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ABSTRACT
Receptor activator of nuclear factor-kB ligand [RANK ligand

(RANK-L)] stimulates mature osteoclasts to resorb bone, a process
associated with NF-kB activation. RANK-L also prompts macro-
phages to develop the osteoclast phenotype. Although NF-kB is es-
sential for osteoclast differentiation, it is not known whether RANK-L
activates this transcription complex in osteoclast precursors. We re-
port that RANK-L rapidly induces NF-kB activation in both authentic
osteoclast precursors, namely bone marrow macrophages, and RAW
264.7 cells, a murine macrophage line also capable of RANK-L-
mediated osteoclastogenesis. Supershift studies reveal the RANK-L-
induced DNA binding moiety contains p50/p65, the most common

NF-kB complex. Subcellular translocation of p50 and p65 subunits is
confirmed by Western blots and immunofluorescence analysis.
RANK-L activates NF-kB in both bone marrow macrophages and
RAW 264.7 cells by serine phosphorylation of IkBa within 5 min,
resulting in rapid IkBa degradation and resynthesis. Attesting to
function, RANK-L treatment of RAW 264.7 cells transiently trans-
fected with a plasmid containing NF-kB consensus elements linked to
luciferase greatly enhances reporter activity. Our data suggest that
activation of the NF-kB pathway is an integral component of RANK-
L-induced osteoclast differentiation. (Endocrinology 142: 1290–1295,
2001)

OSTEOCLASTS, CELLS that play an essential role in
controlling bone morphogenesis and remodeling,

arise by the proliferation and differentiation of precursors in
the hemopoietic lineage (1–3). Commitment of mononuclear
precursors to mature osteoclasts involves transcription fac-
tors such as c-Fos and PU.1 (4–6). Similarly, mice lacking
both p50 and p52 subunits of nuclear factor-kB (NF-kB) de-
velop osteopetrosis because of failed osteoclastogenesis
(7, 8).

Recent developments have made it possible to generate
both human and murine osteoclasts by treating purified
myeloid precursors with the cytokines, macrophage colony-
stimulating factor (M-CSF) and receptor activator of NF-kB
ligand (RANK-L) (9–11). Although M-CSF is a well charac-
terized cytokine that supports the survival and proliferation
of cells in the macrophage lineage (12), the identity and
function of RANK-L were determined only recently (9, 10, 13,
14). RANK-L is a member of the tumor necrosis factor (TNF)
cytokine superfamily and functions as an osteoclast-specific
protein that exists in both soluble and membrane-bound
forms (9, 10). RANK, the surface receptor for RANK-L, ini-
tiates osteoclastogenic signal transduction after ligation with
RANK-L. The proximal RANK-derived signals include bind-
ing of TRAF family members such as TRAF2, TRAF3, TRAF5,
and TRAF6, which, in turn, initiates a cascade of kinases. Two
critical distal events in RANK signaling are activation of the

NF-kB complex and the transcription factor, activator pro-
tein-1 (15).

RANK-L activates NF-kB in mature osteoclasts (16, 17). It
is not known, however, whether this transcription complex
is activated by RANK-L in osteoclast precursors. For exam-
ple, it has been previously reported that NF-kB activation is
not detected in RANK-L-treated RAW 264.7 cells, a murine
myelomonocytic cell line that differentiates into osteoclasts
under the influence of the cytokine (18). Given that RAW
264.7 cells represent an immortalized line, uncertainty exists
as to whether RANK-L-induced NF-kB is a component of the
initial stage of osteoclastogenesis.

We found that RANK-L, via serine 32/36 phosphorylation
and degradation of IkBa, readily activates the most common
NF-kB dimer, p50/p65, in both bone marrow macrophages
(BMMs) and RAW 264.7 cells. Furthermore, RANK-L pro-
motes the expression of an NF-kB-dependent reporter plas-
mid transiently transfected into RAW cells. Thus, RANK-L-
stimulated osteoclastogenesis is associated with NF-kB
activation.

Materials and Methods
Reagents

Polyclonal and monoclonal anti-IkBa and polyclonal anti-p50NF-kB
antibodies were purchased from Santa Cruz Biotechnology, Inc. (Santa
Cruz, CA). Polyclonal antiphospho-IkBa was obtained from New En-
gland Biolabs, Inc. (Beverly, MA). Polyclonal anti-p65NF-kB was pur-
chased from Upstate Biotechnology, Inc. (Lake Placid, NY). Anti-
p50NF-kB for electrophoretic mobility shift assay (EMSA) was obtained
from Geneka (Montréal, Canada). The bicinchoninic acid kit for protein
determination and enhanced chemiluminescence kits were obtained
from Pierce Chemical Co. (Rockford, IL). Recombinant murine M-CSF
was purchased from R&D Systems, Inc. (Minneapolis, MN). Murine
RANK-L was expressed in our laboratory as described previously (19).
All other chemicals were obtained from Sigma (St. Louis, MO).
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Cell culture

BMMs were isolated from whole bone marrow of 4- to 6-week-old
C3H/Hen males (Harlan Industries, Indianapolis, IN) and incubated in
tissue culture dishes at 37 C in 5% CO2 in the presence of recombinant
mouse M-CSF (5 ng/ml). After 24 h in culture, the nonadherent cells
were collected and layered on a Ficoll-Hypaque gradient, and the cells
at the gradient interface were collected. The cells were replated at
65,000/cm2 in aMEM, supplemented with 10% heat-inactivated FBS at
37 C in 5% CO2 in the presence of M-CSF (5 ng/ml). RAW 264.7 cells,
obtained from American Type Culture Collection (Manassas, VA), were
grown in DMEM supplemented with10% heat-inactivated FBS.

Immunoblotting

Untreated or RANK-L-stimulated monolayers of BMMs or RAW cells
were washed twice with ice-cold PBS. Cells were lifted from the dish
after treatment with 5 mm EDTA and 5 mm EGTA in PBS. Cells were then
resuspended in hypotonic lysis buffer A [10 mm HEPES (pH 7.8), 1.5 mm
MgCl2, 0.5 mm dithiothreitol, 0.5 mm 4-(2-aminoethyl)benzenesulfonyl
fluoride, and 5 mg/ml leupeptin] and incubated on ice for 15 min, and
Nonidet P-40 was added to a final concentration of 6.4%. Nuclei were
pelleted, and both these and cytosolic fractions were carefully trans-
ferred to fresh tubes. Nuclei were washed and then resuspended in
nuclear extraction buffer B [20 mm HEPES (pH 7.8), 420 mm NaCl, 1.2
mm MgCl2, 0.2 mm EDTA, 25% glycerol, 0.5 mm dithiothreitol, 0.5 mm
4-(2-aminoethyl)benzenesulfonyl fluoride, 5 mg/ml pepstatin A, and 5
mg/ml leupeptin] and rotated for 30 min at 4 C. The samples were then
centrifuged, and nuclear proteins in the supernatant were transferred to
fresh tubes.

Nuclear or cytosolic extracts were boiled in the presence of SDS
sample buffer [0.5 m Tris-HCl (pH 6.8), 10% (wt/vol) SDS, 10% glycerol,
and 0.05% (wt/vol) bromophenol blue] for 5 min and subjected to
electrophoresis on 10% SDS-PAGE. Proteins were transferred to nitro-
cellulose membranes using a semidry blotter (Bio-Rad Laboratories, Inc.,
Richmond, CA) and incubated in blocking solution (5% nonfat dry milk
or 3% BSA prepared in PBS containing 0.1% Tween-20) for 1 h to reduce
nonspecific binding. Membranes were then exposed to primary anti-
bodies (1 h at room temperature or overnight at 4 C), washed four times,
and incubated with secondary goat antimouse or rabbit IgG horseradish
peroxidase-conjugated antibody for 1 h. Membranes were washed ex-
tensively, and an enhanced chemiluminescence detection assay was
performed following the manufacturer’s directions.

Immunofluorescence analysis

BMMs grown on chamber slides were treated with or without
RANK-L (100 ng/ml) for the indicated times, fixed with methanol,
permeabilized with 0.5% Triton X-100 for 30 min, and then blocked with
20% normal serum in PBS for 20 min at room temperature. Polyclonal
antibodies to NF-kB p50 and p65 were applied overnight at 4 C, followed
by a 45-min incubation at room temperature with fluorescein-conju-
gated goat antirabbit IgG. The cells were washed and mounted with an
antifade kit (Molecular Probes, Inc., Eugene, OR). Immunofluorescence
analysis was performed with a Nikon E-800 microscope (Nikon,
Melville, NY) and a Microradiance confocal system (Bio-Rad Labora-
tories, Inc.). Data were collected and analyzed with LaserSharp NT-2000
software.

EMSA

Nuclear extracts (1.5–3 mg) were incubated with an end-labeled dou-
ble stranded oligonucleotide probe containing the sequence 59-AAA-

CAGGGGGCTTTCCCTCCTC-39 derived from the kB3 site of the TNF
promoter (20) (GenBank accession no. U68415, bases 481–502) for BMMs
and 59-AGTTGAGGGGACTTTCCCAGCC-39 (Santa Cruz Biotechnol-
ogy, Inc.) for RAW 264.7 cells. The reaction was performed in a total of
20 ml binding buffer [20 mm HEPES (pH 7.8), 100 mm NaCl, 0.5 mm
dithiothreitol, 1 ml of poly(dI-dC), and 10% glycerol] for 20 min at room
temperature. For supershift assay, the nuclear extract was incubated
with specific antibodies for an additional 30 min. The samples were
fractionated on a 4–20% TBE gel (Novex, San Diego, CA) and visualized
by exposing dried gel to film.

Transfection and reporter gene assays

RAW 264.7 cells were transiently transfected with a plasmid con-
taining a luciferase reporter gene driven by two repeats of human
immunodeficiency virus type 1 kB enhancer (provided by Dr. David V.
Goeddel, Tularik, Inc, South San Francisco, CA) and a plasmid contain-
ing cytomegalovirus b-galactosidase using SuperFect transfection re-
agent (QIAGEN, Valencia, CA). Transfected cells were lysed in reporter
lysis buffer (Promega Corp., Madison, WI) and mixed with luciferase
assay reagent (Promega Corp.), and luciferase activity was measured in
a luminometer (MGM Instruments, Hamden, CT). b-Galactosidase ac-
tivity was determined by mixing the same amount of cell lysate and
assay 2 3 buffer (Promega Corp.) and reading the absorbance at 420 nm
after 30-min incubation at 37 C.

Results
RANK-L induces serine phosphorylation and subsequent
degradation of IkBa in osteoclast precursors

Activation of NF-kB is an event required for osteoclast
differentiation in vivo (7, 8). To determine whether NF-kB is
activated by RANK-L in osteoclast precursors, in the form of
BMMs, as well as in RAW 264.7 cells, a line capable of
forming osteoclasts in response to RANK-L (18), cells were
treated with the cytokine, and cytosolic extracts were sub-
jected to Western blotting. We found that RANK-L treatment
of both BMMs and RAW 264.7 cells causes rapid serine
phosphorylation of IkBa at 5 min, an event followed by
degradation and resynthesis of the protein (Fig. 1). Consis-
tent with the known capacity of NF-kB to transactivate the
IkBa gene (21) cytosolic levels of the inhibitory protein grad-
ually increase.

In most cell types, mobilization of NF-kB involves phos-
phorylation of IkBa serine residues 32/36, resulting in ubiq-
uitination and rapid proteosomal degradation of the phos-
phorylated inhibitory protein (22–25). We previously
reported that activation of NF-kB in BMMs by another os-
teoclastogenic cytokine, TNFa, is mediated by c-Src-depen-
dent tyrosine phosphorylation of IkBa without degradation
of the protein (26). TNFa and RANK-L are both members of
the TNF superfamily, raising the possibility that each cyto-
kine prompts tyrosine phosphorylation of IkBa. Tyrosine
phosphorylation of IkBa is not detectable within 1 h of
RANK-L treatment (data not shown), suggesting that NF-kB
activation in BMMs induced by RANK-L involves the clas-

FIG. 1. RANK-L induces serine phos-
phorylation and subsequent degrada-
tion of IkBa. BMMs (a) and RAW 264.7
cells (b) were treated with RANK-L (100
ng/ml) for the indicated time, and cyto-
solic extracts were electrophoresed and
analyzed by Western blotting with an-
tibodies against phospho-IkBa (serine
32) and IkBa.
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sical pathway involving IkBa serine phosphorylation and
degradation.

RANK-L induces nuclear translocation of p50/p65

Treatment of both osteoclast precursors and RAW 264.7
cells with RANK-L leads to degradation of IkBa, the protein
that retains NF-kB members in the cytosol. Thus, the disap-
pearance of IkBa is likely to be followed by nuclear trans-
location of NF-kB, which comprises dimers of specific sub-
units. To confirm subcellular translocation of NF-kB and to
identify the subunits contained in the NF-kB complex in
response to RANK-L, Western blots were performed using
nuclear extracts from both BMMs and RAW 264.7 cells. As
shown in Fig 2, RANK-L promoted rapid appearance of p50
and p65 in nucleus in both cell types. In parallel studies,
intact cells treated under the same experimental conditions
were processed for immunofluorescence and analyzed using
anti-p50 and anti-p65 antibodies. Both p50 and p65 were
predominantly localized in cytoplasm in naive cells, whereas
treatment with RANK-L led to their nuclear accumulation
(Fig. 3).

RANK-L induces NF-kB activation

Although the data in Figs. 2 and 3 demonstrate that
RANK-L treatment of osteoclast precursors leads to trans-
location of the p50/p65 complex, they do not provide direct
evidence that the event is followed by DNA binding and
activation of transcription. To examine these questions, both
BMMs and RAW 264.7 cells were treated with RANK-L, and
nuclear extracts were subjected to EMSA.

As shown in Fig. 4A, a complex recognizing the kB3 se-
quence of the TNF promoter (TNF-kB3), appears after 5 min
of RANK-L treatment of BMMs and persists for at least 30
min. The specificity of the EMSA probe was established by
competition with excess unlabeled TNF-kB3 and a consensus
binding site for NF-kB (Santa Cruz Biotechnology, Inc.). In
contrast, mutated forms of the consensus oligonucleotides
fail to compete with TNF-kB3 (Fig. 4B). Use of the same probe
to identify nuclear-residing NF-kB in RANK-L-treated RAW
cells yielded positive, but less dramatic, results (data not
shown). On the other hand, when an NF-kB consensus oli-
gonucleotide (Santa Cruz Biotechnology, Inc.) was used, spe-
cific RANK-L-stimulated NF-kB nuclear translocation was
also clearly evident in RAW cells (Fig. 4, C and D).

To identify the subunits contained in the RANK-L-acti-
vated NF-kB complex, we performed EMSA, using TNF-kB3
as a probe for BMMs and an NF-kB consensus oligonucle-
otide (Santa Cruz Biotechnology, Inc.) for RAW cells in the
absence or presence of anti-p50 and p65 antibodies. Addition

of anti-p50, anti-p65, or both antibodies led to supershift of
the specific DNA-bound protein in both cell types, suggest-
ing that the RANK-L-induced DNA binding moiety consists
largely of p50/p65, the most common NF-kB heterodimer
(Fig. 5).

RANK-L stimulates an NF-kB-responsive reporter in RAW
264.7 cells

Nuclear translocation of NF-kB typically results in acti-
vation of genes containing one or more consensus binding
sequences to which the heterodimeric complex can bind. To
determine whether RANK-L induced nuclear translocation
of the p50/p65 is functionally important, we transiently
transfected RAW 264.7 cells with an NF-kB-responsive re-
porter construct. RANK-L stimulated luciferase expression
by NF-kB-dependent reporter plasmid containing cells in a
dose-dependent manner (Fig. 6).

Discussion

Osteoclasts are multinucleated cells of the macrophage
lineage that form by fusion of mononuclear precursors under

FIG. 3. RANKL induces subcellular translocation of p50/p65. BMMs
treated without or with RANK-L (100 ng/ml, 15 min) were fixed and
incubated with antibodies against p50 or p65, followed by FITC-
conjugated second antibodies. The subcellular localization of fluores-
cein isothiocyanate-labeled proteins was visualized by confocal laser
microscopy. Arrows identify cell nuclei.

FIG. 2. RANK-L induces nuclear trans-
location of NF-kB. BMMs (a) and RAW
264.7 cells (b) were treated with
RANK-L (100 ng/ml) for the indicated
time, and nuclear extracts were electro-
phoresed and analyzed by Western blot-
ting with antibodies against p50 or p65.
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control of the two key cytokines, RANK-L and M-CSF (1–3).
An unresolved issue concerns the identity of transcriptional
events activated by RANK-L during differentiation of mono-
nuclear precursors. The first step in characterization of these
target genes involves defining the transcription factors that
are activated after exposure of precursors to osteoclastogenic
cytokines.

Differentiation along the macrophage/osteoclast lineage
requires the transcription factors, c-Fos, which activates the
c-Jun N-terminal kinase (JNK) signaling pathway (4, 5), and
NF-kB (7, 8). Although RANK-L is central to the osteoclas-
togenic process, whether it does so via NF-kB and/or JNK is

controversial. Thus, Wong et al. found that RANK-L treat-
ment of murine osteoclasts fails to activate JNK (17). In con-
trast, Jimi and his colleagues demonstrated a time- and dose-
dependent increase in JNK activation in osteoclasts following
exposure to RANK-L (16). Although their studies do not
address osteoclastogenesis, Hsu et al. reported that RANK-L
stimulated JNK, but not NF-kB, in RAW 264.7 cells (18). This
latter study stands in contrast to ours, which establishes
RANK-L-induced NF-kB activation in this osteoclastogenic
line as well as authentic osteoclast precursors. We also found
that RANK-L-induced NF-kB nuclear translocation is RAW
264.7 clone dependent (data not shown). We posit, therefore,

FIG. 4. RANK-L induces activation of
p50/p65. a, BMMs were exposed to 100
ng/ml RANK-L for the indicated length
of time. Nuclear proteins from BMMs
were extracted, and EMSA was per-
formed using the TNF-kB3 sequence as
a probe. b, EMSA was performed with
RANK-L-untreated and -treated (10
min) BMMs in the absence or presence
of a 50-fold excess of unlabeled TNF-
kB3 or a consensus binding site for
NF-kB and its mutated form. c, RAW
264.7 cells were exposed to 100 ng/ml
RANK-L for the indicated length of
time. Nuclear proteins were extracted,
and EMSA was performed using an
NF-kB consensus oligonucleotide (San-
ta Cruz Biotechnology, Inc.) as a probe.
d, EMSA was performed with RANK-
L-untreated and -treated (15 min) RAW
cells in the absence or presence of a 50-
fold excess of unlabeled oligonucleotide
or its mutated form.

FIG. 5. RANK-L-activated NF-kB in-
cludes p50/p65 heterodimer. Nuclear
extracts were prepared from RANK-L-
exposed BMMs (100 ng/ml, 10 min; a)
and RAW 264.7 cells (100 ng/ml, 15 min;
b) and subjected to EMSA in the ab-
sence or presence of antibodies to p50
or/and p65.
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that the inconsistency between Hsu’s data and ours reflex
their use of a nonresponsive clone.

The NF-kB family has been implicated in osteoclast for-
mation, function, and survival (22). Thus, mice lacking p50
have fewer osteoclasts, whereas neither mature osteoclasts
nor tartrate-resistant acid phosphatase-positive precursors
are present in p50/p52 null mice (7). On the other hand, a
recent report suggests that NF-kB is involved in activation,
but not survival, of osteoclasts (27), diverging from the pos-
ture that interleukin-1 (IL-1) promotes osteoclast survival
(28) through activation of an NF-kB complex containing p50
and p65 (29).

NF-kB is activated by numerous agonists, including in-
flammatory cytokines such as TNFa, phorbol myristyl ace-
tate, DNA-damaging agents, double stranded RNA, and
viruses, including human immunodeficiency virus type 1
(22–25). We now report that RANK-L activates NF-kB during
the process of osteoclast differentiation. Treatment of pri-
mary osteoclast precursors, in the form of BMMs, and RAW
264.7 cells results in rapid nuclear translocation of p50 and
p65, the two most common subunits of the NF-kB family,
where they associate with a consensus DNA-binding se-
quence. The capacity of RANK-L to transactivate an NF-kB
reporter construct in RAW cells establishes that the nuclear
translocated transcription complex is functional. Impor-
tantly, we found that M-CSF fails to activate NF-kB in BMMs
(data not shown), confirming the specificity and importance
of RANK-L in this process.

We have previously shown that TNFa activates NF-kB in
BMMs by c-Src tyrosine phosphorylation of IkBa (26). To
determine whether such is the case for RANK-L, we exam-
ined the phosphorylation status of IkBa in BMMs and RAW

264.7 cells after exposure to the cytokine. We found that the
inhibitory protein is rapidly phosphorylated at serine 32 by
RANK-L, degraded, and then resynthesized. In contrast to
TNFa, tyrosine phosphorylation of IkBa does not occur in
BMMs in response to RANK-L.

The fact that NF-kB activation is required for osteoclast
formation and function may be central to the pathogenesis of
postmenopausal osteoporosis and rheumatoid arthritis, in
which osteoclastogenesis is accelerated. In addition to
RANK-L, increased generation and/or activity of osteoclasts
can be mediated by IL-1 and TNFa (30–32), which are abun-
dant in rheumatoid synovium and are potent activators of
NF-kB. Interleukin-1 targets stromal cells and/or osteoblasts,
leading to the release of RANK-L (33). In addition, the cy-
tokine acts directly on preosteoclasts generated in a stroma
coculture system (and hence differentiated with RANK-L) to
stimulate their fusion and survival (34). Additionally, IL-1
enhances the survival and activation of mature osteoclasts
(28). The fusogenic, survival, and activation functions of IL-1
are accompanied by activation of NF-kB (28, 34, 35 ). In
contrast, there are no reports that IL-1 can itself replace
RANK-L in the differentiation of osteoclast precursors. Al-
though earlier studies suggested that TNFa, acting directly
on precursors, could act independently of RANK-L to induce
osteoclast formation (36, 37), recent efforts reveal that cells
need to be primed by preexposure to RANK-L before TNFa
alone can be osteoclastogenic (38). In summary, we provide
the first data that RANK-L activates the NF-kB signaling
pathway in murine osteoclast precursors. As neither IL-1 nor
TNFa, both of which activate the same NF-kB signals as does
RANK-L, can replace the latter molecule in the osteoclasto-
genic process, we conclude that NF-kB activation is neces-
sary, but not sufficient, for osteoclastogenesis. However, the
fact that RANK-L and these inflammatory, bone-resorptive
cytokines prompt NF-kB activation postures this transcrip-
tion complex as a potential antiosteoclastogenic therapeutic
target.
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