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Bone morphogenic proteins (BMPs) play central roles in dif-
ferentiation, development, and physiological tissue remodel-
ing. Estrogens have key roles in a variety of biological events,
such as the development and maintenance of numerous target
tissues. Previous studies demonstrated that estrogens sup-
press BMP functions by repressing BMP gene expression.
Here we present a novel mechanism for the inhibitory effect
of estrogens on BMP function. BMP-2-induced activation of
Sma and Mad (mothers against decapentaplegic)-related pro-

tein (Smad) activity and BMP-2-mediated gene expression
were suppressed by 17�-E2 in breast cancer cells and mesan-
gial cells. E2-mediated inhibition of Smad activation was re-
versed by tamoxifen, an ER antagonist. We provide evidence
that the inhibitory action of ER on Smad activity was due to
direct physical interactions between Smads and ER, which
represents a novel mechanism for the cross-talk between BMP
and ER signaling pathways. (Endocrinology 143: 2635–2642,
2002)

BONE MORPHOGENETIC proteins (BMPs) are members
of the TGF� superfamily that have been implicated in

tissue growth and remodeling (1–3). BMPs were initially iden-
tified by the ability of bone extracts to induce bone formation
at extraskeletal sites (2). BMPs bind to two types of transmem-
brane receptors, denoted type I and type II BMPRs, which have
serine/threonine kinase activity (3). Upon ligand binding, type
II receptors phosphorylate the type I receptors. The activated
type I receptors then phosphorylate downstream Sma and Mad
(mothers against decapentaplegic)-related proteins (Smads),
Smad1, Smad5, or Smad8, which are transcription factors that
regulate gene expression in response to BMPs (4–6).

ER is a ligand-activated transcription factor that is a mem-
ber of the nuclear receptor superfamily (7). Two types of ERs
have been identified, ER� and ER�, that appear to have
overlapping, but distinct, roles in mediating estrogen action
(8–10). Estrogens play important roles in the differentiation
and development of various organs and the maintenance of
proper cellular function in a wide variety of tissues and are
also risk factors for breast and endometrial cancer (11). ERs
interact with estrogen response elements in the target gene
promoters and directly regulate their transcription (7). In
addition, ERs interact with other signaling pathways for
which DNA binding may not be necessary (12).

BMP-2 has been shown to regulate chondrocyte differen-
tiation and extracellular matrix composition. BMP-2, like
TGF�, up-regulated �1(I)-collagen (COL1A1) mRNA expres-
sion in osteoblastic cells (13, 14). Furthermore, BMP-2-
mediated transcription of COL1A1 was blocked by the ex-
pression of a dominant-negative Smad1 expression vector
(15). In previous studies estrogens have been shown to in-

hibit BMP functions in primary oviduct cells and osteoblasts
by repressing BMP production (16, 17). Estrogen adminis-
tration has also been shown to reduce collagen deposition in
the aorta of hypertensive and hypercholesterolemic animals
and to reduce collagen synthesis by vascular smooth muscle
cells in vitro (18).

In this study we demonstrate a novel molecular mecha-
nism for the inhibitory actions of estrogens on BMP-2 func-
tion. There are direct physical and functional interactions
between Smad and ER. These findings provide insights into
the cross-regulation between the estrogen and BMP-2 sig-
naling pathways that may have implications in reproductive
physiology and the process of chondrogenesis.

Materials and Methods
Reagents and antibodies

Human recombinant BMP-2 was purchased from Strathmann Biotech
GmbH (Hamburg, Germany). 17�-E2 and tamoxifen were purchased
from Wako Chemicals (Osaka, Japan). Expression vectors, FLAG-tagged
Smad1, Smad5, BMPR-IA(QD), and 12xGCCG-luciferase (LUC), were
provided by Drs. M. Kawabata and K. Miyazono (The Cancer Institute
of JFCR, Tokyo, Japan) (19, 20). Human ER� (HEG0), ER�L-536P
(HEG0L536P) (21), human ER� (22), and human �2(I)-collagen
(COL1A2) (23) were provided by Dr. P. Chambon (Institut de Chimie
Biologique, Strasbourg, France), Dr. J. H. White (McGill University,
Montréal, Canada), Dr. J. A. Gustaffson (Karolinska Institute, Stock-
holm), and Dr. H. Ihn (Tokyo University, Tokyo, Japan), respectively.
ER� mutants were generated by PCR methods and sequenced (primer
sequences are available upon request). Antihemagglutinin (anti-HA),
anti-Myc, anti-ER� antibodies were purchased from Santa Cruz Bio-
technology, Inc. (Santa Cruz, CA). Anti-FLAG M2 antibody was pur-
chased from Upstate Biotechnology, Inc. (Lake Placid, NY).

Cell culture, transfections, and luciferase assays

The human embryonic kidney carcinoma cell line, 293T, was main-
tained in DMEM containing 10% FCS and transfected in DMEM con-
taining 1% FCS by the standard calcium precipitation protocol. Human
renal mesangial cells were obtained from Clonetics (East Rutherford, NJ)
and cultured in MsGM (Clonetics) containing 5% FCS according to the

Abbreviations: BMP, Bone morphogenic protein; BMPR, bone mor-
phogenic protein receptor; COL1A1, �1(I)-collagen; COL1A2, �2(I)-
collagen; HA, hemagglutinin; LUC, luciferase; Mad, mothers against
decapentaplegic; MH1, NH2-terminal Mad homology 1; Smad, Sma and
Mad-related protein; VDR, 1�,25-dihydroxyvitamin D3 receptor.
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manufacturer’s instructions. Before stimulation, cells were cultured for
12 h in MsGM containing 1% FCS, followed by treatment with BMP-2
and/or E2. The human breast cancer cell line MCF-7 was a gift from Cell
Resource Center for Biomedical Research Instruments, Inc. (Tohoku
University, Sendai, Japan) maintained in DMEM containing 10% FCS
(24). Before stimulation, the cells were cultured for 24 h in DMEM
containing 1% FCS, followed by treatment with BMP-2 and/or E2 (24,
25). MCF-7 cells (2–2.5 � 105 in a 6-cm dish) were transfected using
Lipofectamine Plus (Life Technologies, Inc., Carlsbad, CA) following the
manufacturer’s instructions. The luciferase assay was performed as pre-
viously described (26). The cells were harvested 48 h after transfection
and lysed in 100 �l PicaGene Reporter Lysis Buffer (Toyo, Inc., Tokyo,
Japan) and assayed for luciferase and �-galactosidase activities accord-
ing to the manufacturer’s instructions. Luciferase activities were nor-
malized to �-galactosidase activities. Three or more independent ex-
periments were carried out for each panel presented.

Immunoprecipitation and Western analysis

Immunoprecipitation and Western blotting were performed as de-
scribed previously (26). Cells were harvested and lysed in lysis buffer
[50 mm Tris-HCl (pH 7.4), 0.15 m NaCl, containing 0.5% Nonidet P-40,
1 �m sodium orthovanadate, 1 �m phenylmethylsulfonylfluoride, and
10 �g/ml each of aprotinin, pepstatin, and leupeptin]. The immuno-
precipitates from cell lysates were resolved on 5–20% SDS-PAGE and
transferred to Immobilon filters (Millipore Corp., Bedford, MA), which
were then probed with each antibody. Immunoreactive proteins were
visualized using an enhanced chemiluminescence detection system
(Amersham Pharmacia Biotech, Arlington Heights, IL).

Northern blot analysis

Human renal mesangial cells were maintained as described above.
After 12 h of incubation in 1% FCS, cells were treated with BMP-2 (50
ng/ml) and/or E2 (10�8 m) for 24 h. Total RNA was prepared using
Iso-Gen (Nippon Gene, Tokyo, Japan) and was used in Northern anal-
ysis according to established procedures. A nylon membrane (Hybond
N�, Amersham Pharmacia Biotech) and radiolabeled cDNA probes
were used where indicated.

Results

Estrogens inhibit BMP-2-induced Smad activation

To examine whether estrogens have any effect on BMP-
2-induced transcriptional activation of cellular genes, we
carried out Northern analysis on RNA samples prepared
from human renal mesangial cells that were induced by
BMP-2 and/or E2. As a cellular target for BMP-2, we ana-
lyzed the expression of COL1A2 that codes for a major struc-
tural component of the extracellular matrix (27) and is up-
regulated by BMP-2 treatment (13, 14). As shown in Fig. 1A,
BMP-2 treatment induced COL1A2 expression in human
renal mesangial cells by 10-fold, and this activation was
decreased by 60% in the presence of E2, whereas E2 alone
slightly increased basal levels of COL1A2 expression. These
data show that E2 inhibits BMP-2-induced gene expression
in human renal mesangial cells.

FIG. 1. Estrogens inhibit BMP-2-induced gene activation in vivo.
A, Human renal mesangial cells (HRMC) were either left untreated
or treated with BMP-2 (50 ng/ml) and/or E2 (10�8 M). COL1A2
expression was monitored by Northern blot analysis of 15 �g total
RNA for each treatment. The same blot was probed with glycer-
aldehyde-3-phosphate dehydrogenase (G3PDH) cDNA as the con-
trol (lower panel). The relative intensities (Rel. Int.) of the bands
shown below the autoradiograms were determined by densitomet-
ric analysis. B, MCF-7 cells were grown in a 6-cm dish and trans-
fected with 12xGCCG-LUC, then stimulated with BMP-2 (50 ng/
ml) and/or E2 (10�7 M) as indicated. Forty-eight hours after
transfection, cells were stimulated for an additional 12 h. Cells
were harvested, and relative luciferase activities were measured.
The results are presented as the fold induction of luciferase activity
from triplicate experiments, and the error bars represent the SDs.
There were no significant changes in basal activity for the different
treatments (data not shown).

FIG. 2. Details of the cross-talk between BMP-2 and ER signaling in 293T cells. A, 293T cells were transfected with 12xGCCG-LUC or Vit-LUC
(1 �g each) together with ER� (1.0 �g), and/or 1.0 �g or the indicated amounts of BMPR-IA(QD) (0.1–1.0 �g) and Smad5 (0.1–0.3 �g). Forty-eight
hours after transfection, cells were stimulated for an additional 12 h with or without the indicated doses (10�6–10�5 M) of tamoxifen in the
presence or absence of E2 (10�8 or 10�7 M), and LUC activities were determined. B, 293T cells were transfected with 12xGCCG-LUC or Vit-LUC
(1 �g each) together with ER� (1.0 �g), and/or 1.0 �g or the indicated amounts of BMPR-IA(QD) (0.1–1.0 �g) and Smad5 (0.1–0.3 �g). Forty-eight
hours after transfection, cells were stimulated for an additional 12 h with or without the indicated doses (10�6–10�5 M) of tamoxifen in the
presence or absence of E2 (10�8 or 10�7 M), and LUC activities were determined. C, 293T cells were transfected with 12xGCCG-LUC or Vit-LUC
(1 �g each) together with ER�-L536P (1.0 �g), and/or 1.0 �g or the indicated amounts of BMPR-IA(QD) (0.1–1.0 �g) and Smad1 or Smad5 (0.1–0.3
�g). Forty-eight hours after transfection, cells were stimulated for an additional 12 h with or without various doses (10�6–10�5 M) of tamoxifen
in the presence or absence of E2 (10�8 or 10�7 M), and LUC activities were determined. There were no significant changes in basal activity for
the different treatments (data not shown).
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To further examine the molecular basis of the cross-talk
between BMP-2 and estrogen signaling pathways, we used
a BMP-2-responsive, ER-positive breast cancer cell line,
MCF-7 (24, 25), and the transient transfection assay. The
BMP-2-mediated transcriptional responses were measured
using 12xGCCG-LUC, which is a reporter construct that di-
rectly detects Smad phosphorylation, and therefore activa-
tion, by BMPRs (20). MCF-7 cells were transfected with
12xGCCG-LUC and treated with BMP-2 and/or E2, and LUC
activities were determined. As shown in Fig. 1B, BMP-2
stimulated 12xGCCG-LUC activity approximately 4-fold,
whereas E2 alone did not have an effect. When cells were
treated with both BMP-2 and E2, 12xGCCG-LUC expression
was decreased by 50% compared with the activation by
BMP-2 alone.

Reconstitution of the cross-talk between BMP and ER
signaling pathways in 293T cells

To further delineate the mechanisms of cross-talk between
BMP and ER signaling pathways, we carried out transient
transfection experiments in 293T cells using the respective
receptors and the downstream activators for the BMP sig-
naling, Smad1 and Smad5. In addition, in some of these
experiments a constitutively active form of BMP type IA
receptor, BMPR-IA(QD), was used (19).

When 293T cells were transfected with 12xGCCG-LUC
together with an expression vector for BMPR-IA(QD), LUC
expression increased by 3- to 4-fold (Fig. 2A). Additional
expression of Smad5 augmented 12xGCCG-LUC expression
by 20-fold (Fig. 2A). We then examined the effect of E2 on
BMP signaling in this model system. 293T cells were trans-
fected with an expression vector for ER�, BMPR-IA(QD),
Smad5, and 12xGCCG-LUC and were either left untreated or
were treated with E2. As shown in Fig. 2A, E2 suppressed
BMPR-IA(QD)/Smad5-induced 12xGCCG-LUC expression
by approximately 50% in a dose-dependent manner. This
inhibition was largely reversed in the presence of the an-
tiestrogen tamoxifen (Fig. 2A). These results indicate that the
inhibitory effects of E2 on BMPR-IA(QD)/Smad5-induced
transcriptional activity are mediated by ER� and can be
reconstituted in 293T cells similar to those observed in MCF-7
cells.

We then assessed the reverse situation for the possible
effect of BMP signaling on ER� activity using the reporter
gene Vit-LUC, in which two copies of an estrogen response
element drive expression of the LUC gene. In the presence of

ER�, E2 treatment resulted in a 50-fold increase in Vit-LUC
activity (Fig. 2A). Surprisingly, this activation was aug-
mented by BMPR-IA(QD)/Smad5 expression in a dose-
dependent manner, up to approximately 3-fold more than by
E2 alone, although BMPR-IA(QD)/Smad5 alone did not af-
fect reporter activity (data not shown). These results suggest
that in contrast with the inhibitory effects of ER� on BMP
signaling, activation of the BMP pathway has a stimulatory
role in ER� signaling in 293T cells.

We next examined whether the other major ER isoform,
ER� (8, 9), has similar inhibitory effects on TGF� signaling
in an analogous experiment. As shown in Fig. 2B, BMPR-
IA(QD)/Smad5-induced 12xGCCG-LUC activity was inhib-
ited by ER� in the presence of E2 similar to that observed
with ER�, and this inhibitory effect was reversed by tamoxi-
fen. ER�-induced Vit-LUC activation was augmented by
BMPR-IA(QD) and Smad5, similar to that observed for ER�.
These data suggest that both ER isotypes may be involved in
the cross-talk of ER signaling with the BMP pathway.

To examine the interactions between the BMP and ER
signaling in greater detail, we used a constitutively active
form of ER�, ER�-L536P (21). 293T cells were transfected
with 12xGCCG-LUC, an expression vector for ER�-L536P,
and/or increasing amounts of an expression vector for
BMPR-IA(QD) and/or Smad1 or Smad5, and the LUC ac-
tivities were measured. As shown in Fig. 2C, BMPR-IA(QD)-
plus Smad1- or Smad5-induced 12xGCCG-LUC activity was
inhibited by ER�-L536P in a dose-dependent manner. This
inhibition was reversed in the presence of tamoxifen, indi-
cating that it is mediated directly by ER�-L536P (Fig. 2C and
data not shown).

In contrast, the expression of BMPR-IA(QD) in the pres-
ence of either Smad1 or Smad5 resulted in further enhance-
ment of ER�-L536P-induced Vit-LUC activation. These re-
sults are consistent with the data presented in Fig. 2A and
clearly document the two-way cross-talk between BMP and
ER signaling in 293T cells.

Physical interactions between ER and Smads in vivo

One of the possible mechanisms that would be consistent
with the data described above is that there are direct physical
interactions between ERs and Smad1. We tested this possi-
bility by coimmunoprecipitation experiments. 293T cells
were transfected with expression vectors encoding ER�-
L536P or wild-type ER� together with FLAG-tagged Smad1
and BMPR-IA(QD). Cells that were transfected with ER�

Fig. 3. Physical interactions between Smad3 and ER. A, 293T cells (1 � 107) were transfected with ER� or ER�-L536P (7.5 �g) and FLAG-tagged
Smad1 (10 �g) together with BMPR-IA(QD) (3 �g). Forty-eight hours after transfection, cells were starved for 12 h, followed by treatment with
or without E2 (10�8 M) for 12 h. Cell lysates were then immunoprecipitated with an anti-FLAG antibody, and immunoblotted with an anti-ER�
antibody (upper panel) or an anti-FLAG antibody (middle panel). Total cell lysates (20 �g) were blotted with an anti-ER� antibody (lower panel).
B, Cells (1 � 107) were transfected with ER�-L536P (7.5 �g) and/or FLAG-tagged Smad1 (10 �g) in the presence or absence of HA-tagged
BMPR-IA(QD) (3 �g). Cell lysates were then immunoprecipitated with an anti-ER� antibody, and immunoblotted with either anti-FLAG
antibody (upper panel) or anti-ER� antibody (middle panel). Total cell lysates (20 �g) were blotted with anti-FLAG antibody or anti-HA antibody
as indicated (lower panel). C, Mapping the Smad1 interaction domain of ER�. 293T cells (1 � 107) were transfected with ER�-L536P(�181–302)
or ER�-L536P(181–302) (10 �g) and FLAG-tagged Smad1 (10 �g) together with BMPR-IA(QD) (3 �g). Forty-eight hours after transfection, cells
were lysed, immunoprecipitated with an anti-ER� antibody, and immunoblotted with anti-Myc antibody (upper panel) or anti-FLAG antibody
(middle panel). Total cell lysates (20 �g) were blotted with anti-Myc antibody (lower panel). The asterisks indicate the migration position of
ER�-L536P (�181–302) or ER�-L536P(181�302). D, MCF-7 cells (5 � 107cells) were maintained in DMEM containing 1% FCS for 12 h before
stimulation. After 1 h of stimulation with or without BMP-2 (50 ng/ml) and E2 (10�8 M), cells were lysed, immunoprecipitated, and immu-
noblotted with control IgG or anti-ER� or anti-Smad1 antibody as indicated. Total cell lysates (20 �g) were blotted with anti-ER� or anti-Smad1
antibody.
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were either left untreated or were treated with E2, whereas
cells that were transfected with ER�-L536P were left un-
treated during the course of the experiment. The cells were
then lysed and subjected to immunoprecipitation with an
anti-FLAG antibody. Immunoprecipitates were used in
Western analysis with an antiserum against ER�. As shown
in Fig. 3A, the constitutively active ER�-L536P and Smad1
were found to be in a complex in 293T cells. Furthermore,
consistent with the fact that ER� inhibits BMP-2 signaling
only in the presence of E2, ER�-Smad1 interactions were only
detected in E2-treated cells (Fig. 3A).

We next tested whether BMP affects ER�-Smad1 interac-
tions. 293T cells were transfected with ER�-L536P together
with FLAG-tagged Smad1 in the presence or absence of
BMPR-IA(QD), and immunoprecipitation and Western anal-
ysis were carried out as described above. As shown in Fig. 3B,
ER�-L536P interacted with Smad1 only in the presence of
BMPR-IA(QD), suggesting that stimulation of the BMP sig-
naling pathway is a prerequisite for ER�-Smad1 interactions.

We next determined the domains of ER� that mediate
interactions with Smad1, using deletion mutants of ER�-
L536P (21). In a previous study 1�,25-dihydroxyvitamin
D3 receptor (VDR) was shown to interact with Smad3
through a region in the ligand binding domain (28). We
therefore used two deletion mutants of ER�-L536P in
which either the DNA binding domain was removed [ER�-
L536P(�181–302)] or only the DNA binding domain was
present [ER�-L536P(181–302)]. Expression vectors encod-
ing FLAG-tagged Smad1 and/or Myc-tagged ER�-
L536P(�181–302) or ER�-L536P(181–302) were transiently
transfected into 293T cells in the presence of BMPR-
IA(QD). Cells were lysed and subjected to immunopre-
cipitation with an anti-FLAG antibody. Immunoprecipi-
tates were then used in Western blot analysis with an
anti-Myc antibody. As shown in Fig. 3C, whereas the DNA
binding domain alone, ER�-L536P(181–302), interacted
with Smad1, ER�-L536P(�181–302), which lacks the DNA
binding domain, was unable to bind Smad1. These results
indicate that in contrast to the VDR-Smad3 interactions
(28), efficient ER�-Smad1 interactions require the DNA
binding domain of ER�.

To examine the cross-talk between BMP-2 and estrogen
signaling pathways under more physiological conditions, we
used a BMP-2-responsive, ER-positive breast cancer cell line,
MCF-7 (24, 25). In parallel with the data in Fig. 1B, coim-
munoprecipitation experiments were performed using cell
lysates obtained from MCF-7 cells that were either left un-
treated or were treated with BMP-2 and E2. Similar to the
results obtained in transfected 293T cells (Fig. 3, A and B),
ER� coimmunoprecipitated from MCF-7 cells as a complex
with Smad1, and this interaction was dependent on the pres-
ence of BMP-2 and E2 (Fig. 3D).

Discussion

Recent studies have identified interactions between TGF�
and steroid receptor signaling pathways. It was reported that
Smad3 enhanced VDR transcriptional activity by physically
interacting with ligand-induced VDR in complex with
SRC-1/TIF2 (28). In prostate cancer cells AR stimulated

TGF-� signaling via direct binding to Smad3 (29), whereas
Smad3 repressed AR-mediated transcription (30). However,
interaction between GR and Smad3 suppressed TGF� sig-
naling in hepatoma cells (31). In the case of ER, ER-mediated
transcriptional activation was enhanced by TGF� signaling,
whereas ER suppressed Smad3 activity (32).

In contrast, the possible interactions between the BMPs
and steroid receptor signaling pathways have not been stud-
ied in detail. Recent findings demonstrated that antiestro-
gens specifically up-regulated BMP4 promoter activity (16),
and estrogen opposed the apoptotic effects of BMP7 on tissue
remodeling (17). Repression of BMP expression by estrogens
may be one of the inhibitory mechanisms that regulate BMP
signaling. We here demonstrated an alternative inhibitory
pathway, which was due to the direct interaction between
components of the two signaling pathways. The findings we
present in this paper provide an additional molecular mech-
anism for at least some of these previous observations. This
is also the first time that interactions between BMP-regulated
Smads, Smads 1, 5, and 8, with a member of the steroid
receptor family has been documented. It would be expected
that repression of BMP expression in addition to inhibition
of Smad activity may bring a more accentuated repressed
state of the BMP pathway than with one mechanism alone.
Further work is required to determine whether these two
pathways are active simultaneously in the same cell type.

In the interaction between VDR and Smad3, the NH2-
terminal Mad homology 1 (MH1) region of Smad3 and the
middle region of the ligand binding domain (E domain) of
VDR were shown to be required for the interaction (28). We
had demonstrated that the MH2 domain of Smad3 is re-
quired for the cross-talk between ER� and TGF� signaling in
both directions (32). The MH2 domain is known as an im-
portant region that interacts with other coactivators, such as
p300 and CBP (33, 34). ER may compete with p300/CBP in
Smad binding as well as the Smad corepressor c-Ski (35).

In contrast, in this study we found that the middle region
of ER containing the DNA binding domain was required for
the interaction between ERs and Smads. At present we do not
know whether these interactions are direct or mediated by
other cofactors. Future interaction studies performed in vitro
and more detailed mapping of the domains involved should
provide more precise information regarding the detailed
molecular mechanisms involved.

Interestingly, the cross-talk between ER and BMPs that we
have documented is a mirror image of that observed between
AR and TGF�, but is similar to that between VDR and TGF�.
It would be of interest to delineate the mechanism of these
similarities and differences, because all of the steroid recep-
tors involved share significant similarity of structure and
function.

E2 was previously shown to antagonize TGF�1-stimulated
type IV collagen synthesis at the level of transcription in
murine mesangial cells, and this effect may be mediated by
interactions with the transcription factor Sp1 (36). Other tran-
scriptional cofactors similar to Sp1 may also be involved in
the interaction of BMP-regulated Smads with ER. Further
work is required to assess this possibility.

We found that the tamoxifen concentration necessary for
reversing the E2 effects is higher in our experiments, con-
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sistent with our recent findings on E2-TGF� signaling cross-
talk (32), compared with that previously found in similar
experiments involving other reporters and signaling path-
ways (37). We do not know the reason for this difference in
the level of tamoxifen required for the various signaling
pathways, but it could be due to changes in the expression
level of the factors or the absence/decreased levels of a
specific cofactor that is involved in these activities in the cell
lines under study. Further work is needed to assess these
possibilities.

BMPs are also known to induce differentiation of multi-
potent mesenchymal cells to the osteoblastic (38, 39) and
chondroblastic (40) lineages and thus may play a role in bone
remodeling and fracture healing. Estrogens have direct ef-
fects on osteoblasts (41, 42) and osteoclasts (43) by acting
through the ER. It has been suggested that many of the
estrogen effects on inhibition of osteoclastic activity may be
mediated by paracrine action of bone-active cytokines se-
creted by osteoblasts, including IL-1 and IL-6 (44, 45), TNF�
(44), TGF� (46), and BMP-6 (47). The cross-talk between the
BMPs and ERs that we present in this study may be respon-
sible for these important biological outcomes. Further de-
lineation of the interactions between BMP-regulated Smads
and ER will not only provide critical information on bone
remodeling and kidney biology, but may also be instrumen-
tal in the development of new treatment strategies in related
diseases.
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