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Epidemiological and clinical data show that rapid weight gain early in life is strongly associated
with several components of the metabolic syndrome. Strikingly, abnormal growth rates in early life
can additionally influence diabetes risk in subsequent generations. Here we aim to study whether
neonatal overgrowth induces diabetes in offspring and grand-offspring of affected individuals
using a mouse model of neonatal overfeeding. We induced neonatal overgrowth (ON-F0) by
culling offspring to four pups per dam during lactation. By age 4 months, ON-F0 mice developed
many features of the metabolic syndrome, including obesity, insulin resistance, and glucose in-
tolerance. We then studied whether male offspring (ON-F1) and grand-offspring (ON-F2) of ON-F0
male mice, which were not overfed during lactation, developed features of the metabolic syn-
drome with aging. ON-F1 mice developed fed and fasting hyperinsulimemia, hypertryglyceri-
demia, insulin resistance, and glucose intolerance, but not obesity, by age 4 months. In contrast,
ON-F2 male mice showed a more moderate phenotype and only developed fasting hyperglycemia
and glucose intolerance by age 4 months. Impaired glucose tolerance in ON-F1 and ON-F2 mice
appeared to be accounted for primarily by peripheral insulin resistance, because beta-cell function
remained normal or even increased in these cohorts. Nutritional challenges occurring during sen-
sitive periods of development may have adverse metabolic consequences well beyond the lifespan
of affected individuals and manifest in subsequent generations. Transgenerational progression of
metabolic phenotypes through the male lineage supports a potential role for epigenetic mecha-
nisms in mediating these effects. (Endocrinology 151: 5617–5623, 2010)

Epidemiological and clinical data show that rapid
weight gain early in life is strongly associated with

several components of the metabolic syndrome, including
cardiovascular disease, type 2 diabetes, and obesity (1–5).
Overfeeding is the primary mediator of rapid neonatal
weight gain (1). Human data are further supported by
experimental models: neonatal overfeeding in rats pro-
motes rapid weight gain and programs many features of
the metabolic syndrome later in life (6, 7). Importantly, in
these experimental paradigms, animals are maintained on
a controlled standard chow diet from weaning onward,
demonstrating that early overfeeding/overgrowth per se
increases risk of late-onset chronic diseases.

In addition, recent epidemiological evidence suggests
that abnormal nutrition in early life can influence diabetes
risk in subsequent generations (8). It has been shown that
augmented food availability during the slow prepubertal
growth period in grandfathers increases the risk of car-
diovascular and diabetes-related deaths in their grandsons
(9–12). The authors suggest that there exists a sex-specific
male-lineage transgenerational inheritance of disease risk.
While mechanisms are unclear, and genetic contributions
from the Y chromosome cannot completely be ruled out,
epigenetic mechanisms might explain such transgenera-
tional effects. Nevertheless, better understanding of mech-
anisms linking neonatal growth with late-onset disease,
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and transgenerational effects, is curtailed, in part, by lack
of appropriate animal models.

We created a mouse model of neonatal overfeeding and
accelerated early growth rate (ON-F0) that develops in-
sulin resistance, glucose intolerance, and diabetes by age 6
months. The aim of this work was to explore whether the
risk of obesity, insulin resistance, and other features of the
metabolic syndrome is carried to their offspring and
grand-offspring via the paternal lineage. We show, for the
first time, that male offspring and grand-offspring of
ON-F0 male mice also develop insulin resistance and glu-
cose intolerance with aging. Transgenerational progres-
sion of metabolic phenotypes through the paternal lineage
supports a potential role for epigenetic mechanisms in me-
diating these effects.

Materials and Methods

Animal care and experimental design
Protocols were approved by the Universitat de Barcelona An-

imal Care and Use Committee. ICR mouse strain (ICR-CD1,
Harlan Laboratories, Italy) was chosen for this study based on its
fast somatic growth, especially during the neonatal period. Be-
sides, ICR mice have been previously shown to be a valid model
to understand the association between neonatal growth and
adult metabolism (5, 17, 18). Eight-week-old virgin females were
mated with not sibling males. Upon confirmation of pregnancy,
females were housed individually with ad lib access to standard
chow (2014 Tekland Global, Harlan Iberica, Barcelona, Spain).
After delivery, litter size was adjusted to eight pups (control
group, C) or four pups per dam (overnutrition group, ON). Both
C and ON offspring are designated as the parental generation, F0
(Fig. 2A). F0 pups were nursed freely and weaned at 3 weeks onto
standard chow, providedad libitum. At weaning, C and ON mice
were housed in groups of six mice per cage. C and ON males from
the F0 generation were mated at age 3 months with external
control virgin females, provided by the vendor (Harlan), to gen-
erate the first generation-offspring, F1 (Fig. 2A). All females had
the same average weight and age (8–10 wk) to avoid potential
metabolic biases, due to maternal effects, in the offspring (Sup-
plemental Fig. 1 published on The Endocrine Society’s Journals
Online web site at http://endo.endojournals.org). Likewise, male
breeders for each crossing were randomly selected to guarantee
an unbiased representation for each experimental group (Sup-
plemental Fig. 1). During the mating process we kept one male
with one single female. After confirmation of pregnancy by vag-
inal plug, the male was removed from the cage and the female was
maintained individually throughout gestation. At birth, all litters
are adjusted to eight pups per dam. Thus, contrary to the parental
generation, ON-F1 pups are not neonatally overfed compared
with their matched controls. We next repeated the breeding
protocol, by using C-F1 and ON-F1 males, to obtain the sec-
ond-generation offspring, F2 (Fig. 2A). Likewise, all litters are
equalized to 8 pups per dam to match normal nutrition during
the neonatal period. At weaning all mice have free access to
standard chow.

In this study, we focus on the metabolic analysis of males only,
because paternally-induced transgenerational effects should be

mediated, primarily, by epigenetic mechanisms. In contrast, ma-
ternally-induced transgenerational effects might be mediated by
a complex interplay between metabolic, mitochondrial and epi-
genetic modifications.

Neonatal food intake was determined in 4-d-old neonates as
described (13). Briefly, at 0900 the whole litter was isolated from
the mother, and neonates were fasted for three hours. To avoid
hypothermia, neonates were maintained on a thermal electric
blanket during this period. After the 3-hour fasting, mice were
weighed accurately on a high precision scale and reintroduced
with the mother for 1 h. After the 1-h refeeding period, neonates
wereweighedagain.Differences inbodyweight areagoodestimate
of food intake. Adult food intake was recorded from 4-month-old
individual mice for five consecutive days. Food was weighed every
24 h, and the weight difference is a measure of daily food intake.
Cumulative food intake is presented as the progressive accumula-
tion of food consumed over the course of 5 d.

Epididymal fat mass assessment
Fat mass was determined in 5-month-old mice. Epididymal

fat depots were dissected and fat mass calculated as a percentage
of wet tissue per whole body weight.

In vivo metabolic testing
Intraperitoneal glucose (2 g/kg weight) tolerance tests

(ipGTT) were performed in unrestrained conscious mice after a
12-h fast. Insulin release was assessed during the ipGTT as fol-
lows: �Insulin30-0 min/ �Glucose30-0 min. Insulin sensitivity was
determined by homeostatic model assessment–insulin resistance
(HOMA-IR), as described (14, 15). HOMA is calculated by us-
ing both fasting glucose and insulin as follows: HOMA-IR �
Glucose � Insulin/405, where glucose is given in mg/dl and in-
sulin is given in �U/ml.

Serum analysis
Insulin was measured by ELISA (Millipore, Spain). Blood

glucose was measured with a Glucose Meter Elite (Menarini,
Barcelona, Spain). Triglycerides, glycerol, and nonesterified
fatty acids (NEFA) were measured using colorimetric methods
on 2-�l serum samples (BioVision, Madrid, Spain).

Statistical analysis
Results are expressed as mean � SEM. Statistical analysis was

performed using a two-tailed t test or a one-way ANOVA as
indicated (IBM SPSS Statistics 19, Madrid, Spain). A P value
�0.05 was considered significant.

Results

Neonatal accelerated growth programs metabolic
syndrome in the adult

We show that neonatal overfeeding in ON-F0 male
mice (Fig. 1A) led to accelerated postnatal weight gain
during the first weeks of life (Fig. 1B). By age 2 weeks,
ON-F0 mice were already heavier than controls (Fig. 1B);
differences in body weight persisted until adulthood (P �
0.0002) (Fig. 1C), despite normalization of food intake by
age 4 months (Fig. 1D). Likewise, ON-F0 mice showed
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increased epididymal fat mass (Table 1). As expected,
4-month-old ON-F0 mice developed hypertriglyceride-
mia, fed and fasting hyperinsulinemia (Table 1), glucose
intolerance (P � 0.0001) (Fig. 1E), and insulin resistance
(Fig. 1F). Because impaired glucose tolerance may result
from insulin resistance and/or impaired insulin secretion,
we further determined in vivo �-cell function and demon-
strated that glucose-stimulated insulin release during the

glucose tolerance was preserved in ON-F0 mice compared
with controls (Fig. 1G).

Transgenerational effects of neonatal overfeeding
Next, we explored whether ON-F0 associated pheno-

types are inherited by subsequent generations through the
paternal lineage (Fig. 2A). Birth weight, sex distribution,
litter size, and length of gestation of ON-F1 and ON-F2

FIG. 1. Physiological characterization of ON-F0 male mice. A, Neonatal food intake on 4-d-old mice. n � 6 mice per group. B, Early postnatal
growth from birth to age 4 weeks. n � 6 mice per group. C, Body weight from birth until age 6 months. n � 20 mice per group. D, Cumulative
food intake in 4-month-old male mice over the course of 1 week. n � 6 mice per group. E, Glucose tolerance test (2 g glucose/kg body weight)
was performed in unrestrained 4-month-old male mice after an overnight fast. n � 14 mice per group. F, HOMA-IR. Insulin sensitivity was assessed
as follows: HOMA-IR � [fasting insulin (mU/liter) � fasting glucose (mg/dl)]/405. n � 14 mice per group. G, Insulin released during the glucose
tolerance test. Insulin release was measured as the ratio between insulin excursion from 0 to 30 min/ glucose excursion from 0 to 30 min.
n � 8 mice per group. Results in all panels are expressed as mean � SEM. *, P � 0.05 vs. Control; ***, P � 0.001 vs. Control (Student’s t
test). Statistical analysis between groups in panels C and E was evaluated by one-way ANOVA and included in the graph. P � 0.05 was
considered significant.

TABLE 1. Growth data, glucose homeostasis, and hormonal data in 4-month-old male mice from F0, F1 and F2
generation offspring

F0 F1 F2

C ON C ON C ON

Epididymal fat mass
(% body weight)

1.39 � 0.18 (30) 2.67 � 0.23** (22) 0.76 � 0.09 (28) 0.52 � 0.67* (29) 1.48 � 0.22 (21) 1.69 � 0.43 (12)

Glucose, random
fed (mg/dl)

117.00 � 2.87 (38) 158.90 � 16.06** (24) 131.30 � 4.31 (26) 115.90 � 4.10 (26) 122.90 � 4.59 (23) 129.10 � 3.43 (13)

Glucose, fasted (mg/dl) 55.40 � 2.31 (21) 56.40 � 3.48 (22) 53.70 � 2.10 (21) 86.30 � 7.28* (11) 52.70 � 2.32 (16) 64.90 � 5.96* (13)
Insulin, random fed

(ng/ml)
1.42 � 0.30 (28) 6.06 � 1.40*** (23) 1.57 � 0.30 (14) 3.10 � 0.77* (15) 0.87 � 0.13 (23) 1.27 � 0.28 (12)

Insulin, fasted (ng/ml) 0.17 � 0.01 (13) 0.34 � 0.12* (13) 0.27 � 0.02 (11) 0.45 � 0.06** (6) 0.14 � 0.01 (10) 0.28 � 0.08 (10)
TAG (nM) 4.80 � 1.03 (7) 16.30 � 2.34*** (8) 4.97 � 0.79 (8) 9.03 � 0.79* (8) 4.58 � 0.65 (11) 3.39 � 0.19 (11)
NEFA (nM) 13.46 � 0.29 (8) 14.50 � 1.26 (8) 14.02 � 1.73 (8) 15.77 � 1.70 (8) 13.45 � 0.37 (12) 13.47 � 0.46 (5)

Results are expressed as mean � SEM.
*, P � 0.05 vs. Control; **, P � 0.01 vs. Control; ***, P � 0.001 vs. Control (Student’s t test). n value for each group is specified in the brackets.
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mice were similar to controls (not shown). Likewise, neo-
natal food intake (not shown) and early postnatal growth
of ON-F1 and ON-F2 male mice was normal when com-
pared with control mice (Fig. 2B). Also, body weight of
ON-F1 and ON-F2 mice was similar to controls until age
6 months (Fig. 2C).

Strikingly, some metabolic abnormalities in ON-F0
mice were inherited by subsequent generations. Indeed,
4-month-old ON-F1 male mice developed moderate fast-
ing hyperglycemia, hyperinsulinemia, and hypertriglycer-
idemia (Table 1). Likewise, ON-F1 mice showed insulin
resistance and mild impaired glucose tolerance (P � 0.03)
when compared with controls (Fig. 2, D and E). Insulin
release was actually increased in ON-F1 mice when com-
pared with controls (Fig. 2F). These data suggest that, as
in ON-F0 mice, glucose intolerance arises predominantly
as a consequence of insulin resistance in ON-F1 mice.
NEFA remained normal when compared with control
mice (Table 1). Finally, and contrary to what happened to
ON-F0 mice, fat mass was significantly reduced in ON-F1
mice (Table 1). Thus, we show that many, but not all,
metabolic disturbances occurring in ON-F0 mice are in-
herited by the F1.

We next asked whether ON-F0 associated phenotypes
are still present in the F2. At 4 months of age, ON-F2 male
mice still exhibited mild fasting hyperglycemia (Table 1)
and impaired glucose tolerance (P � 0.02) (Fig. 2D). Sim-
ilarly, ON-F2 male mice showed a nonstatistical trend for
increased insulin resistance (Fig. 2E). By contrast, ON-F2
male mice exhibited normal serum triglycerides, NEFA,
and insulin (Table 1). Likewise, fat mass and �-cell func-
tion remained normal compared with controls (Table 1,
Fig. 2F). Thus, we show that only a small fraction of met-
abolic abnormalities occurring in ON-F0 and ON-F1 mice
are transmitted to the F2.

Discussion

We have developed a mouse model of neonatal overnu-
trition and accelerated growth rate that develops glucose
intolerance, obesity, and insulin resistance with aging. In
agreement, human studies show that accelerated growth
rate during infancy may lead to childhood obesity and
increases risk of diabetes in adulthood (4). Moreover, neo-
natal overfeeding in rats also leads to rapid weight gain
and development of obesity and diabetes in the adult (6, 7,
16). Hence, both human and animal data clearly suggest
that growth trajectories during early life may influence
adult metabolism and might be a good predictor for later
risk of chronic disease (4, 5). In accord, we had previously
described that postnatal slow growth rate, due to reduced
caloric intake, results into the opposite phenotype: adult

mice that exhibited slow neonatal growth rate were lean,
insulin sensitive, hypoinsulinemic, and have some im-
provement on glucose tolerance compared with control
mice (5, 17, 18). In conclusion, these data suggest that
control of neonatal feeding and, hence, neonatal growth
are critical mediators of adult health and disease.

Recent data suggest that neonatal and/or childhood
overfeeding may additionally have consequences for sub-
sequent generations: augmented food availability during
the prepubertal growth period in men predisposes to di-
abetes and diabetes-related death in their grandsons (10).
In agreement, here we demonstrate that neonatal over-
feeding predisposes to glucose intolerance and fasting hy-
perglycemia, not only in the exposed individuals but also
their offspring and their grand-offspring. Strikingly, we
show that these neonatally-induced diabetes-related phe-
notypes can be inherited through the male lineage. While
it is well known that the mother’s metabolism strongly
influences her offspring’s metabolism (maternal effects)
(8, 19), literature describing paternal effects is scant, with
only a few examples in animal models (20–22) and hu-
mans (10). These data, including ours, are of clinical rel-
evance, because they suggest that paternal history may
have a more profound influence on offspring metabolism
than previously thought.

Mechanistically, inheritance of environmentally-in-
duced phenotypes through the paternal lineage is likely
due to epigenetic modifications residing in cells from the
germ line (23, 24). In this regard, it has been shown that
nutrition and other environmental cues early in life may
modify the epigenome, including DNA methylation and
histone modifications, in both somatic and germ cells
(16, 23, 25–27). For example, and relevant to our
model, it has been recently described that neonatal over-
feeding may change patterns of DNA methylation in the
proximal promoter of the anorexigenic hypothalamic
gene POMC (16). This results in lack of POMC up-
regulation in response to leptin and insulin, which
might explain, in part, obesity-associated hyperphagia
in this rat model.

Thus, taking together all previous observations, here
we propose that in our model early overfeeding might
cause permanent alterations in both somatic and germ
cells, in part through epigenetic modifications. Adapta-
tions in somatic cells may explain diabetic phenotypes in
F0 mice, whereas modifications in germ cells might pro-
vide the basis for the transgenerational effects. Alter-
natively, it might be also possible that paternal obesity
per se (or obesity-associated metabolism) induces, in-
directly, modifications in sperm that are, in turn, trans-
mitted to the following generation. As a matter of fact,
ON-F0 male breeders are actually heavier than controls
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(Supplemental Fig. 1). While we cannot distinguish be-
tween these two potential options, it will be interesting
to design an experiment where neonatal overnutrition
does not result in adult obesity and ask whether lean
ON-F0 mice also transmit metabolic phenotypes to the
following generation.

Physiologically, impaired glucose tolerance in ON-F0
mice might be primarily attributed to peripheral insulin
resistance rather than impaired �-cell function. Indeed,
insulin release during an ip glucose tolerance is normal in
ON-F0 mice, thus indicating that �-cells are still able to
partially compensate for the developing insulin resistance.
Likewise, impaired glucose tolerance in ON-F1 and
ON-F2 mice might be accounted for primarily by pe-
ripheral insulin resistance. In agreement, fasting hyper-
glycemia in ON-F1 and ON-F2 male mice might suggest

uncontrolled hepatic gluconeogenesis, probably due to
liver insulin resistance. This possibility will be further
investigated.

Of note, despite these similar physiological trends
across all three generations, inheritance of phenotypes is
heterogeneous and does not equally involve all alterations
described in ON-F0 mice: Thus, ON-F1 male mice de-
velop insulin resistance, hypertriglyceridemia, elevated
fasting glucose, impaired glucose tolerance, and a par-
adoxical reduction of fat mass, as assessed by epididy-
mal fat content. On the other hand, ON-F2 mice have
a milder phenotype than ON-F1 mice, characterized by
moderate fasting hyperglycemia and impaired glucose
tolerance only. Thus, we report that metabolic dysregu-
lation is strongly reduced in second-generation off-
spring. Transgenerational weakening of phenotypes has

FIG. 2. Physiological characterization of ON-F1 and ON-F2 male mice. A, Experimental design, including the breeding scheme for first (F1) and
second-generation (F2) offspring. Circles designate females and squares designate males as indicated in the Materials and Methods section.
Metabolic analysis was performed in males only. B, Early postnatal growth from birth to age 4 weeks. 15 � 6 mice per group. C, Body weight
from birth until age 6 months. n � 20 mice per group. D, Glucose tolerance test (2 g glucose/kg body weight) was performed in unrestrained 4-
month-old male mice after an overnight fast. n � 14 mice per group. E, HOMA-IR. Insulin sensitivity was assessed by the homeostatic model
assessment as described in the Materials and Methods section. n � 14 mice per group. F, Insulin released during the glucose tolerance test. n � 8
mice per group. Results are expressed as mean � SEM. *, P � 0.05 vs. Control (Student’s t test). In panels C and D, statistical analysis between
groups was evaluated by ANOVA and results included in the graphs. P � 0.05 was considered significant.
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been previously reported in other animal models (22,
28, 29). As we have already discussed, progressive
weakening of phenotypes indicates that these effects are
likely mediated by epigenetic modifications rather than
by changes in DNA sequence, that stay stable across
generations (8).

Conclusion
Here we show, for the first time, that male offspring and

grand-offspring from neonatally over nourished male
mice develop glucose intolerance by age 4–6 months.
Transgenerational inheritance of metabolic dysfunction
through the paternal lineage suggests that phenotypes are
transmitted through the gametes, likely due to nutrition-
ally-induced epigenetic modifications. Importantly, met-
abolic phenotypes fade away as generations fall apart
from the original environmental cue, thus reinforcing the
idea that transgenerational phenotypic progression occurs
through nongenomic mechanisms. In sum, nutritional
challenges occurring during sensitive periods of develop-
ment, such as the early neonatal period, may have adverse
metabolic consequences well beyond the lifespan of af-
fected individuals and manifest in subsequent generations.
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