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AMP-activated protein kinase (AMPK) is master regulator of
energy balance through suppression of ATP-consuming ana-
bolic pathways and enhancement of ATP-producing catabolic
pathways. AMPK is activated by external metabolic stresses
and subsequently orchestrates a complex downstream signal-
ing cascade that mobilizes the cell for efficient energy pro-

duction. AMPK has emerged as a key kinase driving lipid
oxidation in skeletal muscle, and this function has important
implications for exercise adaptations as well as metabolic de-
fects associated with obesity. (Endocrinology 149: 935–941,
2008)

EMPHASIS ON SIGNALING pathways involved in en-
ergy metabolism is of tremendous physiological rele-

vance today, because an imbalance of energy intake and
energy expenditure leads to obesity. Regular physical exer-
cise clearly maintains a healthy metabolic profile and largely
prevents the development of obesity and metabolic disor-
ders. AMP-activated protein kinase (AMPK) is a key enzyme
that has emerged as a master regulator of energy balance and
a common denominator between the two opposing states of
metabolic fitness, characterized by physical activity or obe-
sity. At the molecular level, AMPK is a serine/threonine
kinase activated by any metabolic stress that generates an
increase in the AMP/ATP ratio (1–3). Upon activation,
AMPK orchestrates intracellular events to suppress ATP-
consuming anabolic pathways and enhance ATP-producing
catabolic pathways to drive more efficient energy production
in response to hormonal, nutritional, and external stimuli (2).
Here we will review the role of AMPK in the regulation of
fatty acid (FA) oxidation in skeletal muscle, a key tissue
important for lipid metabolism and whole-body glucose ho-
meostasis. In particular, we will review recent findings dem-
onstrating how AMPK activation coordinates lipid oxidation
in differing metabolic circumstances. Finally, we will high-
light additional molecules emerging as putative factors that
impact AMPK regulation of lipid oxidation.

Historical Perspective of AMPK Discovery

The first experimental observation underscoring a role for
a kinase in lipid metabolism was realized concordantly in

1973 by two groups who independently demonstrated that
the same kinase inactivates two enzymes involved in liver fat
metabolism, 3-hydroxy-3-methylglutaryl coenzyme A (CoA)
reductase and acetyl-CoA carboxylase (ACC) (4, 5). Subse-
quently, this kinase was later named AMPK due to its re-
sponsiveness to alterations in AMP levels after changes in
cellular energy levels (6–9). The parallel discovery of the SNF
kinases, the Saccharomyces cerevisiae yeast homolog of AMPK
(10) has provided substantiation of this protein family in
energy regulation and suggests evolutionary conservation
(11). In the past decade, AMPK has been a cornerstone mol-
ecule for investigation of energy balance through its involve-
ment in glucose/lipid metabolism and the Randle cycle (12)
as well as enhancements of mitochondrial biogenesis (13, 14)
and regulation of protein synthesis and gene expression (15).
AMPK regulation of lipid oxidation remains a key focus in
studies of metabolism because physical exercise, currently
one of the most efficacious antiobesity treatments, is a potent
activator of AMPK in skeletal muscle (16–20).

Structural Characteristics of AMPK

AMPK is a heterotrimeric protein complex composed of
one �-subunit (�1 and �2), one �-subunit (�1 and �2), and
one �-subunit (�1, �2, and �3) (21). The �-subunit is the
catalytic subunit containing the kinase domain, and among
the many phosphorylation sites, T172 must be phosphory-
lated for activity (3). The �-subunit serves primarily as the
structural core of the heterotrimer through interactions with
both the �- and �-subunits and also possesses a glycogen-
binding domain. The regulatory �-subunit contains two pairs
of cystathionine �-synthase (CBS) domains, each pair known
as a Bateman domain, that bind one AMP molecule (22). The
�-subunit is the central functional component responsible for
the AMP response, because binding of AMP at CBS domains
allosterically activates AMPK, rendering it a better substrate
for upstream kinases and a worse substrate for phosphatases
(23–25). The first crystal structure resolution of an AMPK
heterotrimeric complex has been achieved (26, 27). The struc-
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tural data have clarified the interaction sites between sub-
units and defined the location of the kinase domain on the
�-subunit and the phosphate tunnel for AMP binding on the
�-subunit. Complementary to this recent structural exami-
nation, in vitro deletion analysis has further defined domains
on the �-subunit that are critical to kinase activity (28). These
studies have provided new insights regarding competitive
AMP/ATP binding and also offer insight into why mutations
in the �-subunit influence activation of the heterotrimeric
kinase.

AMPK Expression in Skeletal Muscle

The initial identification of AMPK and its functional kinase
activity was achieved in liver. Subsequently, mRNA and
protein expression analysis of AMPK provided evidence that
AMPK had a likely role in other tissues, because the highest
expression of the AMPK mRNA was found in skeletal mus-
cle, seven-fold higher than liver (29). In recent years, expres-
sion analysis of particular isoforms of AMPK subunits in
skeletal muscle has been investigated extensively in both
rodents and humans but is not entirely resolved (20, 30–33).
Current perspectives of the roles and functions of specific
isoforms have been comprehensively reviewed (34). Several
isoforms, �1, �1, and �1, are ubiquitous, whereas �2, �2, �2,
and �3 are preferentially expressed in skeletal muscle, fur-
ther implicating a function for AMPK in this tissue. Of the 12
possible subunit combinations, only three exist in human
skeletal muscle, namely �1/�2/�1, �2/�2/�1, and �2/
�2/�3 (35). Unique roles of specific isoforms have begun to
emerge. For example, �2 and �3 isoforms have been impli-
cated to be essential for AMPK activity during exercise (18,
20, 36, 37), and the combination of �2/�2/�3 confers the
heterotrimeric complex most associated with exercise-in-
duced AMPK activation in human skeletal muscle (35). How-
ever, further investigation is required to fully elucidate the
activation capacity of individual kinase isoforms. Whether
specific isoforms or subunit combinations provide preferen-
tial control of lipid oxidation vs. glucose metabolism is
unknown.

Molecular Regulation of Lipid Oxidation in Muscle
by AMPK

Even before the discovery of skeletal muscle-specific iso-
forms, the realized putative importance of AMPK in skeletal
muscle made possible the connection between AMPK as an
energy sensor controlling glucose and lipid metabolism and
the creatine kinase (CK)-phosphocreatine system (38). The
CK/phosphocreatine system functions to provide a sensitive
and fast-responding mechanism to prevent an imbalance of
the AMP/ATP ratio, such that the energy supply to the
working muscle is maintained (39). The discovery that
AMPK phosphorylates and inactivates the skeletal muscle-
specific isoform of CK provided a link between the two
systems (38). Thus, AMPK responds to depletions in avail-
able stores of high-energy phosphate from both phospho-CK
and ATP and drives a consequent shift to lipid oxidation, by
which the muscle can acquire a persistent and a potentially
unlimited source of energy (19, 40).

Canonical activation of AMPK in skeletal muscle occurs

after a metabolic stress such as exercise, hypoxia, starvation,
or other external stimuli that elicit an increase in the AMP/
ATP ratio. In response to an intense energy demand, AMPK
promotes an orchestration of energy-conserving events
geared toward prolonging energy availability by phosphor-
ylation of at least 20 target genes (34). On one hand, AMPK
activity promotes glucose metabolism by stimulating glu-
cose uptake via glucose transporter 4 transporters and gly-
cogen storage, likely by allosteric activation of glucose
6-phosphate-induced glycogen synthase activity (41). How-
ever, glucose stores represent a finite source of ATP, partic-
ularly in states of exercise or fasting, and endogenous fat
stores are recruited for energy production. Thus, by driving
lipid oxidation, the working muscle can harvest energy from
fat, which provides a 3-fold greater source of ATP than
carbohydrate sources. AMPK activation favors lipid metab-
olism under such conditions (5, 42, 43).

FA oxidation occurs in skeletal muscle when cytosolic
long-chain fatty acyl-CoA is transported into the mitochon-
dria where it can undergo �-oxidation and enter the citric
acid cycle for ATP production (44). This process is regulated
allosterically by malonyl-CoA, a cytosolic glucose-derived
species that inhibits carnitine palmitoyltransferase-1 (CPT-
1), a rate-limiting enzyme in mitochondrial FA uptake,
thereby restricting the entry of acyl-CoA into mitochondria
(45). The regulatory enzyme ACC catalyzes the conversion of
acetyl-CoA to malonyl-CoA, which diminishes FA CoA en-
trance into mitochondria and increases availability for syn-
thesis of triglycerides, diacylglycerol, and ceramides, a mech-
anism that favors glucose metabolism (16). AMPK enhances
FA oxidation in skeletal muscle, as in the liver, by inactivat-
ing ACC via phosphorylation, thereby reducing the synthe-
sis of malonyl-CoA (46) and possibly by activation of mal-
onyl-CoA decarboxylase, the enzyme catalyzing the
decarboxylation of malonyl-CoA to acetyl-CoA (47, 48). This
idea is further supported by the finding that ACC2-deficient
mice exhibit increased fat oxidation and reduced fat storage
(49). Thus, AMPK activity (Fig. 1) rectifies energy imbalances
via inhibition of ACC to consequently relieve the inhibition
of CPT-1 and permit uptake and subsequent �-oxidation of
acyl-CoA in the mitochondria (45, 50). However, malonyl-
CoA does not exclusively account for the regulation of all
lipid oxidation that occurs. Other factors hypothesized to
influence FA oxidation include the FA concentration (51),
carnitine availability (52), and the availability of CoA in the
mitochondrial matrix (53, 54).

Genetic Mutations of AMPK

Mutations in AMPK have shed light on the role of AMPK
activity in energy maintenance. In particular, naturally oc-
curring mutations in the PRKAG3 locus, which encodes the
�-subunit, highlight the functional contribution of the �-sub-
unit to total AMPK activity in glucose and lipid metabolism.
Rodents and swine harboring an R225Q or R220Q mutation,
respectively, in the first CBS domain of the �3-subunit, the
region responsible for AMP binding, have increased muscle
glycogen (31, 32, 55). Further investigation of genetic mouse
models with this mutation demonstrated protection against
diet-induced insulin resistance, lower im triglycerides, in-
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creased ACC phosphorylation, and increased lipid oxidation
in these animals after a high-fat diet (37). A human mutation
in the �3-subunit at the homologous site has been identified
(56). Subjects carrying the �3 R225W mutation had a 2-fold
increase in AMPK activity, a 90% increase in skeletal muscle
glycogen content, and a 30% decrease in im triglycerides. The
first single-nucleotide polymorphism analysis of the
PRKAG3 genetic locus reveals an association between low-
density lipoprotein cholesterol and apolipoprotein B-100 se-
rum levels in a nondiabetic population (33). Clearly, these
genetic reports underscore the role of the �3-subunit in glu-
cose and lipid metabolism.

AMPK and Metabolic Fitness

From a metabolic health perspective, much that is known
about AMPK-dependent energy metabolism has been revealed
through examination of different states of metabolic fitness. For
example, the metabolic state of a highly trained athlete is char-
acterized by extreme flexibility in the transition between glu-
cose and lipid oxidation to achieve the most advantageous
balance of glucose sparing and energy efficiency (57). Con-
versely, the sedentary, obese individual has lost the ability to
recruit energy stores in the same manner (58, 59). Accumulating
evidence suggests that opposing regulation of an AMPK fuel-
sensing signaling cascade could be a key feature underlying
these distinct states of metabolic fitness (Fig. 2).

AMPK and exercise

The benefits of exercise on human health can be partly
attributed to an increased reliance on lipid oxidation in re-
sponse to training adaptation (43, 60–62). During acute and
prolonged exercise, skeletal muscle sustains a persistent de-
pletion of ATP, and activation of AMPK allows an adequate
response to the changes in energy need (63). However,
AMPK activation, as well as substrate selection, is a function

of the intensity and length of the exercise bout (19, 35, 64).
Longer and/or low-intensity exercise facilitates greater re-
liance on fat oxidation, whereas an increase in the exercise
intensity elicits a switch from lipid-based to carbohydrate-
based fuels (65, 66). Beyond this crossover point, carbohy-
drates are the primary energy source, because glucose me-
tabolism is more tightly regulated to the energy requirements
and can more precisely meet the needs of the working mus-
cle. However, during exercise, an increased lipid oxidation
enables a better match between energy supply and demand
and delays consumption of muscle glycogen. This transition
to an enhanced reliance on lipid oxidation spares use of
plasma glucose but provides a need for an enzyme to control
such a metabolic switch. The relationship between exercise
and lipid oxidation at the molecular basis was realized by the
finding that malonyl-CoA was decreased after an exercise
bout (67, 68), a finding that provides additional evidence for
a contribution by AMPK. Although the behavior of AMPK
signaling appears to vary with exercise intensity and skeletal
muscle fiber type and across species, AMPK activation
clearly plays an important role, and future investigation will
bring further clarity.

A multitude of studies have addressed the role of exercise-
induced AMPK activation on lipid oxidation using a variety of
experimental systems and protocols that, together, do not point
to a single clear mechanism of action. At high-intensity exercise,
the activation of AMPK responds to the depletion of ATP and
increases glucose transport (69), whereas at lower intensities,
contracting muscle experiences persistent AMPK activation

FIG. 1. AMPK regulation of lipid oxidation in skeletal muscle. Ex-
ternal metabolic stresses (exercise, fasting, hypoxia, etc.) cause an
increase in AMP/ATP ratio. AMPK is activated by AMP binding and
a phosphorylation event by upstream kinases. Phospho-AMPK phos-
phorylates and inhibits ACC activity, thereby inhibiting malonyl-CoA
synthesis. This relives the inhibition of CPT-1 activity and increases
mitochondrial import and �-oxidation of FAs in muscle. ATP produc-
tion by mitochondria satisfies the cellular energy need.

FIG. 2. Opposing states of metabolic fitness impact skeletal muscle
metabolism. At rest, a fasted lean muscle relies primarily on fat
oxidation (FA) for energy, which is associated with a lower RQ value
(�0.7). After a high-carbohydrate (CHO) meal, a lean muscle uses
glucose (G) metabolic pathways for energy, resulting in an increased
RQ value, close to 1. This capability, termed metabolic flexibility, is
further enhanced with endurance training. A greater reliance on
glucose metabolism under fasting conditions is a hallmark of obesity.
States of obesity heavily alter the substrate-switching capacity of
skeletal muscle and render the tissue more metabolically inflexible.
This is reflected by a narrow RQ range after consumption of a meal.
Defects in AMPK signaling could contribute to this impairment due
to the importance of AMPK action on glucose and lipid metabolism,
mitochondrial biogenesis, and transcription of genes along these
pathways. Whether and how endurance training can improve the
metabolic RQ range of obese individuals is a topic of intense inves-
tigation.
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that favors lipid metabolism. Furthermore, in a trained state,
changes occur that make the muscle primed for lipid oxidation.
This is represented by a perpetual decrease in the concentration
of both malonyl-CoA and phosphorylated ACC (19, 70), which
facilitates greater uptake and oxidation of FA in mitochondria
after each single and subsequent bout of exercise. Although
evidence for the importance of AMPK activity in transducing
exercise adaptations continues to accumulate, further investi-
gation is essential to clarify cross-species differences and sub-
unit contribution at varying exercise intensities.

For the past several years, research groups have attempted
to understand differential AMPK response to exercise. Sev-
eral subunit isoforms of the kinase have emerged as being
more exercise activated than others. In humans, �2- rather
than �1-containing AMPK complexes appear to mediate
metabolic responses to exercise in skeletal muscle (18). How-
ever, maximal sprint exercise over 30 sec activates both
AMPK �1 and �2 (43), whereas only AMPK �2 activity is
coupled with an increase in ACC� phosphorylation and in-
creased FA oxidation during moderate-intensity exercise
(71). Additional studies hypothesize that exercise training
results in reduced activation of AMPK after a single bout of
exercise in rats (72) and humans (73), indicating that perhaps
repeated AMPK signaling renders an endurance-trained
muscle more metabolically fit so that each subsequent bout
of exercise creates less metabolic stress. Also, much attention
has been directed toward the particular contribution of the
�-subunit, because mutations of the �1- of �3-subunit have
been associated with enhancements associated with an ex-
ercise response and increased energy metabolism (31, 74).
Conversely, a decrease in �3-subunit expression character-
izes the adaptations to exercise training (35).

In addition to mediating positive effects on lipid oxidation
with exercise training, AMPK is also implicated in the in-
duction of mitochondrial biogenesis. A transcription factor,
peroxisome proliferator-activated receptor-� coactivator
(PGC)-1� has emerged as a key orchestrator of transcrip-
tional pathways that induce mitochondrial biogenesis (75–
77) and has been associated with exercise training adaptation
(78) and skeletal muscle fiber type transformation (79). Ex-
ercise increases mitochondrial enzyme activity (60, 62, 80).
Similarly, AMPK activation has been linked with increases in
mitochondrial genes such as cytochrome C, ALA-S, malate
dehydrogenase, and succinate dehydrogenase in glycolytic
muscle (13). Because AMPK activation through exercise is
hypothesized to initiate a coordinated sequence of events
that favor lipid oxidation, enhanced mitochondrial function,
and a more energy-efficient state of metabolic fitness, the
influence on PGC-1� activity has naturally been addressed
(14, 81, 82). More recently, AMPK has been shown to directly
interact with, and phosphorylate, PGC-1�, indicating that
many AMPK-induced mitochondrial gene expression
changes occur through PGC-1� (83). Further detail regarding
the interaction between AMPK and PGC-1� will undoubt-
edly become evident in the near future.

AMPK and obesity

Metabolic flexibility is described as the ability to switch
between carbohydrate use in the insulin-stimulated prandial

state and lipid use in the fasting state to spare glucose for
other organs such as the brain (58, 84). Substrate selection in
the muscle can be expressed in terms of the respiratory quo-
tient (RQ), where a value of 1.0 correlates with use of car-
bohydrate as an energy source and a lower value of about 0.7
is associated with FA oxidation. Lean subjects exhibit a dra-
matic rise in RQ after a meal, as the body switches from lipid
to carbohydrate substrates, in response to an increase of
blood glucose. The idea of metabolic inflexibility reflects the
observation that obese and insulin-resistant diabetic people
maintain a nearly constant RQ value, demonstrating that a
switch between substrate use does not occur (85). Thus, the
inability of skeletal muscle to preferentially switch to FA
oxidation could contribute to the impairments in lipid me-
tabolism observed in obese and insulin-resistant people (58,
86). In addition, mitochondrial dysfunction has been ob-
served in inflexible subjects, indicating these defects con-
tribute to the deficiencies in lipid oxidation ability (87).

AMPK activation enhances FA breakdown for energy and
drives mitochondrial biogenesis, and thus potential impair-
ments in AMPK activity in states of metabolic inflexibility are
quite feasible. Insulin-dependent glucose uptake pathways
are impaired in type 2 diabetes, but the capacity for AMPK
modulation of glucose metabolism in diabetic muscle re-
mains intact (88). Nevertheless, a recent study demonstrates
that obese and type 2 diabetic subjects exhibited an attenu-
ated exercise-induced activation of AMPK, after a 4-month
low-intensity exercise protocol. Although RQ was not mea-
sured, this finding nevertheless represents another model of
inflexibility and suggests that perhaps a more intense exer-
cise protocol may be required to achieve the same benefits
compared with lean counterparts (89). AMPK-dependent de-
creases in malonyl-CoA and FA are associated with improve-
ments in insulin sensitivity, because excess fatty acyl-CoA,
ceramides, and diacylglycerol, common lipid metabolites,
have a negative impact on lipid and glucose metabolism (90).
AMPK activators have been shown to normalize states of
metabolic inflexibility in obese rats (91–93). Interestingly,
exercise intervention exerts similar improvements (94). Thus,
in light of these findings, chronic activation of AMPK could
allow the recovery of a flexible metabolism and hold great
potential as an exercise intervention therapy or drug target
for metabolic disorders.

Current Perspectives of AMPK Signaling

Clearly, AMPK FA signaling in muscle is differentially
modulated by the exercised or diabetic phenotype, but
AMPK also responds to endocrine hormones such as leptin
and adiponectin, which are secreted from adipocytes. Leptin
acts centrally on the hypothalamus and peripherally on skel-
etal muscle to increase insulin sensitivity by promoting lipid
oxidation and reducing fat accumulation in nonadipose tis-
sues. Adiponectin lowers circulating glucose and lipid levels
after a high-fat meal. The insulin-sensitizing action of these
molecules is partly mediated through AMPK activation. An-
other adipokine, resistin, promotes insulin resistance and
appears to exhibit a negative impact on AMPK signaling.
These adipocyte-derived hormones also represent novel

938 Endocrinology, March 2008, 149(3):935–941 Osler and Zierath • Minireview

D
ow

nloaded from
 https://academ

ic.oup.com
/endo/article/149/3/935/2454943 by guest on 24 April 2024



therapeutic targets for the treatment of insulin resistance and
type 2 diabetes (50).

Recently, the canonical picture of AMPK regulation of FA
oxidation has been broadened further by the emergence of
additional downstream targets. In addition to its effects on
ACC, AMPK was shown to regulate FA uptake into the cell
via plasma membrane FA transporters FAT/CD36 (95, 96)
and FABPpm (97) in cardiac muscle. Contraction increases
levels of FAT/CD36 as well as FA oxidation (98, 99) and is
hypothesized to coordinately function with CPT-1 to regu-
late acyl-CoA. Stearoyl-CoA desaturase (SCD1), an enzyme
that catalyzing the synthesis of monounsaturated FAs, has
also emerged as a possible target of AMPK and mechanism
to mediate FA oxidation in skeletal muscle. Mice lacking the
SCD1 gene show an increased AMPK phosphorylation and
CPT-1 activity, reduced ceramide synthesis, andenhanced
FA �-oxidation (100). The authors hypothesize that absence
of SCD1 permits greater activation of AMPK and up-regu-
lation of genes involved in lipid oxidation, possibly through
interaction with the leptin signaling pathway. Resolving the
true contribution by these proteins on AMPK regulation of
lipid metabolism requires further insight.

Summary

Accumulating evidence points to an important role of
AMPK in lipid metabolism. Due to the considerable health
burden associated with obesity and type 2 diabetes, interest
of this relationship continues to grow. Although physical
exercise remains a principal anti-obesity intervention strat-
egy, pharmacological activators of AMPK, including met-
formin, a long-standing antidiabetic agent, mimic many of
the effects observed with exercise. Furthermore, this review
has primarily focused on AMPK action in skeletal muscle,
but without doubt, AMPK signaling in other metabolic tis-
sues including liver and adipose serves a concomitant and
important function in the favorable regulation of glucose and
lipid metabolism (50). In concert with physical exercise, a
coordinated AMPK activation will perhaps emerge as a man-
agement strategy to counteract obesity and related metabolic
diseases, where impairments in lipid oxidation contribute to
disease pathogenesis.
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