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Accumulating evidence suggests that insults occurring during the perinatal period alter the de-
velopmental trajectory of the fetus/offspring leading to long-term detrimental outcomes that
often culminate in adult pathologies. These perinatal insults include maternal/fetal disease states,
nutritional deficits/excess, stress, lifestyle choices, exposure to environmental chemicals, and med-
ical interventions. In addition to reviewing the various insults that contribute to developmental
programming and the benefits of animal models in addressing underlying mechanisms, this review
focuses on the commonalities in disease outcomes stemming from various insults, the convergence
of mechanistic pathways via which various insults can lead to common outcomes, and identifies the
knowledge gaps in the field and future directions. (Endocrinology 157: 1328–1340, 2016)

The “fetal origins of adult disease” or “developmental
origins of health and disease” hypothesis by Barker (1)

has generated immense attention to the concept of devel-
opmental programming. Although this phenomenon as it
relates to pathogenesis of many adult disorders was pro-
posed in the 1990s (2), the role of programming during
development was identified as early as 1873 in imprinting
of behavior in birds (3). Additionally, it is long known that
developmental exposure to testosterone produced by the
fetal testis underlies the programming of male sexual be-
havior (4–6) and abnormal exposure of the female fetus to
testosterone during critical periods of differentiation mas-
culinizes the female brain (7, 8). Although the term “pro-
gramming” was first introduced by Lucas (9), the devel-
opmental origins of health and disease hypothesis (1, 10)
gained momentum only after the emergence of epidemi-
ological data from the 1944–1945 Dutch famine cohort
showing maternal starvation during gestation correlates
with an increased risk for cardiovascular and metabolic
diseases in the offspring (11). These observations in con-
junction with several subsequent studies (10, 12, 13) dem-
onstrate that the perinatal period, a period in which or-
ganogenesis and tissue differentiation occur through a
tightly controlled and timed process, is a susceptibility
window to the impacts of adverse environment.

Over the years, it has become clear that the mechanisms
underlying the developmental origin of adult disease in-
volve reprogramming of the epigenome by environmental
factors (14, 15). This is possible during the early life due
to the plasticity that allows the developing organism to
adopt a phenotype that best suits the environment. As the
individual ages, there is loss of plasticity and emergence of
a fixed functional capacity. As West-Eberhard describes
(16), developmental plasticity is the phenomenon by
which a single genotype can give rise to a range of different
physiologic or morphologic states in response to different
environmental conditions during development. These
short-term adaptations made for survival often prove to be
detrimental leading to development of diseases. The pro-
gramming of adult pathology due to perinatal insults is
likely the consequence of reduced functional capacity in
key organs, a “thrifty” phenotype, where resources are
allocated for critical organs at the expense of other organ
systems thus increasing vulnerability of these organs to
adverse environmental influences in later life (17). In ad-
dition, recent findings support a “2-hit” hypothesis to ex-
plain the adult onset of diseases (18, 19). This hypothesis
suggests that, a genetic susceptibility combined with an
insult occurring during perinatal life (“first-hit”) leads to
reorganization of the various organ systems, which alone
might be insufficient to alter the adult phenotype. How-
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ever, endocrine imbalances resulting from the perinatal
insults and/or adverse stressors/exposures during postna-
tal life may act as a “second-hit,” which through activa-
tional effects might unmask or amplify the underlying de-
fects culminating in disease states (19).

A wide range of gestational events can alter the fetal
developmental trajectory (Figure 1). These include mater-
nal nutritional deficit/excess, environmental exposure to
endocrine-disrupting chemicals (EDCs), disease states,
lifestyle choices, substance abuse, and medical interven-
tions during pregnancy. Although some of these insults
lead to alterations that are manifested immediately after
birth such as spina bifida associated with folate deficiency
or congenital limb malformations due to thalidomide
medication for morning sickness (20), a host of adult onset
manifestations such as coronary and metabolic diseases
may not be apparent until adulthood.

Although a wide variety of perinatal insults during crit-
ical windows of differentiation alter the developmental
trajectory of the fetus/offspring, there are often many com-
monalities in the phenotypic outcomes. Most of these in-

sults result in placental alterations, intrauterine growth
restriction (IUGR), and catch-up growth culminating in
adult diseases. For example, offspring born to women
with gestational undernutrition (10, 21) or excess andro-
gen exposure (19, 22, 23) are reported to undergo IUGR,
to be born small for their gestational age, and to manifest
adult reproductive and metabolic abnormalities. This re-
view addresses the different perinatal insults associated
with developmental programming, the commonalities be-
tween underlying mechanisms and the resulting adult phe-
notype, as well as the knowledge gaps in the field.

Perinatal Insults

Undernutrition
Over the last 3 decades, several epidemiological and

experimental studies have highlighted the impacts of ges-
tational undernutrition on the offspring’s birth size and
prevalence of adult metabolic disruptions (24, 25), a mat-
ter of considerable importance in developing countries

Figure 1. Impact of perinatal insults in programming adult pathologies in the offspring. Exposure of the fetus/offspring to different insults during
critical periods of development may lead to adaptations that prove to be detrimental and associated with adult defects in several organ systems.
IUGR, intrauterine growth restriction.
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where undernutrition is a major concern. Barker and Os-
mond (26) were among the first to report the association
between gestational undernutrition leading to adverse in-
trauterine environment and adult cardiometabolic disease
in humans. For instance, adverse intrauterine develop-
ment, as manifested by low birth weight (LBW), was
shown to be associated with greater risk of cardiovascular
disease, stroke (26), lung disease (27), and polycystic
ovary syndrome (PCOS) (28). Importantly, the timing of
the prenatal insult was found to play a key role in deter-
mining the adult’s susceptibility to diseases, emphasizing
the importance of critical periods of differentiation of or-
gan systems. Epidemiological data from the Dutch famine
demonstrated that nutrient restriction during early gesta-
tion was associated with adult hypertension (11), whereas
feed restriction during late gestation was linked to in-
creased adiposity, impaired glucose tolerance, and type 2
diabetes (21, 29, 30).

Compensatory growth during early life is also a risk
factor for the development of adult diseases in the off-
spring. It is believed that the degree of mismatch between
pre- and postnatal nutrient availability underlies the de-
velopment of subsequent chronic diseases (1, 10, 31, 32).
For instance, rapid compensatory growth was associated
with a 6-year reduction in lifespan in boys from the Hel-
sinki Birth cohort (33). Moreover, the combination of
small weight at birth and accelerated growth between 3
and 11 years of age was found to predict the differences in
the cumulative incidence of coronary heart disease, type 2
diabetes, and hypertension in both men and women from
the same cohort (34).

The deleterious impacts of gestational undernutrition
on the offspring’s health have been experimentally docu-
mented in both small and large animal models. In rats,
maternal caloric restriction leads to insulin resistance and
hypertension in the adult offspring (35–37). In sheep, ma-
ternal undernutrition results in decreased adipose tissue
depots, glucose intolerance, and hyperinsulinemia in the
offspring (37–40). Early to midgestational nutrient re-
striction in sheep also leads to lower circulating concen-
trations of progesterone, hyperinsulinemia (41), and
marked reduction in fertility in the female offspring (42).
Detailed information regarding the effects of maternal un-
dernutrition on the offspring’s health can be found in ear-
lier reviews (24, 25).

Overnutrition
Considering the rise in the last decades in the incidence

of maternal obesity and associated disorders such as ges-
tational diabetes mellitus (GDM) (43), recent studies have
also focusedon the effectsofmaternalovernutritionon the
offspring. These studies have demonstrated that maternal

overnutrition may result in large for gestational age babies
(44) and that high birth weights are also associated with
increased risk for the offspring to develop obesity and
metabolic alterations during adult life (45–47). These ob-
servations in concert with studies of undernutrition indi-
cate that the relationship between birth weight and risk for
development of metabolic defects (and other related def-
icits) is not a simple linear association but rather follows
a U-shaped curve (48). Observations from overnutrition
studies, as opposed to studies involving undernutrition in
underdeveloped countries, are particularly important in
developed countries due to the high incidence of obesity
(43, 49).

Epidemiological studies have reported a strong associ-
ation between increased maternal body mass index (50–
55) and alterations in glucose-insulin homeostasis in the
offspring. Although genetics could play a role in the trans-
mission of these traits, the finding that maternal weight
loss after bariatric surgery reduces the risk of obesity and
other metabolic disorders in the offspring supports ma-
ternal environment as a contributing factor (56). Support
for this premise also comes from the finding that maternal
weight gain between pregnancies increases the prevalence
of obesity in the younger children (57).

Studies of experimental induction of obesity in animal
models provide causal evidence in support of detrimental
effects of maternal overnutrition on the offspring’s health.
For instance, offspring of female rats fed a high-fat diet
during gestation manifest increased overall adiposity, re-
duced insulin sensitivity, and hypertension (58, 59). Sim-
ilarly, increased feed consumption before and during preg-
nancy in sheep was found to program glucose intolerance
in the offspring (60). In nonhuman primates, chronic con-
sumption of a high-fat diet during gestation was found to
increase adiposity and lipotoxicity in the liver (61), and
increase anxiety in the offspring (62). Interestingly, there
are several common traits such as hyperphagia, increased
adiposity, reduced insulin sensitivity, and hypertension
(47) in the offspring’s phenotypic outcomes among the
various animal models implicating common mechanistic
pathways between the different animal models.

Because the perinatal period is an important window in
which adult pathologies may be programmed, interven-
tion strategies adopted before or during gestation or in
early postnatal period are likely to prevent the transmis-
sion of these traits to the offspring. In sheep, a short period
of dietary restriction (1 mo) before pregnancy prevented
the negative effects of maternal overnutrition on off-
spring’s adiposity and weight gain (63). Similarly, mild
food restriction during the third trimester of gestation in
mice prevented the programming effects of a high-fat diet
on the offspring’s obesity (64). Furthermore, weight loss
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before gestation in obese women improved the metabolic
parameters in their children (56). These observations high-
light the importance of dietary and lifestyle interventions
in preventing obesity and several associated complications
in the subsequent generation. The developmental adapta-
tions in response to gestational overnutrition and poten-
tial intervention strategies have been reviewed in more
detail elsewhere (47, 48).

Stress
Prenatal stress represents another insult that perturbs

the intrauterine environment and developmental trajec-
tory of the fetus. The most common causes of human pre-
natal stress are major life events like death of a family
member, catastrophic devastation resulting from wars,
earthquakes, famines, hurricanes or acts of terrorism, has-
sles of daily life, depression or general anxiety, and preg-
nancy-specific anxiety (65). Epidemiological studies have
shown that maternal bereavement from loss of loved one
or maternal depression during pregnancy result in off-
spring with increased risk of abnormal immune function,
obesity, and mental disorders (66, 67). Similar outcomes
are reported in offspring of survivors of holocaust, famine,
and other natural disasters (68–71). Stress effects on de-
velopmental outcomes could be due to direct changes in
the hypothalamic-pituitary-adrenal (HPA) axis or indi-
rectly via alterations in nutrient intake. Elevated basal
morning cortisol levels observed in individuals exposed to
prenatal maternal psychosocial stressors indeed provide
support of mediation via programmed alterations of the
HPA axis (72, 73).

Various rodent models of perinatal stress such as as-
phyxia, hypothermia, maternal deprivation, or separation
have been used to assess the effects of perinatal stress on
the offspring’s health. These models have provided exper-
imental evidence that exposure to stressful conditions dur-
ing prenatal or early life leads to greater adiposity and
weight gain with impaired glycemic control in the off-
spring (74). Other studies have demonstrated that prena-
tal stress leads to lower birth weight, impaired feedback
regulation of the HPA axis, prolonged stress responses,
and reduced glucocorticoid and mineralocorticoid recep-
tor expression in the hippocampus (75–77). Similar out-
comes in the HPA axis function after prenatal exposure to
exogenous glucocorticoids confirm their role in stress-in-
duced programming (78). The consequences of perinatal
stress and altered HPA function as it relates to neurologic,
immune, and cardiometabolic disorders have been ad-
dressed extensively in previous reviews (71, 79–81).

Disease state
The homeostasis of the maternal and fetal endocrine

milieus is important to allow normal development and
prevent adverse effects arising from early insults. Disease
states that perturb hormonal homeostasis are likely to al-
ter the gestational endocrine milieu (82). Disease condi-
tions that are likely to affect the maternal and fetal milieus
include PCOS and congenital adrenal hyperplasia (CAH)
(83, 84) maternal obesity (52, 55), GDM (85), diabetes
(86), preeclampsia (87), and mutations and polymor-
phisms in genes such as 11�-hydroxysteroid dehydroge-
nase (HSD11B) (88), sex hormone-binding globulin
(SHBG) (89), and aromatase (CYP19) (90). Examples of
perturbed hormonal homeostasis in disease states are in-
creased maternal insulin levels in obesity and GDM, in-
creased maternal/fetal androgen levels in PCOS, CAH and
mutations associated with SHBG or CYP19, and increase
in fetal cortisol levels with HSD11B mutations. In the
United States alone, GDM complicates approximately 7%
of all pregnancies (85). Perturbed intrauterine environ-
ment such as maternal hyperglycaemia in disease states
results in macrosomia, impaired glucose tolerance, devel-
opment of obesity and metabolic disorders in the offspring
(85, 86). Preeclampsia complicates approximately
2%–8% of the pregnancies (87) and offspring of pre-
eclamptic pregnancies are born premature, manifest
IUGR, develop high blood pressure during childhood and
have increased risk of stroke in later life (91).

Similarly, disease conditions that result in elevated an-
drogens during gestation, such as CAH and PCOS, lead to
reproductive and metabolic disorders that emerge later in
life (19, 92). Homozygous HSD11B mutations in babies
lead to increased fetal cortisol levels that have been cor-
related with lower birth weight (73), a risk factor in the
development of cardiometabolic abnormalities. Condi-
tions that lead to adrenal tumors, CAH or mutations in
SHBG and CYP19 can result in exposure of developing
fetus to elevated androgens, which in turn can lead to
development of PCOS in the female offspring (19, 83, 84,
92). Because PCOS affects approximately 6%–15% of the
women of reproductive age and these women continue to
be hyperandrogenic and hyperinsulinemic during preg-
nancy, the offspring born to women with PCOS are also at
increased risk for development of PCOS (19, 93, 94).

Experimental induction of diabetes in animal models
has shown that mild maternal diabetes leads to develop-
ment of neonatal macrosomia, whereas severe maternal
diabetes results in microsomia, alterations in hypotha-
lamic development and compromised insulin-regulatory
system (95). As adults, these offspring maintain normal
glucose homeostasis during basal conditions but develop
diabetes when their glucose metabolism is stressed such as
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during pregnancy (95). Offspring of some animal models
of preeclampsia develop IUGR and manifest altered en-
dothelial function and hypertension during adulthood
(91).

Animal models of increased maternal glucocorticoids
also present LBW with alterations in the offspring’s HPA
axis and adverse metabolic and behavioral phenotype dur-
ing adulthood (75, 76, 78). Similarly, early- to midgesta-
tional exposure to excess testosterone can induce pheno-
typic virilization and masculinization of the brain in
female offspring (5, 7, 8) and the adult onset of PCOS-like
reproductive and metabolic deficits in several species (ro-
dents, sheep, monkeys) (96, 97). Consequences of disease
states such as diabetes, metabolic syndrome and disease
models relative to developmental programming of pathol-
ogies such as PCOS in offspring have been addressed ex-
tensively in other reviews (97–101).

Lifestyle
In addition to maternal nutrition, stress, and disease

state directly having a role in developmental program-
ming, the lifestyle led by the pregnant women and imposed
on offspring during early life might contribute to disease
susceptibility. Lifestyle factors that have a bearing on peri-
natal programming include dietary choices, physical ac-
tivity, substance abuse and medical interventions. With
the advent of modern technology, physical inactivity is
increasing at an alarming rate and is now recognized as the
pressing healthcare issue of the 21st century (102). Ac-
cording to the 2014 physical activity council report, about
30% of the Americans report physical inactivity with ma-
jority of individuals spending about 70% of their wakeful
hours being sedentary (103, 104). Recent studies have
found a positive correlation between adult television view-
ing time and overall sedentary life with increased central
adiposity, fasting triglyceride levels and markers of insulin
resistance (103, 105). Importantly, physical inactivity
during pregnancy has been shown to be associated with
obesity in the offspring (106). Being physically active dur-
ing pregnancy appears to have many benefits that include
reduced body mass, reduced risk of impaired glucose tol-
erance, and development of innate immunity that help
prevent adverse metabolic programming in the offspring
(107).

Substance abuse with illicit drugs (marijuana, heroin,
and cocaine), legal drugs (alcohol and nicotine), misuse of
prescription drugs (hallucinogens, inhalants, or psycho-
therapeutic drugs), or smoking are major prenatal insults,
because approximately 5.9%, 8.5%, and 16% of the preg-
nant women in the United States are current illicit drug
users, alcohol users, or cigarette smokers, respectively
(data from 2013 Substance Abuse and Mental Health Ser-

vices Administration and 2012 National Survey on Drug
Use and Health) (108). Programming by substance abuse
could be facilitated via maternal stress and malnutrition,
features common among these individuals. Disruptions in
offspring of illicit drug/alcohol/cigarette users include,
IUGR, lower birth weight, congenital abnormalities, ab-
normal brain development, poor performance in many
behavioral and cognitive skills, and development of insu-
lin resistance (108–110).

With the advent of assisted reproductive technologies
(ARTs), medical interventions during the preimplantation
period is another risk factor for adverse developmental
programming (111). In the United States alone, there has
been a 25% increase in the number of ART cycles over the
10-year period between 2004 and 2013 with approxi-
mately 60 000 live births in 2013 (112). Although not a
consistent finding, some studies report ART pregnancies
to be associated with reduced gestational length and LBW
(113, 114). Importantly, embryo manipulations during
ARTs appear to result in several epigenetic alterations that
might lead to adverse outcomes later in life (111). In ad-
dition, medical interventions such as use of antiemetics to
treat morning sickness, instrumental vaginal delivery, ce-
sarean section, induction of labor using oxytocin admin-
istration and general anesthesia have also been reported to
induce epigenetic alterations in the offspring (115). Sim-
ilarly, inadvertent sex steroid exposure due to mothers
continuing to take contraceptive pills or performance-en-
hancing drugs (116, 117) unaware of their pregnancy can
lead to adverse programming. Another aspect to consider
is the use of treatments such as metformin to treat PCOS
and GDM in pregnant women. Although metformin treat-
ment has not shown adverse outcomes in offspring at
birth, the long term effects of such treatment on adult
pathology are unknown (118).

Studies in animal models validate the epidemiologic
findings in humans. For example, prenatal exposure of
rodents to substance abuse drugs leads to reduced birth
weight and deficits in several motor and cognitive skills
(108, 109), whereas prenatal alcohol exposure leads to
alterations in cerebral cortex network, behavior, and in-
sulin resistance in offspring (110, 119). Embryo culture,
routinely performed as part of ARTs, has been found to be
associated with IUGR and postnatal adiposity (120), risk
factors for adult pathologies. The findings that maternal
Western-style diet results in offspring that develop non-
alcoholic fatty liver and insulin resistance during adult-
hood (121), and dietary intervention and exercise yield
offspring with improved metabolic functions (122) en-
force the importance of healthy lifestyle in preventing ab-
normal programming. Additional details of the role
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played by lifestyle and benefits achieved by lifestyle inter-
ventions can be found in earlier reviews (107, 123, 124).

Environmental exposure to EDCs
Because of the critical role played by hormones, chem-

icals that mimic hormone actions can disrupt normal en-
docrine functions and change maternal and fetal endo-
crine milieus, thus altering the normal trajectory of fetal
development and potentially leading to the development
of chronic diseases (125, 126). These mimics are called
EDCs and as defined by the United States Environmental
Protection Agency (127) are “exogenous agents that in-
terfere with synthesis, secretion, transport, metabolism,
binding action, or elimination of natural blood-borne hor-
mones that are present in the body and are responsible for
homeostasis, reproduction, and developmental process.”
EDCs include naturally occurring compounds such as
phytoestrogens, genistein and coumestrol or synthetic
chemicals used as industrial solvents and lubricants (eg,
polychlorinated biphenyls [PCBs], polybrominated biphe-
nyls, and dioxins), plasticizers (eg, bisphenol A), pesticides
(eg, dichlorodiphenyltrichloroethane), fungicide (eg, vin-
clozolin), and pharmaceutical agents (eg, diethylstilbes-
trol) (128). Because EDCs are ubiquitously present, fetal/
offspring exposures during early developmental periods
could occur via maternal-fetal transfer and lactation (129,
130). Since mid-20th century, there has been a steady in-
crease in reproductive diseases and a decline in fertility
primarily in the developed world, which have been linked
to exposure to environmental chemicals, as corroborated
by the 20-fold increase in manufacture and use of natural
and synthetic chemicals during the same period (131). Ep-
idemiological data support this assertion as demonstrated
by neurological, reproductive, and developmental effects
in offspring of mothers exposed to mercury poisoning in
Japan and PCB in Taiwan (132, 133). Other disruptions
found to be associated with developmental exposure to
EDCs are obesity, cardiovascular diseases, type 2 diabetes,
and several hormone-sensitive cancers (125, 134).

Although epidemiological studies point to associations,
the direct link between the disruptions observed and the
EDC responsible come from experimental studies in ani-
mal models. Causal links between developmental expo-
sures to EDCs, such as phthalates, PCB, bisphenol A, and
dioxins, and development of adult disorders, such as male
infertility, type 2 diabetes, obesity, cancer, and other met-
abolic and reproductive dysfunctions, have been reviewed
earlier (126, 134–136).

Common Outcomes Programmed by
Different Perinatal Insults

Although a variety of insults can alter the developmen-
tal trajectory and culminate in adult diseases, there are a

number of similarities in the outcomes resulting from the
various perinatal insults (Figure 1). For instance, altera-
tions in placental function and IUGR are common conse-
quences of gestational undernutrition (137–139), expo-
sure to steroid excess (140, 141), maternal stress (142–
144), and smoking (145), among other insults.
Furthermore, metabolic derangements, including altered
body weight gain and insulin resistance, appear to be mu-
tual phenotypic traits programmed by different insults in
early life. For instance, in female sheep, prenatal exposure
to androgen excess (146, 147), gestational undernutrition
(39), and overnutrition (60) have all been reported to pro-
gram insulin resistance in the offspring. Additionally, ex-
cessive weight gain postnatally was found to amplify the
phenotypic severity in offspring subjected to different pre-
natal insults, such as gestational obesity (148) and prena-
tal androgen excess (146). Importantly, the risk of off-
spring of diet-induced obese mothers to become obese was
ameliorated by postnatal cross-fostering to lean mothers
(148). The similarity in phenotypic outcomes pro-
grammed by different perinatal insults and benefits a given
lifestyle intervention can have in overcoming similar
pathologic outcomes from different perinatal insults sug-
gest that common mechanisms are likely involved.

Common Mechanisms Underlying
Developmental Programming

Depending on the type of perinatal insult, organ system
affected, and the developmental window in which the in-
sult occurs, a number of mechanisms have been proposed
linking perinatal insults to the development of adult dis-
eases. Nonetheless, as our understanding in this field im-
proves, it has become evident that different insults can lead
to fetal/offspring responses that converge on common
mechanistic pathways culminating in the development of
similar adult outcomes (Figure 2). Metabolic hormones,
such as insulin and leptin, as well as steroid hormones such
as androgens and estrogens that play key roles in control-
ling cell proliferation and apoptosis, cell differentiation,
neurodevelopment, and energy use among other physio-
logical processes (149–155) are potential targets of peri-
natal insults. Studies in animal models have demonstrated
that different prenatal insults such as maternal undernu-
trition (82, 156) and overnutrition (157), as well as ges-
tational exposure to testosterone excess (158) result in
changes in maternal levels of insulin and/or leptin. Addi-
tionally, maternal undernutrition (159) and gestational
stress (160, 161) have also been shown to alter the ma-
ternal levels of androgens during gestation. These altera-
tions in the metabolic and steroid milieus during early life
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may be common integrative mechanisms via which peri-
natal insults program similar adult pathologies later in life.
In this regard, a reciprocal interplay between androgens
and insulin has been proposed to be involved in the patho-
genesis and phenotypic expression of disorders such as
PCOS (162–164) and metabolic syndrome (165, 166).
Other metabolic factors, such as amino acids (167) and
fatty acids (168) have also been implicated in the prenatal
programming of metabolic function.

Another common mechanism believed to be involved in
prenatal programming is oxidative stress; a deleterious
process that results in damage of cell components, such as
proteins, lipids, and DNA (169). Several insults associated
with IUGR and development of chronic disease, including
gestational hypertension, undernutrition, and smoking
have been associated with oxidative stress (169, 170).
IUGR has been found to promote low-grade inflammation
in the adult offspring, a mechanism linking impaired fetal
growth with chronic adult disease (24). For instance, ges-
tational obesity increases the expression of genes associ-
ated with oxidative stress and inflammation in the pla-

centa (171) as well as in the skeletal muscle of the
developing fetus (172). Similarly, high-fat diet has been
shown to increase the expression of enzymes involved in
oxidative stress in adult offspring of mice (173). Oxidative
stress and inflammation have also been postulated as crit-
ical mechanisms underlying several adverse health out-
comes associated with prenatal exposure to EDCs (174).
The finding that maternal supplementation with antiox-
idants reduces oxidative stress and prevents adiposity in
the offspring of Western diet-fed rats (175), provides sup-
port for inflammation and oxidative stress as mediators of
adverse metabolic programming in the offspring.

Epigenetic alterations, such as DNA methylation, his-
tone modification, chromatin packing, and microRNA
expression, are emerging as key mediators of developmen-
tal programming (176, 177). Because epigenetic mecha-
nisms are inherently malleable and can accumulate over
time, developmental insults can have profound effect on
this process, leading to altered gene expression and devel-
opment of disease phenotypes (48, 178, 179). For in-
stance, impaired glucose metabolism during pregnancy in

women is associated with altered
leptin gene DNA methylation and
mRNA expression in both the ma-
ternal and feto-placental compart-
ments, indicative of increased risk of
adult obesity and type 2 diabetes in
the offspring (180). Similarly,
changes in DNA methylation and hi-
stone acetylation in the promoter re-
gion of Pdx1, a pancreatic homeo-
box transcription factor critical for
�-cell function and development,
have been found to persist through-
out development and to be associ-
ated with a reduced pancreatic �-cell
mass and a prediabetic state in a rat
model of IUGR (181). Inappropriate
exposure to steroids or EDCs during
development has also been observed
to promote epigenetic adaptations
that likely underlie the development
of adult diseases (84, 182, 183). The
findings that maternal dietary sup-
plementation with methyl donors,
such as folic acid, negated the DNA
hypomethylating effect of neonatal
exposure to EDCs and prevented
EDC-induced changes in the coat
color in yellow agouti mice (184) em-
phasize the role of epigenetics in de-
velopmental programming. In con-

Figure 2. Commonalities in the mechanisms through which different perinatal insults could lead
to development of adult disorders. Different perinatal insults (disease states, environment, and
lifestyle choices) by altering the epigenome/metabolome/microbiome, inflammatory/oxidative
stress mechanisms, or endocrine signals have the potential to alter the fetal developmental
trajectory culminating in adult disorders and may also serve as early biomarkers of future disease
states.
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junction with other recent studies, these data highlight the
effects of prenatal insults on genomic plasticity and the
potential for maternal dietary supplementation to prevent
epigenetic changes.

Importantly, postnatal outcomes resulting from differ-
ent perinatal insults, such as hormonal imbalances and
metabolic disruptions, appear to play an important role in
unmasking, maintaining, and/or amplifying the defects
programmed in utero. The notion that a combination of
prenatal and postnatal insults may be necessary for the
development and manifestation of pathology has been
proposed for different diseases (19, 185, 186). For in-
stance, observations from the monkey (187) as well as the
sheep model (188) of PCOS-like phenotype indicate that
postnatal overnutrition exacerbates the reproductive and
metabolic alterations programmed by prenatal testoster-
one excess. Similarly, compensatory growth during early
life further increases the risk of chronic diseases in off-
spring of undernourished mothers. Therefore, it is evident
that although prenatal insults can have important orga-
nizational effects programming the offspring, postnatal
alterations may have activational effects impacting the de-
velopment, expression and/or severity of disease (19).

Conclusion and Future Directions

Epidemiological data in humans and studies in animal
models clearly indicate that a myriad of insults occurring
during in utero life may impact on the offspring’s long-
term health. Nevertheless, the lack of detailed information
on the maternal and fetal environments throughout ges-
tation following such insults and the scarcity of longitu-
dinal studies in humans limit our understanding of the
susceptibility windows during fetal development as well as
the actual impact of such insults on specific organ systems.
Additionally, the interactions between prenatal insults
and postnatal milieu in the development of adult diseases
remain poorly understood. Therefore, animal models of
perinatal programming serve as a critical research tool to
study the impact of developmental insults on the off-
spring’s health, to unravel the cellular and molecular
mechanisms involved in this process, and to test interven-
tion strategies.

An area that requires further investigation is the po-
tential transmission of phenotypic traits to subsequent
generations. Studies in animal models have reported that
different perinatal insults may lead to epigenetic altera-
tions and adult pathology in multiple generations (182,
189–191). Epidemiological studies in humans also point
to multigenerational effects of prenatal exposure to the
Dutch famine, with F2 individuals presenting increased

neonatal adiposity and poor overall health in later life
(192). Going forward, it is important to dissect out the
specific contribution of epigenetic inheritance vs the ver-
tical transmission of traits via endocrine imbalances,
which may prevail from generation to generation to facil-
itate the perpetuation of pathologic alterations to subse-
quent generations. Documentation of the transgenera-
tional epigenetic transmission in the female offspring
would require studies of third generation (F3) and beyond
(193, 194). Additionally, although this review focuses pri-
marily on maternal exposure to gestational insults, recent
experimental and epidemiological observations (195–
198) emphasize the need to investigate the role of paternal
epigenetic inheritance in the development of adult disease.

An emerging and promising area of research that also
merits investigation relative to developmental program-
ming of adult disease is the role of the gut microbiota
(199–201). Recent studies point to prevailing microbiome
during gestation and postnatal period to have an impact
on the developing immune system, a risk factor for devel-
opment of immune-related pathologies in the offspring
(199). Moreover, patterns of microbial colonization ap-
pear to influence brain development, infant growth and
adiposity (200). Because dietary composition influences
the colonization of intestinal bacteria during development
(201), strategies to prevent adverse programming should
also focus on the impact early nutrition, and use of pro-
biotics/antibiotics have on the microbiome and their re-
lation to developmental programming.

Because perinatal insults may impact multiple physio-
logical systems, the integration of these systems in the de-
velopment of pathology is an important avenue for future
research. For instance, prenatal exposure to androgen ex-
cess has been found to impact both the reproductive and
the metabolic systems leading to a self-perpetuating cycle
with defects at one system having an impact on the other
(188). Therefore, interventions targeting at multiple sys-
tems may be required to overcome such developmentally
programmed disorders. In fact, combined antiandrogen
and insulin-sensitizing treatment of young, nonobese
women with PCOS has been found to have additive ben-
efits on insulin sensitivity, hyperandrogenemia, and dys-
lipidemia when compared with monotherapies (202). Im-
portantly, the investigation of potential common
mediators affecting the different systems may help identify
early biomarkers and therapeutic targets for prevention
strategies.

Although many perinatal insults have been identified in
the last decades, there is still a long way ahead to identi-
fying all the factors that can adversely impact the off-
spring’s health. Additional epidemiological and animal
studies are required to shed more light on this important
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issue. Furthermore, because the long-term consequences
of pharmacological interventions during the preconcep-
tion period and gestation remain unclear, preventive strat-
egies should focus on promoting healthy lifestyle choices
and minimizing unnecessary exposure to potentially
harmful agents before and during pregnancy as well as
during early life of the child. Postnatal lifestyle interven-
tions represent promising approaches to overcome, or at
least alleviate, many deleterious events programmed
perinatally.
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