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Pancreatic islet �-cell glucagon secretion is critically dependent on pancreatic islet �-cell insulin
secretion. Normally, a decrease in the plasma glucose concentration causes a decrease in �-cell
insulin secretion that signals an increase in �-cell glucagon secretion during hypoglycemia. In
contrast, an increase in the plasma glucose concentration, among other stimuli, causes an increase
in �-cell insulin secretion that signals a decrease, or at least no change, in �-cell glucagon secretion
after a meal. In absolute endogenous insulin deficiency (i.e. in type 1 diabetes and in advanced type
2 diabetes), however, �-cell failure results in no decrease in �-cell insulin secretion and thus no
increase in �-cell glucagon secretion during hypoglycemia and no increase in �-cell insulin secretion
and thus an increase in �-cell glucagon secretion after a meal. In type 1 diabetes and advanced type
2 diabetes, the absence of an increment in glucagon secretion, in the setting of an absent decre-
ment in insulin secretion and an attenuated increment in sympathoadrenal activity, in response to
falling plasma glucose concentrations plays a key role in the pathogenesis of iatrogenic hypogly-
cemia. In addition, there is increasing evidence that, in the aggregate, suggests that relative
hyperglucagonemia, in the setting of deficient insulin secretion, plays a role in the pathogenesis
of hyperglycemia in diabetes. If so, abnormal glucagon secretion is involved in the pathogenesis
of both hypoglycemia and hyperglycemia in diabetes. (Endocrinology 153: 1039–1048, 2012)

Discovered as a contaminant of pancreatic insulin ex-
tracts as early as in 1921, glucagon is a 29-amino-

acid, 3485-Da peptide cleaved by prohormone convertase
2 from the proglucagon molecule in pancreatic islet
�-cells. From there the hormone is secreted into the hepatic
portal vein from which it acts on G protein-coupled re-
ceptors in the liver to stimulate glucose production (1–3).
By itself, glucagon largely stimulates hepatic glycogenol-
ysis. However, in concert with other glucose counterregu-
latory (plasma glucose raising) hormones, such as epi-
nephrine, that mobilize gluconeogenic precursors (lactate,
amino acids, and glycerol) to the liver, glucagon also stim-
ulates hepatic gluconeogenesis (2). Glucagon stimulates
hepatic fatty acid oxidation and ketogenesis (4). Although
there is evidence that the hormone regulates hepatic lipo-
protein particle metabolism (5), stimulation of lipolysis
does not appear to be part of the physiological action
profile of glucagon (6–8).

Renewed interest in the biology of glucagon has ranged
from studies of the fundamental molecular and cellular
aspects of glucagon secretion and action to those extend-
ing the concepts of the physiology and pathophysiology of
the hormone from experimental animals to humans. The
latter is the focus of this brief review. At this point, two
conclusions seem appropriate. First, in type 1 diabetes and
advanced type 2 diabetes, the absence of an increment in
glucagon secretion, in the setting of an absent decrement
in insulin secretion and an attenuated increment in sym-
pathoadrenal activity, in response to falling plasma glu-
cose concentrations plays a key role in the pathogenesis of
iatrogenic (therapeutic hyperinsulinemia induced) hypo-
glycemia (9–15). Second, there is increasing evidence
that, in the aggregate, suggests that relative hyperglu-
cagonemia, in the setting of deficient insulin secretion,
plays a role in the pathogenesis of hyperglycemia in
diabetes (16 –24).
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Regulation of Glucagon Secretion by
Insulin

Regulatory redundancy and hierarchy are principles of
critical physiology. For example, multiple mechanisms are
involved in the normal defense against falling plasma glu-
cose concentrations, but some are more important than
others (12). There are also redundant mechanisms in-
volved in the regulation of glucagon secretion (25–34).
The view that restraint of glucagon secretion by insulin
stands high in the hierarchy of those mechanisms is de-
veloped in the paragraphs that follow.

The regulation of �-cell glucagon secretion by nutri-
ents, hormones, neurotransmitters, and drugs is complex
(25–34). It involves direct signaling of �-cells (25) and
indirect signaling of �-cells by �-cell (26–29) and �-cell
(30) secretory products, the autonomic nervous system
(31, 32), and gut incretins (33) as well as an array of au-
tocrine signals (34). Perfusion of the brain with glucose in
dogs (35) and ganglionic blockade with trimethaphan in
humans (36) have been reported to decrease, but not elim-
inate, the plasma glucagon response to marked hypogly-
cemia. However, the plasma glucagon response to hypo-
glycemia is normal in humans with no sympathoadrenal
response because of cervical spinal cord transection (37)
or preganglionic sympathectomy (38). Furthermore, in re-
sponse to low glucose concentrations, quantitatively nor-
mal glucagon secretion occurs from the denervated (trans-
planted) human pancreas (39) and the denervated dog
pancreas (40), and qualitatively normal glucagon secre-
tion occurs from the perfused rodent pancreas (41) and
perifused rodent and human islets (25). Therefore, islet
innervation and gut factors do not appear to be critical to
the glucagon secretory response to hypoglycemia, and loss
of these extrapancreatic factors cannot explain the com-
plete loss of the glucagon secretory response to hypogly-
cemia that occurs in insulin-deficient diabetes (13–15).
Among the intraislet mechanisms, a decrease in �-cell so-
matostatin secretion could signal an increase in glucagon
secretion during hypoglycemia (30). Indeed, administra-
tion of a somatostatin receptor antagonist has been re-
ported to increase the glucagon response to hypoglycemia
in streptozotocin diabetic rats (42). Nonetheless, selective
destruction of �-cell insulin secretion with streptozotocin
(43) results in both diabetes and loss of the �-cell glucagon
response to hypoglycemia in rats (44). Furthermore, al-
though glucose suppressed glucagon release and stimu-
lated somatostatin release from perifused human islets,
inclusion of a somatostatin receptor antagonist did not
prevent glucose-induced suppression of glucagon release
(25). Therefore, the focus here is on reciprocal regulation
of �-cell glucagon secretion by �-cell insulin.

There are several debated issues that are of considerable
interest but are not discussed here because they are not
critical to the interpretation of the data that follow. 1) The
microcirculation does (45) or does not (46) flow from
�-cells to �-cells to �-cells in human islets. That is relevant
to the extent to which effects of �-cell insulin secretion on
�-cell glucagon secretion are via the intraislet or the sys-
temic circulation. 2) Glucose acts directly on �-cells to
suppress (25) or stimulate (29) glucagon secretion. 3) The
�-cell secretory product that inhibits �-cell glucagon se-
cretion is insulin (47) or zinc (44). That insulin is at least
one such secretory product is discussed.

There is considerable evidence that insulin is a �-cell
secretory product that reciprocally regulates �-cell gluca-
gon secretion in experimental animals (48). First, admin-
istration of insulin suppresses plasma glucagon concen-
trations in several species (49). Second, perfusion of the rat
(27) and the human (50) pancreas (and incubation of rat
islets) (51) with an antibody to insulin increases glucagon
release. Third, small interfering RNA-mediated knock-
down of insulin receptors prevents the effect of low glu-
cose concentrations to increase glucagon release from iso-
lated mouse islets (52), and blockade of insulin signaling
with the phosphatidylinositol 3-kinase inhibitor wort-
mannin prevents the effect of high glucose concentrations
to decrease glucagon release from isolated islets (53).
Fourth, �-cell-specific insulin receptor knockout mice dis-
play hyperglucagonemia, glucose intolerance with hyper-
glycemia in the fed state, and an enhanced glucagon re-
sponse to hypoglycemia (54).

The evidence that indirect, reciprocal �-cell insulin sig-
naling of �-cells normally predominates over direct �-cell
signaling in the regulation of glucagon secretion has now
been extended to humans (47, 55–59). In humans, 1) in-
traislet hyperinsulinemia prevents the increment in circu-
lating glucagon in response to hypoglycemia (55); 2) re-
duction of the decrement in intraislet insulin reduces the
increment in circulating glucagon during hypoglycemia
(56, 57); 3) enhancement of the decrement in intraislet
insulin increases the increment in circulating glucagon
during hypoglycemia (58); 4) a mixed meal (or the sulfo-
nylurea glimepiride) suppresses plasma glucagon levels in
individuals with normal endogenous insulin secretion but
increases plasma glucagon levels in individuals who can-
not increase insulin secretion (i.e. those with type 1 dia-
betes) (59); and 5) an increase in systemic, and thus in-
traislet, zinc-free insulin suppresses glucagon secretion,
and a sharp decrease in systemic, and thus intraislet, zinc-
free insulin causes an increment in glucagon secretion dur-
ing hypoglycemia in people with type 1 diabetes who have
no glucagon response to hypoglycemia in the absence of a
decrease in circulating insulin or to a decrease in insulin in
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the absence of hypoglycemia (47). Thus, both an indirect
signal to �-cells, a decrease in �-cell insulin secretion, and
a direct signal to �-cells, a low plasma glucose concentra-
tion, are required for a positive glucagon secretory re-
sponse to hypoglycemia.

Based on these data, the physiological construct is as
follows (47): 1) �-cell insulin, perhaps among other �-cell
secretory products, tonically restrains �-cell glucagon se-
cretion during postabsorptive euglycemia; 2) a decrease in
�-cell insulin secretion, in concert with a low plasma glu-
cose concentration, signals an increase in �-cell glucagon
secretion during hypoglycemia; and 3) an increase in �-cell
insulin secretion negates direct �-cell stimulation and thus
results in no change in, or even suppression of, �-cell glu-
cagon secretion after a mixed meal. Clearly, insulin is a
�-cell secretory product that, in concert with glucose and
among other signals, reciprocally regulates �-cell gluca-
gon secretion in humans. The intimate relationship be-
tween �-cell insulin secretion and �-cell glucagon secre-
tion is illustrated in Fig. 1.

Relevance of Glucagon to Hypoglycemia
in Diabetes

Glucose is an obligate metabolic fuel for the brain under
physiological conditions (15). The brain cannot synthesize
glucose, and it cannot store more than a few minutes sup-
ply as glycogen. Thus, survival of the brain, and therefore
the individual, requires a virtually continuous supply of
glucose from the circulation to the brain. Blood-to-brain
glucose transport is a direct function of the arterial
plasma glucose concentration. Therefore, it is not surpris-
ing that mechanisms that normally very effectively prevent
or rapidly correct hypoglycemia have evolved (15). The
physiological defenses against falling plasma glucose con-
centrations in humans are 1) a decrease in �-cell insulin
secretion, 2) an increase in �-cell glucagon secretion, and
3) absent the latter, an increase in adrenomedullary epi-
nephrine secretion (9–12). [Epinephrine is not critical if
insulin and glucagon secretion are intact (12).] The be-
havioral defense is carbohydrate ingestion prompted by
symptoms, which are largely sympathoadrenal in origin
(12, 60), that cause the individual to recognize hypogly-
cemia (9–12).

Because of the effectiveness of these defenses, hypogly-
cemia is a distinctly uncommon clinical event except in
people with diabetes who use medications, such as a sul-
fonylurea, a glinide, or insulin, that raise circulating in-
sulin concentrations (regardlessof theplasmaglucose con-
centration) to lower their plasma glucose levels (15). In
that setting, hypoglycemia is common. Indeed, hypogly-
cemia is the limiting factor in the glycemic management of
diabetes (15). It causes recurrent morbidity in most people
with type 1 diabetes and many with advanced (absolute
endogenous insulin-deficient) type 2 diabetes and is some-
times fatal. It generally precludes maintenance of eugly-
cemia over a lifetime of diabetes and, thus, full realization
of the vascular benefits of glycemic control. It impairs
defenses against subsequent falling plasma glucose con-
centrations and, thus, causes a vicious cycle of recurrent
hypoglycemia.

Hypoglycemia in diabetes is fundamentally iatrogenic,
the result of relative or absolute therapeutic hyperinsulin-
emia that causes the plasma glucose concentration to de-
cline. However, that alone seldom results in hypoglyce-
mia. Rather, hypoglycemia is typically the result of the
interplay of therapeutic hyperinsulinemia and compro-
mised defenses against falling plasma glucose concentra-
tions (13–15). The compromised defenses include loss of
the decrease in insulin and loss of the increase in glucagon
as plasma glucose concentrations fall (13–15). [They also
include attenuated adrenomedullary and sympathetic
neural responses to falling plasma glucose concentrations

FIG. 1. Physiology (in nondiabetes) and pathophysiology (in absolute
endogenous insulin-deficient type 1 diabetes and advanced type 2
diabetes) of the intimate relationship between the inhibitory effect of
pancreatic �-cell insulin secretion on pancreatic islet �-cell glucagon
secretion in humans. Normally a decrease in plasma glucose causes a
decrease in �-cell insulin secretion that signals an increase in �-cell
glucagon secretion during hypoglycemia. An increase in plasma
glucose, among other nutrients, causes an increase in �-cell insulin
secretion that prevents an increase in �-cell glucagon secretion in
response to those nutrients after a mixed meal. On the other hand, in
the setting of �-cell failure in type 1 diabetes and advanced type 2
diabetes, a decrease in plasma glucose cannot cause a decrease in �-
cell insulin secretion, and the absence of that signal results in no
increase in pancreatic �-cell glucagon secretion during hypoglycemia.
Conversely, in the setting of �-cell failure, an increase in plasma
glucose, among other nutrients, cannot cause an increase in �-cell
insulin secretion, and the absence of that restraining signal results in
an increase in pancreatic �-cell glucagon secretion after a mixed meal.
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resulting in the clinical syndromes of defective glucose
counterregulation and hypoglycemia unawareness, re-
spectively, collectively termed hypoglycemia-associated
autonomic failure in diabetes (15), but defective glucose
counterregulation, with its markedly increased risk for
severe hypoglycemia, develops only in the setting of absent
insulin and glucagon responses (13–15).]

The mechanism of the loss of the decrease in insulin
secretion as plasma glucose concentrations fall in response
to therapeutic hyperinsulinemia in type 1 diabetes and
advanced type 2 diabetes is straightforward. It is �-cell
failure (13–15). Given the evidence that �-cell insulin re-
ciprocally regulates �-cell glucagon secretion not only in
experimental animals (27, 48–54) but also in humans (47,
48, 55–59), it follows that loss of the increase in glucagon
as plasma glucose concentrations fall in type 1 diabetes
and advanced type 2 diabetes is also plausibly attributable
to �-cell failure, specifically, the absence of a decrease in
insulin secretion to signal an increase in glucagon secretion
during hypoglycemia (13–15). That construct is sup-
ported by the findings that 1) an increase in glucagon se-
cretion can be triggered by a decrease in (exogenous) in-
sulin during hypoglycemia in people with type 1 diabetes
(47), 2) the degree of loss of glucagon secretion is associ-
ated with the degree of loss of insulin secretion in diabetes
(61), and 3) the normal inverse relationship between
pulses of insulin and glucagon secretion, with insulin pos-
sibly driving glucagon, is lost in diabetes (62). Thus, the
pathophysiology of glucose counterregulation is the same
in type 1 and type 2 diabetes, although it develops at dif-
ferent rates (13–15). Loss of the decrement in insulin se-
cretion and loss of the increment in glucagon secretion as
plasma glucose concentrations fall develops early, and re-
current hypoglycemia becomes a major clinical problem
early, in type 1 diabetes. In contrast, absolute loss of in-
sulin secretion, and the resulting loss of the decrement in
insulin secretion and loss of the increment in glucagon
secretion as plasma glucose concentrations fall, develops
slowly, and recurrent hypoglycemia becomes a major clin-
ical problem later, in type 2 diabetes. This mechanism is
illustrated in Fig. 1.

As mentioned earlier, �-cell glucagon secretion is un-
changed or even suppressed after a mixed meal in nondi-
abetic individuals, a pattern attributable to negation of
direct �-cell stimulation by nutrients (e.g. amino acids) by
�-cell insulin secretion (59). In contrast, in the absence of
�-cell insulin secretion, in people with type 1 diabetes,
�-cell glucagon secretion increases after a mixed meal (59,
63, 64). Given that pattern, it is conceivable that progres-
sively reduced early insulin secretion might underlie the
progressive failure of postprandial suppression of gluca-
gon secretion as individuals pass from normal glucose

tolerance to impaired glucose tolerance to type 2 dia-
betes (65). However, an initial experiment failed to sup-
port that construct. Partial inhibition of insulin secre-
tion, with the KATP channel agonist (opener) diazoxide,
in nondiabetic individuals produced an increase in
plasma glucose concentrations but not hyperglucagone-
mia after a mixed meal (66).

In summary, the data support the conclusion that in
type 1 diabetes and advanced type 2 diabetes, the absence
of an increment in glucagon secretion, in the setting of an
absent decrement in insulin secretion and an attenuated
increment in sympathoadrenal activity, in response to fall-
ing plasma glucose concentrations plays a key role in the
pathogenesis of iatrogenic hypoglycemia (9–15). Further-
more, the data suggest that loss of the increment in glu-
cagon secretion, like the loss of the decrement in insulin
secretion, during hypoglycemia is the result of �-cell fail-
ure in type 1 diabetes and advanced type 2 diabetes (13–
15) (Fig. 1).

Glucagon Supports the Plasma Glucose
Concentration

There is considerable evidence that glucagon supports the
plasma glucose concentration in nondiabetic humans (67–
73). That includes studies of the effect of infusion of so-
matostatin (or of the somatostatin analog octreotide) to
suppress insulin and glucagon secretion and infusion of
somatostatin (or octreotide) with insulin replacement to
define the effect of isolated glucagon deficiency. Those
studies demonstrated substantial decrements in plasma
glucose concentrations (or glucose production rates) dur-
ing infusion of somatostatin with insulin (67–71). How-
ever, the finding that insulin infusion alone in doses
smaller than the putative replacement doses used in the
earlier somatostatin studies lowered plasma glucose con-
centrations to subphysiological levels (72), and of the fail-
ure of a replacement dose of glucagon to completely re-
verse the effect of octreotide plus an even lower dose of
insulin on plasma glucose concentrations (71), both in
nondiabetic humans, raised the possibility of excessive in-
sulin replacement in the earlier studies. Obviously, insulin
over-replacement would exaggerate the apparent effect of
glucagon lack on plasma glucose concentrations. How-
ever, that concern was obviated by a study based on the
premise that postabsorptive people with type 1 diabetes
receiving iv insulin in an individualized dose that main-
tains euglycemia over time are receiving biologically op-
timal insulin replacement. In such patients, suppression of
glucagon secretion with octreotide caused a progressive
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fall in plasma glucose concentrations that was prevented
by low-dose glucagon replacement (73).

Additional evidence that glucagon supports the plasma
glucose concentration, largely in experimental animals,
includes studies with neutralizing glucagon antibodies
(74), glucagon antagonists (75–79), and glucagon recep-
tor antisense oligonucleotides (80–82), those in glucagon
receptor-null (23, 83, 84) and �-cell-deleted (85) mice, and
those of the effect of leptin (86–89). Administration of a
neutralizing glucagon antibody has been shown to lower
plasma glucose concentrations in several species including
nondiabetic and diabetic rabbits (75). Glucagon antago-
nists have been reported to lower plasma glucose concen-
trations in ob/ob mice (76), reduce the blood glucose re-
sponse to glucagon administration in mice and rhesus
monkeys, and lower blood glucose concentrations in mice
fed a high-fat diet (77), block the effect of administered
glucagon to increase hepatic glucose production in dogs
(78), and lower fasting plasma glucose concentrations in
mice fed a high-fat diet (79). One glucagon antagonist was
shown to reduce the plasma glucose response to admin-
istered glucagon in humans (80). Administration of glu-
cagon receptor antisense oligonucleotides has been found
to reduce blood glucose concentrations in diabetic rodent
models (81, 82). Indeed, administration of a glucagon re-
ceptor antisense nucleotide to nondiabetic humans over 6
wk has been reported to blunt the glucagon-induced in-
crease in glucose production and plasma glucose (83); in-
terestingly, hypoglycemia did not occur in treated indi-
viduals. Glucagon receptor-null mice were found to have
lower fasting and fed plasma glucose concentrations (84,
85). Notably, in contrast to mice with intact glucagon
receptors, glucagon receptor-null mice did not develop
diabetes after streptozotocin administration that reduced
islet �-cell volumes and plasma insulin concentrations by
90% (23). In addition, leptin administration suppressed
glucagon gene expression in vitro (86) and plasma gluca-
gon and glucose concentrations in vivo in nonobese dia-
betic mice (87). However, compared with placebo, ad-
ministration of recombinant methionyl human leptin, in
doses that raised plasma leptin concentrations 3-fold and
150-fold, over 14 d to obese humans with newly diag-
nosed type 2 diabetes had no effect on insulin-mediated
suppression of glucose, glycerol, or palmitate rates of ap-
pearance and did not increase insulin-mediated stimula-
tion of glucose disposal (88) and metreleptin and admin-
istered over 16 wk did not reduce A1C levels substantially
in patients with type 2 diabetes (89). Those findings are
consistent with earlier reports that leptin administration
did not cause a greater reduction in plasma glucose con-
centrations than caloric restriction alone in obese subjects
(90, 91). Finally, a patient with a glucagon receptor mu-

tation and marked hyperglucagonemia, but not well doc-
umented hypoglycemia, has been reported (92, 93).

Given the convincing evidence that glucagon supports
the plasma glucose concentration in humans (67–73, 79,
82, 92, 93) as well as in experimental animals (23, 74–78,
80, 81, 83–86), just discussed, what is the evidence that
glucagon, in the setting of deficient insulin secretion, plays
a distinct role in the pathogenesis of hyperglycemia in hu-
man diabetes?

Relevance of Glucagon to Hyperglycemia
in Human Diabetes

Fasting plasma glucagon concentrations are not consis-
tently elevated in type 1 diabetes (59, 94) or in type 2
diabetes (16, 94), although significant elevations have
been found with serial sampling in both type 1 diabetes
(95) and type 2 diabetes (95, 96). Thus, the general notion
that glucagon plays a role in the pathogenesis of hyper-
glycemia in diabetes rests, at least in part, on the concept
of relative hyperglucagonemia, plasma glucagon concen-
trations that are inappropriately high in the setting of hy-
perglycemia that would be expected to suppress glucagon
secretion (16). However, that concept requires two as-
sumptions. First, it assumes a long-term suppressive effect
of hyperglycemia on glucagon secretion that is similar to
the short-term effect of acute hyperglycemia typically as-
sociated with hyperinsulinemia. Second, it assumes that
despite its transient glycemic effect in the short term (16),
hyperglucagonemia continues to stimulate glucose pro-
duction in the long term. With respect to the latter, glu-
cagon infusion for 4 wk has been reported to persistently
raise blood glucose concentrations in mice, an effect pre-
vented by coadministration of a glucagon antagonist (97).

Early evidence that relative hyperglucagonemia, in the
setting of deficient insulin secretion, plays a role in the
pathogenesis of hyperglycemia in human diabetes (16–24)
came from the studies of Gerich and his colleagues (17,
18). In people with type 1 diabetes, they found that infu-
sion of somatostatin 1) delayed the development of hy-
perglycemia and ketosis after withdrawal of insulin ther-
apy (17) and 2) lowered plasma glucose concentrations in
insulin-withdrawn, hyperglycemic patients (18). Because
those type 1 diabetic individuals almost assuredly lacked
appreciable endogenous insulin secretion, it is quite rea-
sonable to attribute the plasma glucose-lowering actions
of somatostatin to its suppression of glucagon secretion.
Thus, a somatostatin-responsive factor, presumably glu-
cagon, is involved in the pathogenesis of hyperglycemia in
type 1 diabetes. However, the data do not document that
glucagon supports the plasma glucose concentration to a
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greater extent in people with type 1 diabetes than in non-
diabetic individuals. The interpretation of the findings of
Baron and colleagues (98) that infusion of somatostatin
reduced endogenous glucose production and plasma glu-
cose concentrations in postabsorptive people with type 2
diabetes and nondiabetic controls is also challenging, as
the authors acknowledged. The initial decrements in glu-
cose production and plasma glucose concentrations dur-
ing somatostatin infusions were similar in those with type
2 diabetes and in nondiabetic controls. That does not in-
dicate a disproportionate plasma glucose-raising effect of
glucagon in diabetes.

Administration of a long-acting somatostatin analog to
people with type 1 diabetes over days to weeks has been
reported to reduce glycemia in some (99) but not other (100,
101) studies.However, it increases sensitivity to insulin (102,
103), perhaps because of suppression of glucagon secretion.

Clearly, higher plasma glucagon concentrations can re-
sult in higher rates of glucose production and higher
plasma glucose concentrations after a meal. For example,
that occurred in people with type 1 diabetes given gluca-
gon infusions to maintain postprandial plasma glucagon
concentrations compared with when such glucagon infu-
sions were delayed for 2 h (104).

Reduced suppression of plasma glucagon concentra-
tions and higher rates of glucose production and plasma
glucose concentrations after a meal are features of diabetes
(20, 21, 56, 105–108). Aside from the temporal relation-
ships, what is the evidence that the higher postprandial
glucagon levels, as opposed to the lower insulin action
alone, is causative of the higher rates of glucose produc-
tion and plasma glucose concentrations (19)? In soma-
tostatin-infused nondiabetic individuals given prandial
glucose infusions with insulin infused to produce a dia-
betic profile, Shah et al. (20) found higher plasma glucose
concentrations when glucagon was infused to maintain
basal levels compared with when glucagon was allowed to
fall over 2 h. Notably, when a nondiabetic insulin profile
was provided, the differences in plasma glucose were small
whether plasma glucagon concentrations were held con-
stant or allowed to decline. Interestingly, when plasma
glucagon concentrations were suppressed, plasma glucose
concentrations differed only minimally during the nondi-
abetic and diabetic insulin profiles. Thus, these data indi-
cate that a lack of postprandial suppression of plasma
glucagon concentrations can cause greater postprandial
hyperglycemia when insulin availability is limited, as it is
in diabetes. A similar study in people with type 2 diabetes
(21) led the authors to the same conclusions. This concept
is also illustrated in Fig. 1.

Finally, the finding of Ahrén (24) that women who de-
veloped impaired glucose tolerance, compared with those

who maintained normal glucose tolerance, exhibited
defective suppression of plasma glucagon concentra-
tions during earlier testing when they were still glucose
tolerant provides another clue that glucagon contrib-
utes to the pathogenesis of hyperglycemia in diabetes in
humans.

Although antagonism of the action of glucagon might
seem an attractive treatment of diabetes, there are some
concerns about the safety of that approach (109). Gluca-
gon receptor-null mice have islet hyperplasia and mark-
edly elevated plasma glucagon concentrations (109) and
the long-term outcomes of those in humans are unknown.
There is also a risk of liver injury (109). The contention
that glucagon receptor-null mice display increased glucose
counterregulation (109) is not supported by appropriate
in vivo data (84). It is conceivable that blockade of glu-
cagon action or secretion might increase the risk of iatro-
genic hypoglycemia in the setting of endogenous insulin
deficiency, but the glucagon response to falling plasma
glucose concentrations is typically lost in individuals with
absolute endogenous insulin deficiency as discussed ear-
lier (15).

In summary, there is increasing evidence that, in the
aggregate, suggests that relative hyperglucagonemia, in
the setting of deficient insulin secretion, plays a role in the
pathogenesis of hyperglycemia in diabetes (16–24) (Fig.
1). That appears to have been documented in humans. In
two randomized, placebo-controlled trials, administra-
tion of glucagon receptor antagonists lowered fasting and
postprandial plasma glucose concentrations and A1C lev-
els, albeit with low-density lipoprotein cholesterol and
transaminase elevations, in people with type 2 diabetes
(110, 111).
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62. Menge BA, Grüber L, Jørgensen SM, Deacon CF, Schmidt WE,
Veldhuis JD, Holst JJ, Meier JJ 2011 Loss of inverse relationship
between pulsatile insulin and glucagon secretion in patients with
type 2 diabetes. Diabetes 60:2160–2168

63. Brown RJ, Sinaii N, Rother KI 2008 Too much glucagon, too little
insulin. Diabetes Care 31:1403–1404

64. Pörksen S, Nielsen LB, Kaas A, Kocova M, Chiarelli F, Orskov C,
Holst JJ, Ploug KB, Hougaard P, Hansen L, Mortensen HB;
Hvidøre Study Group on Childhood Diabetes 2007 Meal-stimu-
lated glucagon release is associated with postprandial blood glu-
cose level and does not interfere with glycemic control in children
and adolescents with new-onset type 1 diabetes. J Clin Endocrinol
Metab 92:2910–2916

65. Abdul-Ghani M, DeFronzo RA 2007 Fasting hyperglycemia im-
pairs glucose- but not insulin-mediated suppression of glucagon
secretion. J Clin Endocrinol Metab 92:1778–1784
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