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Vitamin D metabolites are important effectors of bone and mineral homeostasis. Extrarenal con-
version of 25-hydroxyvitamin D (25OHD) to the biologically active form of vitamin D, 1�,25-dihy-
droxyvitamin D [1,25(OH)2D] is catalyzed in several cell types by the 1�-hydroxylase (CYP27B1), but
little is known about the expression or regulation of CYP27B1 in human bones. We examined
whether human bone marrow stromal cells (hMSCs, also known as mesenchymal stem cells) par-
ticipate in vitamin D metabolism and whether vitamin D hydroxylases in hMSCs are influenced by
the vitamin D status of the individual from whom the hMSCs were obtained. We also investigated
the effects of vitamin D metabolites on osteoblast differentiation and the role of IGF-I in the
regulation of CYP27B1. In a series of 27 subjects, vitamin D hydroxylases in hMSCs were expressed
at different levels and were correlated with serum 25OHD, 1,25(OH)2D, and PTH. In vitro treatment
with 25OHD up-regulated CYP27B1 and IGF-I in hMSCs; IGF-I also up-regulated CY27B1 expression
and stimulated osteoblast differentiation. When hydroxylation of 25OHD was blocked by keto-
conazole, a cytochrome P450 inhibitor, 25OHD was no longer able to induce CYP27B1 expression.
In summary, these findings show that human bone marrow stromal cells have the molecular
machinery both to metabolize and respond to vitamin D. We propose that circulating 25OHD,
by virtue of its local conversion to 1,25(OH)2D catalyzed by basal CYP27B1 in hMSCs, amplifies
vitamin D signaling through IGF-I up-regulation, which in turn induces CYP27B1 in a feed-
forward mechanism to potentiate osteoblast differentiation initiated by IGF-I. (Endocrinology
151: 14 –22, 2010)

There are two major sources of vitamin D (cholecalcif-
erol): dietary intake and conversion of 7-dehydrocho-

lesterol in the skin to vitamin D by UV light. Vitamin D
from both sources undergoes sequential steps of activa-
tion, a first hydroxylation in the liver to 25-hydroxyvita-
min D (25OHD) and a second hydroxylation in the kid-
ney to the active hormone 1,25-dihydroxyvitamin D
[1,25(OH)2D] (1). The active metabolite, 1,25(OH)2D, is
taken up by target cells that possess the vitamin D receptor
(VDR). Vitamin D status is assessed by the circulating level
of 25OHD. Vitamin D deficiency can lead to low bone
density and, in severe instances, osteomalacia (2) and is
associated with osteopenia and osteoporosis, muscle
weakness, falls, and increased risk of fracture (3–5). We

reported extreme vitamin D deficiency in U.S. women with
hip fractures (6). Emerging evidence indicates that vitamin
D deficiency is associated with many nonskeletal illnesses,
including cancer, autoimmune diseases, infectious dis-
eases, and cardiovascular disease (7).

Among the cytochrome P450 (CYP) isoforms that
have been shown to hydroxylate vitamin D, CYP27B1/
25OHD-1�-hydroxylase converts 25OHD into the active
hormonal form, 1,25(OH)2D. CYP27B1 activity is tightly
regulated through complex mechanisms that depend on
the circulating levels of calcium, phosphorus, PTH, and
1,25(OH)2D3 (8) and by calcitonin (9). Previous studies
suggest that IGF-I may regulate the renal production of
1,25(OH)2D3 (10–14). In addition to kidney tubule cells,
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other human cells have been demonstrated to produce
1,25(OH)2D, notably osteoblasts (15), activated macro-
phages (16), keratinocytes (17), endothelial cells (18), and
cancer cells (19). Finding the VDR and vitamin D hy-
droxylases in many tissues suggests that the vitamin D
hormone acts in an autocrine, paracrine, or intracrine
fashion to affect the biology of nonclassical target tissues.
Recent data from mouse studies appear to show more
limited distribution of 1�-hydroxylase (8).

Human marrow-derived stromal cells (hMSCs), also
known as mesenchymal stem cells, include progenitors of
several lineages, including osteoblasts, chondrocytes, and
adipocytes (20–22). From studies with hMSCs isolated
from marrow that was discarded during orthopedic sur-
gery, we determined that there is an age-related decrease
in their differentiation to osteoblasts (23, 24). The dif-
ferentiation of hMSCs to osteoblasts is enhanced by
1,25(OH)2D3 (25), but there is no information about vi-
tamin D metabolism in hMSCs or the effects of 25OHD on
these processes. In this series of investigations, we tested
whether 25OHD3 stimulates hMSCs to differentiate to
osteoblasts, whether hMSCs participate in vitamin D me-
tabolism, whether expression of vitamin D hydroxylases
in hMSCs in vitro are influenced by the vitamin D status
of the individual from whom the hMSCs were obtained,
and whether vitamin D metabolic enzymes in hMSCs are
regulated in vitro.

Materials and Methods

Subjects
Bone marrow samples were obtained with Institutional Re-

view Board approval and annual review as femoral tissue dis-
carded during primary hip arthroplasty for osteoarthritis. Cri-
teria for exclusion were rheumatoid arthritis, cancer, and other
comorbid conditions that may influence skeletal metabolism, i.e.
renal insufficiency, alcoholism, active liver disease, malabsorp-
tion, hyperthyroidism, ankylosing spondylitis, aseptic necrosis,
hyperparathyroidism, morbid obesity, and diabetes. Also ex-
cluded were patients who were taking medications that may in-
fluence skeletal metabolism (e.g. thyroid hormone, glucocorti-
coids, bisphosphonates, and nonsteroidal antiinflammatory
drugs). A set of 27 subjects scheduled for hip arthroplasty was
consented for research studies, including measurement of serum
25OHD, 1,25(OH)2D, and PTH as well as body composition
and bone mineral density (BMD). Although current estrogen use
was not excluded in the screening criteria, none of the women in
this series was receiving estrogen at the time of surgery. Another
set of bone marrow samples that was used for osteoblast differ-
entiation experiments was obtained as discarded tissue from 19
de-identified individuals with Institutional Review Board ap-
proval and the same preoperative exclusion screen.

Blood chemical assays
Blood chemistries and complete blood counts were per-

formed in hospital clinical laboratories; the remaining tests were

performed in the General Clinical Research Center laboratory
unless otherwise specified. Serum 25OHD levels were assayed
using an isotopic assay (DiaSorin RIA, Stillwater, MN), with a
sensitivity of 1.5 ng/ml and an interassay coefficient of variation
(CV) of less than 10.5%; sufficiency was defined as more than 32
ng/ml (26). Levels of 1,25(OH)2D were measured by an extrac-
tion and isotopic method (Diasorin) with a sensitivity of 2 pg/ml
and an interassay CV of less than 14.7%; the normal range was
15–75 pg/ml. Serum intact PTH levels were measured with the
sensitive chemiluminescent assay (Beckman Access II; Beckman
Coulter, Inc., Fullerton, CA), with a sensitivity of 1 pg/ml and an
interassay CV of less than 6.5%; the normal range of serum PTH
was 10–65 pg/ml. Urinary N-telopeptide levels corrected for
urinary creatinine, an index of bone resorption, were determined
in a second morning spot urine collection by an ELISA that mea-
sures cross-linked collagen peptides (Osteomark Assay; Ostex
International, Inc., Seattle, WA), the normal range was 13–65
nmol/mmol creatinine.

BMD and body composition
BMD of the spine (L1–L4) and proximal femur were mea-

sured with dual x-ray absorptiometry technique (Discovery;
Hologic Inc., Bedford, MA). Least significant changes at the
95% confidence level for the spine and femoral neck bone density
measurements were 0.017 and 0.014 g/cm2, respectively. Ver-
tebrae with moderately severe osteoarthritic changes, disc space
narrowing, or a fracture would be excluded from the analyses as
those anatomic findings may elevate the spinal BMD. For these
27 subjects, none of the spine BMD measurements had to be
excluded. If subjects had a hip replacement on the contralateral
side, BMD was not measured at that site. Results were expressed
as SD compared with BMD values for young normal controls
(T-score). Body composition was also determined by dual x-ray
absorptiometry (Discovery; Hologic) (27). Reproducibility for
fat determination in our laboratory was 1.09 � 0.15% (CV,
mean � SEM).

Preparation of hMSCs
Low-density marrow mononuclear cells were isolated by cen-

trifugation on Ficoll/Histopaque 1077 (Sigma Chemical Co., St.
Louis, MO) (28). This procedure removes differentiated cells and
enriches for undifferentiated, low-density marrow mononuclear
cells that include a population of nonadherent hematopoietic
cells and a fraction capable of adherence and differentiation into
musculoskeletal cells. Adherent hMSCs were expanded in mono-
layer culture with phenol red-free �-MEM, 10% fetal bovine
serum-heat inactivated (FBS-HI), 100 U/ml penicillin, and 100
�g/ml streptomycin (Invitrogen, Carlsbad, CA). All samples
were used at passage 2.

Alkaline phosphatase (AlkP) enzyme assay
A set of MSCs that were obtained from 19 de-identified sub-

jects was used to assess osteoblast differentiation in vitro. Cells
were cultured in triplicate in 12-well plates in �-MEM with 10%
FBS-HI until confluence; this required different times depending
upon rates of proliferation. Upon confluence, medium was
changed to osteogenic medium (�-MEM with 1% FBS-HI, 100
U/ml penicillin, 100 �g/ml streptomycin plus 10 nM dexameth-
asone, 5 mM �-glycerophosphate, and 50 �g/ml ascorbate-2-
phosphate) for 7 d. Reduction of serum to 1% for differentiation
was designed to minimize possible differences in proliferation
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that could confound interpretation of effects of vitamin D3 me-
tabolites or other agents on osteoblastogenesis. AlkP enzyme
activity was measured as previously described (24). Cells from an
enrolled 72-yr-old woman were used to measure the effect of
IGF-I on osteoblastogenesis.

RNA isolation and RT-PCR
Total RNA was isolated from hMSCs with Trizol reagent

(Invitrogen). For RT-PCR, 2 �g total RNA was reverse-tran-
scribed into cDNA with SuperScript II (Invitrogen), following
the manufacturer’s instructions. One twentieth of the cDNA was
used in each 50-�l PCR (30–40 cycles of 94 C for 1 min, 55–60
C for 1 min, and 72 C for 2 min) as described (28). The gene-
specific primers for human CYP27B1 (29), CYP24A1 (30), VDR
(31), and IGF-I (32) were used for amplification. CYP27A1/
25OHase primers were modified from Seifert et al. (30): forward
5�-GGAAAGTACCCAGTACGG-3� and reverse 5�-AGCAAAT-
AGCTTCCAAGG-3� (289-bp product). Concentration of cDNA
and amplification conditions were optimized to reflect the expo-
nential phaseofamplification.Quantitativedatawere expressedby
normalizing the densitometric units to GAPDH (internal control)
as described (24, 28).

In vitro biosynthesis of 1,25(OH)2D3 by hMSCs
hMSCs were cultivated in 12-well plates until confluence and

then treated with or without 1 �M 25OHD3 (Sigma) with or
without 10 �M CYP inhibitor ketoconazole (Sigma) or 100 ng/ml
IGF-I (R&D Systems, Minneapolis, MN) in serum-free �-MEM
supplemented with 1% ITS�1 (Sigma). 1,2-Dianilinoethane
(N,N�-diphenylethylene-diamine) (10 �M) (Sigma) was added
into the cultures as an antioxidant as described (18). After 24 h
treatment, the media were collected from each well. The
1,25(OH)2D3 levels in media were quantitatively determined
with a 1,25(OH)2D3 ELISA kit (USA Immunodiagnostic Systems
Ltd., Fountain Hills, AZ), according to the manufacturer’s in-
structions. The hMSCs were lysed with a buffer containing 150
mM NaCl, 3 mM NaHCO3, 0.1% Triton X-100, and a mixture
of protease inhibitors (Roche Diagnostics, Pleasonton, CA). Pro-
tein concentration was determined with the BCA system (Pierce,
Rockford, IL). The 1�-hydroxylase activity was expressed as
biosynthesized 1,25(OH)2D3 in medium per milligram protein
per hour of 25OHD3 treatment (femtomoles per milligram pro-
tein per hour).

Statistical analyses
All experiments were performed at least in triplicate. Group

data are presented as mean values � SD. Unless otherwise indi-
cated, quantitative data were analyzed with nonparametric
tools, either the Mann-Whitney U test for group comparisons or
Spearman correlation test. If data allowed, parametric tools were
used, either t test for two-group or one-way ANOVA for mul-
tiple-group comparisons or Pearson correlation test. A value of
P � 0.05 was considered significant.

Results

In vitro stimulation of osteoblast differentiation
by both 25OHD3 and 1,25(OH)2D3

A set of MSCs that were obtained from 19 de-identified
subjects was used to assess osteoblast differentiation in

vitro. There were samples from 10 men and nine women
between 64 and 83 yr of age. Cultures of these hMSCs
were treated with either 1,25(OH)2D3 or 25OHD3

(0.01–10 nM) for 7 d in osteogenic medium. Osteoblast
differentiation, assessed with AlkP enzyme activity assays,
was stimulated by 1,25(OH)2D3 in all but two of the 19
samples (89%), with peak stimulation between 1 and
10 nM. Two thirds of the samples were stimulated by both
1,25(OH)2D3 and 25OHD3. In some cases, there was
equivalent dose-response stimulation of osteoblast differ-
entiation in hMSCs by both 1,25(OH)2D3 and 25OHD3

(Fig. 1). In those examples, both 1,25(OH)2D3 and
25OHD3 (0.01–10 nM) significantly stimulated AlkP ac-
tivity, compared with vehicle controls (P � 0.001), and
there was no significant difference between 1,25(OH)2D3

and 25OHD3.

Characteristics of the study subjects
Clinical data were available for 27 consented subjects,

from whom MSCs were isolated from bone marrow dis-
carded during orthopedic surgery. The mean age was 66 �
10 yr, ranging from 41–81 yr. There were 14 men and 13
women. There was a wide range of values for serum
25OHD, 1,25(OH)2D, PTH, cross-linked N-telopeptides
of type I collagen (NTX), urine creatinine levels, percent
fat, body mass index (BMI), and BMD T-scores (Table 1).
We found that 28% of the subjects were vitamin D defi-
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FIG. 1. Effects of vitamin D metabolites on osteoblast differentiation
in hMSCs from a 69-yr-old female (69F) and a 64-yr-old male (64M)
subject. Osteoblast differentiation of hMSCs was assessed with AlkP
enzyme activity assays (n � 6) after 7 d culture with or without
25OHD3 or 1,25(OH)2D3 (0.01–10 nM) in osteogenic medium.

TABLE 1. Characteristics of the study subjects (n � 27,
except as noted)

Mean � SD Range

Age (yr) 66 � 10 41–81
25OHD (ng/ml) 27.5 � 10.8 7.6–48.8
1,25(OH)2D (pg/ml) (n � 23) 40.3 � 12.5 20.0–71.0
PTH (pg/ml) (n � 24) 37.6 � 16.6 12.1–83.7
Urine creatinine (mg/dl) 97.7 � 47.6 22.5–213.3
Urine NTX (nmol/mmol creatinine)

(n � 25)
43.6 � 18.8 14.0–84.0

Spine T-score 0.54 � 1.74 �2.8 to 3.7
Left total hip T-score (n � 22) �0.45 � 1.12 �1.9 to 1.9
BMI (kg/m2) (n � 26) 29.1 � 6.6 19.9–49.3
% Fat 35.6 � 8.9 19.1–49.1
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cient (�20 ng/ml serum 25OHD), that 36% were insuf-
ficient with level between 20 and 32 ng/ml, and that 36%
were vitamin D sufficient (�32 ng/ml). There were no
differences in serum 25OHD between genders or with
age. Serum 25OHD was inversely correlated with serum
PTH (r � �0.49; P � 0.015), with BMI (r � �0.41; P �
0.035), and with percent body fat (Spearman r � �0.50;
P � 0.0077) (Table 2). There were no correlations with
1,25(OH)2D, urine NTX, or T-score of spine and total
hip. There was a trend for an inverse correlation be-
tween serum 25OHD3 and urinary creatinine (r �
�0.43; P � 0.058).

Relationships between serum parameters and
constitutive expression of vitamin D hydroxylases
in hMSCs

Gene expression was assessed in hMSCs from 27 sub-
jects for whom clinical information was available. In this
series, there was a wide range of constitutive expression of
1�-hydroxylase (CYP27B1), with no differences between
genders or with age (for clarity, 17 representative samples
are shown in Fig. 2A). All 27 samples expressed the VDR,
IGF-I, and CYP27A1/25-hydroxylase, whereas 18 of 27
haddetectableCYP24A1/24-hydroxylase (Fig. 2A).There
were relationships between CYP27B1/1�OHase gene ex-
pression in hMSCs and serum 25OHD, some of which
depended on the level of serum 25OHD. There was sig-
nificantly lower expression of CYP27B1 in hMSCs from
subjects with serum 25OHD less than 20 ng/ml (0.28 �
0.23, n � 6; P � 0.021), compared with those from sub-
jects with serum 25OHD between 20 and 32 ng/ml
(0.67 � 0.34, n � 12) (Fig. 2B). There was a significant
correlation between serum 25OHD and CYP27B1 gene
expression in hMSCs from subjects with serum 25OHD
from 7–20 ng/ml (r � 0.893; P � 0.0001; n � 7). In ad-
dition, therewasa trend foran inverse correlationbetween
CYP27A1/25-hydroxylase and serum 25OHD (P �
0.065, Pearson correlation) (Fig. 2C). There were no
associations found between serum parameters and
CYP24A1/24OHase gene expression in hMSCs. Of the 24
subjects, 9% had serum PTH levels greater than 45 pg/ml,
and 10% had serum 1,25(OH)2D levels greater than 50
pg/ml. There was lower expression of CYP27B1 in hMSCs
from subjects with serum PTH higher than 45 pg/ml (P �

0.002, Mann-Whitney U test) and for subjects with serum
1,25(OH)2D higher than 50 pg/ml (P � 0.0014, Mann-
Whitney U test) (Fig. 2D).

In vitro CYP27B1 gene expression and
1�-hydroxylase activity in hMSCs

hMSCs from a vitamin D-deficient subject (72-yr-old
female, 10.5 ng/ml serum 25OHD) were treated with or
without 25OHD3 (10 nM) with or without CYP inhibitor
ketoconazole (10 �M) for 24 h. The hMSCs expressed
CYP27B1, which was up-regulated by 25OHD3. Both
basal and up-regulated levels of CYP27B1 were inhibited
by ketoconazole (Fig. 3A). The 1�-hydroxylase activity
was assessed in hMSCs from the same subject by measur-
ing 1,25(OH)2D3 in the medium with an ELISA. Media
were collected fromconfluenthMSCs treated for24hwith
or without 1 �M 25OHD3 as exogenous substrate with
or without 10 �M ketoconazole (Fig. 3B). The 1�-hy-

TABLE 2. Correlations between serum 25OHD and
other clinical parameters

Serum PTH Serum 1,25(OH)2D BMI % Fat

r �0.49 0.016 �0.41 �0.50
n 24 23 26 27
P 0.015 0.94 0.035 0.0077

n, Number of subjects; r, Spearman correlation coefficient.

GAPDH

CYP27B1

CYP24A1
CYP27A1

A

B

C Serum 25OHD (ng/mL)

C
YP

27
B1

/G
AP

D
H

0 10 20 30 40 50
Serum 25OHD (ng/mL)

0.0

0.5

1.0

1.5

C
YP

27
A1

/G
AP

D
H F

M

<20             20-32 >32
0.0

0.5

1.0

1.5

n=6

n=11
n=10

*p=0.021

VDR
IGF-I

0.0

0.5

1.0

1.5D

C
YP

27
B1

/G
AP

D
H

         <50          >50          <45          >45 
  Serum 1,25(OH)2D3        Serum PTH 
              (pg/ml)                     (pg/ml)

* *

*p=0.0014 *p=0.002

FIG. 2. Relationship between serum parameters with vitamin D
metabolic enzyme gene expression in hMSCs. A, The expression of
CYP27B1/1�OHase, CYP27A1/25OHase, CYP24A1/24OHase, VDR, and
IGF-I genes was assessed in hMSCs obtained from 27 consented subjects
for whom clinical data were available (each lane for 17 examples shown
for clarity). B, The relationship between serum 25OHD of 27 subjects and
CYP27B1 gene expression in their hMSCs was assessed. Serum 25OHD
less than 20 ng/ml was defined as vitamin D deficiency, and more than
32 ng/ml was defined as vitamin D sufficiency. C, There was an inverse
correlation between serum 25OHD and CYP27A1/25OHase gene
expression in hMSCs (r � �0.36; P � 0.065; n � 27; F, females; M,
males). D, There was significantly lower expression of CYP27B1 in hMSCs
from subjects with serum 1,25(OH)2D higher than 50 pg/ml (P � 0.0014,
Mann-Whitney U test) and in subjects with serum PTH higher than 45
pg/ml (P � 0.002).
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droxylase activity was expressed as biosynthesized
1,25(OH)2D3 in medium. In the presence of ketocon-
azole, biosynthesis of 1,25(OH)2D3 was 34.6% of con-
trol with only exogenous substrate (P � 0.05, Mann-
Whitney U test).

Constitutive expression of IGF-I in hMSCs
Expression of the growth factors IGF-I, TGF-�1,

FGF-2, and PDGF-�1 was evaluated in all hMSCs because
of their potential roles in skeletal homeostasis. None of the

growth factors showed correlations with serum parame-
ters. Of those growth factors, IGF-I was the only growth
factor correlated with expression of a hydroxylase. There
was a significant correlation between constitutive expres-
sion levels of IGF-I and CYP27A1 (r � 0.71; P � 0.0003).
These findings prompted in vitro experiments for regula-
tion of and by IGF-I.

In vitro, dose-dependent effects of 25OHD3 and
1,25(OH)2D3 on CYP27B1/1�OHase and IGF-I gene
expression

hMSCs obtained from a vitamin D-deficient subject
(72-yr-old female) were cultured to confluence and
treated with or without 25OHD3 or 1,25(OH)2D3 for
24 h. The effect of 25OHD3 on CYP27B1 (Fig. 4A) and
IGF-I (Fig. 4B) gene expression depended on the con-
centration of 25OHD3. There was a dose-dependent
increase in CYP27B1 and IGF-I gene expression with treat-
ment from 0.001 nM (0.0004 ng/ml) to 10 nM (4 ng/ml) of
25OHD3.With more than 10 nM (4 ng/ml) 25OHD3, there
was a decline in magnitude of stimulation of CYP27B1.
There was a significant correlation between IGF-I and
CYP27B1 gene expression in all of those samples (P �
0.0063;n�11) (Fig.4C).Twenty-fourhours treatmentwith
1,25(OH)2D3 stimulated IGF-I and CYP24A1, down-regu-
lated CYP27B1, and had no detectable effect on CYP27A1
gene expression (Fig. 4D). In addition, 25OHD3 (10 nM)
up-regulated by 8-fold the expression of CYP24A1 com-
pared with vehicle control.

In vitro effects of IGF-I on
CYP27B1/1�OHase gene
expression and activity and
osteoblast differentiation in
hMSCs

The effects of IGF-I on CYP27B1 gene
expression in hMSCs were determined.
Treatment with IGF-I for 24 h stimulated
CYP27B1 expression in hMSCs in a
dose-dependent manner above 5 ng/ml
(Fig. 5A). MSCs from another subject
were used to measure in vitro biosynthe-
sis of 1,25(OH)sD3. Cells were incubated
for 24 h with or without 1 �M 25OHD3

exogenous substrate with or without 100
ng/ml IGF-I in serum-free �-MEM (1%
ITS�) with antioxidant [10 �M 1,2-diani-
linoethane (N,N�-diphenylethylene-dia-
mine)]. IGF-I significantly increased
1,25(OH)2D3 biosynthesis by 40%
(P � 0.05; n � 4, Mann-Whitney U test)
in the presence of exogenous substrate

FIG. 4. In vitro effects of 25OHD3 and 1,25(OH)2D3 on CYP27B1 and IGF-I gene expression
in hMSCs obtained from a vitamin D-deficient subject (72-yr-old female). After 24 h
treatment with 25OHD3, expression levels of CYP27B1 (A) and IGF-I (B) were modulated in
dose-dependent manner. C, There was a significant correlation between IGF-I and CYP27B1
gene expression in those samples (r � 0.76; P � 0.0063; n � 11). D, IGF-I, CYP27B1, and
CYP24A1 but not CYP27A1 were modulated by 1,25(OH)2D3 (0.01–10 nM).

FIG. 3. Effects of CYP inhibitor ketoconazole on CYP27B1/1�OHase
gene expression and activity in hMSCs from a 72-yr-old vitamin
D-deficient female subject. A, After 24 h treatment, CYP inhibitor
ketoconazole (10 �M) blocked the stimulation by 25OHD3 (10 nM) on
CYP27B1/1�OHase gene expression. B, Ketoconazole (10 �M)
significantly inhibited synthesis of 1,25(OH)2D3 in the presence of
25OHD3 (*, P � 0.05; n � 3). There was no detectable (ND)
1,25(OH)2D3 in cultures without 1 �M 25OHD3 exogenous substrate.
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25OHD3 (Fig. 5B). In addition, after 7 d treatment in
osteogenic medium, IGF-I (1 ng/ml) stimulated AlkP ac-
tivity in hMSCs by 73% (P � 0.05; n � 3, Mann-Whitney
U test) (Fig. 5C).

Discussion

The classical actions of vitamin D concern mineral and
skeletal homeostasis. Prolonged vitamin D deficiency has
several skeletal consequences in humans. It can result in
decreased bone formation and mineralization, known as
rickets in children and as osteomalacia in adults. It can also
lead to increased osteoclastic bone resorption that results
in osteopenia or osteoporosis. Although these major ef-
fects relate to the actions of 1,25(OH)2D3 on intestinal
calcium absorption, some information is available about
direct effects on osteoblasts (33). Human trabecular bone
cells responded in vitro to exogenous 1,25(OH)2D3 by
increasing expression of the bone matrix genes osteocalcin
and bone sialoprotein-1 (34). Whereas circulating
1,25(OH)2D originates in the kidney, local production has
been shown for normal osteoblasts (35, 36) and for human
osteosarcoma cell lines (37). The differentiation of hMSCs
to osteoblasts is enhanced by 1,25(OH)2D3 (25), but there
is no information about vitamin D metabolism in hMSCs.
Our finding that both 25OHD3 and 1,25(OH)2D3 stim-
ulated osteoblastogenesis, as measured by AlkP, in the

majority of preparations of hMSCs and, in some cases, to
equal extents raised the possibility of 1�-hydroxylation in
human marrow stromal cells.

Vitamin D is activated in the skin or absorbed from the
gastrointestinal tract and is metabolized to 25OHD in the
liver (providing steady-state levels of this metabolite) and
then to 1, 25(OH)2D in the kidney by the CYP27B1 en-
zyme. The renal 1�-hydroxylase is regulated by the circu-
lating concentrations of calcium, PTH, and phosphorus.
Emerging data now suggest that other cell types have the
ability to generate and inactivate vitamin D, although
there are no data for human marrow stromal cells. To gain
new information about vitamin D metabolism in human
marrow stromal cells, we used in vivo and in vitro ap-
proaches to test whether hMSCs participate in vitamin D
metabolism and whether expression of vitamin D hy-
droxylases in hMSCs in vitro are influenced by the vitamin
D status of the individual from whom the hMSCs were
obtained and to evaluate potential mechanisms of regu-
lation of vitamin D metabolic enzymes in hMSCs.

To test whether expression of vitamin D hydroxylases
in hMSCs in vitro are influenced by the vitamin D status
of the individual from whom the hMSCs were obtained,
we analyzed the clinical data of 27 enrolled subjects
with vitamin D-related gene expression in their hMSCs.
As reported in the literature (38 – 40), our clinical data
also demonstrated inverse correlations between serum
25OHD and percent body fat, BMI, and serum PTH. Al-
though it had previously been assumed that osteoarthritis
may be associated with high bone density, and in fact,
many of the subjects in this study did have high T-scores
and high BMIs, low T-scores and osteoporosis are now
recognized to be common in patients with osteoarthritis,
especially in those with low BMI or advanced age (41–44).

The expression of 25-hydroxyvitamin D-1�-hydroxylase
(CYP27B1)was lower inhMSCs fromsubjectswithelevated
serum 1,25(OH)2D; this may signify feedback repression. The
positive correlationbetweenserum25OHD (7–20 ng/ml) and
CYP27B1 gene expression may signify feed-forward induc-
tion. Samples from subjects with the highest levels of serum
25OHD tended to have the lowest expression of CYP27A1;
this suggests feedback repression.

Human primary osteoblasts and human osteoblastic
cell lines possess the molecular machinery to both respond
to and metabolize 25OHD3 (37). This study shows that
osteoblast differentiation in hMSCs was stimulated by
both 1,25(OH)2D3 and 25OHD3 in the majority of sam-
ples; this observation suggested that 25OHD directly acts
on these osteoblast precursor cells or can be activated to
1,25(OH)2D3 in vitro. It will be valuable to determine
whether clinical properties of individual subjects influence
the effects of 25OHD3 on in vitro osteoblastogenesis.

FIG. 5. Effects of IGF-I on CYP27B1/1�OHase gene expression and
1�-hydroxylase activity and AlkP activity in hMSCs. A, After 24 h
treatment, IGF-I (1–100 ng/ml) dose-dependently stimulated CYP27B1/
1�OHase gene expression in hMSCs obtained from a 72-yr-old female
subject (72F). B, IGF-I (100 ng/ml) significantly stimulated
1�-hydroxylase activity, shown as 1,25(OH)2D3 biosynthesis in hMSCs
obtained from a 60-yr-old male subject (*, P � 0.05; n � 4). C,
Osteoblast differentiation of hMSCs was assessed with AlkP activity
assays in a 12-well plate after 7 d culture with or without IGF-I
(1 ng/ml) in osteogenic medium (*, P � 0.05; n � 3).
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Among the CYP isoforms that have been shown to hy-
droxylate vitamin D, CYP27B1/25OHD-1�-hydroxylase
hydroxylates the principal circulating vitamin metabolite,
25OHD3, into the active hormonal form, 1,25(OH)2D3

(45,46).To testwhetherhMSCsmetabolize25OHD3 into
1,25(OH)2D3, we analyzed gene expression and activity
of 25OHD 1�-hydroxylase (CYP27B1) in hMSCs. The in
vitro data show that CYP27B1 was expressed in hMSCs
and was up-regulated by exogenous 25OHD3. More-
over, the 1,25(OH)2D assay showed that hMSCs have
the capacity to convert 25OHD into 1,25(OH)2D. Ke-
toconazole, a recognized CYP inhibitor (47), inhibited
both gene expression of CYP27B1 and biosynthesis of
1,25(OH)2D in hMSCs. The up-regulation of CYP27B1
by 25OHD3 and down-regulation by 1,25(OH)2D3 show
a feed-forward amplification mechanism and feedback re-
pression, respectively, at the level of gene expression. In-
creased substrate, 25OHD, and increased 1�-hydroxy-
lase, CYP27B1, would result in increased synthesis of
1,25(OH)2D, which in turn, would down-regulate the en-
zyme, as suggested by the lower levels of CYP27B1 with
the highest levels of added 25OHD3. It is notable that
the range of 25OHD correlated with up-regulation of
CYP27B1 in vitro is similar to the in vivo range for cor-
relation between serum 25OHD and constitutive expres-
sion of CYP27B1 in hMSCs. Further evidence of regulation
ofvitaminDmetabolism inmarrowstroma is that thehigher
levels of added 25OHD3 or 1,25(OH)2D3 up-regulated 24-
hydroxylase (CYP24A1), which initiates inactivation of
the metabolites and prevents risk of hypercalcemia. Reg-
ulation of synthesis and inactivation of 1,25(OH)2D3

in hMSCs is similar to that described in skin and bone
cells (17, 47).

Skeletal IGF-I may play multiple roles in skeletal ho-
meostasis. First, both 25OHD3 and 1,25(OH)2D3 stimu-
lated IGF-I gene expression in hMSCs. In a number of
other experimental systems, 1,25(OH)2D3 stimulates
IGF-I in osteoblasts and preosteoblasts, and thus IGF-I
may mediate osteoblastogenic actions of 1,25(OH)2D3

(48–50). Much of the information about vitamin D’s ef-
fects on bone concern in vitro actions of 1,25(OH)2D3 to
decrease proliferation and increase expression of vitamin
D response genes such as osteocalcin and bone sialopro-
tein (36).

Second, our data show that exogenous IGF-I regulated
synthesis of 1,25(OH)2D3 by hMSCs. IGF-I stimulated
CPY27B1/1�OHase gene expression and synthesis of
1,25(OH)2D3, evidence that IGF-I may be involved in vi-
tamin D metabolism in hMSCs. Other in vivo and in vitro
studies have suggested that IGF-I regulates the renal pro-
duction of 1,25(OH)2D3 (10–14). Finally, IGF-I stimu-
lated osteoblast differentiation of hMSCs in osteogenic

medium. Although it has been suggested that 1,25(OH)2D
effects on osteoblast (49) and chondrocyte (51) differen-
tiation may be mediated through the IGF-I, studies have
shown confounding effects of duration of treatment (52),
influence of dexamethasone (53), and stage of develop-
ment (50). Clearly, other components of the skeletal IGF
system would also be involved (50). For example, in a pilot
study of marrow samples, we reported that IGF-I, its bind-
ing proteins, and IGF-binding protein-3 protease were se-
creted by human marrow stromal cells and that there was
an age-related increase in constitutive secretion of IGF-
binding protein-3 with a notable exception for marrow
from a woman receiving estrogen replacement therapy at
the time of surgery (54). More detailed analysis of the
relationship between clinical parameters and marrow reg-
ulation of the IGF system would advance understanding of
the physiological roles of factors in the bone microenvi-
ronment. We propose that circulating 25OHD, by virtue of
its local conversion to 1,25(OH)2D catalyzed by CYP27B1
in hMSCs, amplifies vitamin D signaling through IGF-I up-
regulation, which in turn induces CYP27B1 in a feed-for-
ward mechanism to potentiate osteoblast differentiation ini-
tiated by IGF-I.

In summary, to our knowledge, this is the first evidence
of enzymes involved in vitamin D metabolism being
present in and regulated in hMSCs, cells shown to differ-
entiate to osteoblasts in response to 1,25(OH)2D (25). In
the studies using marrow obtained from subjects for
whom we obtained clinical data, there were correlations
between circulating serum 25OHD, 1,25(OH)2D, and
PTH levels with the expression of vitamin D metabolic
enzymes in their hMSCs. The in vitro data show regulation
of the hydroxylases in marrow stromal cells by classic
substrate induction and feedback suppression at the level
of gene expression. Moreover, IGF-I appears to play an
important amplification role in regulation of vitamin D met-
abolic enzymes and osteoblast differentiation in hMSCs.
There is great interest in the significance of extrarenal hy-
droxylases and synthesis of 1,25(OH)2D3 (55). This study
provides new information about local production of
1,25(OH)2D3 and expression of VDR and vitamin D hy-
droxylases in human bone marrow and suggests how
paracrine/autocrine networks in the bone microenviron-
ment may be regulated systemically and locally.
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