue may reveal new pharmaco-
logical targets for the beneficial actions of estrogens.

A major limitation in our understanding and interpre-
tation of E2 action is the lack of information pertaining to
the tissue-specific effects of E2 in metabolism. There is also
a lack of data regarding the contribution of extranuclear
vs nuclear ER actions, as well as ligand- vs nonligand-
mediated functions of its receptors in these tissue-specific
actions of E2. Furthermore, little is known regarding the
mechanisms by which ER mediate membrane-initiated
signaling events independently of nuclear events, or how
they activate and repress target genes in various tissues.
Clarification of these signaling pathways and the tissue
specificity with which these pathways are engaged will be
critical in moving the field forward and will lay the foun-
dation for improved targeted therapies.
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