
To � or Not To �: Estrogen Receptors and Ovarian
Function

Much of what we know about hormone action in the
vertebrate endocrine system comes from studies of estrogen
and its signaling pathways, and, in turn, a good deal of this
information derives from studies of the ovary. The identifi-
cation of an estrogenic activity produced in the ovary dates
to the studies of Allen and Doisy in 1923 (1) and eventually
led to the crystallization of estrone in 1929 (2). The ability to
prepare labeled [3H]estradiol allowed the identification of
specific target tissues, solidified the receptor concept, and
was crucial to the identification of the estrogen receptor, the
first hormone receptor (3, 4). Even at these early stages, it was
recognized not only that estrogens are made in the ovary, but
that the ovary is itself a target for estrogen action (5, 6). With
the identification of a second estrogen receptor, ER�, in 1996
(7) and the finding that this form predominates over ER� in
the ovary (8, 9), new interest emerged in the intraovarian
roles of estrogen and the estrogen receptors that mediate
these effects. Definitive evidence regarding the importance
and relative contributions of the two estrogen receptors in the
ovary began to accumulate after the targeted disruption of
estrogen receptors � (10), � (11, 12), or the combination (12,
13) in mice. The story of estrogen, its receptors, and the ovary
continues to be written with the study by Couse et al. (14),
which provides new insights into the ovarian molecular phe-
notypes of mice lacking each estrogen receptor, in this issue
of Endocrinology.

In many respects, the ER� knockout mice (�ERKO) have
the most severe ovarian phenotype, in which follicles fail to
mature or ovulate and form hemorrhagic cysts, leading to
infertility (10, 12). However, subsequent studies revealed
that much of the �ERKO ovarian phenotype could be ex-
plained by the lack of estrogen-mediated negative feedback
on pituitary LH secretion, resulting in chronically elevated
LH levels and enhanced ovarian steroidogenesis (15, 16).
Indeed, chronic treatment with a GnRH antagonist to sup-
press LH reverses the cystic ovarian phenotype, and imma-
ture �ERKO mice can be successfully ovulated with exoge-
nous gonadotropins before the onset of overt LH
hypersection (17), although in the ER� knockout model gen-
erated by Dupont et al. (12) no ovulations in response to
exogenous gonadotropins were observed. In contrast to the
�ERKO phenotype, gonadotropins and steroids are largely
normal in �ERKO mice (16), implicating ER� as mediating
most of the negative feedback effects of estrogens on pitu-
itary gonadotropin secretion.

The �ERKO mouse ovaries appear grossly normal, with

follicles at all stages of development but fewer corpora lutea.
In agreement with this finding, these female mice exhibit
reduced fertility, although there appears to be a range that
extends from mild subfertility to complete infertility (11, 12).
The �ERKO mice also fail to respond to exogenous gonad-
otropins and exhibit mature follicles containing “trapped”
oocytes, suggesting a deficiency in the response to the LH/
human chorionic gonadotropin (hCG) ovulatory stimulus.
Not surprisingly, the combined ��ERKO mice are also in-
fertile and have the attenuated folliculogenesis and anovu-
latory phenotype characteristic of the �ERKO mice (12, 13).
However, an unexpected finding was the apparent transdif-
ferentiation of granulosa cells toward a male Sertoli cell
phenotype in the ��ERKO mice, a phenotype that is also seen
in mice with a targeted disruption of the cyp19 gene encod-
ing aromatase, the critical enzyme in estrogen biosynthesis,
generating a complete estrogen-deficient state (18–20).

All of this work is suggestive of a primary role for ER� in
regulating follicle development and ovulation but does not
provide for a complete mechanistic understanding of the
roles or targets of ER� in the ovary. The studies by Couse et
al. (14) in this issue of Endocrinology begin to address these
issues with a detailed analysis of the molecular phenotypes
of the �ERKO and �ERKO mice in the pre- and periovulatory
period. The overall picture that emerges is that the predom-
inant ER�-expressing cells of the ovary, the granulosa cells,
exhibit an attenuated response to FSH (or pregnant mare
serum gonadotropin, PMSG) in the �ERKO ovary and, as a
consequence, are not able to respond appropriately to the LH
(hCG) stimulus to initiate cumulus expansion, follicle rup-
ture, and ovulation. Supporting these conclusions regarding
aberrant PMSG-induced granulosa cell differentiation are
the findings that two classical markers of granulosa cell dif-
ferentiation, the LH receptor and aromatase, show attenu-
ated or delayed expression in the �ERKO ovary. Although
overall ovarian LH receptor mRNA levels are more or less
normal, there is a selective failure of PMSG-induced LH
receptor expression in the granulosa cells, and aromatase
induction is delayed and does not occur until after the hCG
stimulus, resulting in reduced estradiol secretion in the pre-
ovulatory period. Thus, the follicle is delayed in its matu-
ration and is not poised to respond to the ovulatory stimulus.
As a consequence, several key genes known to be critical for
ovulation, including prostaglandin synthase 2 (21) and the
progesterone receptor (22), fail to be appropriately induced
by LH-hCG in the �ERKO mouse ovaries. Morphological
examination of the �ERKO ovaries points to a failure of LH
to induce expansion of the cumulus-oocyte complex in a
subset of the preovulatory follicles, consistent with attenu-
ated LH action and a periovulatory defect in the follicle. It is
curious that only some follicles exhibit the reduced cumulus-
oocyte complex expansion, and it seems reasonable to spec-
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ulate that those that appear morphologically normal are ca-
pable of subsequent ovulation, consistent with the wide
variability in ovulation rate by the �ERKO female mice ob-
served in this study.

Recent related work from the Korach laboratory (23) that
investigated the growth and maturation of follicles from the
�ERKO and �ERKO ovaries in vitro further supports the
concept that ER� plays a predominant role in follicular mat-
uration. These data demonstrate that preantral follicles from
�ERKO mice maintained in culture exhibit slower growth,
decreased estradiol secretion, and reduced ovulatory capac-
ity compared with follicles from wild-type or �ERKO mice.
Importantly, follicles cultured from �ERKO mice, removed
from the environment of elevated LH and androgen that
exists in the �ERKO mouse, behave normally with respect to
the parameters tested, consistent with the view that ER� does
not have a significant role in mediating the intraovarian
responses to estrogens. Furthermore, this paper reports de-
tailed in vivo follicle counts from �ERKO mice, confirming
that the pool of larger antral follicles is reduced, an obser-
vation also made by Dupont et al. (12). These effects on
later-stage follicles would appear to impact survival or dif-
ferentiation of the follicle, as proliferation of the granulosa
cells appears to be relatively normal.

Interestingly, the adult �ERKO ovary had a significantly
increased pool of primordial follicles with correspondingly
fewer primary follicles (23), hinting at an effect of ER� on
much earlier stages of follicle formation than heretofore ap-
preciated. Two related observations are consistent with a role
for estrogens and ER� in early folliculogenesis. First, aro-

matase (and thus estrogen)-deficient (ArKO) mice have re-
duced numbers of primordial and primary follicles at 10 wk
of age compared with wild type (24). This phenotype was not
impacted by estradiol replacement from wk 7–10, arguing
that the impact of estrogen deficiency may be manifest at the
time of early follicle formation from the germ cell syncytium
or may represent earlier or enhanced activation of the ordi-
narily static primordial follicle pool. Second, studies to treat
hypophysectomized rats or GnRH antagonist-treated mice
with ER� or ER� selective agonists (25) demonstrate that the
ER� agonist 8-vinylestra-1,3,5 (10)-triene-3,17�-diol caused a
robust increase in the numbers of primary stage 3a/3b fol-
licles as well as later-stage preantral and antral follicles com-
pared with the vehicle control, an effect not seen with the
ER� selective agonist. Together, these observations suggest
an estrogen effect mediated by ER� on the earliest stages of
follicle formation and fate.

The new studies by Couse et al. (14) reported in this issue,
together with other recent work in related models, go a long
way toward demonstrating that it is indeed ER� that medi-
ates the critical actions of estrogens in the ovary and that, in
the absence of this signaling pathway, FSH-stimulated gran-
ulosa cell differentiation is attenuated, resulting in a follicle
that cannot fully respond to the LH ovulatory stimulus (Fig.
1). Although changes in several key receptors and enzyme
activities have been identified, there is still likely much to be
learned about interactions between FSH and estrogen sig-
naling and about the proximal targets for ER� regulation in
the granulosa cell. Also new on the horizon are the ligand-
independent activities of the estrogen receptors and the non-
classical roles such receptors might play in ovarian function
(26). Equally exciting is the growing body of evidence sug-
gesting early actions of estrogens in follicle formation, mat-
uration or atresia, and, indeed, in regulating the sexual dif-
ferentiation of ovarian granulosa cells. The evidence thus far
suggests that these actions are also likely to be mediated by
ER�. In much the same way as ER� appears to enhance FSH
signaling in regulating later stages of follicle maturation (14),
it seems likely that ER� will have a modifying influence on
signaling pathways for hormones such as activin or other
TGF� family proteins in regulating earlier stages of follicu-
logenesis (27). We know surprisingly little about the regu-
latory events controlling follicle formation, activation, and
maturation before the onset of gonadotropin dependence,
and it looks as though this is yet another research area in
which estrogens might help lead the way.
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FIG. 1. Model for estrogen and estrogen receptor actions in the ovary.
A pathway of follicle formation and maturation is shown, with later
stages of follicular development regulated by FSH and ovulation and
luteinization triggered by LH. ER� is expressed in thecal/interstitial
cells but appears to have few discernable intraovarian effects; rather,
LH hypersection in the �ERKO mouse is responsible for most of the
observed ovarian phenotypes. ER� is expressed in the granulosa cell,
and emerging evidence implicates it and estrogens in the formation
or activation of early follicles. The study by Couse et al. (14) in this
issue demonstrates a requirement for ER� in FSH-induced differen-
tiation of the granulosa cells of antral follicles. In the absence of this
key signal, a variety of genes critical to follicular maturation and
ovulation are misregulated (indicated in the box), leading to impaired
fertility of �ERKO mice.
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