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The histone deacetylase sirtuin 1 (SIRT1) inhibits adipocyte differentiation and suppresses inflam-
mation by targeting the transcription factors peroxisome proliferator-activated receptor � and
nuclear factor �B. Although this suggests that adiposity and inflammation should be enhanced
when SIRT1 activity is inactivated in the body, this hypothesis has not been tested in SIRT1 null
(SIRT1�/�) mice. In this study, we addressed this issue by investigating the adipose tissue in SIRT1�/�

mice. Compared with their wild-type littermates, SIRT1 null mice exhibited a significant reduction
in body weight. In adipose tissue, the average size of adipocytes was smaller, the content of
extracellular matrix was lower, adiponectin and leptin were expressed at 60% of normal level, and
adipocyte differentiation was reduced. All of these changes were observed with a 50% reduction
in capillary density that was determined using a three-dimensional imaging technique. Except for
vascular endothelial growth factor, the expression of several angiogenic factors (Pdgf, Hgf, en-
dothelin, apelin, and Tgf-�) was reduced by about 50%. Macrophage infiltration and inflammatory
cytokine expression were 70% less in the adipose tissue of null mice and macrophage differenti-
ation was significantly inhibited in SIRT1�/� mouse embryonic fibroblasts in vitro. In wild-type
mice, macrophage deletion led to a reduction in vascular density. These data suggest that SIRT1
controls adipose tissue function through regulation of angiogenesis, whose deficiency is associated
with macrophage malfunction in SIRT1�/� mice. The study supports the concept that inflammation
regulates angiogenesis in the adipose tissue. (Endocrinology 153: 1706–1716, 2012)

Mammalian sirtuin 1 (SIRT1) is a nicotinamide ade-
nine dinucleotide�-dependent class III histone

deacetylase and is expressed in all cell types. SIRT1 plays
an important role in the control of energy homeostasis in
mammalians (1, 2), although its potential antiaging activ-
ity remains controversial. SIRT1 promotes energy expen-
diture and protects insulin sensitivity in diet-induced
obese mice (3–5). In hepatocytes, SIRT1 reduces the risk
of hepatic steatosis in transgenic mice (6, 7). Recent studies

suggest that SIRT1 regulates angiogenesis and vascular
function in vivo (8–11). SIRT1 is highly expressed in vas-
cular cells and is required for endothelial cell proliferation
(8), and its inactivation leads to inhibition of blood vessel
development and vascular remodeling (8). Another study
suggests that SIRT1 may inhibit angiogenesis by suppress-
ing hypoxia inducible factor 1 alpha activity (11). Because
angiogenesis is required for adipose tissue growth as well
as for maintenance of adipose tissue function (12, 13), it
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is not clear whether SIRT1 regulates adipose tissue func-
tion through angiogenesis.

SIRT1 was reported to inhibit ligand-dependent per-
oxisome proliferator-activated receptor � (PPAR�) func-
tion in adipocytes (14). The study demonstrated that
PPAR� activity was elevated in adipocytes in the absence
of SIRT1. Although SIRT1 null mice were reported in
2003 with small body size (15), the adipose tissues were
not investigated in the mice. We expect that adipose tissue
growth should be enhanced in SIRT1-deficient mice. In
this study, we investigated the adipose tissue growth and
function in SIRT1 knockout (KO) (SIRT1�/�) mice. This
study represents our effort to elucidate the relationship
between angiogenesis and adipose tissue function. We
proposed that chronic adipose inflammation is a result of
an obesity-induced hypoxic response, and inflammation is
required for amplification of the hypoxia signal in the
stimulation of angiogenesis (16, 17). In adipose tissue,
angiogenesis controls adipocyte activities through vascu-
lar remodeling and maintenance of blood supply during
adipose tissue expansion (18–21). Insufficient angiogen-
esis may lead to chronic inflammation through the hyp-
oxia response in obesity (16, 17). Angiogenesis is regu-
lated by proinflammatory cytokines and adipokines
(leptin and adiponectin) (22, 23). Adipose macrophages
stimulate angiogenesis through production of cytokines
(23). In addition, the macrophages also act to remove dead
adipocytes (24). However, the angiogenic activity of mac-
rophages remains to be tested in multiple model systems.
In this study, we examined the angiogenic function of mac-
rophages in the adipose tissue of SIRT1 null mice.

We analyzed the white adipose tissue (WAT) of
SIRT1�/� mice and observed a significant reduction in
adipocyte function. The adipocyte dysfunction is associated
with angiogenic deficiency and macrophage malfunction in
the tissue. The study suggests that SIRT1 may regulate adi-
pose tissue function through macrophages, which controls
angiogenesis through proinflammatory cytokines.

Materials and Methods

Animals
C57BL/6J breeders (4 wk in age) were obtained from The

Jackson Laboratory (Bar Harbor, ME). SIRT1�/� mice on the
129/J background were a gift of Frederick W. Alt at the Howard
Hughes Medical Institute, Children’s Hospital, Center for Blood
Research, and Department of Genetics (Harvard University
Medical School, Boston, MA) (25). SIRT1�/� mice were back-
crossed with C57BL/6 mice for nine generations to gain the
C57BL/6 gene background. The heterozygous C57BL/6 breeders
were used to produce SIRT1�/� mice. Wild-type (WT) litter-
mates were used as the control. Breeders were housed in plastic

boxes with corn-cob bedding in the animal facility at the Pen-
nington Biomedical Research Center. Animal rooms were main-
tained at 22–24 C with a 12-h light, 12-h dark cycle. All proce-
dures were performed in accordance with National Institutes of
Health guidelines for the care and use of animals and approved
by the Institute Animal Care and Use Committee at the Penning-
ton Biomedical Research Center.

Nuclear magnetic resonance (NMR)
Body composition was measured using quantitative NMR as

previously described (26). Briefly, conscious unrestrained mice
were placed in small tubes and then inserted into a Brucker model
mq10 NMR analyzer one at a time (Brucker, Milton, Ontario,
Canada). The fat and lean mass were recorded within 1 min.

DNA preparation and genotyping PCR
DNA was prepared from tail samples using the proteinase K

protocol. The genotyping PCR was conducted in all of the founders
and their offspring. The genotyping PCR was performed using
primers below, which were ordered from Sigma (St. Louis, MO):

SIRT1SKO-F, 5�-CTTGCACTTCAAGGGACCAA;
SIRT1SKO-R1, 5�-GTATACCCACCACATCTGAG;
SIRT1SKO-R2, 5�-CTACCACTCCTGGCTACCAA.
The reaction mixture contained: 200 ng of DNA, 0.5 �l of

thermol buffer, 50 mM deoxynucleotide triphosphate, forward
primers, reverse primers, and 2.5 U of TaqMan enzyme. PCR
products were resolved in 1.2% agarose gel, and the DNA band
was detected with a Bio-Rad (Hercules, CA) UV detector.

Mouse embryonic fibroblasts (MEF) and
adipogenesis

MEF were prepared from 13-d embryos of the SIRT1�/� or
WT mice as reported elsewhere (27). Embryos were minced and
digested with trypsin after removal of the limbs, internal organs,
and brain. After digestion at 37 C for 10 min, the cell suspension
was collected and washed with DMEM supplemented with 10%
newborn calf serum. The cells were plated in 100-mm cell culture
plate in the serum-containing medium, and the medium was
changed 24 h later. After one passage, the cells were collected as
MEF. The SIRT1�/� MEF and WT MEF were confirmed by
genotyping, then 5 � 104 cells/well were plated in six-well plates
for an adipogenesis assay. The cells were maintained in 10% fetal
bovine serum (FBS) containing 1 �M 3-isobutyl-1-methylxan-
thine, 10 �M dexamethasone, 10 �g/ml of insulin, and 1 �m of
troglitazone for 4–6 d (media were changed every 2 d). The cells
were then treated with medium supplemented with 10% FBS and
10 �g/ml insulin for 2 d to obtain mature adipocytes.

Vascular imaging
Adipose tissue staining was performed as described elsewhere

(28). Mice were killed and then decapitated to remove blood. The
tip portion of epididymal fat was collected under sterile condi-
tion and minced into small pieces (2–3 mm) using scissors. The
fat tissue pieces were washed with 1� PBS once and then incu-
bated in PBS containing both Griffonia simplicifolia IB4 isolectin
Alexa Fluor 488 (40 �g/ml in PBS) to stain endothelial cells and
BODIPY 558/568 (5 �M in PBS) for lipid staining overnight. The
samples were washed three times in PBS (5–10 min per time) and
fixed with 4% (wt/vol) formaldehyde for 24 h for long-term stor-
age. Samples were kept in 1� PBS during the imaging process.
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Confocal microscopy and image analysis
Vascular images were collected using a Zeiss (Jena, Germany)

510 META confocal with appropriate excitation lasers and band
pass filters and equipped with a �20 Plan-Apochromat objective
(NA, 0.8). Image stacks were collected with a frame average of
two and a step size of 0.76 �m. At least five randomly selected
data stacks were collected for each sample. Generation of three-
dimensional (3D) images was accomplished using Imaris (Bit-
plane, South Windsor, CT) version 6.2. Isosurface renderings of
capillaries in each data stack were made using Imaris software
and vessel volume determined with Imaris MeasurementPro.
The total vessel volume in each sample was divided by the total
tissue volume for the vascular density in each sample.

Macrophage differentiation and analysis
MEF were plated in a six-well plate at a density of 5 � 104

cells/well. The cells were differentiated into macrophages in a
medium maintaining 10% FBS, 1 �M 3-isobutyl-1-methylxan-
thine, 10 �M dexamethasone, 10 �g/ml of insulin, and 1 �m of
troglitazone for 4–6 d with a medium change every 2 d. The cells
were then cultured in a medium containing 10% FBS and 10
�g/ml of insulin for 2 d. The differentiated cells were stained with
florescent antibodies to macrophage marker proteins F4/80
(phycoerythrin) and CD11b (fluorescein isothiocyanate), and
then analyzed using a flow cytometer.

Deletion of macrophages in adipose tissue
Macrophages were deleted in the adipose tissue by a single in-

jection of clodronate liposome. Clodronate liposome was prepared
andadministrationat150mg/kgipasdescribedelsewhere(29).The
macrophage deletion was confirmed in adipose tissue at d 4 after
injection via measurement of F4/80 mRNA expression levels.

Quantitative real-time PCR
Epididymal fat pad (for epididymal WAT) and brown adipose

tissue were collected after a 6-h fast in mice and kept in liquid
nitrogen. Total RNA was extracted from frozen tissues (kept at
�80 C) using TRI Reagent (T9424; Sigma). TaqMan RT-PCR
primer and probe were used to determine mRNA for adiponectin
(Mm00456425_m1), leptin (Mm00434759_m1), preadipocyte
factor 1 (Pref-1) (Mm00494477_m1), ap2 (Mm00445880_m1),
Ppar� (Mm00440945_m1), Srebp-1 (Mm00550338_m1),
Cd31 (Mm00476702_m1), Vegf-R2 (Mm00440099_m1), Vegf
(Mm00437304_m1), Pdgf (Mm00440678_m1), apelin
(Mn00443562-ml), endothelin (Mm00438656 -ml), Hgf
(Mm01135177 _ml), Tgf-� (Mm00441724_m1), F4/80
(Mm00802530_m1), Cd11b (Mm00434455_m1), Tnf-�
(Mm00443258_m1), Il-1b (Mm00434228_m1), Il6
(Mm00446190_m1), Mcp-1 (Mm00441242_m1), iNos
(Mm00440485_m1), and arginase 1 (Mm00475988_ml). The
reagents were purchased from Applied Biosystems (Foster City,
CA). Mouse ribosome 18S rRNA_s1 (without intron-exon junc-
tion) was used as an internal control. Reactions were conducted
usinga7900HTFastReal-TimePCRSystem(AppliedBiosystems).

Western blotting
Whole-cell lysate was extracted from adipose tissue with soni-

cation in lysis buffer and used in Western blotting as described
elsewhere (30). Antibodies and their sources are as following: �-ac-
tin (ab6276; Abcam, Cambridge, MA), SIRT1 (DAM1514081;

Millipore, Bedford, MA), sterol regulatory element binding protein
1 (F0906;SantaCruzBiotechnology, Inc., SantaCruz,CA),PPAR�
(sc-7273; Santa Cruz Biotechnology, Inc.), and CCAAT/enhancer
binding protein (C/EBP)� (sc-61X; Santa Cruz Biotechnology,
Inc.).Todetectmultiple signals fromonemembrane, themembrane
was stripped with a stripping buffer.

Immunohistochemistry
Fresh epididymal fat pads were isolated, fixed in neutral buff-

ered formalin, dehydrated, and embedded in paraffin. Thin tissue
slides (5 �m) were deparaffinized, blocked, and incubated over-
night at 4 C with mouse antimouse CD31 antibody (ab24590; Ab-
cam) and mouse antirat F4/80 (sc-71087; Santa Cruz Biotechnol-
ogy, Inc.), which was followed by signal amplification using a
VECTASTAIN Elite ABC kit (PK-6102; Vector Laboratories, Bur-
lingame, CA). The reaction was developed by addition of AEC
chromogen substrate (AEC Staining kit; Sigma-Aldrich, St. Louis,
MO). Microphotographs were taken under a microscope (�20).

Hematoxylin and eosin (H&E) staining
Fresh fat tissues were collected at 28 wk of age and fixed in

10% neutral buffered formalin solution (HT50-1-2; Sigma). The
tissue slides were obtained through serial cross-section cutting at
8-�m thickness and processed with a standard procedure.

Oil red-O staining
Accumulation of triglyceride content in differentiated MEF

cells was visualized by staining with Oil red-O (Sigma-Aldrich).
Briefly, a stock solution of 0.5% (wt/vol) Oil red-O was prepared
in isopropanol. To achieve a working concentration (60%), 12
ml of stock solution were mixed with 8 ml of water and filtered
with 0.2-�m filter. The cells were first fixed using 10% neutral
buffered formalin for 1 h, washed with 60% isopropanol, air
dried, stained with Oil red-O working solution for 10 min, and
then washed with dH2O four times or under running tap water.
The triglyceride accumulation was photographed with a Nikon
microscope (Eclipse TS100; Nikon, Tokyo, Japan). The stain
was eluted by incubation with 750 �l (depending on well size) of
isopropanol, and its intensitywasdeterminedby light absorption
at 500 nm with a microplate reader.

Statistical analysis
In this study, the data were presented as mean � SEM from

multiple samples; n � 3–7 for each group in animal study. All of
the in vitro experiments were conducted at least three times.
Two-tailed, unpaired Student’s t test was used in the statistical
analysis with significance P � 0.05.

Results

Adipose tissue of SIRT1�/� mice
In this study, SIRT1 null (SIRT1�/�) mice were pro-

duced from the heterozygous (SIRT1�/�) breeder in
C57BL/6 gene background and maintained on the regular
chow diet. The null mice died frequently in the postnatal
period from starvation likely due to their inability to com-
pete with their WT littermates of normal size for milk. We
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reduced the competition by removing some of the normal
littermates to keep four pups in total per litter. In the phe-
notype study, SIRT1 null mice were compared with the
WT littermates at 28 wk in age. The null mice had a 50%
reduction in body weight and fat mass when compared
with their WT littermates (Fig. 1A). The difference in body
size was not apparent at birth but developed after birth
and remained throughout adulthood. The epididymal fat
(white fat) and brown fat were isolated and appeared to be
much smaller in KO mice (Fig. 1, B and C). Although
SIRT1�/� mice exhibited a 50% reduction in body weight
and fat content when compared with WT animals (Fig.
1D), their ratio of fat mass to body weight was comparable
with that of WT mice (�22%), suggesting that the fat
content is normal in the null mice.

Decrease in adipocytes size, extracellular matrix,
and adipokine expression in SIRT1�/� mice

The WAT was further investigated using the epididy-
mal fat tissue in this study. Histological analysis was con-
ducted after H&E staining of the fat tissue. SIRT1�/� mice

exhibited a significant reduction in adipocytes size and
extracellular matrix (Fig. 2A). The tissue appeared to ex-
hibit a decrease in the heterogeneity of cell size (Fig. 2A).
Adipocytes appeared to be smaller with a decrease in the
variability of cell diameters typically observed in WT ad-
ipose tissue. There was also a decrease in the amount of
extracellular matrix around the adipocytes of KO animals
as evidenced by the reduction in eosin positive staining
between individual cells, suggesting a higher cellular den-
sity in the adipose tissue. Expression of adipokines and
adipocyte-enriched transcription factors were examined
to characterize the change in adipose tissue in SIRT�/�

animals. Expression of adiponectin (Acdc) and leptin
mRNA was much lower in the null mice (Fig. 2B), whereas
Pref-1 expression was higher (Fig. 2B). This gene expres-
sion profile suggests a decrease in adipocyte differentia-
tion and an increase in preadipocytes density in the adi-
pose tissue. Expression of ap2, Ppar�, and Srebp was not
changed in the null mice (Fig. 2B), suggesting that the
adipogenic transcriptional program is not deficient in the
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FIG. 1. Adipose tissue in SIRT1�/� mice. Mice were fed chow diet for 28 wk and then used in tissue collection. A, Comparison of WT and SIRT1�/

� before and after killing. B, WAT of epididymal fat pad. C, Brown adipose tissue. D, Body weight, fat mass, and body composition. Data are from
animals fed chow diet for 22 wk. Measurements were conducted after an overnight fast. The fat mass was determined using whole-body NMR.
The fat percentage in the body composition was determined by the ratio of fat mass to body weight. In this figure, each value represents the
means � SE (n � 7). *, P � 0.05.
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tissue. However, adipocytes are impaired in adipogenesis,
lipid storage, and endocrine functions in the adipose tissue
of null mice. The reduction in extracellular matrix sug-
gests that the adipocyte dysfunction is likely a result of a
micro environment abnormality in the adipose tissue.

Adipogenesis in vitro
SIRT1 was reported to inhibit PPAR� function pro-

moting lipid mobilization in adipocytes (14). With this in
mind, PPAR� function should be enhanced and adipogen-
esis should be promoted in SIRT1 null mice. This rationale
is challenged by the data that adipogenesis is actually re-
duced in the null mice. To understand the difference, we
reviewed literature about regulation of adipogenesis in
adipose tissue. Adipogenesis is determined by preadi-
pocyte quality and the differentiation environment. To
determine which factor plays a role in the altered adipo-
genesis in SIRT1 null mice, we examined adipocyte dif-
ferentiation potential in vitro. MEF cells were prepared
from a 13-d embryo and induced for adipogenesis in the
culture medium as described in Materials and Methods.
The differentiation was determined by quantification of
lipid accumulation and gene expression. Compared with
WT cells, lipid accumulation in differentiated cells from
SIRT1�/� MEF was enhanced as observed by the red color
from the Oil red-O staining (Fig. 3A). An increase was also
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FIG. 2. Structural and functional analysis of adipose tissue. A,
Microscopic view of adipose tissue. Epididymal adipose tissue was
collected at 28 wk of age and subjected to H&E staining. The pictures
represent the histology of adipose tissue in the SIRT1 null and WT
mice. B, Adipokine gene expression. Gene expression was determined
in mRNA for the key genes in adipocytes by quantitative RT-PCR.
Values are the means � SE (n � 6). *, P � 0.05.

PPARγ

β-actin

SIRT1

WT       SIRT1+/-     SIRT1-/-

C/EBPα

B  Protein level C  Gene expression after MEFs differentiation

WT                                               SIRT1+/-                                          SIRT1-/-

A  Oil red-O staining in SIRT1 MEF adipogenesis

20X

0
0.5

1
1.5

2

SIRT1+/+ SIRT1+/- SIRT1-/-

R
el

at
iv

e 
m

R
N

A

PPARγ Adiponectin

R
el

at
iv

e 
m

R
N

A

* *

0

0.5

1

1.5

SIRT1+/+ SIRT1+/- SIRT1-/-

50kDa

42kDa
30kDa

110kDa

42kDa

FIG. 3. Adipogenesis in vitro. MEF were generated and differentiated into adipocytes in vitro. Differentiation was determined with Oil red-O
staining and gene expression. A, Oil red-O staining of lipid in differentiated cells. Lipid is indicated by the red color in the cytoplasm. Heterozygous
KO MEF (SIRT1�/�) were used in the control together with WT MEF. B, PPAR� and C/EBP� protein in differentiated cells. The proteins were
determined in Western blotting. C, mRNA of PPAR� and adiponectin in differentiated cells. Values are the means � SE (n � 6). *, P � 0.05.
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observed in the heterozygous (SIRT1�/�) MEF (Fig. 3A)
and suggests an increased adipogenic potential in SIRT1-
deficient cells. To understand the molecular basis of adi-
pogenesis, we examined two transcription factors (PPAR�

and C/EBP�) that are required for adipocyte differentia-
tion. After differentiation, SIRT1�/� cells exhibited a
modest elevation in mRNA and protein forPPAR� but not
for C/EBP� (Fig. 3, B and C). There was no significant
change in adiponectin expression in SIRT1�/� adipocytes
(Fig. 3C). The results suggest that SIRT1�/� preadi-
pocytes are not deficient, because they differentiated very
well in vitro. The result suggests a defect in the microen-
vironment in the adipose tissue of SIRT1�/� mice. Addi-
tionally, the lipid accumulation and gene expression sug-
gest that PPAR� function is enhanced in SIRT1�/�

adipocytes.

Reduced capillary density and impaired
angiogenesis in epididymal fat of SIRT1�/� mice

The extracellular matrix provides the microenviron-
ment to adipocytes in adipose tissue. In the extracellular
matrix, the vascular system determines blood supply, and

the collagen network controls the space for adipocyte size
expansion (31). Angiogenesis is a process of new capillary
formation that extends the existing vascular system in
growing tissues. In the body, an increase in angiogenesis
accompanies adipose tissue growth (18–21). Angiogene-
sis was examined in the adipose tissue of SIRT1 null mice
to understand the cause of adipogenic deficiency. Capil-
laries were stained in fresh adipose tissue with isolectin
that binds to endothelial cells in the capillary. To quantify
the capillary density, the fluorescent signal was collected
using a confocal microscope at multiple z-planes in the
tissue and used to generate 3D reconstructions of the la-
beled cell types as described in Materials and Methods
(Fig. 4A). In the 3D image, adipocytes are in red color and
capillaries are green. The images show that the adipose
tissue has a rich capillary network, and each adipocyte has
more than one capillary on average. After exclusion of
adipocytes, a clean capillary network was generated, and
this was used to calculate vascular volume (Fig. 4B). Vas-
cular volume was then divided by the total tissue volume
for normalization. Our measurements show that the cap-
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FIG. 4. Capillary density in adipose tissue of SIRT1�/� mice. A, 3D image of adipose tissue capillaries. The images were generated as described in
Materials and Methods. The round objects in red color represent adipocytes. The green lines are capillaries. B, Capillary density. The total vessel
volume is divided by the total stack volume to obtain capillary density. C, CD31 immunohistostaining in fat tissue. D, Angiogenic gene expression
in epididymal fat tissue. Relative mRNA expression of key angiogenic genes was determined. Values are the means � SE (n � 6). *, P � 0.05.
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illary density was reduced by 50% in the adipose tissue of
SIRT1�/� mice (Fig. 4B). When the capillary density was
determined by the endothelial cell marker CD31 in im-
munohistostaining, a 40% reduction was observed in
SIRT1�/� mice (Fig. 4C). These data consistently suggest
that the capillary density is reduced in the adipose tissue of
SIRT1 null mice.

Angiogenesis is regulated by a balance between the
proangiogenic and antiangiogenic factors. Expression of
angiogenic factors and their receptors were examined in
the fat tissue to understand the molecular basis of the cap-
illary reduction (Fig. 4D). Expression of angiogenic fac-
tors, including Pdgf, apelin, endothelin, Hgf, and Tgf-�,
were reduced in SIRT1 null mice as well as mRNA ex-
pression of the endothelial marker, CD31. Vegf and Vegf-r
were not reduced in the tissue (Fig. 4D). These data suggest
that SIRT1 null mice suffer angiogenic deficiency from
lack of angiogenic factors.

Decreased macrophage activity in fat tissue of
SIRT1�/� mice

Macrophages are a major source of both angiogenic
factors and proinflammatory cytokines in adipose tissue

(22, 23). Stimulation of angiogenesis is one of the macro-
phage functions in response to hypoxia (23). We were not
sure whether the angiogenic deficiency observed in this
study is related to a change in the macrophage activities in
the adipose tissue of SIRT1 null mice. To address this
question, we examined macrophage infiltration and ex-
pression of inflammatory genes in adipose tissue. Relative
macrophage abundance was determined by the mRNA
expression level of macrophage markers, F4/80 and
CD11. Levels of both gene transcripts were reduced by
70–80% in the tissue of SIRT1 null mice (Fig. 5, A and B),
and expression of Tnf-�, Mcp-1, and Il-1� that are mainly
secreted by macrophages was also reduced in the tissue
(Fig. 5, C–E). iNos is primarily expressed in M1-polarized
macrophage (M1) and arginase 1 is highly expressed in
M2-polarized macrophage (M2) (32, 33). mRNA levels of
both genes were decreased by more than 60% in SIRT1�/�

mice (Fig. 5, F and G), suggesting that the numbers of both
M1 and M2 macrophages were decreased in the adipose
tissue of SIRT1 null mice. Expression of Il-6 was not sig-
nificantly altered by SIRT1 inactivation (Fig. 5H). Mac-
rophage infiltration was also determined using F4/80 pro-

FIG. 5. Decreased macrophage activity in fat tissue of SIRT1�/� mice. Gene expression was determined using quantitative RT-PCR. A–H, Relative
levels of mRNA in adipose tissue. I, Immunostaining of macrophage marker F4/80 in adipose tissue. Values are the means � SE (n � 6). *, P �

0.05.
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tein in the tissue. The immunohistological staining
suggests that F4/80 protein was reduced in the fat tissue of
SIRT1�/� mice (Fig. 5I). This group of data suggests that
macrophage activities are decreased in the adipose tissue
of SIRT1�/� mice and may contribute to the decreased
angiogenic activity in SIRT1�/� mice.

Macrophage differentiation and deletion in
adipose tissue

A reduction in macrophage differentiation may occur
in SIRT1�/� mice because M2 macrophages were reduced
in the adipose tissue. The M2 reduction explains the M1
reduction because M2 is the precursor of M1. To test this
possibility, we examined macrophage differentiation from
SIRT1�/� MEF. The differentiation was induced in vitro
and determined with protein expression of the macro-
phage marker genes, F4/80 and CD11b. The positive cells
for the two markers were quantified using the flow cy-
tometry. The result suggests that macrophage differenti-
ation was reduced 50% in SIRT1�/� cells (Fig. 6A).

To prove the role of macrophages in the control of
adipose tissue angiogenesis, we deleted macrophages in
adipose tissue and then examined capillary density in WT
mice using a single injection of clodronate liposome to
deplete macrophages. Both capillary volume and capillary
density were quantified using the 3D imaging technology.

The macrophage deletion led to a decrease in both param-
eters in the fat tissue (Fig. 6, B and C). Expression of F4/80
was reduced by 90% in adipose tissue, suggesting that
macrophage deletion was achieved successfully (Fig. 6D).
These data suggest that macrophage inhibition leads to
angiogenic suppression in the adipose tissue.

Discussion

This study provides a novel mechanism, by which SIRT1
regulates adipocyte function. SIRT1 regulates fatty acid
metabolism in adipocytes and hepatocytes, promotes lipid
mobilization in adipocytes (14), stimulates fatty acid ex-
port in hepatocytes (6), and drives fatty acid oxidation in
the mitochondria of hepatocytes (7). At the molecular
level, SIRT1 regulates gene transcription by inhibiting
PPAR� and activating peroxisome proliferator-activated
receptor gamma coactivaor-1�. SIRT1 is a corepressor in
the regulation of transcription factors such as PPAR� in
adipocytes, and the PPAR� function should be enhanced
after the corepressor inhibition by SIRT1 KO in adi-
pocytes. SIRT1 null mice should exhibit an increased ad-
iposity as a result of enhanced PPAR� function. However,
this prediction is challenged by the phenotype of SIRT1
null mice, which did not exhibit an increase in body fat.

Their adipose tissue exhibited reduced
levels of adipogenesis and adipokine
(leptin and adiponectin) expression.
Histological analysis suggests that they
exhibited a lower number of small adi-
pocytes (an indicator of adipogenesis
and new adipocytes). There were more
preadipocytes in their adipose tissue as
indicated by the elevated Pref-1
mRNA. Interestingly, the reduced dif-
ferentiation was only observed in vivo
but not in vitro. When adipocyte dif-
ferentiation was tested in cell culture,
no reduction was observed in SIRT1
null MEF, suggesting that the adipo-
genic inhibition is derived from the mi-
croenvironment in their adipose tissue.
Our data suggest that SIRT1 regulates
adipocyte activity through modifica-
tion of the extracellular environment.

Macrophage activities are decreased
in the adipose tissue of SIRT1 null mice.
We examined the microenvironment by
monitoring macrophage activities in
the adipose tissue to understand the
mechanism of adipogenic inhibition in
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SIRT1 null mice. SIRT1 was reported to inhibit inflam-
mation by suppressing transcription factor nuclear factor
�B (NF-�B) and activator protein 1 (27, 34, 35). In obese
mice, SIRT1 inhibits inflammation through suppression
of NF-�B in macrophages (5, 35). According to these re-
ports, we expected that inflammation would be enhanced
in the adipose tissue of SIRT1 null mice but found the
opposite in our current study. In adipose tissue, macro-
phage infiltration (F4/80 and CD11b positive cells) was
reduced, and this explains the decreased expression of pro-
inflammatory genes (Tnf-�, Il-1, Mcp-1, and iNos). Both
type 1 (M1, proinflammatory) and type 2 (M2, antiin-
flammatory) macrophages are decreased according to
mRNA expression of iNos (M1 marker) and arginase 1
(M2 marker). These data suggest a deficiency in macro-
phagedifferentiation.To test thispossibility,weexamined
macrophage differentiation in vitro using MEF cells. The
differentiation was significantly inhibited in SIRT1 null
MEF according to the cell population analysis by flow
cytometry. The data suggest that SIRT1 function is re-
quired for the differentiation process between the stem
cells and macrophages. In a recent study, SIRT1 was in-
activated in macrophages using lysozyme promoter-con-
trolled Cre mice (36). In the conditional KO mice, mac-
rophages exhibited an increase in inflammatory activities
via an enhanced NF-�B activity. However, macrophage
differentiation was not altered. The reason for this dis-
crepancy between that and the current study is not clear.
It is possible that the lysozyme Cre-mediated KO occurs at
a later stage in the macrophage differentiation process,
where SIRT1 activity is no longer required for macro-
phage differentiation.

The current study suggests that SIRT1 may regulate
adipose angiogenesis through macrophages. SIRT1 was
reported to influence angiogenesis by regulation of endo-
thelial proliferation and endothelial cell differentiation in
the process of vascular formation (8). It was not known
whether SIRT1 acts in other cell types in addition to en-
dothelial cells in the regulation of angiogenesis. This ques-
tion is addressed in the current study. Capillary density
was significantly reduced in the fat tissue of SIRT1 null
mice, and the reduction was associated with macrophage
deficiency. To test the role of macrophages, we examined
capillary density after macrophage deletion in mice. The
relationship of macrophage deletion and capillary reduc-
tion supports our hypothesis that macrophage deficiency
contributes to the angiogenic defect in the adipose tissue of
SIRT1 null mice. In addition to differentiation, cell apo-
ptosis may be another factor contributing to the macro-
phage reduction in SIRT1 null mice. SIRT1 inhibits cell
apoptosis through suppression of transcription factor
forkhead box O3 (37, 38) or p53 activity (39), which

promotes cell apoptosis after activation. Dysregulation of
these transcription factors may lead to elevation in mac-
rophage apoptosis. The current study suggests that mac-
rophages mediate SIRT1 activity in the regulation of an-
giogenesis.This conclusion is consistentwithother reports
demonstrating that macrophages are required for angio-
genesis in adipose tissue (23, 28, 40). The study suggests
a new mechanism by which SIRT1 regulates angiogenesis.

Vascular endothelial growth factor (VEGF) may not be
involved in the angiogenic deficiency in SIRT1�/� mice. In
the investigation of the molecular mechanisms of angio-
genic deficiency, we examined mRNA expression of sev-
eral angiogenic factors (41), such as Vegf, Pdgf, leptin (42,
43), adiponectin (44, 45), apelin, Hgf, and Tgf-�. In
SIRT1�/� mice, most of those angiogenic factors except
Vegf were reduced in the adipose tissue. Although VEGF
is the most well-known angiogenic factor (31, 41), VEGF
expression may not be critical in the angiogenic deficiency
in SIRT1�/� mice. In addition to its expression, interac-
tion with its receptor also plays a role in the control of
VEGF activity. Platelet-derived growth factor (PDGF) is
known to regulate VEGF activity at this level (46). PDGF
regulates angiogenesis by recruiting and priming pericytes
(47). In obese mice, a reduction in PDGF is associated with
capillary reduction in adipose tissue (23). Adipokines also
regulate capillary formation. For example, leptin stimu-
lates endothelial cells to form capillaries in cell culture (42)
and induces angiogenesis in a mouse corneal angiogenesis
assay (43). Adiponectin stimulates angiogenesis, and this
activity is related to cross talk between AMP-activated
protein kinase and Akt signaling in endothelial cells (44).
Apelin induces endothelial cell proliferation (48), and
TGF-� stabilizes the new vessels (41). In SIRT1 null mice,
the reduction in all of these cytokines contributes to the
angiogenic deficiency observed in adipose tissue. Adipose
tissue contains adipocytes, macrophages, and endothelial
cells, which secrete angiogenic factors. In SIRT1 null mice,
macrophage deficiency may account for a large part of the
angiogenic factor reduction, but adipocytes and endothe-
lial cells may contribute to the reduction as well.

We used 3D imaging techniques in the quantification of
capillary density in fat tissue. In this method, capillary
endothelial cells in fresh tissue are stained with a fluores-
cently conjugated isolectin, and the fluorescent signal is
collected at multiple layers in the tissue using confocal
microscopy. The reconstructed 3D image is generated us-
ing a computer program, and capillary volume is mea-
sured and normalized using the total tissue volume exam-
ined. We compared this technique with traditional
immunohistostaining with CD31 antibody and obtained
comparable results. The advantage of 3D imaging tech-
niques is that it is more efficient and more accurate in the
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quantification of capillary density and is much less labor
intensive than other, more traditional, methods.

In this study, we analyzed adipose tissue in SIRT1 null
mice using histological techniques, measurements of gene
expression, and measures of adipocyte differentiation.
The results show that adipose tissues from null animals
have small adipocytes and less extracellular matrix be-
tween adipocytes. The adipocytes exhibit a relatively ho-
mogeneous size distribution, and they express less adi-
ponectin and leptin. Adipogenesis is reduced in the
adipose tissue from lack of angiogenesis. Macrophage ac-
tivities are reduced in the adipose tissue as indicated by the
expression of macrophage marker genes, angiogenic fac-
tors, and inflammatory cytokines. The mechanism re-
sponsible for the down-regulation of macrophage activity
remains to be elucidated, but cell apoptosis may play a
role. Our data support that SIRT1 may control energy
metabolism through the regulation of macrophage func-
tions in adipose tissue.
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