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Beneficial effects of GH on memory, mental alertness, and mo-
tivation have been documented. Many actions of GH are medi-
ated through IGF-I; hence, we investigated whether systemic
administration of GH or GH-releasing peptide (GHRP)-6 mod-
ulates the brain IGF system. Treatment of adult male rats with
GHRP-6 or GH for 1 wk significantly increased IGF-I mRNA
levels in the hypothalamus, cerebellum, and hippocampus, with
no effect in cerebral cortex. Expression of the IGF receptor and
IGF-binding protein (IGFBP)-2 were not affected. Phosphoryla-
tion of Akt and Bad was stimulated in areas where IGF-I was
increased, with no change in MAPK or glycogen synthase ki-
nase-3�. This suggests that GH and GHRP-6 activate phospha-

tidylinositol kinase intracellular pathways involved in cell sur-
vival in response to growth factors. Indeed, the antiapoptotic
protein Bcl-2 was augmented in these same areas, with no
change in the proapoptotic protein Bax. IGFBP-5, also reported
to be involved in neuron survival processes, was increased
mainly in the hypothalamus, suggesting a possible neuroendo-
crine role. In conclusion, GH and GHRP-6 modulate IGF-I ex-
pression in the central nervous system in an anatomically spe-
cific manner. This is coincident with activation of intracellular
signaling pathways used by IGF-I and increased expression of
proteins involved in cell survival or neuroprotection. (Endocri-
nology 143: 4113–4122, 2002)

THE PROFOUND EFFECTS of GH on the central nervous
system (CNS) have become more apparent in the past

decade. Not only is it involved in brain growth and devel-
opment, but its qualities as a neuroprotective factor against
injury are now appreciated (1–3). Recent studies by Scheep-
ens et al. (1, 2) have demonstrated that GH is involved in
neuroprotection during hypoxic-ischemic brain injury. Not
only is there an increase in GH-like immunoreactivity on
injured brain cells, but GH administered intracerebroven-
tricularly is capable of preventing cell loss in this paradigm.
This protection is coincident with the anatomical localization
of the GH receptor and does not fully correlate with the
neuroprotection exerted by IGF-I in this model, suggesting
at least part of the effect is via GH itself.

Decreased GH secretion in some physiological or patho-
physiological conditions has been associated with impaired
cognitive function or brain activity (4–7). For example, ac-
tivity of the GH-IGF-I axis undergoes an age-related decline,
including decreased spontaneous GH secretion and circu-
lating IGF-I levels, which may approximate the levels found
in GH-deficient patients (8, 9). In both the elderly and GH-
deficient adults, this decreased GH-IGF-I activity has been
associated with changes in body composition and metabo-
lism, altered sleep patterns, and reduced cognitive function

(4–6, 8, 9). Indeed, GH replacement therapy has been found
to improve some age-dependent cognitive functions, such as
memory, motivation, or mental processing speed, as well as
behavioral problems in GH-deficient patients (4–6, 8, 9).

Synthetic peptide analogs that stimulate GH release were
first described in 1981 (10). This lead to the discovery of a
family of related compounds, the GH secretagogues (GHS),
that include GH-releasing peptide (GHRP)-6, a potent and
safe GHS with activity in humans (11) and orally active
nonpeptide GHSs (12–14). It is now known that these GHSs
activate receptors for the endogenous peptide ghrelin (12,
13), as well as adenosine (15, 16) and that these receptors are
expressed not only in the anterior pituitary and hypothala-
mus, but also in other brain regions (17–19), suggesting func-
tions independent from the neurendocrine control of GH
secretion.

Direct action of GH on the CNS is supported by the fact
that its receptor is expressed in diverse areas of the brain,
including those involved with memory and cognitive func-
tion (7, 20), and this hormone can cross the blood-brain
barrier in specific regions (7, 21). However, many effects of
GH are mediated through stimulation of IGF-I production
and the neuroprotective effects of this growth factor are
evident (22–26). Very elegant studies by Carro et al. (23, 24)
demonstrate that exercise via a physiological increase in cir-
culating IGF-I levels is neuroprotective against diverse types
of brain injury and in various brain regions and when IGF-I
uptake into the brain is blocked, this neuroprotection is lost.
Hence, GH can have direct effects on brain function or it can

Abbreviations: CNS, Central nervous system; CREB, cAMP-response
element binding protein; GHRP, GH-releasing peptide; GHS, GH secre-
tagogues; GSK, glycogen synthase kinase; IGFBF, IGF binding protein;
p, phosphorylated; PI3K, phosphatidylinositol kinase; TUNEL, terminal
deoxynucleotidyltransferase-mediated dUTP nick end labeling.
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act indirectly by increasing circulating IGF-I, which then
enters the CNS. Furthermore, as IGF-I is produced in most
areas of the brain, GH could also stimulate local IGF-I pro-
duction in the CNS to promote neuroprotection.

IGF-I promotes cell survival in many tissues and cell pro-
liferation in some, including neurons and oligodendrocytes
(27). GH can also promote growth by directly inducing the
proliferation of different cell types (28). Surprisingly, a direct
effect of GH on cell survival has yet to be reported. The
mechanisms by which IGF-I prevents cells from entering a
death program have not been completely defined, but both
the phosphatidylinositol kinase (PI3K) and the MAPK path-
ways have been implicated (29). Recent studies link IGF-Is
neuroptrotective actions to the Bcl family (30). Current
dogma suggests that cell fate is determined, at least in part,
by the balance between the products of antiapoptotic and
proapoptotic genes of the Bcl-2 family.

The purpose of these studies was to determine whether
systemic administration of GHRP-6 modulates the brain IGF
system and to compare this to the effects of GH. In addition,
intracellular mechanisms activated in response to IGF-I and
involved in neuroprotective processes were also determined.

Materials and Methods
Materials

All chemicals were purchased from Sigma (St. Louis, MO) or Merck
(Mollet de Vallés, Barcelona, Spain) unless otherwise noted.

Antibodies to phosphorylated forms of Akt (p-Akt) and glycogen
synthase kinase (GSK) (pGSK), and MAPK were purchased from New
England Biolabs, Inc. (Beverly, MA). Antibodies to Bcl-2 and Bax were
from Neomarkers (Fremont, CA). Antibodies to IGF-IR, IGF-binding
protein (IGFBP)-5, IGFBP-2, Akt, Bad and actin were from Santa Cruz
Biotechnology, Santa Cruz, CA). GSK-3� was from Transduction Lab-
oratories, Inc. (Lexington, KY) and pBad from Upstate Biotechnology,
Inc. (Lake Placid, NY). Secondary antibodies conjugated with peroxidase
were from Pierce Chemical Co. (Rockford, IL).

Methods

Animals. Male Wistar rats (Charles River, Margate, UK) weighing 200–
250 g were used for all experiments. The animals were treated according
to the European Community laws for animal care and in accordance
with the UK Animal (Scientific) Procedures Act 1986. Rats were main-
tained on a 12-h light, 12-h dark schedule. Rats were infused with GH
(Novo Nordisk, Bagsvaerd, Denmark; 100 �g/d) or GHRP-6 (Bachem,
Bubendorf, Switzerland; 150 �g/d) using Alzet minipumps (1 �l/h, 7 d)
connected to the jugular vein. Control animals received a minipump
delivering vehicle (saline) at the same infusion rate. Rats (n � 6 in each
group) were killed by decapitation and brains immediately removed
and frozen on dry ice.

Immunoblotting. For Western blotting, approximately 100 mg of hypo-
thalamus, hippocampus, cerebellum, and cerebral cortex were homog-
enized in 500 �l radioimmunoprecipitation assay lysis buffer with an
EDTA-free protease inhibitor cocktail (Roche Diagnostics, Mannheim,
Germany). After homogenization, the samples were centrifuged at
12,000 � g for 5 min at 4 C to remove the insoluble material. Clear
supernatants were transferred to a new tube to measure protein content.

Protein concentration was estimated by Bio-Rad Laboratories, Inc. (Her-
cules, CA) protein assay. Thirty or 60 �g of protein were resolved using
10% SDS-PAGE and then transferred onto polyvinylidene difluoride
membranes (Bio-Rad Laboratories, Inc.). Filters were blocked with Tris-
buffered saline containing 5% (wt/vol) nonfat dried milk, except for
p-Akt where TBS containing 5% BSA was used, and incubated with the
primary specific antibody at a dilution of 1:500. Filters were subse-
quently washed and incubated with the corresponding secondary an-
tibody conjugated with peroxidase at a dilution of 1:2000. Bound per-
oxidase activity was visualized by chemiluminescence (NEN Life
Science Products, Boston, MA) and quantified by densitometry using
Bio-1D (Vilber Lourmat, Marne La Vallee, France). To correct for vari-
ations in the starting amount of protein all the blots were reprobed using
an anti actin antibody.

RNA extraction. Total RNA was extracted from 100 mg of hypothalamus,
hippocampus, cerebellum, and cerebral cortex according to the Tri-
Reagent protocol (Sigma). Briefly, the samples were homogenized in 1
ml of Tri-Reagent and then centrifuged at 12,000 � g for 10 min at 4 C
to remove the insoluble material. Clear supernatants were transferred to
a new tube and incubated at room temperature for 5 min to permit
complete dissociation of nucleoprotein complexes. Chloroform was then
added, and the samples were shaken vigorously for 15 sec and then
allowed to stand 15 min at room temperature. They were then centri-
fuged at 12,000 � g at 4 C for 15 min. The aqueous phases were trans-
ferred to fresh tubes and 0.5 ml of isopropanol was added to precipitate
RNA. After 5 min, samples were centrifuged at 12,000 � g at 4 C for 10
min. The supernatants were removed and the pellets washed by adding
1 ml of 75% ethanol. After vortexing, samples were centrifuged at
7,500 � g at 4 C for 5 min. The pellets were air-dried and resuspended
in diethyl pyrocarbonate-H2O.

RT-PCR. The RNA (200 or 500 ng) was subjected to RT-PCR by using the
Acces RT-PCR system (Promega Corp., Madison, WI) according to the
manufacturer’s instructions. Oligonucleotide primers for IGF-I, IGF-IR,
IGFBP-2, and IGFBP-5 were synthesized by Life Technologies, Inc. (Bar-
celona, Spain) Custom Primers. The sequences of primers are shown in
Table 1.

The RT reaction was performed for 45 min at 48 C and PCR cycling
was performed with the following cycle profile: 94 C for 120 sec, fol-
lowed by 40 cycles of 94 C for 1 min and 55 C for IGF-I and IGF-I receptor
or 60 C for IGFBP-2 and IGFBP-5 for 1 min and 68 C for 2 min. After the
last cycle the elongation step was extended by 7 min at 68 C. RT-PCR
products were separated by 1.5% agarose gel electrophoresis, stained
with ethidium bromide, photographed under UV illumination, com-
pared with a known standard ladder (Promega Corp.) and quantified by
densitometry using the Bio-1D system (Vilber Lourmat). The PCR prim-
ers were designed to obtain products of 253 bp for IGF-I, 321 bp for IGF-I
receptor, 346 bp for IGFBP-2, and 643 bp for IGFBP-5. A single amplified
band was observed for each reaction.

To correct for variations in the starting amount of RNA, GAPDH
primers that amplified products of 835 bp were added to all reactions.
Primers used for reactions at 55C were: sense 5�-AGG GCT GCC TTC
TCT TGT G-3� and antisense 5�-CAG CAT CAA AGG TGG AGG A-3�.
For reactions at 60 C primer sense 5�-AGG GCT GCC TTC TCT TGT
GG-3� and antisense 5�-CAG CAT CAA AGG TGG AGG AA-3�.

Cell death assessment. Cell death detection assays were performed fol-
lowing manufacturer’s instructions (Roche Molecular Biochemicals, Bar-
celona, Spain). Briefly, sections were fixed in 4% paraformaldehyde
(wt/vol) for 10 min and then incubated in permeabilization solution
(0.1% Triton X-100, 0.1% sodium citrate) for 2 min. The labeling was done
with the terminal deoxynucleotidyl transferase enzyme in the terminal
deoxynucleotidyl transferase buffer containing fluorescein-16-deoxy-
uridine triphosphate, for 1 h at 37 C. Terminal deoxynucleotidyltrans-

TABLE 1. Sequences of primers used for RT-PCR

Sense Antisense

IGF-I GCATTGTGGATGAGTGTTGC GGCTCCTCCTACATTCTGTA
IGF-IR AGGAGAAGCCCATGTGTGA ATCTGAGTCACTGCTCTCG
IGFBP-2 AGAGACGCGTGGGCGCCACCC GAGATGTTCCAGAGGACCCCG
IGFBP-5 TCAGCGTGGTCCTCCTGC GTTGGGCAGGTACACGGC
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ferase-mediated dUTP nick end labeling (TUNEL) signal was visualized
by using a fluorescent microscope DMIL (Leica Corp., Madrid, Spain).

Immunohistochemistry. Immunohistochemistry was performed on frozen
20 �m sections, fixed in 4% paraformaldehyde (wt/vol) and blocked in
TBS containing 3% BSA and 1% Triton X-100 for 1 h. Sections were left
overnight in a humid chamber at 4 C with the primary antibody, rabbit
polyclonal anti-IGF-I antibody (a gift from Dr. I. Torres-Aleman, Insti-
tuto Cajal, Madrid) (1:500) or rabbit polyclonal anti-p-AKT (Ser473)
(1:1000), in blocking solution. Afterward, sections were incubated with
a biotin-conjugated antirabbit antibody (Pierce Chemical Co., Rockford,
IL; 1:1000) for 90 min. Sections were then incubated in streptavidin-
Alexa Fluor 594 conjugate (Molecular Probes, Inc., Eugene, OR; 1:2000)
for 1 h. Incubation chambers were covered with foil paper to avoid
exposure to light. Signal was visualized by using a confocal microscope
(Leica Corp.).

Statistical analysis

The protein and mRNA from each animal was analyzed separately
(no pooling of samples was used); therefore, the “n” represents the
number of animals used in each group. Protein samples from each
animal were analyzed twice and RT-PCR was repeated two to three
times on each sample. The mean value of each animal was used for
statistical analysis. All data were normalized to control values of each
assay. Data were analyzed by one-way ANOVA. Significance was cho-
sen as P � 0.05.

Results
IGF-I mRNA concentrations

Both GH and GHRP-6 significantly increased IGF-I mRNA
levels in the hypothalamus, hippocampus, and cerebellum
(Fig. 1). IGF-I mRNA concentrations in the hypothalamus
increased to 300% of control levels in GH and 400% in GHRP-
6-treated rats. In the hippocampus, IGF-I mRNA concentra-
tions increased to approximately 200% of control levels in
both treatment groups. In the cerebellum, the concentrations
were 150% and 175% of control values in GH and GHRP-6
treated rats, respectively. No changes were observed in the
cerebral cortex with either treatment.

IGF receptor and IGFBP-2 concentrations

There was no significant change in mRNA or proteins
levels of either IGFR or IGFBP-2 in the hypothalamus, hip-

pocampus, cerebellum, or cerebral cortex in response to GH
or GHRP-6 treatment (data not shown).

Activation of PI3K pathway

Analysis of MAPK by Western blot indicated that neither
GH nor GHRP-6 treatment significantly activated this path-
way in the brain areas studied (data not shown).

Immunoblots of Akt were prepared from hypothalamus,
hippocampus, cerebellum, and cerebral cortex homogenates
of rats treated with GH or GHRP-6 (Fig. 2). Activated Akt
was assessed by using an antibody that specifically recog-
nizes the form phosphorylated on Ser473 (upper band). Little
Akt was phosphorylated in the basal state. Treatment with
GH or GHRP-6 resulted in marked activation of Akt in the
hypothalamus (300%), hippocampus (140% and 170%) and
cerebellum (180% for GH). The apparent increase in Akt
activation in the cerebellum of GHRP-6-treated rats did not
reach statistical significance. Cerebral cortex samples did not
shown any variation in Akt phosphorylation. Figure 2, lower
band, shows the same homogenates probed with an antibody
that detects both the phophorylated and nonphosphorylated
forms of Akt. The total amount of Akt protein was not altered
by any of the treatments.

Bad and Gsk levels

Analysis of Gsk-3� by Western blot indicated that neither
GH nor GHRP-6 treatment significantly increased either
basal or phosphorylated forms in the brain areas studied
(data not shown).

Immunoblots of Bad were prepared from hypothalamus,
hippocampus, cerebellum, and cerebral cortex homogenates
of rats treated with GH or GHRP-6 (Fig. 3). Inactivated Bad
was assessed by using an antibody that specifically recog-
nizes the phosphorylated form (upper band). Treatment with
GH or GHRP-6 resulted in increased pBad levels in the hy-
pothalamus and cerebellum. No change was seen in the
cortex. Levels of unphosphorylated Bad did not differ be-
tween groups. Bad could not be detected in the
hippocampus.

FIG. 1. Relative levels of IGF-I mRNA in different
areas of the brain in response to GH or GHRP-6. *, P �
0.05 by ANOVA. Control, �. GH, u. GHRP-6, f.
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Bcl-2 and Bax protein levels

Hypothalamic Bcl-2 protein levels were increased to 200%
of control levels in GH-treated rats and approximately 150%
in GHRP-6-treated rats (Fig. 4). In the hippocampus, Bcl-2
protein abundance was increased to 200% of control levels in
GH- and 180% in GHRP-6-treated rats. In cerebellum, levels
were increased to 270% in GH-treated animals and 150% in
GHRP-6-treated rats. In cerebral cortex, Bcl-2 expression was
very low, and no differences could be discerned between the
three experimental groups.

No changes in Bax protein levels in response to either GH
or GHRP-6 were found in any area of the brain studied (data
not shown).

IGFBP-5 concentrations

IGFBP-5 mRNA levels were increased in the hypothala-
mus of GH- and GHRP-6-treated rats and in the hippocam-
pus of GH-treated rats (Fig. 5A). However, in the hippocam-
pus of GHRP-6-treated and in the cerebellum of both
GHRP-6- and GH-treated rats, there were no significant
changes in IGFBP-5 mRNA levels. In cerebral cortex, expres-
sion of IGFBP-5 was low in the three treatment groups, and
no differences could be discerned.

The same pattern was found when we studied protein
abundance by Western blot. Compared with normal hypo-
thalamus, IGFBP-5 protein abundance was increased 2-fold
in GH-treated rats and 1.7-fold in GHRP-6-treated animals.
In the hippocampus, IGFBP-5 protein content was increased
1.3-fold in GH-treated rats (Fig. 5B). No other significant
changes in IGFBP-5 protein levels were detected.

Cell death detection by TUNEL

Very low levels of TUNEL-positive cells were detected in
the brains of normal control rats. Representative examples of
TUNEL labeling in the cerebellum and hippocampus are
shown in Fig. 6, A and C. This low staining almost completely

disappeared in the equivalent areas of GHRP-6-treated rats
(Fig. 6, B and D). Decreased labeling was also seen in GH-
treated rats (data not shown).

IGF-I and p-Akt immunohistochemistry

IGF-I and p-Akt immunolabeling was increased in the
hypothalamus of rats treated with either GH or GHRP-6. In
response to both treatments, labeling for IGF-I was highest
in tanycytes, the specialized glial cells lining the third ven-
tricle (Fig. 7A). GHRP-6 treatment also increased p-AKT
labeling in tanycytes. GH increased p-AKT immunolabeling
in tanycytes, although to a lesser degree, and in cells through-
out the periventricular area (Fig. 7A). Increased specific la-
beling for both IGF-I and p-AKT was observed in the arcuate
nucleus of the hypothalamus (Fig. 7B). The median eminence
of GH- and GHRP-6-treated rats also showed more intense
labeling for both IGF-I and p-Akt compared with control rats
(Fig. 7C).

In the cerebellum, there was increased immunostaining for
both IGF-I and p-AKT in response to GH and GHRP-6 (Fig.
7D), with the Purkinje cells more strongly labeled after both
treatments.

The epithelial cells lining the lateral ventricles were in-
tensely labeled for IGF-I and slightly labeled for p-AKT. In
the hippocampus, labeling for both p-AKT and IGF-I was
specific, but low and diffuse (data not shown).

Discussion

Many actions of GH are mediated through stimulation of
IGF-I synthesis. This growth factor, in turn, promotes cell
survival in many tissues and cell proliferation in some. Here
we demonstrate that both GH and the synthetic GHS,
GHRP-6, induce IGF-I mRNA expression in specific areas of
the CNS, such as the hypothalamus, hippocampus, and cer-
ebellum. Furthermore, this increase is coincident with acti-
vation of intracellular signaling pathways used by IGF-I and
increased expression of cell survival factors.

The survival of certain subsets of neurons can be promoted
by activation of a pathway that includes the guanosine
triphosphate-binding protein Ras and a series of protein
kinases leading to MAPK (31). In addition, a pathway that
includes the lipid kinase PI3K/Akt is important for the sur-
vival of several cell lines (32) and activation of this pathway
is required for growth factor-induced survival (33). In our
studies, no activation of MAPK was detected, suggesting that
the Ras-MAPK pathway may not be critical for GH- and
GHRP-6-promoted processes in these brain areas. The pro-
motion of cell survival by IGF-I has been shown to require
Akt activation (34). Likewise, a signaling pathway was de-
lineated in human leukemic cells (HL-60) and Chinese ham-
ster ovary cells by which GH promotes cell survival via GH
induction of Akt phosphorylation. Here we show that GH
and GHRP-6 increase phosphorylation of Akt in the hypo-
thalamus, hippocampus and cerebellum, areas where IGF-I
expression was also increased. Therefore, activation of in-
tracellular signaling mechanisms involving Akt could be di-
rectly activated by GH, or via increased IGF-I.

More than one pathway has been suggested for the anti-
apoptotic effects of IGF-I, including the inactivation of Bad

FIG. 2. Relative p-AKT protein levels in different areas of the brain
in response to GH or GHRP-6. The upper band represents p-AKT and
the lower band total AKT. *, P � 0.05 by ANOVA. Control, �. GH, u.
GHRP-6, f.
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by phosphorylation (35–40). We observed increased Bad
phosphorylation in both the hypothalamus and cerebellum
in correlation with increased IGF-I levels. Indeed, in the
cerebellum IGF-I induced dephosphorylation of Bad is in-
volved in the prevention of neuronal death (36). In contrast,
we found no activation of Gsk-3�, another intracellular pro-
tein activated by IGF-I in many cell types. However, this
protein appears to be more involved in cellular proliferation
(41–43), indicating that in this paradigm IGF-I is most likely
involved in neuroprotection and not activation of the cell
cycle.

One family of proteins involved in cell death is the Bcl
family. Up-regulation of Bcl-2 expression has been identified
as a critical step by which growth factors promote cell sur-

vival (44, 45) and IGF-I increases the expression of Bcl-2 in
adult rat brain (26). This protein forms homodimers, as well
as heterodimers with other Bcl-2 family members and in-
creased dimerization with proapoptotic members, such as
Bax increases the susceptibility of a cell to cell death stimuli.
Bcl-2 is expressed by neurons in many areas of the brain,
where it functions to prevent both natural and induced neu-
ronal death. In addition, it promotes the growth and regen-
eration of axons, suggesting that Bcl-2 may also be involved
in brain repair and neural plasticity (46). Increased Bcl-2 and
no change in Bax expression, as reported here, is consistent
with conditions for increased cell survival.

The promoter region of Bcl-2 contains a cAMP-response
element and the transcription factor cAMP-response element
binding protein (CREB) up-regulates Bcl-2 expression (47).
Akt, a target of IGF-I signaling, activates CREB (48). These
data indicate that IGF-I regulation of Bcl-2 expression may
involve a signaling cascade mediated by PI3K/Akt/CREB.
Indeed, in PC-12 cells enhanced CREB activity by Akt sig-
naling leads to increased Bcl-2 promoter activity and cell
survival (49). We show for the first time that GH and GHRP-6
are capable of increasing Bcl-2 levels in hypothalamus, hip-
pocampus, and cerebellum. Furthermore, this is coincident
with increases in IGF-I and activation of Akt, suggesting the
possible mechanism involved in this process.

In the adult brain, IGFBP-5 is one of the most highly
expressed IGFBPs (50). Expression of this binding protein
increased in response to GH and GHRP-6 treatment in some
brain areas in coordination with increased IGF-I. This is
consistent with data indicating that IGF-I promotes IGFBP-5
gene expression in some brain cells (51, 52) via the PI3K
pathway (52). The classical role of the IGFBPs is to regulate
the availability and actions of the IGFs (53); however, some
of these proteins have also been reported to have IGF inde-
pendent effects, including on cell survival (54). In situations
of hypoxia-ischemia, both IGF-I and IGFBP-5 are reduced
immediately in affected neurons (55, 56) and correlated with
neuronal death. However, after 72 h of recovery, although

FIG. 3. Relative pBad protein levels in different areas
of the brain in response to GH or GH-releasing peptide
(GHRP)-6. The upper band represents p-Bad and the
lower band total Bad. *, P � 0.05 by ANOVA. Control,
�. GH, u. GHRP-6, f.

FIG. 4. Relative levels of Bcl-2 protein in different areas of the brain
in response to GH or GHRP-6. *, P � 0.05 by ANOVA. Control, �. GH,
u. GHRP-6, f.
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IGF receptor and IGFBP-2 expression remain low, IGF-I and
IGFBP-5 levels increase in reactive astrocytes (56) and this
increase is correlated with decreased neuronal death. Hence,
IGFBP-5 may be involved in the neuroprotective actions
of IGF-I in some areas of the brain. However, in our study
IGFBP-5 levels were not modulated in all areas where IGF-I
was increased. One possible explanation is that, because this
protein is expressed in relatively low levels, with the meth-
ods employed we were unable to detect some of these
changes. It is also possible that IGFBP-5 is selectively acti-
vated in some brain areas to participate in neuroprotective
processes or is increased to serve other functions. Indeed,
because the largest increase was found in the hypothalamus,
IGFBP-5 may be involved primarily in neuroendocrine func-
tions in response to GH and GHRP-6 treatment. Because
IGFBP-5 can impede the binding of IGF-I to it receptor (57),
increased IGFBP-5 could inhibit the actions if IGF-I in this
area.

Apoptosis is a regulated process designed to eliminate
damaged or aged cells from the body and can be induced by

a wealth of proapoptotic signals and cellular stresses, in-
cluding withdrawal of survival factors (58). In normal young
adult brain, the number of dying cells is low in most areas
(59–61). In agreement, we found a very low level of TUNEL-
positive cells in control animals. However, even this low
basal level of cell death disappeared with GH or GHRP-6
infusion and the consequent increase in IGF-I and cell sur-
vival factor expression. Intracerebroventricular infusion of
GH conveys neuroprotection against hypoxic-ischemic in-
jury (1, 2); however, it remains to be determined whether
systemic treatment is effective in promoting neuroprotection
in the face of a nocuous assault or other circumstances of
increased neuronal death.

In the elderly, the decreased activity of the GH-IGF-I axis
has been associated with the decline in age-sensitive cogni-
tive function (4–7). Furthermore, in young adults, GH defi-
ciency can lead to changes similar to those observed in aging,
including cognitive impairment, which are clearly improved
by GH therapy (9). Some of these effects are most likely due
to changes in circulating and central IGF-I. Indeed, IGF-I

FIG. 5. Relative levels of IGFBP-5 mRNA (A)
or protein (B) in different areas of the brain in
response to GH or GHRP-6. *, P � 0.05 by
ANOVA. Control, �. GH, u. GHRP-6, f.
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treatment can also ameliorate some age-related deficits (62),
and recently it was proposed that GH or GHS treatment
could be of value in minimizing the health-related conse-
quences associated with the aging process (63). Our data not
only support this hypothesis, because both GH and its syn-
thetic GHS can increase IGF-I and activate pathways in-
volved in neuroprotection, but also indicate the possible
mechanism involved in this process.

The extrahypothalamic localization of the GH receptor
suggests a nonclassical endocrine role for this hormone and
that it may have direct effects in these brain areas (7, 20).
Although GH could act via stimulation of IGF-I, as suggested
by our studies, the neuroprotective effects of GH and IGF-I
do not always correlate anatomically (2, 64), indicating a
direct action of GH. Indeed, the GH receptor belongs to the
superfamily of cytokine receptors and cytokines are one of
the best-characterized groups of survival factors (65).

Similar, but not identical, results were obtained with GH
and GHRP-6 treatment, suggesting that at least some of the
actions of this GHS may be mediated through its ability to
increase circulating GH concentrations (11, 66). However,
data regarding the increase in circulating GH with chronic
GHS treatment in rat are conflicting (67, 68). In addition, the
GHS-R is expressed in all areas where a response was ob-
served (14), indicating a possible direct effect. Unfortunately,
the physiological function of these extrahypothalamic recep-
tors remains unknown. Both the GHS and GH receptors are
expressed in neurons of the arcuate nucleus involved in

growth and metabolic processes (69–72). The arcuate nucleus
was one of the areas of the hypothalamus immunostained for
both IGF-I and p-Akt, indicating zones where the PI3K/Akt
pathway is activated. Increased IGF-I labeling of the ta-
nycytes lining the third ventricle and in the boarders of the
lateral ventricle in rats treated with GH or GHRP-6 was also
found. Because these cells do not appear to produce IGF-I
(73), IGF-I uptake from the circulation most likely is in-
creased (74).

Immunocytochemistry for IGF-I and p-Akt indicated that
in most areas studied only subsets of cells were labeled, and
some of them very intensely. Therefore, although by Western
blot or RT-PCR these changes in protein or RNA levels may
appear to be small, it is possible that because only a select
population of cells are activated and their response is diluted
by nonresponding cells when extraction techniques are used.
The actual increase per cell may be quite dramatic if only a
small number of cells are activated, as indicated by
immunocytochemistry.

In recent years, the importance of circulating IGF-I in neu-
roprotective processes has become apparent (23–31). Sys-
temic IGF-I is taken up into specific areas of the brain, and
this process is modulated by different physiological situa-
tions such as gonadal steroid levels (74). Experimental (in-
jection) or physiological (e.g. exercise) increases in systemic
IGF-I stimulate brain IGF-I protein levels and neuroprotec-
tion (23–26). Indeed, in some paradigms, this uptake has a
fundamental role in neuron protection even though circu-

FIG. 6. TUNEL labeling in the control rat
brains in the cerebellum (A) and hippocampus
(C) and in GHRP-6 treated animals in the
cerebellum (B) and hippocampus (D). White
arrows indicate TUNEL-positive cells.
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lating IGF-I levels are not significantly elevated (23, 24).
Thus, it is possible that part of the effect reported here, i.e.
p-Akt activation or increased Bcl-2, is due to increased up-
take of circulating IGF-I. However, we have not detected a
sustained increase in circulating IGF-I in response to the
chronic GHS treatment paradigm reported here (our unpub-
lished data). Connely et al. (68) reported an increase in cir-
culating IGF-I after long-term, but not short-term, continu-
ous hexarelin treatment to adult male rats. However,
treatment of aged rats did not stimulate serum IGF-I levels
in spite of increased GH secretion (67). Hence, the type of
GHS, length of treatment and age of the animal, among other
factors, most likely affect the circulating IGF-I response.

Up-take of IGF-I from the circulation could increase even
if circulating levels do not increase. However, we did not
detect any increase in uptake mechanisms, such as the IGF
receptor or IGFBP-2, as has been reported in other studies
(75). However, because IGF-I is increased in cells that do not
produce this growth factor, increased uptake is a plausible
mechanism and the influence of circulating IGF-I on the brain
in response to GH or GHSs deserves further investigation as
it is obviously important in neuroprotective processes. The
observation that IGF-I mRNA levels are increased in specific

brain areas suggests increased local production and that,
either alone or in conjunction with increased IGF-I uptake, it
may be involved in local processes.

Numerous studies have demonstrated that IGF-I has neu-
roprotective properties in various brain areas, although the
mechanisms underlying these processes are not well under-
stood. Our results show that IGF-I expression in the CNS can
be increased by systemic administration of either GH or GHS
and that intracellular pathways involved in neuroprotective
processes are activated in specific brain regions. These results
may help to begin understanding the beneficial effects that
GH has on the brain in specific situations, such as in the
elderly or GH deficient adults.
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