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ABSTRACT
Adrenal steroids and neurotrophic factors are important modula-

tors of neuronal plasticity, function, and survival in the rat hippocam-
pus. Adrenal steroids act through two receptor subtypes, the glu-
cocorticoid receptor (GR) and the mineralocorticoid receptor, and
activation of each receptor subtype has distinct biochemical and phys-
iological consequences. Adrenal steroids may exert their effects on
neuronal structure and function through the regulation of expression
of neurotrophic and growth-associated factors. We have examined
adrenal steroid regulation of the neurotrophins brain-derived neu-
rotrophic factor, neurotrophin-3, and basic fibroblast growth factor, as
well as the growth associated protein GAP-43, through activation of

GR or mineralocorticoid receptor with selective agonists. Our findings
indicated that in CA2 pyramidal cells, adrenalectomy resulted in
decreases in the levels of basic fibroblast growth factor and neuro-
trophin-3 messenger RNA, which were prevented by activation of
mineralocorticoid but not glucocorticoid receptors. Adrenalectomy-
induced increases in GAP-43 and brain-derived neurotrophic factor
messenger RNA levels could be blocked by activation of glucocorticoid
receptors in CA1, but not in CA3, pyramidal cells. Thus the extent to
which adrenal steroids regulate hippocampal neurotrophic and
growth-associated factors, appears to be dependent both on the ad-
renal steroid receptor subtype activated and on the hippocampal
subregion examined. (Endocrinology 139: 3112–3118, 1998)

A VARIETY of neurotrophic factors, including brain-
derived neurotrophic factor (BDNF), neurotrophin-3

(NT-3), and basic fibroblast growth factor (bFGF), have been
shown to play important roles in regulating the plasticity and
function of hippocampal neurons (1–6). In the hippocampus,
the expression of the neurotrophins BDNF, NT-3, and bFGF
as well as the receptors to which they bind (trkB, trkC, and
FGFR, respectively), suggests that these factors may act lo-
cally through autocrine mechanisms to exert their neuro-
modulatory and protective effects (7–13).

Adrenal steroids have a multitude of effects on the struc-
ture, function, and survival of hippocampal neurons (14–16).
The hippocampus is particularly sensitive to adrenal steroid
action due to the prominence in this brain region of two
distinct receptor subtypes, the mineralocorticoid receptor
(MR or type I receptor), and the glucocorticoid receptor (GR
or type II receptor). The mineralocorticoid receptor has a
high affinity for corticosterone and aldosterone (17, 18), and,
within the hippocampus, is most abundant in CA2 pyrami-
dal cells with moderate levels expressed in the other hip-
pocampal subfields (19–21). The glucocorticoid receptor has
a lower affinity for aldosterone but a higher affinity for
synthetic agonists such as dexamethasone and RU28362 than
MR (22, 23). In the hippocampus, the level of GR expression
is highest in the CA1 subfield, lowest in the CA3 subregion,
and intermediate in the dentate gyrus (20, 21, 24).

For many of the electrophysiological, biochemical, and
morphological effects of adrenal steroids on hippocampal
neurons, there are markedly different consequences to acti-

vation of one adrenal steroid receptor subtype or the other
(14, 16). These effects of glucocorticoids on neuronal struc-
ture and function, may be mediated through their actions as
transcriptional regulators of target genes such as the growth-
associated protein GAP-43, whose expression is closely cor-
related with axonal growth and neuronal plasticity (25–27),
or the neurotrophic factors BDNF, NT-3, or bFGF. To inves-
tigate this putative mechanism of action, we have examined
the ability of ligands specific for each adrenal steroid receptor
subtype, to regulate the expression of GAP-43 and the neu-
rotrophic factors BDNF, NT-3 and bFGF, in the different
subregions of the rat hippocampus.

Materials and Methods
Experimental animals

Adult male Sprague-Dawley rats (CD strain, Harlan, Indianapolis,
IN) were maintained on a 12-h dark, 12-h light cycle and had access to
both water and 0.5 m NaCl from 7 days before surgery, until animals
were euthanized.

Exp 1. Animals were (1) sham-operated and implanted with mock
minipumps (Sham); (2) adrenalectomized and implanted with mock
minipumps (adrenalectomy, ADX); (3) ADX and implanted with Alzet
no. 2001 minipumps delivering aldosterone at 1 mg/h (ADX 1 Aldo);
(4) ADX and implanted with minipumps delivering corticosterone at 10
mg/h (ADX 1 CORT); n 5 5–6 per treatment group. Daily fluid intakes
were monitored following surgery. Animals were euthanized 7 days
after surgery, and brains and trunk blood were collected. Plasma cor-
ticosterone levels were assessed by RIA. Daily fluid intakes and plasma
corticosterone levels were previously reported (28).

Exp 2. Animals were (1) sham-operated and implanted with mock
minipumps (Sham); (2) adrenalectomized and implanted with mock
minipumps (ADX); (3) ADX and implanted with Alzet no. 2001
minipumps delivering aldosterone at 1 mg/h (ADX 1 Aldo); (4) ADX
and implanted with minipumps delivering RU28362 at 10 mg/h (ADX
1 RU);and (5) ADX and implanted with minipumps delivering aldo-
sterone at 1 mg/h and RU28362 at 10 mg/h (ADX 1 Aldo 1 RU); n 5
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5–6 per treatment group. Daily fluid intakes were monitored and ani-
mals exhibiting aberrant intake levels were eliminated from the study.
Seven days after surgery, body weights were recorded, animals were
euthanized, and brains and trunk blood were collected. Plasma corti-
costerone and aldosterone levels were assessed by RIA. Daily fluid
intakes, body weights, and plasma steroid levels were previously re-
ported (28).

In situ hybridization

Brains were removed, immediately frozen, and stored at 270 C.
Sixteen-micron sections were prepared on a cryostat microtome, col-
lected on gelatin-coated slides, and stored frozen until hybridization.
Before hybridization, sections were fixed in 4% formaldehyde in PBS,
acetylated in a solution of 0.25% acetic anhydride in 0.1 m trietha-
nolamine-HCl, pH 8.0, rinsed in 2 3 SSC, and allowed to air-dry.
Antisense riboprobes radioactively labeled with 35S were transcribed
from complementary DNA clones corresponding to BDNF (29), NT-3

(30), bFGF (31), and GAP-43 (32). The hybridization mix (50% for-
mamide; 10% dextran sulfate; 600 mm NaCl; 1 3 Denhardt’s solution;
10 mm Tris-HCl, pH 7.5; 1 mm EDTA, pH 8; 100 mg/ml denatured
salmon testis DNA; 10 mm dithiothreitol; radiolabeled probe) was
added at 0.2 ml per slide, the slides were coverslipped, and the
sections were incubated overnight at 55 C. Following hybridization,
the coverslips were removed, and the sections were rinsed in 2 3 SSC.
The sections were treated with 10 mg/ml RNase A, washed in RNase
A buffer and in 2 3 SSC at room temperature, followed by 0.5 3 SSC
at 55 C. The sections were allowed to air dry and then were apposed
to x-ray film for autoradiography.

The optical densities of the autoradiographic images were deter-
mined on the Imaging Research image analysis system. The value of the
low hybridization signal in the medial aspect of cortical layer 1 was taken
(by definition) as background and subtracted from the optical density
values for the hippocampal cell layers. The data were expressed as
optical density (means 6 sem). Statistical analysis was by one-way

FIG. 1. Hippocampal BDNF mRNA ex-
pression in Exp 1. Levels of BDNF
mRNA expression were assessed in the
CA1 pyramidal cell layer (CA1), CA3
pyramidal cell layer (CA3), and granule
cell layer of the dentate gyrus (DG). Sta-
tistical analysis indicated that the ADX
animals were significantly different
from the Sham animals in the CA3 sub-
region (*, P , 0.05).

FIG. 2. Hippocampal NT-3 mRNA ex-
pression in Exp 1. Levels of NT-3 mRNA
expression were assessed in the CA1
pyramidal cell layer (CA1), CA2 pyra-
midal cell layer (CA2), CA3 pyramidal
cell layer (CA3), and granule cell layer
of the dentate gyrus (DG). Statistical
analysis indicated that the ADX and the
ADX 1 Aldo animals were significantly
different from the Sham animals in the
CA2 subregion (*, P , 0.05).
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ANOVA followed by Tukey’s posthoc test, with P , 0.05 as the criterion
for statistical significance.

Results
Exp 1: steroid replacement of adrenalectomized animals
with aldosterone or corticosterone

In the adrenalectomized animals there was a significant
induction in BDNF messenger RNA (mRNA) expression in
the CA3 subfield, relative to the Sham animals. This increase
was prevented by treatment of the ADX animals with either
aldosterone or corticosterone (Fig. 1).

Adrenalectomy resulted in a significant decrease in the
level of NT-3 mRNA in CA2 pyramidal cells, relative to Sham
animals. The expression of NT-3 mRNA in the CA2 subre-
gion was markedly increased in ADX animals receiving al-

dosterone or corticosterone treatment, compared with the
untreated ADX group (Fig. 2). Expression of bFGF mRNA in
the CA2 subregion showed this same pattern of adrenal
steroid regulation (Fig. 3).

The expression of GAP-43 mRNA was increased by ad-
renalectomy in the CA1 and CA3 hippocampal subregions,
relative to the Sham animals. This induction was prevented
by treatment of the ADX animals with either aldosterone or
corticosterone (Fig. 4).

Exp 2: steroid replacement of adrenalectomized animals
with aldosterone and/or RU28362

Adrenalectomy caused a significant increase in the ex-
pression of BDNF mRNA in pyramidal cells, relative to Sham
animals, with no change observed in the granule cells of the

FIG. 3. Hippocampal bFGF mRNA ex-
pression in Exp 1. Levels of bFGF
mRNA expression were assessed in the
CA1 pyramidal cell layer (CA1), CA2
pyramidal cell layer (CA2), CA3 pyra-
midal cell layer (CA3), and granule cell
layer of the dentate gyrus (DG). Statis-
tical analysis indicated that the ADX
and the ADX 1 Aldo animals were sig-
nificantly different from the Sham an-
imals in the CA2 subregion (*, P , 0.05).

FIG. 4. Hippocampal GAP-43 mRNA
expression in Exp 1. Levels of GAP-43
mRNA expression were assessed in the
CA1 pyramidal cell layer (CA1) and
CA3 pyramidal cell layer (CA3). Statis-
tical analysis indicated that the ADX
animals were significantly different
from the Sham animals in the CA1 and
CA3 subregions (*, P , 0.05).
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dentate gyrus. In the CA1 subregion, but not in CA3 pyra-
midal cells, this induction was prevented by treatment of the
ADX animals with the GR-specific agonist RU28362, in the
presence or absence of aldosterone (Fig. 5).

In the adrenalectomized animals there was a significant
decrease in NT-3 mRNA expression in the CA2 subfield,
relative to the Sham animals. This decrease was prevented by
treatment of the ADX animals with the MR-specific agonist
aldosterone, in the presence or absence of RU28362, but not
by RU28362 alone (Fig. 6). Expression of bFGF mRNA in the
CA2 subregion showed this same pattern of adrenal steroid
regulation (Fig. 7).

GAP-43 mRNA levels were elevated in ADX animals, in
CA1 and CA3 pyramidal cells, relative to the Sham animals.
In CA1, but not in CA3, pyramidal cells this induction was
prevented by treatment of the ADX animals with RU28362.

In both CA1 and CA3 pyramidal cells, the combined treat-
ment of ADX animals with aldosterone and RU28362 re-
sulted in decreased expression of GAP-43 mRNA, compared
with the untreated ADX group (Fig. 8).

Discussion

The results of our studies have demonstrated that the
profile for steroid-regulated neurotrophin expression is de-
pendent upon the neurotrophic factor in question, the ad-
renal steroid receptor subtype activated, and the hippocam-
pal subregion examined. A comparison of the results from
the different hippocampal subfields demonstrates that de-
spite the colocalization of GR and MR in hippocampal neu-
rons (33, 34), there are distinct regulatory mechanisms me-
diated by either GR or MR activation. The changes we

FIG. 5. Hippocampal BDNF mRNA ex-
pression in Exp 2. Levels of BDNF
mRNA expression were assessed in the
CA1 pyramidal cell layer (CA1), CA3
pyramidal cell layer (CA3), and granule
cell layer of the dentate gyrus (DG). Sta-
tistical analysis indicated that the ADX
animals were significantly different
from the Sham animals in the CA1 sub-
region, and that the ADX and the ADX
1 RU animals were significantly differ-
ent from the Sham animals in the CA3
subregion (*, P , 0.05).

FIG. 6. Hippocampal NT-3 mRNA ex-
pression in Exp 2. Levels of NT-3 mRNA
expression were assessed in the CA1
pyramidal cell layer (CA1), CA2 pyra-
midal cell layer (CA2), CA3 pyramidal
cell layer (CA3), and granule cell layer
of the dentate gyrus (DG). Statistical
analysis indicated that the ADX and the
ADX 1 RU animals were significantly
different from the Sham animals in the
CA2 subregion (*, P , 0.05).
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observed following adrenal steroid treatment were restricted
to hippocampal pyramidal cells, and we found no evidence
for regulation of neurotrophin expression in the granule cells
of the dentate gyrus. Because adrenalectomy has been shown
to result in granule cell death (35) the possibility remains that
in measurements of the entire granule cell layer, neuronal
loss could be obscuring increases in neurotrophin expression
in the cells that survive, a question that might be resolved by
single-cell analysis of neurotrophin expression.

In the CA3 pyramidal cells of the hippocampus, cortico-
sterone treatment has been shown to cause dendritic atrophy
and neuronal damage (36, 37). The increase in BDNF and
GAP-43 mRNA expression observed following adrenalec-
tomy suggests that these genes may be under tonic glucocor-
ticoid inhibition and raises the possibility that prolonged

glucocorticoid excess could, through repression of such gene
products, precipitate a neurodegenerative cascade. Different
patterns of steroid-regulated gene expression are apparent
when these results are compared with those of studies em-
ploying other regimens for sodium replacement following
adrenalectomy and investigating different timepoints after
surgery (38–40), suggesting that the changes in neurotrophin
expression may be sensitive to salt and water homeostasis in
addition to adrenal steroid levels, or that they may be
transient.

The mRNAs for bFGF and NT-3 showed similar patterns
of regulation by adrenal steroids. Adrenalectomy inhibited
the expression of bFGF and NT-3 mRNAs in CA2 pyramidal
neurons, in agreement with previous results (39–42). Acti-
vation by aldosterone of the mineralocorticoid receptor,

FIG. 7. Hippocampal bFGF mRNA ex-
pression in Exp 2. Levels of bFGF
mRNA expression were assessed in the
CA1 pyramidal cell layer (CA1), CA2
pyramidal cell layer (CA2), CA3 pyra-
midal cell layer (CA3), and granule cell
layer of the dentate gyrus (DG). Statis-
tical analysis indicated that the ADX
and the ADX 1 RU animals were sig-
nificantly different from the Sham an-
imals in the CA2 subregion (*, P , 0.05).

FIG. 8. Hippocampal GAP-43 mRNA
expression in Exp 2. Levels of GAP-43
mRNA expression were assessed in the
CA1 pyramidal cell layer (CA1) and
CA3 pyramidal cell layer (CA3). Statis-
tical analysis indicated that the ADX
and the ADX 1 Aldo animals were sig-
nificantly different from the Sham an-
imals in the CA1 subregion and that the
ADX animals were significantly differ-
ent from the Sham animals in the CA3
subregion (*, P , 0.05).
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which is most highly expressed in the CA2 subregion, was
effective in preventing this ADX-induced decrease in neu-
rotrophin expression. While there is scant information on the
function of the neurons in the CA2 subregion, the steroid
regulation of bFGF and NT-3 in these cells may be of im-
portance because the markedly high levels of expression of
these neurotrophic factors could contribute to the resistance
of CA2 pyramidal cells to damage in epilepsy (43, 44).

In CA1 pyramidal cells, we have found evidence that
adrenalectomy results in an increase in the mRNAs for BDNF
and GAP-43. Activation by RU28362 of the glucocorticoid
receptor, which is most abundant in the CA1 subregion, can
prevent this ADX-induced increase in expression. The find-
ing that adrenalectomy induces growth factor expression is
consistent with reports showing that CA1 pyramidal cells are
protected from neurodegenerative, neurotoxic, and ischemic
damage by adrenalectomy (45, 46). In addition, because there
is a well documented reciprocal regulation of neurotrophins
and neuronal signaling (3, 4), it is of interest to note that
long-term potentiation (LTP), which is impaired in BDNF-
deficient animals, can be restored by targeted reexpression of
BDNF, and that activation of GR acts to inhibit both BDNF
expression and LTP in CA1 neurons (14, 47–49).

In conclusion, adrenal steroids and neurotrophic factors
have profound influences on the structure and activity of
hippocampal neurons, and our results support the model
that adrenal steroids exert their effects, at least in part,
through regulation of neurotrophic factor expression. Our
findings suggest that adrenal steroids, acting differentially
through GR or MR, can elicit distinct patterns of neurotro-
phic factor expression in the various hippocampal subfields,
with diverse consequences for neuronal morphology, func-
tion and survival.
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Erratum

In the article, “RORa gene expression in the perinantal rat cerebellum: ontogeny and thyroid hormone
regulation,” by Noriyuki Koibuchi and William W. Chin (Endocrinology 139: 2335–2341, 1998), parts of Fig.
6 were incorrectly labeled (page 2340): Fig. 6F should be 6E, and 6E should be 6F.
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