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Cytochrome P450 enzymes catalyze the degradation of drugs
and xenobiotics, but also catalyze a wide variety of biosyn-
thetic processes, including most steps in steroidogenesis. The
catalytic rate of a P450 enzyme is determined in large part by
the rate of electron transfer from its redox partners. Type I
P450 enzymes, found in mitochondria, receive electrons from
reduced nicotinamide adenine dinucleotide (NADPH) via the
intermediacy of two proteins—ferredoxin reductase (a fla-
voprotein) and ferredoxin (an iron/sulfur protein). Type I
P450 enzymes include the cholesterol side-chain cleavage en-
zyme (P450scc), the two isozymes of 11-hydroxylase (P450c11�
and P450c11AS), and several vitamin D-metabolizing en-
zymes. Disorders of these enzymes, but not of the two redox
partners, have been described. Type II P450 enzymes, found in
the endoplasmic reticulum, receive electrons from NADPH
via P450 oxidoreductase (POR), which contains two flavin

moieties. Steroidogenic Type II P450 enzymes include 17�-
hydroxylase/17,20 lyase (P450c17), 21-hydroxylase (P450c21),
and aromatase (P450aro). All P450 enzymes catalyze multiple
reactions, but P450c17 appears to be unique in that the ratio
of its activities is regulated at a posttranslational level. Three
factors can increase the degree of 17,20 lyase activity relative
to the 17�-hydroxylase activity by increasing electron flow
from POR: a high molar ratio of POR to P450c17, serine phos-
phorylation of P450c17, and the presence of cytochrome b5,
acting as an allosteric factor to promote the interaction of
POR with P450c17. POR is required for the activity of all 50
human Type II P450 enzymes, and ablation of the Por gene in
mice causes embryonic lethality. Nevertheless, mutation of
the human POR gene is compatible with life, causing multiple
steroidogenic defects and a skeletal dysplasia called Antley-
Bixler syndrome. (Endocrinology 146: 2544–2550, 2005)

DISCUSSIONS OF THE regulation of steroidogenesis
generally center on the CRH/ACTH/glucocorticoid

and renin/angiotensin/mineralocorticoid systems, which
are classical examples of endocrine feedback loops regulated
by circulating factors acting at a distance from their sites of
synthesis. Recent work has expanded our understanding of
steroidogenesis to include intracellular factors that directly
influence steroidogenic enzymes. Perhaps the best studied of
these is the steroidogenic acute regulatory protein, which
regulates the acute steroidogenic responses to ACTH and
angiotensin II (1, 2) by acting on the outer mitochondrial
membrane (3). Steroidogenic acute regulatory protein in-
creases the delivery of substrate (cholesterol) to the choles-
terol side-chain cleavage enzyme, P450scc, but does not act
on the enzyme itself. Another level of regulation is at the level
of the catalytic efficiency of the steroidogenic enzymes them-
selves, which is regulated by electron transfer. Regulation of
electron transfer to enzymes by complex electron transfer
chains is a common cellular strategy for regulating many of
biochemical processes, such as oxidative phosphorylation.
Such biochemical regulation is also central to steroidogenic
processes.

Cytochrome P450

Steroidogenic enzymes fall into two broad categories: the
cytochrome P450 enzymes and the hydroxysteroid dehydro-
genases, which are addressed in another review (4). This
review will focus on the P450 enzymes. Cytochrome P450
refers to a large group of enzymes that have about 500 amino
acids and a single heme group and have a characteristic
absorption peak at 450 nm in their reduced states. There are
two biochemical classes of P450 enzymes. Type I enzymes are
found in mitochondria (and bacteria), where they receive
electrons from reduced nicotinamide adenine dinucleotide
(NADPH) via an electron transfer chain consisting of two
proteins: a flavoprotein termed ferredoxin reductase (also
called adrenodoxin reductase) and an iron-sulfur protein
termed ferredoxin (adrenodoxin). Type II enzymes are found
in the endoplasmic reticulum, where they receive electrons
from NADPH via a single intermediate, termed P450 oxi-
doreductase, sometimes assisted by cytochrome b5 (5). The
human genome project has identified 57 P450 genes: seven
encode type I enzymes, all of which play key roles in sterol
biosynthesis, and 50 encode type II enzymes. Of these 50 type
II enzymes, 20 participate in the biosynthesis of steroids,
sterols, fatty acids, and eicosanoids; 15 principally metabo-
lize xenobiotic agents and drugs; and 15 are orphan enzymes
whose functions and activities remain unclear.

Mitochondrial (Type I) P450 Enzymes

The type I enzymes include six enzymes familiar to en-
docrinologists. P450scc, the cholesterol side chain cleavage
enzyme (formal gene name CYP11A1), is the enzymatic rate-
limiting step in steroidogenesis (6, 7). P450c11� (CYP11B1) is
the classic steroid 11�-hydroxylase that converts 11-deoxy-
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cortisol to cortisol and deoxycorticosterone to corticosterone
in the adrenal zona fasciculata; its closely related isozyme
P450c11AS (CYP11B2) is the aldosterone synthase that cata-
lyzes 11� hydroxylation, 18 hydroxylation, and 18 methyl
oxidation in the adrenal zona glomerulosa, thus converting
deoxycorticosterone to aldosterone (8, 9). P450c1� (CYP27B1)
is the hormonally regulated vitamin D 1�-hydroxylase that
activates vitamin D; P450c24 (CYP24) is the vitamin D 24-
hydroxylase that initiates inactivation of vitamin D; and
P450c27 (CYP27A1) is a hepatic enzyme principally involved
in bile acid biosynthesis that is also a minor vitamin D 25-
hydroxylase (10–12).

All type I P450 enzymes receive electrons from NADPH
via the same electron-transport chain. First, NADPH binds to
ferredoxin reductase, a 54-kDa flavoprotein that is loosely
associated with the inner mitochondrial membrane and con-
tains a flavin adenine dinucleotide (FAD) moiety (13). The
x-ray crystal structure of bovine ferredoxin reductase shows
that it is a bilobed protein with an NADPH-binding site in
a tightly packed amino-terminal lobe and an FAD-binding
domain in the more loosely packed carboxyl-terminal lobe,
with the FAD isoalloxazine ring abutting the bound NADPH
(14). The cleft containing the FAD is a Rossman fold with
numerous basic residues that appear to be important for
interacting with acidic residues near the Fe2S2 cluster of
ferredoxin. Ferredoxin reductase then interacts with and
transfers a pair of electrons to ferredoxin, a small (14 kDa)
iron/sulfur protein found in the mitochondrial matrix (15) or
loosely associated with the inner mitochondrial membrane
(16). Ferredoxin accepts electrons by means of an Fe2S2 clus-
ter, which resides in an acidic environment containing one
Glu and three Asp residues, which are deprotonated, and
hence negativley charged (17). This acidic region protrudes
from the molecule and interacts with the basic Rossman fold
of ferredoxin reductase to accept a pair of electrons and also
interacts with the basic, positively charged redox partner
binding site of the mitochondrial P450 to donate electrons.
Ferredoxin thus forms a l:l complex with ferredoxin reduc-
tase, then dissociates, and then subsequently forms a l:l com-
plex with the P450 (Fig. 1), thus functioning as an indiscrim-
inate electron-shuttle system to all type I P450 enzymes
(18–20).

Although the same surface of the ferredoxin molecule that
interacts with the ferredoxin reductase must also interact
with the P450 (21, 22), catalytically active, highly efficient
fusion proteins of these three components have been con-
structed by placing the ferredoxin moiety on a short tether
with rotational freedom (23–27). The increased efficiency of
fusion proteins suggests that electron transfer is rate limiting
in mitochondrial P450 enzymes. In bovine adrenals, in which
P450scc and P450c1l� are found in approximately equimolar
quantities, the ratio of ferredoxin reductase to ferredoxin to
total mitochondrial P450 is about 1:3:8 (28). To convert cho-
lesterol to pregnenolone, P450scc must catalyze three se-
quential reactions, 20-hydroxylation, 22-hydroxylation, and
scission of the 20–22 carbon bond, each of which requires a
pair of electrons. Thus, three distinct ferredoxin molecules
must dock with the P450scc, give up their electrons, and then
exit, making way for the next charged (reduced) ferredoxin.
Thus, the rate-limiting enzymatic step in steroidogenesis re-

lates to the movement of ferredoxin molecules rather than to
actual catalysis by P450scc. As a result of this, the turnover
number for P450scc is only about six molecules of cholesterol
converted to pregnenolone per molecule of P450scc per
minute (29).

There is only a single gene for ferredoxin reductase (30, 31)
located on chromosome 17q24-q25 (32), which is ubiqui-
tously expressed in all tissues, but is most abundantly ex-
pressed in steroidogenic tissues (33). It is alternatively
spliced into two forms differing by the presence of six res-
idues (30, 31), but these disrupt the FAD binding site so that
the longer form is inactive (34). The single functional gene for
ferredoxin (35) is located on chromosome 11q22 (32), al-
though there are also several pseudogenes on chromosome
20 (36). The single functional gene encodes several alter-
nately spliced mRNAs that are widely expressed and differ
in their 3� untranslated regions, possibly resulting in differ-
ent mRNA half-lives (37).

These proteins are not major sites of hormonal regulation.
Adrenodoxin mRNA increases sluggishly in response to
treatment of steroidogenic cells with cAMP (37, 38), and
adrenodoxin reductase mRNA is posttranscriptionally di-
minished by cAMP, but its transcription does not appear to
be regulated by cAMP (33). Similarly, the consequences of
mutations in these genes can only be inferred: no mouse
knockouts or human disease-causing mutations have been
reported. The lack of human disease suggests embryonic
lethality. The production of progesterone by placental
P450scc is required to suppress maternal uterine contractil-
ity, permitting the maintenance of pregnancy, implying that
a genetic lesion in any factor required for its synthesis
(P450scc, ferredoxin, ferredoxin reductase) will cause spon-

FIG. 1. Diagram of electron transfer by mitochondrial (type I) P450
enzymes. NADPH interacts with ferredoxin reductase (FeRed), which
is bound to the inner mitochondrial membrane, and gives up a pair
of electrons. The isoalloxazine ring of the FAD moiety of ferredoxin
reductase, which lies in a Rossman fold, receives the electrons and in
turn passes them to ferredoxin (Fedx). Basic, positively charged res-
idues in ferredoxin reductase, and acidic, negatively charged residues
in ferredoxin coordinate the protein interaction, permitting the elec-
trons to be received by the Fe2S2 center of ferredoxin, depicted by a
ball-and-stick diagram. Ferredoxin then dissociates from ferredoxin
reductase and diffuses through the mitochrondrial matrix. The same
surface of ferredoxin that received the electrons from ferredoxin re-
ductase then interacts with the redox partner binding site of a type
I P450, with electrostatic interactions again coordinating the protein-
protein interaction. The electrons from the Fe2S2 center of ferredoxin
then travel through an ill-described protein conduit in the P450 to
reach the heme ring of the P450. The heme iron then mediates ca-
talysis with substrate bound in the P450.

Miller • Minireview Endocrinology, June 2005, 146(6):2544–2550 2545

D
ow

nloaded from
 https://academ

ic.oup.com
/endo/article/146/6/2544/2499892 by guest on 09 April 2024



taneous abortion (39). However, three cases of partial or
complete absence of P450scc activity have now been de-
scribed (40–42), suggesting that similar mutations of ferre-
doxin and ferredoxin might be compatible with life. Muta-
tions in these genes have been sought but not found in at least
two cases (43, 44).

Microsomal (Type II) P450 Enzymes

The type II enzymes include hepatic P450 enzymes in-
volved in drug metabolism; several enzymes in the biosyn-
thetic pathways leading to cholesterol, bile acids, and pros-
taglandins; and three steroidogenic enzymes familiar to
endocrinologists. P450c17 (CYP17) catalyzes steroid 17�-hy-
droxylase and 17,20 lyase activities (45–50) and hence is
essential for the synthesis of glucocorticoids (17�-hydroxy-
lase activity) and sex steroids (17,20 lyase activity). P450c21
(CYP21A2) is the single enzyme catalyzing the 21-hydroxy-
lation of both glucocorticoids and mineralocorticoids and is
the enzyme that is disordered in the common form of con-
genital adrenal hyperplasia (51–53). P450aro (CYP19) is the
aromatase that converts androgens to estrogens: andro-
stenedione to estrone, testosterone to estradiol, and 16� hy-
droxytestosterone to estriol (54, 55).

P450 oxidoreductase

All type II P450 enzymes receive electrons from NADPH
through the intermediacy of P450 oxidoreductase (POR),
sometimes with the assistance of cytochrome b5. POR is an
82-kDa, membrane-associated protein first isolated in 1969
(56); the cDNA was cloned in 1989 (57), but the gene was not
characterized and sequenced until the human genome
project showed it consists of 15 exons spanning 32 kb on
chromosome 7q11.2 (GenBank sequences GI: 4508114, GI:
11181841, and GI: 24307876). Like ferredoxin reductase, POR
contains a molecule of FAD that accepts a pair of electrons
from NADPH, but unlike ferredoxin reductase, POR also
contains a molecule of flavin mononucleotide (FMN), which
can accept the electrons from the FAD moiety and donate
them one at a time directly to the P450 enzyme so that POR
is a self-contained electron transfer system that does not need
another protein such as the ferredoxin used by type I P450
enzymes. The first electron is always transferred more rap-
idly than the second (58); in some type II P450 systems,
cytochrome b5 can substitute for POR and donate the second
but not the first electron, but the presence of POR is man-
datory (59, 60).

The structure and function of POR are well understood, in
large measure from the x-ray crystal structure of a soluble,
amino-terminally deleted form of rat POR (61). The FAD and
FMN moieties are contained in distinct domains separated
by a flexible hinge region. It appears that binding of NADPH
and receipt of electrons by the FAD moiety elicits flexion of
the hinge, aligning the isoalloxazine rings of the FAD and
FMN moieties so that electrons can pass from FAD to FMN.
On doing so, the hinge flexes once more, permitting the FMN
domain to become associated with the redox partner binding
site of the cytochrome P450 (Fig 2). The surface charge of the
FMN domain of POR is negative, produced by acidic resi-
dues (61–63), whereas the redox partner binding sites of

microsomal P450 enzymes have a positive surface charge
produced by basic (Lys and Arg) residues (64–69). The redox
partner binding site of the P450 is on the opposite side of the
plane of the P450 heme group from the substrate-binding
site; hence, electrons from the FMN moiety of the POR must
travel about 18 Å to reach the heme iron of the P450 (70). It
appears likely that there are multiple pathways for this elec-
tron flow in various P450 enzymes.

The availability of electrons from POR is limiting in most
microsomal P450 reactions. In both the liver and steroido-
genic tissues, the microsomal P450 component is found in a
great molar excess to POR (71), possibly as high as 20:1; this
has a profound influence on steroidogenesis. P450c17 cata-
lyzes both the 17�-hydroxylation required to produce 17
hydroxy 21-carbon precursors to cortisol (17-hydroxy-
prenenolone and 17-hydroxyprogesterone) and the 17,20
lyase activity needed to produce 19-carbon precursors of sex
steroids. In posing the question of why most adrenal steroi-
dogenesis stops at C21 steroids, Yanagibashi and Hall (72)
found that the ratio of POR to P450c17 was 3- to 4-fold higher
in testicular microsomes than adrenal microsomes, and that
addition of exogenous POR increased the 17,20 lyase reaction
far more than the 17�-hydroxylase reaction, although the
hydroxylase to lyase ratio never fell below 2.0. This key
finding has been confirmed for human P450c17 (73) and
forms the basis for the view that the onset of adrenal an-
drogen synthesis (adrenarche) is regulated by events that
govern electron flow from POR to P450c17 (74, 75).

Cytochrome b5

Because a single POR molecule interacts with the redox
partner binding sites of five distinct microsomal P450 en-
zymes, it seems logical to infer that different P450 enzymes
will have different affinities for POR. In this situation it is
easy to conceptualize how another factor, in this case cyto-

FIG. 2. Diagram of electron transfer by microsomal (type II) P450
enzymes. NADPH interacts with POR, bound to the endoplasmic
reticulum, and gives up a pair of electrons, which are received by the
FAD moiety. Electron receipt elicits a conformational change, per-
mitting the isoalloxazine rings of the FAD and FMN moieties to come
close together so that the electrons pass from the FAD to the FMN.
After another conformational change that returns the protein to its
original orientation, the FMN domain of POR interacts with the redox
partner binding site of the P450. Electrons from the FMN domain of
POR reach the heme group to achieve catalysis, as described for type
I P450 enzymes. The interaction of POR and the P450 is coordinated
by negatively charged acidic residues on the surface of the FMN
domain of POR and positively charged basic residues in the redox
partner binding site of the P450. In the case of human P450c17, this
interaction was facilitated by the allosteric action of cytochrome b5
and the serine phosphorylation of P450c17.
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chrome b5, can act allosterically to optimize the positioning
of the POR and P450 with respect to one another and thus
foster catalysis indirectly. Similarly, one would predict that
the allosteric effect would be greater for some P450 enzymes
than for others, depending on the surface geometry and
charge distribution in the redox partner binding site of the
P450. Modeling and mutagenesis studies with hepatic P450
2B4 indicate that cytochrome b5 and POR interact with over-
lapping portions of the negatively charged redox partner
binding site of the P450 (76). By optimizing the interaction of
POR and the P450, one would expect to see an increased
reaction velocity, but one would not expect to see significant
changes in substrate binding or product dissociation because
these parameters reflect events on the far side of the plane of
the heme group, away from the redox partner binding site.
Substantial experimental data support this allosteric mech-
anism for the action of cytochrome b5 with selected hepatic
drug-metabolizing P450 enzymes (77–79).

Recent work has highlighted the central role of cyto-
chrome b5 and other factors regulating electron flux from
POR to P450c17 in the intracellular regulation of human
androgen synthesis. Early studies suggested that cytochrome
b5 increased the 17,20 lyase activity of P450c17, but it was
thought that its mechanism of action was to function as an
alternative donor for the second electron in the P450 catalytic
cycle (80, 81), as can happen with some hepatic P450 enzymes
(59, 60). However, work with a humanized yeast system that
expresses human P450c17 and human (rather than yeast), POR
has now established that cytochrome b5 exerts no action on the
17�-hydroxylase reaction of human P450c17. Instead, cyto-
chrome b5 profoundly stimulates the 17,20 lyase reaction
through an allosteric mechanism, rather than as an electron
donor (82, 83). Thus, cytochrome b5 promotes the association of
P450c17 with POR to increase the efficiency of electron donation
from POR.

There are two human genes for cytochrome b5. The gene
on chromosome 18q23 has six exons that undergo alternative
splicing: exons 1, 2, 3, and 4 encode the 98AA soluble form
of cytochrome b5 found principally in erythropoietic tissues,
whereas exons 1, 2, 3, 5, and 6 encode the widely expressed
134AA form bound to the endoplasmic reticulum (84, 85). A
second gene on chromosome 16q22.1 consists of five exons
that encode OMb5, a 146AA form of cytochrome b5 that is
bound to the mitochondrial outer membrane (86). Because
some domains of OMb5 share 70% amino acid sequence
identity with microsomal cytochrome b5, it is likely that
antisera raised against one will cross-react with the other. Rat
OMb5 can facilitate 17,20 lyase activity in vitro but exerts an
even greater effect on 17�-hydroxylase activity (87). Because
the principal form of cytochrome b5 found in the adrenal is
the 134AA microsomal form (88) and because cytochrome b5
has no apparent effect on human 17�-hydroxylase activity,
it appears that the 134AA microsomal form is largely re-
sponsible for the observed effects on 17,20 lyase activity.

Whereas most information about the activity and pre-
sumed role of cytochrome b5 in human androgen synthesis
derives from biochemical studies in vitro, physiologic sup-
port for this role is beginning to emerge. Immunocytochem-
ical analysis of human (89–91) and rhesus monkey (92, 93)
adrenals show that cytochrome b5 is overwhelmingly more

abundant in the zona reticularis that in the other zones and
that its degree of expression increases in parallel with the
increased secretion of 19-carbon steroids during adrenarche,
i.e. in parallel with increased 17,20 lyase activity. A proposed
role for cytochrome b5 in the 17,20 lyase activity of P450c17
would suggest that mutations in the gene for cytochrome b5
might present clinically as isolated 17,20 lyase deficiency.
Only a single case of cytochrome b5 deficiency has been
reported (94), having a splice-site mutation between exons 1
and 2 (95). Because a major physiologic role of cytochrome
b5 is in the reduction of methemoglobin, the principal clinical
manifestation in this patient was methemoglobinemia,
which is most commonly caused by disordered cytochrome
b5 reductase. Unlike individuals with cytochrome b5 reduc-
tase disorders, the patient with mutant cytochrome b5 also
had ambiguous genitalia in a 46,XY male, but unfortunately,
androgen synthesis was not assessed in this patient. Hence,
it is possible that cytochrome b5 deficiency will disrupt an-
drogen synthesis, but this is not established.

Phosphorylation of P450c17

In addition to high molar ratios of POR to P450c17 and the
allosteric action of cytochrome b5, a third mechanism that
increases 17,20 lyase activity is the serine/threonine phos-
phorylation of P450c17 (96). Very few P450 enzymes undergo
posttranslational modification. P450aro (aromatase) can be
glycosylated, but this does not appear to affect its catalytic
ability (97). To date, P450c17 is one of the few cytochrome
P450 enzymes that is known to undergo phosphorylation
and the only case in which a posttranslational modification
has been shown to exert a major influence on catalysis.
Serine/threonine phosphorylation of P450c17 confers 17,20
lyase activity on the enzyme, and dephosphorylation by
treating human adrenal microsomes with alkaline phos-
phatase ablates 17,20 lyase activity without affecting 17�-
hydroxylase activity (96). The responsible kinase appears
to be responsive to cAMP but remains unidentified. A
kinase-enriched cytoplasmic fraction of human adrenal
NCI-H295A cells can phosphorylate dephospho-P450c17
expressed in eukaryotic cells or in bacteria and can confer
17,20 lyase activity to the P450c17 (98). Treatment with
inhibitors of various protein phosphatases, RNA interfer-
ence studies, and protein transfection studies indicate that
the phosphorylation of P450c17 is counterbalanced by pro-
tein phosphatase 2A, which, in turn, is negatively regu-
lated by phosphoprotein SET (98). Because serine phos-
phorylation of the �-chain of the insulin receptor will
produce insulin resistance (99, 100), it appears likely that
serine phosphorylation is the mechanistic link between the
insulin resistance and hyperandrogenism that character-
ize some forms of the polycystic ovary syndrome (75, 96,
101). Serine phosphorylation of P450c17 apparently in-
creases 17,20 lyase activity by increasing the association of
P450c17 with POR and increasing the efficiency of electron
transfer. Strong evidence for this model comes from the
recent observation that serine phosphorylation of P450c17
and addition of cytochrome b5 can each saturate the 17,20 lyase
activity of P450c17, i.e. the effects are neither additive nor co-
operative (88). Thus, three mechanisms, the abundance of POR,
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the presence of cytochrome b5, and the serine phosphorylation
of P450c17, all regulate 17,20 lyase activity, and hence androgen
production, by modulating the flow of electrons from NADPH
to P450c17.

P450 oxidoreductase deficiency

Because POR is required for the activity of all 50 human
type II (microsomal) P450 enzymes, one might presume that
ablation of POR would have dire consequences. In fact, mice
lacking only the membrane-anchoring amino-terminal do-
main of POR (but retaining residues 107–677, which can
reduce cytochrome c in vitro) die by embryonic d 13.5 (102),
and mice lacking the entire POR gene suffer embryonic le-
thality by d 9.5 (103). This lethality is apparently a conse-
quence of disordered extrahepatic P450 enzymes because
liver-specific POR knockout mice have normal development
and normal reproductive capacity, despite severely impaired
drug metabolism (104). Thus, it was most surprising when
Flück et al. (105) reported POR missense mutations in both
a phenotypically normal adult woman with primary amen-
orrhea and three children with disordered steroidogenesis
and a severe skeletal malformation disorder called Antley-
Bixler syndrome. These patients have steroidal findings sug-
gesting partial combined deficiencies of 17�-hydroxylase
and 21-hydroxylase and occasionally evidence of fetopla-
cental aromatase deficiency as well (106). Several other
groups have also reported similar cases (107–109).

Although this steroidal profile was first reported in 1985
(110) and it was suggested that the disorder might be in POR
(111, 112), POR was not investigated until the human genome
project made the gene sequence available. All patients stud-
ied to date have had a missense (amino acid replacement)
mutation on at least one allele; hence, it is not clear whether
total ablation of POR is compatible with human life. With the
completion of a large international series, a total of 21 POR
missense mutations have been identified, providing excel-
lent scanning mutagenesis of POR and the opportunity to
correlate clinical, biochemical, and genetic findings (113). All
affected individuals have disordered 17,20 lyase activity; the
defects in 17�-hydroxylase, 21-hydroxylase, and aromatase
activities are more variable. This is consistent with the ob-
servations that the 17,20 lyase activity of P450c17 is sensitive
to mutations in its redox partner binding site that do not
affect 17�-hydroxylase activity and the observations that the
17,20 lyase activity of P450c17 requires the assistance of ei-
ther serine phosphorylation or the allosteric action of cyto-
chrome b5. Not surprisingly, the biochemical assay of POR
activity that most closely correlates with the clinical findings
is the degree to which a mutant form of POR is able to
support the 17,20 lyase activity of P450c17 in vitro, in the
presence of saturating amounts of cytochrome b5 (105, 106,
113). The potential effects of such POR mutations or POR
polymorphisms on drug metabolism by hepatic P450 en-
zymes has not yet been investigated but may become an
important area of pharamacogenomics.

Conclusion

Whereas endocrinology has traditionally emphasized reg-
ulation by circulating hormonal factors, regulation by intra-

cellular factors has assumed equal importance. Many bio-
chemical pathways including steroidogenic pathways are
delicately regulated by electron-donation and redox state. The
elucidation of the structures of these redox partner proteins,
their biochemical activities, and their genetic deficiency states
are opening a major new area of endocrine investigation.
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